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POSITION CHOICE AND SWIMMING COSTS OF JUVENILE ATLANTIC 13 

SALMON SALMO SALAR IN TURBULENT FLOW 14 

Abstract 15 

Swimming costs (SC) for fish have been shown to be affected by turbulence. However, this 16 

idea has not yet been implemented in habitat models, which often represent hydraulics using 17 

water velocity averaged over time and space. In this study, we analysed the habitat selection 18 

of individual juvenile Atlantic salmon Salmo salar (L. 1758) in relation to predicted SC in the 19 

turbulent flow of a large outdoor flume. We used a previously published SC model 20 

parameterised using mean velocity, turbulence intensity, water temperature and fish mass. 21 

Results showed that 86% of fish chose locations with significantly lower predicted SC than 22 

expected at random (p<0.05). Position choice was negatively related to predicted SC, mean 23 

velocity, spatial velocity gradient, and Reynolds stresses. Based on the findings, a novel 24 

habitat suitability curve is recommended for juvenile Atlantic salmon. The results are 25 

expected to contribute towards the improvement of bioenergetics modelling to increase our 26 

understanding of the impacts of environmental changes and management activities. 27 

 28 

Keywords: Swimming costs; bioenergetics; turbulence; hydrodynamics; habitat; Atlantic 29 

salmon.30 



 3 

POSITION CHOICE AND SWIMMING COSTS OF JUVENILE ATLANTIC 31 

SALMON SALMO SALAR IN TURBULENT FLOW 32 

Introduction 33 

In recent decades two parallel trends in river research and management have led to an 34 

increasing focus on the hydrodynamics of river ecosystems (Nikora 2010; Wilkes et al. 2013) 35 

and a proliferation in the development of bioenergetics models for fish (Fausch 2014; 36 

Jørgensen et al. 2016), which include an important foraging component (e.g. Hughes & Dill 37 

1990; Hill & Grossman 1993; Booker et al. 2004). Such forage-based models seek to predict 38 

the distribution, growth, abundance or biomass of drift feeding fish by modelling the fish’s 39 

net energetic intake (NEI) as a function of the gross energetic intake (GEI) acquired through 40 

prey capture and the associated swimming costs (SC): 41 

(1) 𝑁𝐸𝐼 = 𝐺𝐸𝐼 − 𝑆𝐶 

(Piccolo et al. 2014). Their appeal over traditional hydraulic habitat models, such as 42 

PHABSIM (Physical Habitat Simulation system; Milhous et al. 1984), is that they have 43 

mechanistic foundations (Lancaster & Downes 2010; Meineri et al. 2014). Traditional 44 

hydraulic habitat models rely on correlative habitat suitability curves derived from measuring 45 

simple descriptions of the fluvial environment - water velocity, water depth, and substrate 46 

where fish are present and absent - resulting in an index of habitat suitability. On the other 47 

hand, forage-based models incorporate the costs and benefits of food acquisition in an 48 

ecologically realistic way (Hayes et al., 2016). 49 

In traditional hydraulic habitat models water velocity is represented by mean column 50 

velocity, whereas the SC component (equation 1) of forage-based models is typically 51 

estimated with the assumption of sustained swimming at constant speeds (Piccolo et al. 52 
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2014), although corrections for accelerations and turns may be made (Hayes et al., 2016). The 53 

use of mean column velocity or constant swimming speeds, however, provides a far from 54 

complete description given that fish are swimming in spatiotemporally dynamic, three-55 

dimensional turbulent flow. Laboratory studies have revealed strong relationships between 56 

turbulent flow and SC, calling for turbulence to be considered in habitat models (Enders & 57 

Boisclair 2016). Respirometer studies by Enders et al. (2003) demonstrated that juvenile 58 

Atlantic salmon Salmo salar (L. 1758) may consume significantly more energy when 59 

swimming in unpredictable turbulent flow. An existing model for predicting SC based on 60 

steady swimming at mean velocity (Boisclair & Tang 1993) did not match the data of Enders 61 

et al. (2003) well, leading to the development of a new turbulent SC model (Enders et al. 62 

2005). Turbulence in this case was described as the standard deviation of the primary velocity 63 

component (uSD) but several other studies suggest that the energy efficiency of fish 64 

locomotion may be dependent on other hydrodynamic properties. In particular, the direction 65 

relative to fish body shape, the scale relative to fish body length, and the periodicity of the 66 

turbulent flow may all be important (Webb 2004; Liao 2007, Lacey et al. 2012). 67 

Previous laboratory work with laterally compressed fish has shown that eddies rotating on a 68 

horizontal axis may, depending on the ratio of eddy size to fish body length, destabilize fish 69 

and result in increased energetic costs (Pavlov et al. 2000; Lupandin 2005; Tritico & Cotel 70 

2010). Silva et al. (2011 2012) found that Iberian barbel Luciobarbus bocagei (L. 1758) 71 

avoided areas of high Reynolds shear stress, which describes transport occurring through 72 

displacements of fluid particles without a change in momentum (accelerations and 73 

decelerations of fluid particles due to pressure and viscous forces). The mechanism appeared 74 

to be postural challenges leading to increased energetic costs at high Reynolds stresses. On 75 

the other hand, relatively predictable (highly periodic), vertically oriented eddies associated 76 

with cylinder wakes allowed rainbow trout Onchorynchus mykiss (Walbaum 1792) to reduce 77 
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SC by Kármán gaiting (Liao et al. 2003; Taguchi & Liao 2011). Further reductions in SC 78 

have been observed in rainbow trout entraining on obstacles (Cook & Coughlin 2010; 79 

Przybilla et al. 2010; Taguchi & Liao 2011). Spatial gradients in velocity have also been 80 

implicated in the position choice of juvenile Atlantic salmon and brown trout S. trutta (L. 81 

1758) due to their distinctive ‘sit-and-wait’ feeding behaviour (Hayes & Jowett 1994; Booker 82 

et al. 2004).  83 

This study aimed to advance knowledge of how turbulence affects habitat selection in 84 

juvenile Atlantic salmon by: (i) testing the ability of a turbulent SC model (Enders et al. 85 

2005) to predict position choices in wild fish; and (ii) assessing whether this prediction may 86 

be improved upon by taking into consideration other properties of the turbulent flow, 87 

including intensity, periodicity, direction, and scale. It was hypothesised that fish would 88 

occupy positions within an artificial habitat associated with energetically favourable 89 

hydrodynamic conditions that are likely to minimise SC. 90 

Material and methods 91 

Experimental Setup 92 

Experiments were conducted in a 2 m long section of an outdoor flume at the International 93 

Centre for Ecohydraulics Research (ICER), University of Southampton. The flume is 2 m 94 

wide and 60 m long with a trapezoidal cross-section and a concrete bed. The test section was 95 

covered with a heavy canvass tent. Test conditions were created using artificial habitat 96 

features consisting of 24 small (50 mm in diameter) and 16 large (100 mm in diameter) 97 

transparent plastic hemispheres that were fixed to the bottom of the stream channel (Figure 98 

1). Transparent habitat features were used to reduce the likelihood of fish responding to 99 

visual cues. We further reduced this likelihood by performing trials in darkness (<0.001 lux). 100 
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Discharge (0.056 m
3
 s

-1
) and flow depth (16.5 cm) were constant throughout the experiments. 101 

The flow depth was set to be within the natural range of depths reported to be used by 102 

juvenile Atlantic salmon (Symons and Heland 1978; Kennedy and Strange 1982; Morantz et 103 

al. 1987; Heggenes 1990). During the experiments, water temperature was maintained at 15 104 

°C (± 0.1 °C). Instantaneous water velocities at set locations around the hemispheres (Figure 105 

1) were measured with a 3-D acoustic Doppler velocimeter (ADV) (model Vectrino II, 106 

Nortek International, Rud, Norway) at a frequency of 25 Hz for 90 s, providing a highly 107 

resolved characterisation of the turbulent flow. This frequency and record length has been 108 

shown to be optimal in gravel-bed rivers (Buffin-Bélanger and Roy 2005). Velocities were 109 

measured at 20-24 mm above the bottom of the flume, to approximate the focal point velocity 110 

of juvenile salmonids (Heggenes & Saltveit 1990; Riehle & Griffith 1993). 111 

[Figure 1 near here] 112 

Experimental procedure 113 

A total of 46 juvenile (0+) Atlantic salmon (96.30 ± 0.51 mm TL) were electrofished (50 Hz 114 

pulsed DC) from the River Frome, Dorset, UK on 6 September 2012 and transported (tanks 115 

with aerated river water at a temperature of 12 °C) to the ICER experimental facility. Fish 116 

were maintained in a holding tank (1000 L; filtered, oxygenated, dechlorinated mains water) 117 

and acclimated for a minimum of 7 d to ambient temperatures (14.6 ± 1.4 °C) and natural 118 

photoperiod before the trials began. Efficient aeration and filtration systems were used and 119 

water quality was monitored and maintained within the range considered suitable for fish 120 

husbandry. Water was regularly replenished. During this time, fish were fed with defrosted 121 

chironomid larvae but not fed for 24 h prior to experimental trials. Each trial began by adding 122 

an individual fish to the flume at a random position in the test section. After 30 min to 123 

acclimatise to the flow and explore the habitat, the position of each fish was recorded for 10 124 
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min using an infra-red camera (Sony 1000TVL, 720P, IR-CUT). All trials were conducted at 125 

night to avoid any confounding diurnal effects. Fish were not fed during the trials. At the end 126 

of each trial, the fish was removed from the test section and held separately from other fish 127 

for 24 h to monitor its health. Trials were conducted between dusk and dawn on 13, 14 and 128 

15 September 2012. 129 

Data processing 130 

ADV data were post-processed using a phase-space filter (>95% good pass criterion), with 131 

inconsistent data points replaced using a third-order polynomial fitted to the data either side 132 

of the spike (Parsheh et al. 2010). The data were rotated into the resultant vector in three 133 

dimensions, so that: 134 

(2) 𝑣̅ = 𝑤̅ = 0 

where v’, and w’ are instantaneous velocities in the vertical and spanwise directions 135 

respectively, and overbars denote ensemble averages. The rotated data were used to calculate 136 

the following hydraulic variables: mean velocity (U), turbulence intensity (uSD) and Reynolds 137 

stresses on the streamwise-vertical (τuv), and streamwise-lateral (τuw) planes: 138 

(3) 𝜏𝑢𝑣 = 𝜌𝑢𝑣̅̅̅̅  ,  𝜏𝑢𝑤 = 𝜌𝑢𝑤̅̅ ̅̅  

where ρ is the water density (1000 kg m
-
³ ) and u’ is the instantaneous velocity in the 139 

streamwise component. 140 

Average eddy length (Lu) was calculated using a second-order autoregressive model: 141 
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(4) 

𝐿𝑢 = 𝑢𝑡𝑈 

𝑢𝑡 = 𝑎1𝑢𝑡−1 + 𝑎2𝑢𝑡−2 + 𝑒𝑡 

where a1 and a2 are coefficients of the velocity at a given time lag and et is a random 142 

component (Clifford and French 1993a). All the hydraulic variables were interpolated to a 25 143 

mm mesh grid using an Ordinary Kriging method (Oliver 1990) in ArcGIS 10 (ESRI 2011). 144 

The 25 mm mesh size was chosen as a scale consistent with the fish size, the scale of the 145 

hemispheres and the resolution of the ADV measurements. 146 

SC was predicted for each cell according to the equation for the turbulent SC model (SCpred) 147 

(Enders et al. 2005): 148 

(5) 𝑙𝑜𝑔𝑆𝐶𝑝𝑟𝑒𝑑 = 0.23𝑙𝑜𝑔𝑇 + 0.64𝑙𝑜𝑔𝑀 + 2.43𝑙𝑜𝑔𝑈 + 0.67𝑙𝑜𝑔𝑢𝑆𝐷 − 4.06 

where T is water temperature and M is the fish body mass. SCpred was calculated for the 149 

average mass of fish used in this study (9 g) at a temperature of 15 °C. Spatial velocity 150 

gradient (Vgrad) was also calculated for each cell as the standard deviation of U in all 151 

neighbouring cells within a 200 mm radius (approximately two body lengths, the foraging 152 

radius of juvenile salmonids; Fausch 1984). 153 

Fish focal position was recorded manually using tracking software (Kinovea 0.8.15) every 5 154 

s, giving 121 observations per fish referenced to the same grid cell system as the hydraulic 155 

data. These results were used to calculate a selection index (SI) of the fish for each cell. This 156 

index was calculated based on the number of times a fish was observed in that cell (cell 157 

occupancy, COcell): 158 
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(6) 

𝐶𝑂𝑐𝑒𝑙𝑙 = ∑ 𝑓𝑖𝑠ℎ𝑖,𝑐𝑒𝑙𝑙

𝑛

𝑖=1

 

𝑆𝐼 =
𝐶𝑂𝑐𝑒𝑙𝑙

𝐶𝑂𝑚𝑎𝑥
 

where fishi,cell is the occupancy count for each fish in each cell and COmax is the maximum 159 

cell occupancy or, in other words, the COcell associated with the most popular cell. 160 

Statistical analyses 161 

A permutation test was used to test the null hypothesis that fish chose cells at random, 162 

independently of SCpred. The null distributions of SCpred were constructed from 10,000 163 

bootstrap samples of 121 random cells (with replacement). For each fish, the probability (p) 164 

that the fish chose cells at random was calculated as: 165 

(7) 𝑝 =
∑ (𝑆𝐶𝑛𝑢𝑙𝑙 ≥ 𝑆𝐶𝑓𝑖𝑠ℎ

𝑛
𝑖=1

𝑘
− 1 

where k=10,000 permutations, SCnull is the mean SCpred associated with each bootstrap sample 166 

and SCfish is the mean SCpred of cells used by each fish. 167 

Generalised linear models were used to predict SI using two sets of explanatory variables: (i) 168 

SCpred; and (ii) a linear combination of hydrodynamic variables (U, uSD, τuv, τuw, Lu, and Vgrad 169 

were considered), which we term the ‘hydrodynamic habitat model’. Habitat selection was 170 

found to follow a Poisson distribution. Nevertheless, due to the high number of zeros as result 171 

of the fact that fish could not occupy all cells (even where the habitat was suitable), a zero-172 

inflated negative binomial (ZINB) model was applied in order to deal with overdispersion: 173 

 174 
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(8) 𝑔(𝜇𝑖) = 𝛽0 + 𝑋𝑇𝛽,  𝑔(𝜋𝑖) = 𝛽0 + 𝑋𝑇𝛽 

where g is a link function, β0 is the intercept, X
T
 is a vector of m predictor variables, and β is a 175 

vector of m regression coefficients. Thus, we modelled the probability of finding false zeros 176 

(i.e., locations in which fish were not observed but nevertheless represented suitable habitat; 177 

see Zuur et al. 2009) separately to the count (SI) data. A log link was used for the count 178 

model (μ), whilst the binomial model (π) was facilitated by a logit link function. 179 

The Akaike information criterion (AIC), an inverse measure of goodness-of-fit, was used to 180 

compare results for the SCpred and hydrodynamic habitat models. AIC was also used for 181 

model selection along with likelihood ratio tests for nested models. All statistical procedures 182 

were carried out using R3.2.4 (R Core Team 2015). 183 

Results 184 

Flow conditions in the test section 185 

Resultant mean velocities and turbulence intensities ranged from 0.16 to 20 cm s
-1

 and 0.38 to 186 

8.13 cm s
-1

, respectively (Figure 2a-b). A wide range of length scales (0.26<Lu<34.98 cm) 187 

were distributed throughout the test arena (Figure 2c). Regions of highest turbulence intensity 188 

(Figure 2b), Reynolds shear stresses (Figure 2d-e), and flow divergence and convergence 189 

(Figure 2f) were associated with bed protrusions, conditions typically associated with flow 190 

around pebble clusters (Buffin-Bélanger and Roy 1998; Lawless & Robert 2001). Velocity 191 

spectra showed peaks in the region 0.01-0.2 Hz and typically became flattened downstream 192 

of hemispheres (Figure 3). The conditions on each side of the test section were noticeably 193 

different, with the right side generally exhibiting higher velocities, greater turbulence 194 

intensities, and larger scales. SCpred was distributed between 0.01 and 3.89 mg O2 h
-1

 (0.19-195 

75.39 J h
-1

 assuming no anaerobic component; Heath, 1995). Following the general hydraulic 196 
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patterns observed, SCpred was higher on the right side of the test section and in the vicinity of 197 

bed obstacles (Figure 4).  198 

[Figure 2 near here] 199 

[Figure 3 near here] 200 

[Figure 4 near here] 201 

Habitat selection 202 

Fish moved around the test section to varying degrees. Some fish remained in the same or 203 

adjoining cells for the duration of observations, whereas others used a wider range of SCpred. 204 

Figure 5a shows two fish trajectories that exemplify this range of behaviours. Thus, 205 

individual fish were classified as ‘station-holding’ (remaining in the same or adjoining cells 206 

for the duration of observations) or ‘searching’ (Table 1). Fish most often selected cells close 207 

to hemispheres (both large and small hemispheres) and the edges of the test section (Figure 208 

5b). Figure 6 shows the frequency distribution of mean SCpred under the null model (random 209 

cell selection). The permutation tests revealed that 86% of fish chose cells with significantly 210 

lower mean SCpred than expected at random (p<0.05), including all fish that exhibited station-211 

holding behaviour for the duration of observations (Table 1). Results of ZINB modelling 212 

showed that SCpred was negatively related to habitat selection (Figure 7). Observed SI was 213 

clustered around low SCpred. The probability of finding a false zero (i.e. where the habitat is 214 

suitable but no fish were observed) was consistently low (Figure 7). Count (SI) model 215 

coefficients were highly significant (Table 2).  216 

[Table 1 near here] 217 

[Table 2 near here] 218 
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[Figure 5 near here] 219 

[Figure 6 near here] 220 

[Figure 7 near here] 221 

Hydrodynamic habitat model 222 

Due to intercorrelation between U, uSD and Lu, (0.78<r<0.95), only U, τuv, τuw and Vgrad were 223 

entered as explanatory variables for the hydrodynamic habitat model. In the case of τuw, the 224 

magnitude of turbulence-related disturbances on this horizontal plane, rather than the 225 

direction, is of most interest. Thus, absolute values were used (|τuw|).  226 

Reynolds stresses were the weakest contributing variables to the model and, therefore, we 227 

examined the effect of dropping both of these variables simultaneously. The solution that 228 

dropped both τuv and |τuw| from the count model was optimum as this was the most 229 

parsimonious model with the lowest AIC (Table 3). All coefficients for both the count and 230 

binomial components of this optimum model were significant (Table 4). Predicted SI was 231 

negatively related to U and Vgrad, whilst the probability of finding false zeros, where the 232 

habitat was suitable but no fish were observed, was also negatively related to Reynolds 233 

stresses (Figure 8). The AIC of the hydrodynamic habitat model was lower than for the SCpred 234 

model (6925.55<6967.16). 235 

[Table 3 near here] 236 

[Table 4 near here] 237 

[Figure 8 near here] 238 

Discussion 239 
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This study advances understanding of the role of swimming energetics and turbulent flow in 240 

the habitat selection of juvenile Atlantic salmon in a realistic hydrodynamic environment. 241 

Mean velocities and turbulence intensities were within the range used to construct the SC 242 

model of Enders et al. (2005). Furthermore, all hydrodynamic variables were within an order 243 

of magnitude of those reported in gravel-bed rivers (Lacey et al. 2007; Smith & Brannon 244 

2007; Roy et al. 2010). Our findings suggest that turbulence and swimming energetics do 245 

affect position choice. The results of permutation tests and ZINB modelling using a turbulent 246 

SC model (Enders et al. 2005) supported the hypothesis that the fish would select locations 247 

that minimised SC. 248 

A hydrodynamic habitat model that included U, Vgrad, and Reynolds stresses performed better 249 

than the SCpred model, as evidenced by a lower AIC despite the model being less 250 

parsimonious. Whilst a negative relationship between U and SI was expected on an energetic 251 

basis, it was unexpected that Vgrad would also be negatively related to SI given that the 252 

feeding behaviour of juvenile salmonids makes them better suited to focal positions with low 253 

velocity that are situated close to zones of high velocity (Hayes & Jowett 1994; Booker et al. 254 

2004). One explanation for this could be that the fish were not active due to low light levels. 255 

Fraser and Metcalfe (1997) found that juvenile Atlantic salmon were relatively inactive at 256 

illumination levels lower than those equivalent to dawn and dusk. However, observations of 257 

high nocturnal activity in summer (Gries et al. 1997) and lower rates of nocturnal hiding at 258 

temperatures above 9 °C (Valdimarsson et al. 1997) suggest that this species and life-stage 259 

will seek habitats suitable for feeding in darkness at the temperatures tested in this study, 260 

although we cannot rule out the possibility that fish were not searching for feeding stations 261 

because they were not fed during trials. Another possibility is that velocity gradients in the 262 

test section were not great enough to elicit a response from the fish. Mean velocity in gravel-263 

bed rivers can range from near zero to >50 cm s
-1

 over small multiples of fish body length 264 
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(Roy et al. 2004; Buffin‐Bélanger et al. 2006). The mean velocity range of 0<U<20 cm s
-1

 265 

within our test section is typical of the smallest range expected in natural settings (Buffin‐266 

Bélanger et al. 2006). 267 

Negative values of τuv were associated with suitable habitat, whereas high positive values 268 

were not. This suggests that the fish exhibited a preference for locations at which there was a 269 

net flux of turbulent momentum towards the bed, presumably because this aided station-270 

holding. Areas of high |τuw| were not preferentially occupied by the fish. The likely reason 271 

that Reynolds stresses were not included in the optimum count (SI) model is that maximal 272 

values were two orders of magnitude lower than reported in some previous laboratory 273 

experiments showing clear avoidance of high Reynolds stress zones (Silva et al. 2011; 2012). 274 

However, other studies found that similar Reynolds stresses to observed here elicited 275 

responses in terms of avoidance (Hockley et al. 2014) and swimming speed (Alexandre et al. 276 

2013). 277 

Locations downstream of hemispheres suitable for entraining (<cD downstream of 278 

hemisphere, where cD is hemisphere diameter) and Kármán gaiting (3<cD<5 downstream; 279 

Liao 2006) had relatively high SI. It remains uncertain whether the chaotic flow in the test 280 

section, with velocity spectra lacking pronounced peaks and relatively high Reynolds 281 

numbers compared with previous work (Enders et al. 2003; Liao et al. 2003, Liao 2006; 282 

Taguchi & Liao 2011), would be suitable for Kármán gaiting. It is also difficult to evaluate 283 

role of eddy length relative to body length (bl) as Lu was highly correlated with U. Relative 284 

eddy lengths in the test section included the range 0.6< Lu/bl<0.66 thought to cause instability 285 

in cyprinid fish (Pavlov et al. 2000; Lupandin 2005; Tritico & Cotel 2010), but these values 286 

were associated with regions of high SI. It is possible that the flow was too chaotic (Enders & 287 
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Boisclair 2016) or eddy momentum was too low (Tritico & Cotel 2010) to elicit an avoidance 288 

response. Alternatively, juvenile Atlantic salmon may not be susceptible to such instabilities. 289 

There are several factors that could have confounded our quantification of habitat selection in 290 

relation to the turbulent flow. Firstly, the fish were assumed to be responding to hydraulics 291 

but, although trials were performed in darkness and the artificial habitat features 292 

(hemispheres) were transparent, the possibility that fish used their lateral line system to select 293 

locations based on proximity to physical structures (e.g., hemispheres or netting) cannot be 294 

ruled out. Secondly, the data analysis methods used ignored the possibility of strong spatial 295 

intercorrelation in the response of individual fish. If it is assumed, as the results suggest, that 296 

the fish chose energetically favourable locations then a third related factor is the possibility 297 

that they chose local, rather than global, energetic minima (i.e., that they are only selecting 298 

the ‘best’ habitat from a small area). The use of random starting co-ordinates and the time 299 

allowed for acclimation and habitat exploration was an attempt to mitigate this. Furthermore, 300 

many fish were observed to be rapidly moving from one side or end of the test arena to the 301 

other, indicating that they were able to ’sample’ the available habitat. 302 

Implications for research and management 303 

By integrating hydrodynamics and bioenergetics this work integrates two parallel trends in 304 

river research and management (Nikora 2010; Jørgensen et al. 2016). Bioenergetics models 305 

have been suggested as an advance on the simplistic, empirical approach taken by traditional 306 

hydraulic habitat models such as PHABSIM, yet their application has been limited because of 307 

their complexity and resource-intensiveness (Dunbar et al. 2012). The application of reliable 308 

habitat models is critical to evaluating the impacts of river barriers (Urabe et al. 2014), low 309 

flows (Rosenfeld & Ptolemy 2012), habitat degradation (Hafs et al. 2014), and stream 310 
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restoration (Railsback et al. 2013), all of which an involve modifications of the turbulent 311 

flow. 312 

Our findings show how the hydraulic component of habitat models may be improved. We 313 

recommend the SC model of Enders et al. (2005) for inclusion as a parameter as it is a 314 

compromise between parsimony and causality, although we realise that many habitat 315 

modelling applications will lack the resources to collect sufficiently detailed data on the 316 

turbulent flow. Future research should investigate the accuracy of predictions made using this 317 

model in field settings that are likely to include a wider range of hydraulic conditions than 318 

studied here. A similar approach could be applicable to other species but relationships 319 

between flow and SC are likely to be species-specific. Turbulence may also be implicated in 320 

the energetic intake component of forage-based models for drift-feeding fish, in terms of the 321 

spatiotemporal variability in prey concentration and capture rates (Piccolo et al. 2014). This 322 

also warrants future research. 323 

Conclusions 324 

A recent accumulation of evidence has confirmed strong and complex relationships between 325 

turbulent flow and fish swimming energetics (e.g., Enders et al. 2005; Tritico & Cotel 2010; 326 

Taguchi & Liao 2011; Lacey et al. 2012; Enders & Boisclair 2016) but these relationships 327 

have not yet been incorporated into models that predict position choice and habitat quality for 328 

fish. We establish, for the first time, a link between turbulent flow, swimming costs, and 329 

habitat selection in juvenile Atlantic salmon. The resulting habitat suitability curve based on 330 

the energetic costs of swimming in turbulent flow is in a format that can readily be 331 

implemented in habitat models. 332 

 333 
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Table 1 – Summary of predicted swimming costs for each fish, including the mean predicted SC 483 

expected at random (‘Null’), and the probability (p) that each fish chose cells at random. 484 

Fish Mean SCpred (mg O2 h
-1

) Behaviour p 

(Null) 0.5 NA NA 

1 0.08 Station-holding 0 

2 0.19 Searching 0 

3 0.48 Searching 0.37 

4 0.29 Searching 0 

5 0.03 Searching 0 

6 0.23 Searching 0 

7 0.09 Station-holding 0 

8 0.03 Searching 0 

9 0.64 Searching 0.99 

10 0.71 Searching 0.99 

11 0.02 Searching 0 

12 0.14 Searching 0 

13 0.03 Searching 0 

14 0.05 Searching 0 

15 0.32 Searching 0 

16 0.1 Searching 0 

17 0.28 Searching 0 

18 0.002 Station-holding 0 

19 0.58 Searching 0.95 

20 0.03 Station-holding 0 

21 0.02 Station-holding 0 

22 0.39 Searching 0.008 

23 0.039 Searching 0 

24 0.05 Searching 0 

25 0.06 Searching 0 

26 0.33 Searching 0 

27 0.33 Searching 0 

29 0.41 Station-holding 0.04 

30 0.11 Searching 0 

31 0.46 Searching 0.24 

32 1.38 Searching 1 

33 0.3 Searching 0 

35 0.02 Station-holding 0 

36 0.36 Station-holding 0.0006 

37 0.06 Station-holding 0 

38 0.21 Station-holding 0 

39 0.03 Station-holding 0 

41 0.01 Station-holding 0 

43 0.05 Station-holding 0 

44 0.25 Station-holding 0 

45 0.13 Station-holding 0 

46 0.29 Station-holding 0 
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Table 2 – Results of ZINB modelling for the swimming costs model. 485 

 Term Estimate SE z value p 

 g(μ)    

(Intercept) 0.1009 0.1521 0.664 0.507 

CR -0.8979 0.1129 -7949 < 0.001
 

log (theta) -3.1132 0.1287 -24.186 < 0.001 

 g(π)    

(Intercept) -1.829 1.127 -1.622 0.105 

CR -1.214 0.817 -1.486 0.137 

Log-lik = -3504 on 5 df 

AIC = 6967.16 

 486 
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Table 3 – Summary of ZINB model selection for the bespoke hydrodynamic habitat model. 487 

Dropped term df AIC LR test 

None 

 

11 

 

6926.53 

   

U from count model 

 

10 

 

6938.33 

 

X
2
 = 13.8 

(df = 1, p = 2.03 x 10
-9

) 

Vgrad from count model 

 

10 

 

6932.62 

 

X
2
 = 8.0965 

(df = 1, p = 0.00444) 

τuv from count model 

 

10 

 

6925.05 

 

X2 = 0.5291 

(df = 1, p = 0.467) 

IτuwI from count model 

 

10 

 

6927.45 

 

X
2
 = 2.92 

(df = 1, p = 0.0875) 

U from binomial model 

 

10 

 

6936.66 

 

X
2
 = 12.128 

(df = 1, p = 4.97 x 10
-4

) 

Vgrad from binomial model 

 

10 

 

6938.52 

 

X
2
 =  13.989 

(df = 1, p = 1.84 x 10
-4

) 

τuv from binomial model 

 

10 

 

6945.09 

 

X
2
 = 20.567 

(df = 1, p = 5.76 x 10
-7

) 

IτuwIfrom binomial model 

 

10 

 

6964.76 

 

X
2
 = 40.231 

(df = 1, p = 2.26 x 10
-10

) 

τuv and IτuwI from count model 

9 

 

6925.55 

 

X
2
 = 3.0203 

(df = 2, p = 0.221) 

τuv and IτuwIfrom binomial 

model 

9 

 

6964.11 

 

X
2
 = 41.584 

(df = 2, p = 9.34 x 10
-10

) 

τuv and IτuwI from both models 

7 

 

6963.14 

 

X
2
 = 44.614 

(df = 4, p = 4.78 x 10
-9

) 

 488 
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Table 4 – Results of ZINB modelling for the optimal bespoke hydrodynamic model. 489 

 Term Estimate SE z value p 

 g(μ)    

(Intercept) 1.31874 0.18825 7.005 2.47 x 10
-12

 

U -0.14748 0.02827 -5.217 1.82 x 10
-7

 

Vgrad -0.29105 0.09463 -3.076 0.0021 

log (theta) -2.62764 0.099 -26.543 < 2 x 10
-16

 

 g(π)    

(Intercept) 0.47686 0.27764 1.718 0.08588 

U 0.16404 0.05232 3.135 0.00172 

Vgrad -0.60384 0.17324 -3.485 4.91 x 10
-4

 

τuv -0.05798 0.01423 -4.074 4.62 x 10
-5

 

IτuwI -0.09924 0.03010 -3.297 9.77 x 10
-4

 

Log-lik = -3454 on 9 df 

AIC = 6925.55  

 490 

  491 
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Figure 1 – Map of test section and sample locations for acoustic Doppler velocimeter (ADV) 492 

measurements. 493 

 494 

  495 



 30 

Figure 2 – Maps of (a) mean velocity, (b) turbulence intensity, (c) average eddy length, (d, e) 496 

Reynolds shear stresses, and (f) resultant velocity vectors illustrating the sampling locations in the test 497 

area of the experimental stream channel. 498 

 499 

  500 



 31 

Figure 3 – Example velocity spectra over a large hemisphere (a-d) and a small (e-h) hemispheres 501 

located at x=125, z =185, and x=135, z=17.5 respectively, where x and z are streamwise and spanwise 502 

coordinates within the test arena (cm). Spectra shown for locations upstream (z-5 cm) and 503 

downstream (e.g., z+5 cm) of hemispheres. 504 

 505 

  506 
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Figure 4 – Map of predicted swimming costs. 507 

 508 

  509 
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Figure 5 – Maps illustrating (a) typical station-holding (fish 9) and searching (fish 38) behaviours and 510 

(b) the habitat selection index, a measure of cell occupancy by n=46 fish with t=121 observations per 511 

fish (see equation 6). 512 

 513 

  514 
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Figure 6 – Null distribution of predicted swimming costs based on 10,000 bootstrap samples of 121 515 

random cells from the artificial habitat. 516 

 517 

  518 



 35 

Figure 7 – (a) Count (selection index, SI) and (b) binomial (probability of false zero, p) results for the 519 

predicted swimming costs (SCpred) model. Count model predictions standardised (μi / μmax) to visualise 520 

results. Symbols denote observed SI for each cell. 521 

 522 

  523 
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Figure 8 – (a-b) Count (selection index, SI) and (c-f) binomial (probability of false zero, p) results for 524 

the optimal bespoke hydrodynamic habitat model, including parameters mean resultant velocity (U), 525 

spatial velocity gradient (Vgrad) and Reynolds stresses in the streamwise vertical (τuv) and horizontal 526 

(τuw, absolute) planes. Count model results standardised (μi / μmax) and all model predictions smoothed 527 

using a loess smoother (span = 0.5) to visualise results. Symbols denote observed SI for each cell.  528 
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