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ABSTRACT
The disassembly activity, regarding as the crucial stage in recycling operations, has attracted
increasing focus owing to the significance of eco-economics and environmental issues. This
paper examines the capacitated disassembly scheduling with demand and disassembly oper-
ation time uncertainty consideration, which is the problem of determining the quantity of
the end-of-life (EOL) products (root item) to be disassembled while satisfying recycling mar-
ket. The addressed problem is formulated as a novel stochastic programming model and a
hybrid genetic-based algorithm (HGA) is proposed to derive the best solution. To deal with
the uncertain demand of disassembled parts/modules (leaf item) and the disassembly oper-
ation time, the fixed sample size (FSS) sampling strategy is employed and embedded into
the designed heuristic algorithm, lunched by the Monte Carlo Simulation. The numerical
instances under different scales are performed, and results show that the developed HGA
manifests good performance in terms of accuracy and efficiency.
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1. Introduction

Driven by the green philosophy and sustainable
requirement of the manufacturing industry and the
society, the end-of-life product (EOL) recycling has
tended to be a strategic business for industrial
plants, also contributing to the sustainability
achievement of the supply chain (Cai et al., 2019;
D’Adamo & Rosa, 2016; Kim & Xirouchakis, 2010).
This kind of recycling activities has been widely
applied in various industrial sectors, such as EOL
vehicle, EOL ship, EOL aircraft, steel products, and
electronics (Go et al., 2011; Xiao et al., 2018; Zhou
et al., 2020). The recycling business including recov-
ery process, re-manufacturing and recycling opera-
tions, has been regarded as a promising branch of
sustainable operations in production management
(Jaehn, 2016; Zhou, Lim, He, & Pratap, 2019).
Disassembly is a whole process that systematically
separates an EOL product into several groups, mod-
ules, component items, parts, material and waste,
regarding as one of the key techniques in product
recovery or EOL recycling (Ullerich & Buscher,
2013; Zhou, Wang, et al., 2018; Zhou, Baldacci,
et al., 2018; Zussman & Zhou, 1999). The prerequis-
ite of the EOL product recycling is effective disas-
sembly, and the efficiency of disassembly production

plays a significant role on recycling process
(Godichaud et al., 2012; Zhou, Lim, He, Lin, et al.,
2019). Therefore, the disassembly scheduling prob-
lem has be focused by industrial practitioners and
academic researchers, and become increasingly ser-
ious in the recycling sector (Godichaud & Amodeo,
2018). In the past decades, a vast majority of
research efforts are performed on the disassembly
modelling, solution algorithms, procedure optimiza-
tion and industrial applications with an energy-sav-
ing and cost-effective way (Ehm, 2019; Jia et al.,
2018; Kim, Lee, & Xirouchakis, 2007).

Disassembly scheduling is the problem of deter-
mining the ordering and disassembly schedule of
EOL components or returned products to satisfy the
further remanufacturing and recycling operations by
producing individual parts or components (Lee,
Xirouchakis, & Zust, 2002). The disassembly sched-
uling problems have been studied for several deca-
des. Kim & Xirouchakis (2010) stated that previous
disassembly scheduling studies could be classified
into two branches: deterministic and non-determin-
istic. The variables and parameters were supposed to
be known for deterministic disassembly scheduling
scenarios; however, the non-deterministic disassem-
bly scheduling considered random factors due to the
uncertainty consideration in industrial plants.
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Most related researches focus on the determinis-
tic disassembly scheduling under the assumption of
the certain parameters. The deterministic disassem-
bly scheduling is known as the reverse materials
requirements planning (RMRP), since its procedure
is a reversed form of the regular MRP (Gupta &
Taleb, 1994), and the basic disassembly scheduling
problem is defined and formulated for one single
product type by Gupta. Taken into the capacity con-
straints of the disassembly process, Lee et al. (2002)
extended a disassembly scheduling research with
capacity constraints by an integer programming
model. Barba-Guti�errez, Adenso-Diaz, and Gupta
(2008) extended the typical disassembly scheduling
(Gupta & Taleb, 1994) by considering the lot-sizing
variable in reverse MRP situation, and the period
order quantity (POQ) lot-sizing technique was used
to embedded in the designed algorithm to facilitate
the lot-sizing consideration. Kim et al. (2009)
studied the disassembly scheduling with assembly
product structure, and a branch and bound algo-
rithm incorporating the Lagrangean relaxation-based
upper and lower bounds was designed to determine
the quantity of EOL products. Ji et al. (2016) devel-
oped a mixed-integer programming model targeted
the total cost minimization, and a two-stage
Lagrangian heuristic algorithm was designed to gen-
erate good solutions in acceptable time. The disas-
sembly economic order quantity (EOQ) model was
constructed to determine the procurement quantity
and specific time in disassembly plants over a plan-
ning horizon, where disassembly cost and inventory
cot were the two crucial optimization segments of
the objective function (Godichaud & Amodeo,
2018). The disassembly scheduling studies also can
be divided into two categories based on the number
of product types, that is, single and multiple product
types. Gupta & Taleb (1994) designed an algorithm
to deal with disassembly scheduling problem by
determining the number of root items for a single
well-defined product structure. Taleb & Gupta
(1997) extended the disassembly scheduling problem
from a single structure to complex product struc-
tures with a multiple layer, and developed an algo-
rithm to obtain a best disassembly scheme (Taleb,
Gupta, & Brennan, 1997). Kim et al. (2003) devel-
oped an integer programming model by considering
multiple product types in terms of disassembly
scheduling, and a heuristic algorithm with linear
programming relaxation operation was designed to
find the solution.

The disassembly scheduling problem had proven
to be a nonlinear and NP-hard problem, and meta-
heuristic algorithms are developed in different
industrial scenarios (Fu et al., 2019; Gao et al., 2020;
Tian et al., 2019). Feng et al. (2018) proposed a

novel multi-objective ant colony algorithm to derive
the best disassembly sequence by formulating a
multi-objective programming model. Tian et al.
(2019) designed an improved artificial bee colony
heuristic algorithm to deal with the dual-objective
disassembly optimization problem. The disassembly
time and profit also had been regarded as optimiza-
tion objective in disassembly scheduling. Guo and
Liu (2014) formulated a multi-objective disassembly
sequence optimization programming model to min-
imize the total disassembly time and maximize dis-
assembly profit by developing a modified scatter
search optimization algorithm. Besides, Guo et al.
(2019) studied a sequence-dependent disassembly
planning problem with multi-resource constraints,
and a Lexicographic multi-objective scatter search
algorithm is developed to solve this programming
model. To better represent the disassembly
sequence, the timed disassembly Petri Nets (TDPNs)
was employed to be embedded to the optimization
model, and multi-objective generic evolution algo-
rithm is designed to derive the Pareto solution set
(Guo et al., 2020). Lee and Xirouchakis (2004)
studied the disassembly scheduling with assembly
product structure, and developed a two-stage heuris-
tic algorithm to minimize the total disassembly cost.
Prakash, Ceglarek, and Tiwari (2012) proposed a
constraint-based simulated annealing (CBSA) algo-
rithm to derive the best disassembly schedule.

However, the deterministic disassembly schedul-
ing studies suppose the process parameters are
deterministic with precise value, and fail to consider
the uncertainties in industrial plants. Therefore,
many scholars extended the deterministic disassem-
bly scheduling by considering the uncertain ingre-
dients during the manufacturing scenarios.
Compared with assembly manufacturing, there
exists much more uncertainties for disassembly pro-
cess, such as, the discrepant condition of EOL prod-
ucts and the unpredictable demand in practical
industries (Kim et al., 2007). Fleischmann et al.
(1997) pointed out that the reliable planning of
return flow became more difficult due to the
increasing uncertainty which may lead to higher
safety stock levels. Inderfurth and Langella (2006)
developed two heuristics of different sophistication,
and disassembly yield was highlighted as a stochastic
variable due to the unknown state of returned prod-
ucts. Kim and Xirouchakis (2010) addressed the dis-
assembly scheduling problem with resource capacity
restriction for the two-level product structure, where
demand of parts/modules is regarded as a stochastic
variable. Liu and Zhang (2018) studied a capacitated
single-item multi-period disassembly scheduling
problem with random yields and demands. Tian
and Zhang (2019) proposed a capacitated
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disassembly scheduling and pricing solution frame-
work, where the disassembly yield of returned prod-
ucts depended on their acquisition prices. Not only
the uncertainties are considered in disassembly
scheduling, but also, these ambiguous factors are
addressed at the EOL product collection stage.
Kongar and Gupta (2006) developed a multi-criteria
optimization model to determine the best EOL com-
binations from the vast majority of returned prod-
ucts, and the fuzzy goal programming technique
was employed to deal with the uncertainties consid-
ered. Besides, the disassembly scheduling models are
mostly supposed to be accomplished in a single
period, and fail to address the dynamic demands in
multi periods. The disassembly scheduling with
multiple periods plays a significant role in manufac-
turing systems. Due to the fluctuation of practical
demand in industrial market, the production sched-
uling problem within multi periods can assist to
achieve lean production by determining the dynamic
scheduling solution and cost reduction.

From the above-mentioned literature, we can find
that the disassembly scheduling problem mainly
includes deterministic and non-deterministic
branches, most of which have targeted the total cost
minimization as the optimization objective (Tian &
Zhang, 2019). The non-deterministic highlights
extend the disassembly scheduling by taking into
uncertainties consideration, better reflecting the
industrial practice in disassembly plants. The deter-
ministic disassembly scheduling problem assumes
that the disassembly operation time is certain and
deterministic. The uncertain factors addressed in
disassembly process contain disassembled demands,
EOL conditions and disassembly yield parameters in
most non-deterministic disassembly scheduling pub-
lications, and the disassembly operation is usually
supposed to be accomplished in a single period.
Both two categories fail to consider the uncertainty
of disassembly operation time and the correspond-
ing disassembly cost segment.

The illustrated literatures in terms of non-deter-
ministic disassembly scheduling mostly focus on the
uncertain characteristics of demand or disassembly
yield variables. However, in the industrial disassem-
bly process, the practical disassembly operation time
is usually uncertain with a high stochastic character-
istic (Fu et al., 2019; Tempelmeier, 2011). Different
with the assembly production, the raw material of
disassembly process is EOL products or returned
components with high uncertainty due to the
unknown utilizations and conditions. Besides, the
conditions of the EOL products play a significant
role on the workers’ maturity of disassembly opera-
tions. The discrepancy of disassembly operation cost
caused by stochastic disassembly operation time for

EOL products argues that we should concentrate on
the stochastic characteristic of the corresponding
disassembly cost. Therefore, this study examines a
capacitated disassembly scheduling problem with
multiple periods, multiple product types in a two-
level product structure, also targeting the disassem-
bly operation time and demand as non-determinis-
tic. To the best of our knowledge, this research is
the first study to formulate a non-deterministic dis-
assembly scheduling programming model involving
these two uncertain ingredients simultaneously
(demands and operation time) in multi periods. A
non-deterministic programming model is formu-
lated to determine the disassembly quantity solution
under uncertainties consideration. The stochastic
variables make the formulated model to be a non-
deterministic one, a much more complex problem
which is difficult to be resolved by exact algorithms.
The heuristic algorithms show better performance
on the non-deterministic programming model for
production planning and scheduling problems (Dao
et al., 2019; Hecker et al., 2014; Liu et al., 2019; Liu
et al., 2020; Ojstersek, Brezocnik, & Buchmeister,
2020). As a stochastic optimization method based
on biological evolution mechanism, genetic algo-
rithm (GA) has proven to an effective heuristic
algorithm to search a best solution for production
scheduling management (Hecker et al., 2014; Shi,
Zhao, & Meng, 2020). For its advantages on global
search capability and fast convergence ability, the
genetic operators are employed, and we design an
integrated heuristic algorithm to deal with the novel
stochastic disassembly scheduling problem. The
main contributions of this study are three-fold,
summarized as follows:

1. A novel stochastic disassembly scheduling prob-
lem with capacity constraints within multi peri-
ods is formulated, where demand and
disassembly processing time are treated as sto-
chastic variables simultaneously. To the state-of-
the-art, this is the first study to consider these
two uncertain ingredients in non-deterministic
disassembly scheduling within one model.

2. The hybrid GA-based (HGA) heuristic algo-
rithm integrating GA, SA and local search oper-
ations is developed to find the best solution of
the programming model. The fixed sample size
(FSS) sampling strategy by Monte Carlo simula-
tion is employed to deal with the stochastic var-
iables considered.

3. The numerical cases are performed to verify the
effectiveness of the model and the performance
of the developed algorithm. Results show that
the proposed study enables to deal with uncer-
tain variables with high efficiency, and assists to
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find an optimal disassembly scheduling solution,
facilitating to promote disassembly schedul-
ing management.

The rest of this paper is organized as follows.
Section 2 describes the disassembly scheduling prob-
lem by highlighting the stochastic variables in real
industrial plants. Section 3 is devoted to an analytic-
ally mathematical model of the illustrated problem.
Then in Section 4, we design a hybrid genetic-based
algorithm (HGA) to search an optimal disassembly
scheduling solution. Some numerical experiments are
carried to verify the effectiveness of our designed
algorithm in Section 5. The theoretical contributions
and practical implications are summarized in Section
6. Finally, we conclude the paper in Section 7.

2. Problem description

The end-of-life (EOL) products or components deliv-
ered to the dismantling plant will be processed by dis-
assembly operations, producing the disassembled
parts for the reuse, remanufacturing or recycling
(Zhou & Ma, 2019). Therefore, the effective disassem-
bly is the prerequisite of the EOL recycling (Berzi
et al., 2016; Zhou et al., 2016). A two-level product
structure disassembly scheduling problem is
addressed, and the returned procured items (EOL
product or components calling root items) are disas-
sembled into components or parts (leaf items), aim-
ing at satisfying the uncertain demand in each period.
An example of the two-level disassembly scheduling
structure is given in Figure 1, in which the number in
each parenthesis represents the number of the corre-
sponding leaf items obtained from root item i. The
yield ratio of leaf items obtained from the root item is
p, which is defined as the number of leaf item k suc-
cessfully disassembled from root item i.

Where pik is yield of leaf item k of the root item
i. Suppose p�U a, b½ �, Notably, a and b is the min-
imum and maximum value respectively that can be
disassembled successfully from one root item
because of the degradation discrepancy. b is less
than the corresponding value in the root item’s
BOM and a � 0 (Liu & Zhang, 2018). The yield

variable pik is derived and represented by the
mean value.

The demand variable regarded as uncertainty has
been studied by many literatures in manufacturing
activities, re-manufacturing factories and disassem-
bly plants (Bollapragada, Kuppusamy, & Rao, 2015;
Rossi, Kilic, & Tarim, 2015). Different from the
assembly production, the demand of disassembly
parts is treated as a stochastic variable due to the
ambiguous requirement. In this study, the demand
of each leaf item in each period D follows a normal
distribution, which has been widely used and proven
to be effective in previous literature (Disney et al.,
2015; Guijarro, Card�os, & Babiloni, 2012; Liao &
Shyu, 1991; Silver & Bischak, 2011; Tempelmeier,
2011; Wang & Gerchak, 2003).

Another uncertain variable is the operation time in
industrial manufacturing scenarios, contributing to
the ambiguity of lead time in MRP system at the pro-
curement stage (Li et al., 2015; Song, Yano, &
Lerssrisuriya, 2000; Zhou, Wang, et al., 2019; Zhou
et al., 2017). Different with assembly activities, the
disassembly processing time has played a great sig-
nificant role on the damage degree of the end-of-life
product (Zhou, Lim, He, Lin, et al., 2019). Due to the
discrepant utilization and residual condition of the
end-of-life product, there exists a high uncertainty for
the disassembly time of the EOL products. In this
research, the disassembly operation processing time
in terms of each kind of leaf item are assumed to be
random variables with the normal probability distri-
bution (Bentaha Battaïa, & Dolgui, 2015).

The objective of this study is to derive the opti-
mal decisions and the best disassembly scheduling
solution by minimizing the total disassembly cost.
The best disassembly scheduling strategy in multi
periods is resolved by a novel stochastic program-
ming model and a hybrid heuristic algorithm.

3. Model formulation

3.1. Notations and assumptions

The variables and their notations in this research
are presented in the following Table 1. We use the

Figure 1. The two-level disassembly structure.
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following notations to develop the proposed math-
ematical model.

Also, we make the following assumptions to
develop the proposed model.

i. The supply of raw materials (root items) is suf-
ficient, and the time of EOL products and
components collection and delivery can
be ignored.

ii. Backlogging is not allowed and the disassembly
can be finished as required.

iii. The yield ratios of all leaf items disassembled
from the root item are different, regarded as
stochastic variable with high uncertainty.

iv. The disassembly operation time is a stochastic
variable, and the disassembly operation cost is
influenced by the disassembly operation time.

v. The production preparation time is not separ-
ately addressed and the disassembly operation
time variable includes the production
preparation.

3.2. Mathematical model

Similar to the assembly manufacturing process, the
disassembly production on end-of-life products is
the inverse manufacturing focusing on dismantling
operations. The cost segments for disassembly
scheduling are similar to the optimization business
in the assembly manufacturing process (Karmarkar,
1987; Zhou et al., 2017). The total cost minimization
is targeted as the objective of the programming
model, including procurement cost, disassembly
operation cost and inventory cost segments, illus-
trated in the following Equation (1). The constraints

of the model are formulated by the Equations
(2)–(5).

Min TC ¼
XN
i¼1

XT
t¼1

pcitxit þ
XN
i¼1

XT
t¼1

cdiE Li½ �xit

þ
XK
k¼1

XT
t¼1

ðco � E Iþkt
� �þ cs � E I�kt½ �Þ (1)

s.t.

Qkt ¼
XN
i¼1

pik
Xt
j¼1

xij Fðt � jþ 1Þ � Fðt � jÞ� �
(2)

Ikt ¼ Ikt�1 þ Qkt�Dkt (3)

xit � 0 (4)XN
i¼1

xit � CPt (5)

Specifically, the output quantity of leaf item k at
period t is derived by the following Equation (6).

Qkt ¼ p1k
x11Pft�1 � l<tg þ x12Pft�2 � l<t�1g

þ � � � þ x1t�1Pf1 � l<2g

 !

þ p2k
x21Pft�1 � l<tg þ x22Pft�2 � l<t�1g

þ � � � þ x2t�1Pf1 � l<2g

 !

þ � � � þ pNk
xN1Pft�1 � l<tg þ xN2Pft�2 � l<t�1g

þ � � � þ xNt�1Pf1 � l<2g

 !

¼
XN
i¼1

pik
Xt
j¼1

xij Fðt � jþ 1Þ � Fðt � jÞ� �
(6)

where pik in Eq. (2) is established by the mean value
of pik�U aik, bik½ �: The operation time variable l and
the demand variable are regarded as stochastic vari-
ables, and which are supposed to follow the normal
distributions. The Eq. (1) is the objective function
by minimizing the total cost including procurement
cost, disassembly operation cost, stock-out cost and
inventory cost. Eq. (2) is the output quantity formu-
lation of leaf item k at period t. Eq. (3) is the inven-
tory formulation of leaf item k at period t. Eq. (4) is
the range of disassembly quantity of root item i at
period t. Eq. (5) is the disassembly capacity con-
straint at period t.

The inventory cost of leaf item k during period t
is calculated in the following Eq. (7).

co � E Iþkt
� �þ cs � E I�kt½ �

¼ co

ðIkt�1þQkt

0
ðIkt�1 þ Qkt � yÞgðyÞdy

þ cs

ð1
Ikt�1þQkt

ðy � Ikt�1 � QktÞgðyÞdy

¼ coðIkt�1 þ Qkt�E Dkt½ �Þ
þ ðco þ csÞ

ð1
Ikt�1þQkt

ðy� Ikt�1 � QktÞgðyÞdy

(7)

where Iþkt ¼ maxðIkt�1 þ Qkt � y, 0Þ, I�kt ¼ maxðy�

Table 1. Variable symbols and notation description.
Symbols Description

Indices
I Set of root items (i¼ 1, 2, … , N)
K Set of leaf items (k¼ 1, 2, … , K)
Parameters
li Disassembly operation time for root item i
f ð�Þ The probability density function of disassembly operation time
Fð�Þ The distribution probability function of disassembly

operation time
Dkt Demand for leaf k at period t
gð�Þ The probability density function of demand
Gð�Þ The distribution probability function of demand
Qkt Output quantity of leaf item k at period t
Ikt Inventory of leaf item k at period t
pik The yield of leaf item k of root item i
co Inventory cost for one unit of root item i
cs Backorder penalty cost for one unit of leaf item i
cdi Disassembly cost per unit root item i and unit time
pcit Procurement price of root item i at period t
CPt Capacity available in period t
E½�� Expected value of �
Decision variable
xit Disassembly quantity of root item i at period t
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Ikt�1 � Qkt , 0Þ, y is a stochastic variable, which
denotes demand, and gðyÞ is the probability density
function of demand.

Then, the original objective function of the total
cost minimization in Eq. (1) becomes the following
Eq. (8).

XN
i¼1

XT
t¼1

pcitxit þ
XN
i¼1

XT
t¼1

cdiE Li½ �xitþ

XT
t¼1

Xk
k¼1

�
coðIkt�1 þ Qkt � E Dkt½ �Þþ

ðco þ csÞ
ð1
Ikt�1þQkt

ðy� Ikt�1 � QktÞgðyÞdy
�

(8)

4. Solution algorithm

The disassembly scheduling problem has proven to
be NP-complete (Ji et al., 2016), and a hybrid GA-
based algorithm (HGA) is developed in this part
due to its advantages of global search performance.
The GA steps are employed to search the best disas-
sembly scheduling solutions. Besides, the local
search strategy is adopted to improve the local
search ability by generating new populations. The
fixed sample size sampling strategy using Monte
Carlo simulation is employed to deal with the ran-
dom variables in the stochastic programming model.
To avoid falling into local optimum and improve
the global search capability, the self-adaptive simu-
lated annealing (SA) operations are embedded into
the GA steps. The hybrid heuristic-based evolution-
ary algorithm is presented in the following Figure 2.

4.1. GA-based steps

4.1.1. Chromosome coding
Genetic algorithm is a heuristic-based evolutionary
algorithm, which has been widely used in produc-
tion scheduling models and management applica-
tions (Kadri & Boctor, 2018; Zhou, Baldacci, et al.,
2018). The chromosome coded with a numerical
solution scheme, maps to a practical disassembly
scheduling solution. In this formulated disassembly
scheduling model, the real-number coding technique
is adopted to represent the practical solution based
on the characteristic of the decision variable. The
chromosome code of the disassembly scheduling
solution with multi periods is presented in the fol-
lowing Figure 3. There are N root items in each
period, and the element “2” means the disassembly
quantity of root item 1 at the first period is 2. The
other genes have the similar meaning with real
number, and a chromosome represents a disassem-
bly solution.

4.1.2. Fitness function formulation
The fitness function reflects the performance of the
iterated solution, which is used for solution assess-
ment during the evolutionary search process. Based
on the objective function in Eq. (1), we designed the
fitness function presented in the following Eq. (9).

fitnessðxitÞ ¼ 1=TC

¼ 1=

�XN
i¼1

XT
t¼1

pcitxit þ
XN
i¼1

XT
t¼1

cdiE Li½ �xit

þ
XK
k¼1

XT
t¼1

ðco � E Iþkt
� �þ cs � E I�kt½ �Þ

� (9)

4.1.3. Adaptive genetic operators
The new solutions are generated and filtered by gen-
etic operators, keeping diversity of the disassembly
solutions. The following sub-section presents the
selection operator, crossover operator and muta-
tion operator.

1. Selection operator

In this study, the roulette wheel selection strategy is
adopted to create a new generation, and the adaptive
replication probability is calculated by the following
Eq. (10). Those individual solutions with better per-
formance measured by fitness function will be copied
to the next generation with probability p(Si).

pðSjÞ ¼ fjðSjÞ=
XGn

j¼1

fjðSjÞ (10)

where Sj is the individual disassembly solution; pðSjÞ
is the selection probability which will be copied to
the next generation; and fjðSjÞ is the fitness value of
individual solution Sj:

1. Two-point crossover operator

The selection operator tries to find a better indi-
vidual solution, while the crossover operator could
assist to expand the solution domain. The two-point
crossover operator is employed to generate the new
individual solutions by crossover operation, illus-
trated in Figure 4. The crossover probability is of
great significance on the performance of the heuris-
tic algorithm. The high probability contributes to
the search efficiency improvement of the designed
algorithm, but may lead to the loss of good genes.
Therefore, the adaptive crossover operator is
adopted to perform the crossover operation, which
is adjusted based on the fitness performance of the
updated individual solution, found in Eq. (11). The
new offspring will be obtained from two parent
individual solutions with certain probability.
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Figure 3. Chromosome code chart with real-number coding technique.

Figure 2. The implementation steps of the designed HGA.
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Pc ¼ Pc1�
ðPc1�Pc1Þðf 0�favgÞ

fmax � favg
, f 0 � favg

Pc1, f 0<favg

8<
: (11)

Where favg is the average fitness of the popula-
tion, and fmax is the maximum fitness. Generally
speaking, Pc1¼0.9, Pc2¼0.6 (Zhou, Baldacci,
et al., 2018).

1. Multi-point mutation operator

Another genetic operator is the mutation oper-
ation by selecting the mutation chromosome with a
certain probability. In terms of the characteristics of
the disassembly scheduling problem, the multi-point
mutation operator is adopted, which is found in
Figure 5. Besides, the adaptive mutation operation is
performed to generate the new solution, whose
mutation probability is calculated in Equation (12).

Pm ¼ Pm1�ðPm1�Pm2Þðfmax�f 0Þ
fmax � favg

, f 0 � favg

Pm1, f 0<favg

8<
:

(12)

where Pm is the mutation probability, and gener-
ally speaking Pm1¼0.1, Pm2¼0.001 (Zhou, Wang,
et al., 2019).

4.2. Local search strategy

To improve the search efficiency and speed up the
evolutionary process of the proposed algorithm, the
local search (LS) strategy is adopted to find local
optimum by different regions exploration in terms
of search space. The performance of LS strategy
depends on the structure of neighbourhood search
and the initial solution (Zhou, Lin, et al., 2019).
Based on characteristics of the formulated model on
disassembly scheduling, the neighbourhood

exchanging-based search structure is developed to
perform the local search strategy. The gene is
chosen randomly, and the nearest solutions are
selected to test whether the performance is better or
not. The individual solution with better fitness per-
formance will be identified and chosen (Zhou,
Wang, et al., 2019). Based on the formulated model,
the following two local search strategies are pro-
posed to improve the search efficiency based on the
backorder penalty cost and inventory cost: ‹ if the
stock-out cost item of the individual solution is
large enough, we need to increase the purchasing
volume in certain period; › if the inventory cost
item of the selected solution is large enough, the
determinations should be reduced in this period.
According to these two optimization strategies, the
LS operation is performed to elevate the
search efficiency.

4.3. SA technique

To improve the global search ability, the simulated
annealing technique is employed to avoid local opti-
mum (Vahdani et al., 2017). There is an initial tem-
perature in SA, and the new solution Y is generated
from initial state X randomly, which will be
accepted by Metropolis rule in Equation (13).

p ¼ 1, f ðY	Þ � f ðYÞ
exp �f ðYÞ � f ðY	Þ� �

=KT
� �

, f ðY	Þ<f ðYÞ
�

(13)

The detail SA procedure is found in the Figure 2.
Where Iiter is the number of iterations under specific
temperature; Tm is the terminal temperature; a is
the cooling coefficient, and K is the
Boltzmann constant.

Figure 4. Two-point crossover operator.
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4.4. Fixed sample size (FSS) sampling strategy

To deal with the random variables in this study, the
fixed sample size (FSS) sampling strategy is
employed to simulate the random factors, which has
been proven to be an effective tool for stochastic
programming (Li et al., 2016; Taş et al., 2019). The
fixed sample with a size of N is used in FSS strategy,
and the designed algorithm is performed to generate
the best solution of N samples, which is performed
by Monte Carlo simulation (Ferrenberg, Xu, &
Landau, 2018). Then, a large sample N 0 is used to
evaluate the generated solution through the object-
ive value. To improve the accuracy of the solution,
the larger the sample size, the better performance
the algorithm will have. However, the increasing
sample size will lead to the efficiency reduction of
the designed algorithm. Therefore, we need to focus
on the trade-off between the accuracy and the effi-
ciency of the stochastic programming process.

5. Illustrative examples

To verify the formulated programming model and
the proposed hybrid heuristic algorithm, the numer-
ical experiments are performed to derive the optimal
disassembly solution. The experimental study is con-
ducted on a laptop with an Inter Core i7 processor
@ 3.3GHz on Windows 8. The designed hybrid
heuristic algorithm is coded and conducted using
commercial solver software IntelliJ IDEA. The
experimental instances are texted under different
problem scales, also providing some computation
results and comparison analysis.

5.1. Parameter establishment

The numerical instances are generated to verify the
formulated model and the proposed algorithm is
preformed to optimize the disassembly solution. We
perform test cases with different scales in three lev-
els of root kinds (5, 10, and 20), and three cycle
scales (10, 20 and 30). Parameters in the formulated
programming model are established and set as fol-
lows based on previous studies (Kim & Xirouchakis,
2010; Liu & Zhang, 2018).

Cycle 20

Root item N¼ 5

Leaf item K¼ 5

Disassembly processing time li : Normally
generated from

Nðli, r2i ÞjfNð1:5, 0:5Þ;Nð1:7, 0:5Þ;Nð1:9, 0:5Þ;
Nð2:0, 0:5Þ;Nð1:6, 0:5Þg
Procurement price pci� equals (1.0, 1.2, 1.4, 1.5,
and 1.1)

Demand D : Normally generated from Nð70, 5Þ
Disassembly yield p : Uniformly generated from
[2, 4]

Capacity CP: 35

Initial inventory level IVk0 is generated randomly
by the formula IVk0 ¼ bDk0 ðb 2 ½0:8, 1:2�Þ

5.2. Sample size of FSS strategy

The FSS sampling strategy is employed to deal with
the formulated stochastic programming model,
and the appropriate sample size is of great signifi-
cance on the accuracy and efficiency of the heuristic
algorithm. To determine the sample size of the stra-
tegic sampling, the experimental test that the influ-
ence study of sample size on performance of the
proposed algorithm is conducted to determine a
suitable sample size. Therefore, we test performance
and efficiency of the HGA in different experiment
scenarios in terms of different sample size scales
(sample size ¼ 10, 20, 50, 100, 200).

We set six experiment instances based on the
number of the root items (5, 10 and 20) and disas-
sembled leaf items (5 and 10) in 20 production
cycles. The Figure 6 demonstrates the CPU running
time of the algorithm for settled experimental
instances under different sample size.

From the Figure 6, the CPU running time of the
HGA increases with the sample size of FSS strategy
raises for experimental instances. And specifically,
the efficiency of the algorithm begins to dramatically
decrease when sample size increases more than 100.
To testify the efficiency of the HGA, the minimum

Figure 5. Multi-point mutation operator.
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total disassembly cost of the best solution and CPU
time are recorded in terms of different sample size,
found in Table 2.

For the experimental tests in scenario 3 and scen-
ario 6, the best objective value appears when sam-
ples size is 50, while for other four experimental
instances, it occurs at 100. From the Table 2, we
can find that the best objective function value keeps
a decreasing tendency and shows a better perform-
ance with the increasing of sample size. However,
the quality of the computed solutions displays no
further improvement when the sample size is larger
than 100. It is worth noting that the CPU time soars
very fast when sample size exceeds 100. Therefore,
this sample size (100) is selected to perform the FSS
strategy in this study.

5.3. Results and comparison analysis

The proposed algorithm is lunched to conduct
experimental test for Scenario 1 case (Sample size ¼
100) as the designed logic steps, and the best disas-
sembly scheduling solution is generated by minimiz-
ing the objective function. To verify the
effectiveness of the proposed HGA, the computation
analysis is performed by comparing with traditional
GA procedures and TS algorithm in terms of opti-
mal objective values and CPU running time
(Cesaret, O�guz, & Salman, 2012; Ojstersek et al.,
2020; Sen�ecal & Dimitrakopoulos, 2020). The con-
vergence procedure of the objective function with
iterations among different algorithms is presented in
Figure 7.

From the convergence map in Figure 7, the pro-
posed HGA shows a better performance than trad-
itional GA and TS in terms of the solution quality,
which has the minimum objective function value.
The designed HGA shows a fewer iterations to a

convergence on achieving the best solution with
minimum total cost (11088.90), comparing with
1850 iterations for GA and after 2000 iterations for
TS. For the computation efficiency, the CPU run-
ning time of three algorithms (GA, HGA, and TS)
for the experimental case is 91 s, 157 s and 118 s
respectively. Both GA and TS show better computa-
tion efficiency than the proposed HGA, however,
the solution quality is not as good as the HGA. The
computation time of all three algorithms can be
accepted and tolerated in industrial applications. For
disassembly scheduling problem, industrial manag-
ers would like to seek a best solution to spend the
minimum cost in tolerated time. The experimental
test verifies the effectiveness and advantage of the
designed HGA on disassembly scheduling problem.

5.4. Model comparison test

According to the above-mentioned experimental
analysis, this study extends the disassembly schedul-
ing problem by addressing the two random factors
simultaneously, which is more suitable for industrial
plants due to the uncertainty consideration. These
uncertain considerations are common in industrial
factories, which play significant role on the disas-
sembly procedures. The uncertain variables consid-
ered in this study make the formulated
programming model more in line with the industrial
disassembly plants. To verify the significance of the
uncertainty considerations in disassembly scheduling
problems, we conduct the comparison analysis
between deterministic and non-deterministic sched-
uling model in terms of CPU time and best object-
ive value. Based on the number of root items and
leaf items, we generate four instances (5	5, 5	10,
10	5, and 10	10). Besides, the three cycles (10, 20
and 30) for disassembly scheduling problem is also

Figure 6. CPU running time under different sample size.
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combined in this experiment, leading to the total 12
instances, and the comparison results are presented
in Table 3.

The Table 3 presents the comparison analysis
between deterministic and non-deterministic DSP
under different 12 experimental instances. As we
can see from the Table 3, the ignorance of these
uncertain factors will lead to the total cost increas-
ing, and the non-deterministic model helps to
achieve a better performance with less total disas-
sembly cost in each experimental instance. With the
increasing of disassembly process cycle, the algo-
rithm scale increases reflected from CPU and total
cost indicators. It will take less time for determinis-
tic DSP compared with non-deterministic DSP
models. Even though it takes more CPU time to
derive the best solution for non-deterministic
instances, all of them show a better performance
than deterministic alternatives with better objective
value for all instances. This comparison result veri-
fies that the proposed non-deterministic disassembly
scheduling model performs a better performance

and practical significance for industrial disassembly
plants within an acceptable CPU time.

5.5. Sensitivity analysis

There are two uncertain factors (demand and disas-
sembly operation time) addressed in the formulated

Table 2. Algorithm performance in terms of FSS.

Sample size

Instance
Scenario 1 (5	5	20) Scenario 2 (10	5	20) Scenario 3 (20	5	20)

CPU (s) Best value CPU (s) Best value CPU (s) Best value

Sample size 10 15 11019.55 33 9447.88 58 8636.45
Sample size 20 33 10883.53 63 9146.44 118 8354.18
Sample size 50 77 11023.37 153 9172.41 279 8079.58
Sample size 100 157 10705.56 303 8769.02 573 8105.99
Sample size 200 325 11044.09 604 9218.65 1089 8216.41

Scenario 4 (5	10	20) Scenario 5 (10	10	20) Scenario 6 (20	10	20)
CPU (s) Best value CPU (s) Best value CPU (s) Best value

Sample size 10 34 25230.30 32 23125.25 58 19114.51
Sample size 20 62 25160.20 61 22677.91 117 18770.06
Sample size 50 152 25170.08 152 22610.55 280 18705.39
Sample size 100 307 25052.04 296 22576.06 556 18784.74
Sample size 200 607 24883.82 600 22609.10 1152 18750.30

Figure 7. Convergence iteration of objective function value for different algorithms.

Table 3. Comparison analysis between deterministic and
non-deterministic problem.

Instances

Problem type
Deterministic DSP Non-deterministic DSP

CPU (s) Best value CPU (s) Best value

Scenario 1-1 (5	5	10) 5 5454.51 42 5156.07
Scenario 1-2(5	5	20) 5 10930.57 87 10628.48
Scenario 1-3 (5	5	30) 9 17010.69 129 16269.5
Scenario 2-1 (5	10	10) 5 12377.34 44 12016.7
Scenario 2-2 (5	10	20) 6 25177.81 87 24628.88
Scenario 2-3 (5	10	30) 7 37752.6 133 37048.91
Scenario 3-1 (10	5	10) 4 4792.99 71 4273.89
Scenario 3-2 (10	5	20) 7 9934.57 153 9172.41
Scenario 3-3 (10	5	30) 10 14639.76 230 13744.38
Scenario 4-1 (10	10	10) 6 11798.3 70 11027.17
Scenario 4-2 (10	10	20) 8 23538.65 145 22669.08
Scenario 4-3 (10	10	30) 9 35134.88 228 34003.63

Note DSP is short for disassembly scheduling problem.
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non-deterministic disassembly scheduling model. To
evaluate the influence of considered uncertainties on
the best solution of the formulated model, the
experimental tests of sensitivity analysis on these
two uncertain variables are performed to illustrate
the heuristic steps. The six experimental instances
(Scenario 1–Scenario 6) as settled in previous sub-
section are used to test the experimental sensitivity
analysis within 20 production cycles. To perform
the sensitivity analysis, we conduct the experimental
test by setting different standard deviation
(rd ¼ 1, 3, 5, 7, 9) of demand variable and disassem-
bly operation time variable
(rl ¼ 0:1, 0:3, 0:5, 0:7, 0:9). The objective function
value variation of six instances in the settled five
experimental conditions is derived and sensitivity
analysis on two uncertain variables is found in the
following Figures 8 and 9 respectively.

As we can see from Figs. 8 and 9, the best object-
ive function value fluctuates with the variation of
uncertain variables. From the sensitivity analysis on
the demand variable in Fig. 8, there is a slight fluc-
tuation of the best objective function value in five
experimental instances, except the Scenario 6. When
the uncertainty of disassembly operation time varies,
the variation of the best objective function values
shows a relatively steady tendency for all six experi-
ment instances in Fig. 9. The experimental test of
the sensitivity analysis on these two uncertain fac-
tors demonstrates that the impact of these two
uncertain factors on disassembly scheduling is not
as serious as supposed even there are some impacts
on the total disassembly cost.

6. Theoretical implications and
managerial insights

This study severs both scientific and practical con-
tributions by providing some theoretical implica-
tions and managerial insights on the disassembly
management. In this section, we address the theoret-
ical implications to disassembly scheduling problem
and provide managerial implications for industrial
application.

6.1. Implications to theoretical knowledge

This research contributes to the theoretical know-
ledge by proposing a non-deterministic disassembly
scheduling solution framework considering the
uncertainty of demand and disassembly operation
time simultaneously. These two uncertain factors are
regarded as stochastic variables based on the disas-
sembly scheduling practice in industrial plants. A
novel non-deterministic disassembly scheduling pro-
gramming model with capacity constraints is devel-
oped to derive the best solution. Besides, to improve
the local search capability, a novel HGA heuristic
algorithm is designed where the SA and LS strategy
is coupled with genetic operations. The fixed sample
size (FSS) sampling strategy by Monte Carlo oper-
ation is simulated to solve the considered stochas-
tic variables.

This paper extends the capacitated disassembly
scheduling problem by considering uncertain
demand and disassembly operation time factors
within multiple periods. The formulated non-

Figure 8. Sensitivity analysis of demand variable for six experimental instances.
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deterministic programming model is much closer to
the disassembly production practice by taking into
these two uncertain factors, which provides an
effective solution for the addressed capacitated dis-
assembly scheduling management.

6.2. Implications to industrial practice and
managerial insights

This study also carries a few practical implications
and managerial insights which will assist recycling
industrial sector to improve lean operation by the
formulated stochastic programming model. The dis-
assembly scheduling model provides technical and
methodological support on disassembly operation
management for recycling enterprises, assisting to
achieve cost reduction, efficiency improvement and
reputation promotion.

From a managerial point of view, the non-deter-
ministic disassembly scheduling model enables
industrial managers to determine the best disassem-
bly solution considering the addressed uncertain fac-
tors. Numerical instances validate that the designed
HGA heuristic algorithm outperforms than the com-
pared benchmarking heuristics. The experimental
test on the numerical instances indicates that the
non-deterministic model showing a much better
performance on solution determination than the
deterministic one. The sensitivity analysis of experi-
mental tests demonstrates that these two uncertain
variables show a limited influence on the best
objective function value. The impact of these two
uncertain factors on disassembly scheduling is not
as obvious as imaged in industrial plants, even if

there is some influence. The demand and disassem-
bly operation time parameters can be treated as cer-
tain variables if there are limited resources in
practical scenarios. These interesting findings will
assist industrial managers better understand the
non-deterministic disassembly scheduling decision-
making and perform the dismantling manage-
ment practice.

7. Concluding remarks

In this research, the capacitated disassembly sched-
uling with random demand and operation time was
addressed by formulating a novel stochastic pro-
gramming model. The total disassembly scheduling
cost optimization is regarded as the objective func-
tion, including procurement cost, disassembly oper-
ation cost, stock-out cost and inventory cost item.
This study extends a disassembly scheduling prob-
lem with multi-periods in terms of a two-level disas-
sembly product structure, which aims at
determining the quantity of EOL disassembling
products for satisfying separated parts. In particular,
the stochastic demand and disassembly operation
time are highlighted and treated as non-determinis-
tic due to uncertainties occurred in disassem-
bly plants.

To cope with the novel disassembly scheduling
problem, a hybrid heuristic evolutional algorithm
(HGA) is designed to derive the best solution.
Besides, the fixed sample size (FSS) sampling strat-
egy is employed to deal with the stochastic variables
using Monte Carlo Simulation during the heuristic-
based steps. Illustrative examples validate the

Figure 9. Sensitivity analysis of operation time for six experimental instances.
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effectiveness of the formulated model and the
designed HGA algorithm. Computational results
show that the proposed hybrid heuristic algorithm
outperforms most of the previously applied meth-
ods. To our surprise, the sensitivity analysis on these
two uncertain variables indicates that the influence
of these two variables on the best objective function
value is not as significant as imaged in practical dis-
assembly operation. These two parameters can be
regarded as precise variables if there are not enough
endeavours for industrial plants.

There are some limitations due to the assump-
tions we made in this paper. Firstly, the more per-
plex capacitated disassembly scheduling problem
with multi-level structure can be studied to portray
a more realistic industrial application. Secondly,
other random factors or detail uncertainties are also
of great significance for further study, such as the
lead time, defective parts or uncertain arrivals of
EOL products. Thirdly, other accurate algorithms
can be designed based on the characteristics of the
novel disassembly scenarios, as well as the intelli-
gence-based algorithms.
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