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ntroduction and literature review  

 the last few years, the overall healthcare costs have shown a significant increase all ac

lobe. The complexity of the healthcare systems poses the challenge of managing sc

rces to meet growing patient needs. Therefore, it is essential to adopt the most effic

oaches for resource allocation to achieve this goal. In the area of Dublin, capital of

blic of Ireland, the estimated cost of supplying the emergency ambulance services was o

million in 1996, when handling almost 300,000 patient journeys, in which there were 

gency ambulance fleets with 272 emergency vehicles located at 89 ambulance stat

artment of Health and Children, 1997). In addition to securing pre-hospital emerge

ical treatment and transportation of the utterly unwell and injured patients to the hospital,

ulance fleets transport patients between hospitals for urgent or planned treatment (Departm

ealth and Children, 1997). Some researchers have studied minutely health care managem

lems to establish the extent to which the emergency ambulance services are provi

iently and economically. Accordingly proposed models enable analyzing and understand

nsider problem from theoretical and practical perspectives (e.g., see White, 2007). Emerge

ical Services (EMS) are an indispensable part of any health care system that aims at provid

ospital emergency medical care. EMS include the services of supervisors, managers, direct

inistrators, and coordinators. When solving for today’s greatest EMS challenges amidst ri

ands, we need to take into consideration not only the complexity of the model but also

endous value of this infrastructure to the community. On the frontline of national disas

health crises, EMS plays a crucial role in preventing deaths and injuries. With the shif

munity needs as a result of changing lifestyles and increased life expectancy, requests for E

 been on the rise. The provision of high-quality EMS is expected to be consistently deliv

 national level. Healthcare managers constantly struggle with competing budget demands

ing challenges, making delivery of adequate service levels even more difficult. T

plexity of EMS systems calls for resource allocation approaches that are capable to optim

uctivity and efficiency.  
1 
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primary duty of EMS is to offer urgent vital services and transport the patients to a spec

ital or clinic. Many studies have been carried out to seek the optimal locations of facili

ng to performance improvement of the EMS system. In spite of a wide variety of develo

els, the key purpose of these models is to assign the emergency facilities optimally to serv

ired, so that the desired outcomes are achieved. This includes studies that cover topics like

ion set covering problem (LSCP) developed by Toregas et al. (1971) and the maxi

ring location problem (MCLP) proposed by Church and Revelle (1974). Gendreau e

6) reconsidered the MCLP as a dynamic relocation strategy to seek new locations for the E

rs to maximize the coverage level requested for ambulances in the Montreal reg

rtheless,  many related research projects have neglected the real conditions of EMS syst

ting in the research findings not being applicable (Li et al., 2011; Goldberg, 2004). Henc

e the models more practical, the stochastic and dynamic nature of EMS needs to be consid

 modelling the system. Galvao and Morabito (2008) attempted doing so by developing

astic models based on queueing theory in which the ambulances play the role of serv

lfsson et al. (2008) extended a model to maximize the average coverage of requests by u

east number of ambulances allocated to patients when the time delay and travel time

med to be uncertain.  

existing models for EMS management include complex, dynamic, and contempo

enges and it necessitates that the efficiency of the EMS system with distinctive propertie

zed by simulation, which is based upon a computerized model (Gunal and Pidd, 20

ormack and Coates (2015) formulated a mathematical programming model for ambula

 allocation and base EMS location by the use of the simulation model and the gen

rithm. Compared to other techniques, simulation has some advantages including 

ideration of real characteristics and improvement of the model validity. Mathema

elling and simulation methods have been originally used by Toro-Díaz et al. (2013) to impr

ogistics performance of EMS systems. In their paper, briefly describing lean's applicatio

ogistics and healthcare industries and conceptually developing the lean-TOC (Theory

traint) approach are discussed. 

 special emphasis on EMS, emergency station location, ambulance allocation, and facil

agement are notable subjects for health care studies (Goldberg, 2004). The main objectiv
2 
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ity location and resource allocation for EMS is to cover all regions of a city along w

iding high service quality at a low cost. The number of requests for EMS depends on work

 per week and working hours per day. This is due to the feasibility of improving the efficie

e EMS system by optimally relocating the emergency stations and allotting ambulances to

ns. Brotcorne et al. (2003) reviewed the state-of-the-art models for the emergency facil

ion and service allocation over the last three decades.  

rally, location and allocation models in relation to EMS can be categorized into two m

ps: deterministic models and stochastic models. The first group lays emphasis u

ministic mathematical programming models to optimize the management of facilities 

 environment, and in the second group, scholars developed stochastics models with uncer

eters under dynamic conditions to cover the largest possible demand and optimally allo

rces. One of the primary stochastic models was the maximum expected coverage loca

lem (MEXCLP) proposed by Daskin (1983). Daskin’s study aimed to meet demand as l

ssible with the minimum number of facilities (vehicles). Revelle and Hogan (1989) propo

ptimization model to minimize the number of required ambulances in order to serve

imum requests with sufficient reliability. Gendreau et al. (2001) focused on the redeploym

lem for a fleet of ambulances in the context of EMS. The authors tried to do so by develop

amic method to maximize the covered regions with the minimum response time via a par

 search heuristic and simulation.  

n the fluctuating demand for ambulances, Rajagopalan et al. (2008) developed a multipe

el to identify the minimum number of ambulances and their locations over time in wh

rage requirements are met with a predefined reliability level. The experimental finding

study and a simulation model showed that tabu search gives fast and near-optimal solut

aximizing coverage problems. A tabu search based heuristic has been developed by T

 et al. (2015) for large-scale EMS systems in which the model contains both strat

tion) and operative (dispatching) decisions to balance efficiency and fairness. Rajagop

Saydam (2009) proposed a model for allocating a set of ambulances to minimize expe

nse distances using a heuristic search algorithm while fulfilling coverage requireme

id and Doerner (2010) thought of stochastic demand and multiple demand points that

med to be covered by more than one vehicle. Their multi-period model allows ambulance
3 
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ansported between the stations with the object of maximizing coverage at various po

ltaneously over the planning horizon. 

rporating dynamic and stochastic settings in the models for optimizing EMS systems

ly valuable in improving the practical implementation of these systems by offering the sys

iders with high service quality in terms of response time and coverage level. These mo

ormally referred to as NP and the NP-hard complexity classes (see e.g., Saydam et al., 19

reau et al., 1997; Gendreau et al., 1999). To simplify this complexity, the simulation appro

een used extensively in the literature. Simulation is a computerized approach to imitate

world operational processes and systems in a dynamic environment, and differs from

tical approach, in which the system analysis is theoretical. Simulation has been widely u

althcare applications. For instance, Sah et al. (2017) exploited the combination of simula

oal programming for total system improvement in an Indian hospital leading to the reduc

lays and bottlenecks through the hospital processes. In their research, they specified sev

ria including wait time of patients and resources utilization to achieve the goal of analyz

mproving the system. Simulation helped them minimize the total cost of the hospital, sub

equate allocation of hospital staff and beds. 

ueljinane et al. (2013) provided a survey of simulation models applied to EMS problems. T

ified the decisions that affect the performance of EMS systems at the design and operati

s into three categories: long-term decisions, mid-term decisions, and short-term decisi

long-term decisions include decisions about the identification of suitable skills, the numbe

an resources and the location of the central EMS station. For example, Harewood (20

osed a multi-objective model to identify EMS locations and also the total ambulances requ

eet the service requirement. The mid-term decisions consist of decisions around s

duling, the total EMS stations and needed resources for them, and scheduling resources 

e teams and ambulances. For example, Goldberg et al. (1990) developed a simulation m

hedule vehicles allocated to EMS centers. The short-term decisions are the decisions aro

tching rescue teams in order to improve their efficiency, choosing a suitable hospital or cl

very patient, and determining redeployment strategies such as EMS relocation in order to o

r services. For example, Peleg and Pliskin (2004) presented a redeployment strategy to red
4 
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nse time. They used the geographic information system (GIS) to determine the time betw

 locations and demand points and between demand points and hospital locations.   

e literature, the EMS performance is broadly assessed based upon three key factors: timelin

ival rate, and cost. Hence, these factors have been considered in most studies for improv

ystem’s performance. Wang et al. (2012) developed an agent-based simulation of respons

aster, to study assignment policies of victims to hospitals based on available geograp

mation systems and available response resources such as ambulances and hospital b

ueira et al. (2014) applied both optimization and simulation techniques to study the EM

 Horizonte, Brazil. Their optimization model was aimed to identify the location of ambula

s as well as allocating ambulances to those bases, and simulation was run to take accoun

ynamic behavior of the system.   

Barneveld et al. (2015) studied the effect of ambulance relocations on the performanc

ulance service providers. They modelled the ambulance relocation from the cur

gement to the target arrangement by way of a linear bottleneck assignment problem. In t

loped model, the performance of the ambulance service provider was measured by a gen

lty function. Zaffar et al. (2015) carried out a comparative study to contrast the performa

bulance location models based upon four criteria; percentage of calls covered, survivabi

ge response time, and workload balance among the fleet. To this end, they used a simula

ization approach to compare the performance of three EMS location models includ

imum coverage, minimum average response time, and maximum survivability. T

tually showed that the maximum survivability objective is more efficient than both respo

 and coverage criteria. Fritze et al. (2018) proposed an integrated model of spatial informa

nteger programming for the EMS location problem. This model applies the MCLP to en

sidents can cover by EMS at minimum cost. Andersson et al. (2020) used the maxim

cted performance location problem for heterogeneous regions (MEPLP-HR) developed

es et al. (2017) to analyze both strategic (locating ambulance stations), and tactical (alloca

ulances to the stations) decisions over multiple periods. 

uyurt and Tuncer (2016) employed four different mathematical models to determine E

n locations along with maximizing coverage evaluated. Additionally, they evaluated
5 
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rmance of EMS location models via discrete event simulation. Eventually, using Istanbul 

 showed that a simulation-based evaluation methodology can give a fair framework to as

ffectiveness of models.  

ghieri et al. (2016) reviewed recent studies of the EMS systems to define ongoing challen

uture research avenues. Ahmadi Javid et al. (2017) surveyed articles relevant to a health

ity (HCF) location problems and classified the models into two categories: non–emerge

ities, and emergency facilities. Furthermore, they took different perspectives on HCF locat

 as location and allocation models for developing health service (see e.g., Oliveira and Be

), ambulance location and relocation models (see e.g., Erkut et al., 2008), location of H

 modelling aspects (see e.g., Syam and Côté, 2010), emergency response facility location 

Iannoni et al., 2009), methodological advancement in healthcare accessibility (see 

ks et al., 2013), home healthcare logistics (see e.g., Bricon et al., 2005), and an overview

ning and management of EMSs (see e.g., Li et al., 2011). Liu et al. (2019) used a ro

ization method for optimizing an EMS system. Their objective is to minimize the total 

 EMS system based on the station construction, ambulances’ location and allocation, 

ulances procurement and maintenance. Boujemaa et al. (2020) proposed a multis

astic programming model for ambulance redeployment planning. They considered two ty

bulances and two sets of calls for requesting ambulances. Since their model possesses a h

ee of complexity, the heuristic method was used for solving the developed model.    

ntly, Bélanger et al. (2018) provided a broad overview of studies relevant to vehicle loca

relocation, as well as dispatching decisions in the context of ambulance fleet managem

ly, they grouped the studies on static ambulance location models into three classes; (i) sin

rage deterministic models (see e.g. Galvao and Revelle, 1996), (ii) multiple covera

ministic models (see e.g. Liu et al., 2014), and (iii) probabilistic and stochastic models 

McLay, 2009), which aims to address ambulance location problems at the tactical le

ndly, they reviewed the most recent approaches by classifying them into three classes

astic and robust location-allocation models (see e.g., Beraldi et al., 2004), (ii) maxi

ival models (see e.g., MacLay and Mayorga, 2010), and (iii) equity models (see e.g., Ch

., 2011). Thirdly, they examined multi-period relocation models and dynamic reloca
6 
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els in ambulance location/relocation problems (see e.g.  Basar et al., 2011). Finally, 

wed research on dispatching decisions for allocating the vehicle to an emergency call.  

suring the performance of health care systems is an essential process with some difficu

challenges resulting in identifying weaknesses and inefficient sources. Data envelopm

sis (DEA) is a well-known non-parametric method for assessing the relative efficiencies 

p of decision-making units (DMUs). Farrell (1957) originated many of the ideas and princi

rlying DEA. After a long-term period, Charnes et al. (1978) built on the provoking thou

nal work and introduced a powerful DEA methodology to assess the relative efficiencie

i-input multi-output DMUs. Since the emergence of DEA, there has been a significant gro

 in theoretical developments and applications (Emrouznejad et al., 2008; Hatami Marbin

011; Cook and Seiford, 2009). DEA has also been used to assess different aspect

hcare systems such as hospital efficiency (Athanassopoulos and Chrysostomos, 2001), pu

ies efficiency (Coppola et al., 2003; Miller et al., 1996), heart surgery efficie

lingerian, 1995) and health facilities efficiency (Hollingsworth, 2008; Ferrier et al., 20

r and Ozcan, 2008). Golabian et al. (2022) conducted a study to obtain the best return strat

mbulances to maximize the expected coverage concerning a predefined dispatch policy. T

osed a hypercube queuing model to maximize customers' coverage probability, in wh

ions of busy ambulances in each state are not known and approximated based on custo

al rates.  

e are some papers which extend the analysis to either predicting demand for ambulance

mining temporary emergency service center location decisions in disasters. Grekousis 

2019) put forth novel approach by attempting to predict the demand for ambulances in E

 artificial intelligence. They proposed a three level model to first predict the future dem

then apply a location-allocation model to site ambulances prior to actual emergen

rrence. They also used a case study based on data from Athens, Greece on the ac

gency events occurred to validate their model. Karatas and Yakıcı (2021) proposed a m

ctive facility location analytics model for determining the number and locations of Tempo

rgency Service Centers (TESCs) for a regional natural gas distribution company in Tur

le their work is important in natural disasters and other extreme events, it may not directl

icable in meeting existing demand for EMS outside these events. 
7 
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 developed by Charnes et al. (1978) is an exceedingly endorsed and powerful method

uring the performance of the public and private sectors (Eilat et al., 2008; Emrouznejad et

). Since the mid-1980s, there has been increasing interest in the application of DEA

hcare problems. The literature review conducted by Hollingsworth et al. (1999) examined

-based studies on efficiency and productivity in healthcare systems from both theory 

ice. Their review is divided into two groups of studies; the deployment of DEA to mea

iency and productivity of hospitals such as Burgess and Wilson (1995), and general health

 as Färe et al. (1992). Hollingsworth (2003) built on the earlier survey and provided

view of 188 related studies on non-parametric and parametric efficiency measuremen

hcare and health. Chilingerian and Sherman (2004) reviewed the DEA literature focusing

iency measurement of health care providers such as general hospitals and academic med

rs, nursing homes, and physicians. They particularly discuss DEA models applied in he

application as well as listing inputs and outputs as the consequence of the extant resea

ture. 

ough many research studies have been done to assess the EMS performance, the perti

ture pays less attention to systems cost as a vital assessment factor. Considering 

itions help us to gain more practical and reliable solutions to EMS problems. Although s

t EMS studies such as Nickel et al. (2016) and Boujemaa et al. (2018) have tried to cons

conditions in their models, they have neglected some important conditions such as wea

raffic. 

re 1 displays the processes of patient rescue in the EMS system. This Figure defines all s

e rescue process to make a valid model for the emergency location and allocating ambulan
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Figure 1. Rescue processes for patients 

 

rring to Figure 1, response time, denoted by TR, is defined as the time elapsed from a 

ved by the call center to the time that the ambulance arrives at the patient position locat

onse time is a key factor and has a direct effect on the survival rate in such a way that

ase in response time leads to a rise in the survival rate. That is, quick EMS respons

tial in improving survival rates and EMS performance. This study presents a simulat

d optimization approach based on the maximization of the survival rate and minimizatio

otal cost that is purposely developed for a project at the Emergency Management Centr

an, a central province in Iran to improve the service performance. In this respect, we build

ork by Knight et al. (2012) and develop their work by adding cost minimization as

ctive function thus enabling managers to improve the total performance of the EMS syst

rary to Knight et al. (2012), we also assume two different types of ambulances 

lishment cost of EMS centers, as well as considering weather and traffic as stocha

itions of EMS location and allocation. The results calculated from the optimization mod

idered as the primary scenario to make our simulation model. Other scenarios build on

ary scenario by altering the variables such as the number and location of EMS. In addit

tochastic conditions of emergency locations and their allocated ambulances are considere

imulation model. To compare and prioritize the results obtained from simulation, the D

od is applied on the basis of two predetermined objectives: survival rate, and total cost. 

ell, the theoretical and practical contributions of the framework developed in this study

fold:  

l Entry 
Taking the 

initial 

information 

Medical 

Analysis 

Stop 

Sending

ambulan

Movin

toward t

demand p

Giving

service

Is a physician 

required? 

Is an ambulance 

required? 

Yes 
Yes 

No No 
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A dual-objective optimization model is formulated to design an EMS system

maximizing survival rates and minimizing the total cost simultaneously. The mathema

model culminates in the optimal number and location of required EMS as well as alloca

the optimal number of ambulances to the selected EMS locations. 

A computer simulation analysis is applied to take account of the dynamic conditions of

EMS system in order to reach an appropriate response. 

Finally, we draw on the dataset from the Emergency Management Centre in Isfaha

illustrate the applicability and efficacy of the proposed framework. The results show 

the implementation of our proposed framework leads to improved survival rate. 

remainder of this paper is organized as follows; Section 2 describes the model

odology and its undelaying assumptions, Section 3 presents a case study from the 

an, and Section 4 concludes this study with some remarks.  

reliminaries 

is section, the maximal expected survival location model for heterogeneous pati

SLMHP) and DEA models are, in turn, reviewed and formulated (Knight et al., 2012; Cha

, 1978).  

.1. Maximal Expected Survival Location Model for Heterogeneous Patients 

(MESLMHP) 

survival function plays a key role in locating the ambulance stations nearer to areas with h

and for EMS since the possibility for survival decreases exponentially with increa

nse time. As a significant contribution, Erkut et al. (2008) proposed EMS location mo

 the inclusion of a survival function in the existing coverage models. They showed that m

tional coverage models suffer from some weaknesses in practice and a survival-maximi

oach enables the decision-maker to obtain reliable and robust solutions. “A survival func

monotonically decreasing function of the response time of an emergency medical ser

S) vehicle to a patient that returns the probability of survival for the patient” (Erkut et

, p 42 ). Rather than designing the network location model, Knight et al. (2012) develo

ESLMHP based upon Erkut et al. (2008) to improve the performance of an extant E

m. In this respect, MESLMHP aims to maximize the overall expected survival probabilit
10 
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rent types of patients. Loosely speaking, several various types of survival probabilities ca

ed based upon patient types. The patient types can be defined on the basis of time stand

stance, type I patients are those that the ambulance reaches within 8 minutes, or by observ

us patient conditions with respect to a relative survival curve.  

 

Figure 2. Survival functions (adopted from Knight et al. (2012)) 

me that there are m ambulance stations, and n demand locations. Patients are categorized 

ferent patient types on the basis of severity level and survival probability. Let 𝜆𝑖
𝑙 indicate

and of patient type 𝑙 (𝑙 = 1, 2,⋯ , 𝑘) from demand location 𝑖 (𝑖 = 1, 2,⋯ , 𝑛). The ave

ation of ambulance type ℎ at station 𝑗 is denoted by 𝜋𝑗. The mathematical notations

ided in Table 1. In the view of 𝜋𝑗, the probability of ambulance availability is indicated by

The preference matrix 𝜌=[𝜌𝑖𝑗]𝑛×𝑚
 is used to ensure that an emergency station is allocate

mand point. We point out that if the 𝑗th emergency station has no available ambulance

th station will be selected. Furthermore, there can be two general survival functions where

function is determined on the basis of severity and response time target, and the second 

sed on considering different patient conditions with respect to survival probabilities. No

a combination of both functions can be observed in some circumstances. Figure 2 disp

 feasible survival functions. The red and green solid lines represent the survival functions 

 that the survival probability decreases with time, and quick action of EMS is essen

ther function depicted by a blue solid line in Figure 2 is a step function that is used for think

gid targets such as defined service norms. Let 𝑠𝑙:  ℛ → [0,1]ℛ be a survival function as 

 patient type l and 𝑡𝑖𝑗 be the travel time between station 𝑗 and demand node 𝑖. There migh

erent survival functions, which are reliant on the number of patient types and the importa

hts 𝑤𝑙 are allocated to the lth patients.  
11 
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Table 1. List of notations used in mathematical formulation of the MESLMHP 

ations Description 

ces i Index for demand locations  (𝑖 = 1, 2,⋯ , 𝑛) 

l Index for patient types  (𝑙 = 1, 2,⋯ , 𝑘) 

j Index for ambulance stations  (𝑗 = 1, 2,⋯ ,𝑚) 

𝜆𝑖
𝑙  Demand of patient type l from demand location 𝑖 

meters 𝜋𝑗 Average utilization of ambulance at station 𝑗 

Z Total number of available ambulances  

𝜌𝑖𝑗  𝑗th preferred station for the ith demand point 

𝑡𝑖𝑗 Travel time between station 𝑗 and demand node 𝑖 

𝑤𝑙  Relative importance of patient type 𝑙 

𝑠𝑙(𝑡𝑖𝑗) Probability degree of survival associated to patient type 𝑙 for time 𝑡𝑖𝑗    

ision variables 𝑥𝑗 Number of ambulances allocated to emergency station 𝑗 

ximized is the weighted sum over demand nodes for each of the probability functions given by (2) 

MESLMHP model is given below: 

x   ∑ 𝑤𝑙
𝑘
𝑙=1 ∑ 𝜆𝑖

𝑙𝑛
𝑖=1 𝐵𝑖,𝜌𝑖𝑗

𝑙         

𝑥𝑗1 = 𝑍                                                                                            

ℤ0+     𝑗 = 1,2,⋯ ,𝑚    

(1

e 𝐵𝑖,𝜌𝑖𝑗
𝑙 = ∑ 𝑠𝑙(𝑡𝑖,𝜌𝑖𝑗) (1 − 𝜋𝜌𝑖𝑗

𝑥𝜌𝑖𝑗
)∏ 𝜋𝜌𝑖𝑟

𝑥𝜌𝑖𝑟𝑗−1
𝑟=1⏟              

∅

𝑚
𝑗=1  indicates the probability (expe

ee) of survival of a patient of type 𝑙 from demand node 𝑖 where ∅ represents the probab

 least one ambulance located at j service node being free, while ambulances located at no

-1 are busy. The equality constraint set of model (1) shows that Z ambulances are allocate

MS stations to maximize the weighted sum of all demand nodes in terms of each probab

tion. To find the actual utilization 𝜋𝑗, the iterative approach is developed on the basi

ing theory where each EMS center can be modelled as an 𝑀𝑗/𝑀𝑗/𝑥𝑗 queue. The iterations

ed after an allocation of ambulances matches the demand and the utilization.  

 MESLMHP includes the following six phases (Knight et al., 2012): 

e 1: Estimate the mean service rate at station j (𝜇𝑗). 
12 
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e 2: Set the average utilization of the jth ambulance station for the initial iteration (𝜋𝑗
(0)

). 

e 3: Find 𝑥𝑗 for all centres by solving the MESLMHP problem. 

e 4: Compute the demand distribution Ʌ𝑗
(𝑘)

 for the jth ambulance station. 

e 5: Obtain 𝜋𝑗 based on queuing model for  𝑀𝑗/𝑀𝑗/𝑥𝑗 which ensure the allocation calcul

ase 3. 

e 6: Iterate phases 3, 4 and 5 until convergence is achieved. Since this method does

antee convergence, the model runs for some pre-determined iterations or a given time. 

y state1 graphs for cost or survival can be used to specify where convergence occurs.  

paper aims to consider the total costs of the EMS system installation, e.g., buildings 

pment costs. Therefore, our proposed model is a bi-objective optimization model to desig

gency medical system in which the first objective function aims to maximize the survival

the second one aims to minimize the total cost of the EMS system. Notably, the simula

od is used in this paper to seek the value of 𝑥𝑗, (𝑗 = 1, 2,⋯ ,𝑚). In addition, the demand rat

 demand point is extracted from the data calls.  

.2. Data Envelopment Analysis (DEA)  

 is a well-established approach for evaluating the relative efficiency of a group of function

lar decision-making units (DMUs) (e.g., institutions, banks, hospitals, and hotels) 

forms multiple inputs (resources) into multiple outputs (goods and service) (Charnes et

). DEA builds on the “total weights flexibility” underpinning. The original DEA mo

oses that the efficiency of a DMU is given as the maximum of a ratio of weighted output

hted inputs, subject to the constraint that the same ratio for all the DMUs must be at m

l to one. Consider 𝑛 DMUs, in which each DMU consumes 𝑚 various inputs to produ

us outputs. Let 𝑥𝑖𝑗 , 𝑖 = 1,… ,𝑚 and 𝑦𝑟𝑗, 𝑟 = 1,… , 𝑠 denote the input and output vector

𝑗, 𝑗 = 1,… , 𝑛, respectively. Charnes et al. (1978) proposed the first DEA-CCR model un

tant returns to scale (CRS) followed by the DEA-BCC model (Banker et al., 1984) 

thesizes variable returns to scale (VRS). This paper’s focus is on the following VRS mo

easure the technical efficiency of the DMU𝑜: 

 
eady state is a case where all state variables remain constant while the ongoing process tried to change them
13 
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x   ρ = ∑ 𝑢𝑟
𝑠
𝑟=1 𝑦𝑟𝑜 + 𝑢𝑜  

𝑣𝑖1 𝑥𝑖𝑜 = 1, 

𝑢𝑟1 𝑦𝑟𝑗 − ∑ 𝑣𝑖
𝑚
𝑖=1 𝑥𝑖𝑗 + 𝑢𝑜 ≤ 0,   𝑗 = 1,2, … , 𝑛,   

𝑟 ≥ 0,   𝑖 = 1,2, … ,𝑚;  𝑟 = 1,2, … , 𝑠. 

e 𝑢𝑟  and 𝑣𝑖 are the importance weights associated with 𝑟𝑡ℎ output and 𝑖𝑡ℎ input, respectiv

𝜌 represents the efficiency measure of DMU𝑜. Note that the free-in-sign variable, 𝑢𝑜

ciated with the convexity condition in the dual model leading to a convex hull. If the opti

ctive value is equal to 1, 𝜌∗ = 1, then the DMU𝑜 is called efficient. Otherwise, the DMU

d inefficient.  

roposed model  

althcare, fixed expenditures associated with buildings and equipment play a pivotal rol

hcare management and absorb more than 80 percent of the total cost. Although increasing

ber of ambulances, stations, and crews on duty can improve the ability of EMS to respon

gency calls, the system is not necessarily efficient because the rise in resources would re

ng periods of inactivity for crews between calls and massive fixed cost. In this paper,

ctive is to design an EMS system that minimizes the total cost (costs of prepara

onstruction of stations and purchasing cost of ambulance vehicles) while maximizing

all expected survival probability of patients. Therefore, in reality, there are several type

ulances in EMS systems. For instance, there are four types of ambulances in the US2. Typ

iii ambulances have a square patient compartment that is installed onto the chassis. 

rence between types i and iii is their chassis whereby type i is attached to a truck simila

sis while type iii is attached to a cut-a-way van chassis. Types i and iii ambulances are o

pped to be used in the locations such as airports, chemical plants, oil refineries as well as b

 for Advance Life Support. Type ii ambulances with a van type chassis are commonly u

 
://metronixinc.com/site/ambulances.html 
14 
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ospitals, Health departments when patients require basic life support. Type iv is classifie

 ambulances and their compact design enables them to maneuver in the regions where o

s of ambulances may not be possible, leading to a great decline in the overall response tim

rary to the MESLMHP, without loss of generality, it is assumed that two types of ambulan

, 2) operate in EMS, so-called general, and advanced ambulances. General ambulances

pped with primary and emergency facilities while advanced ambulances have more facil

 as some devices for cardiac patients. According to the above-mentioned ambulance ty

s i and ii are classified as general ambulances and type iii is classified as advance ambulan

ℎ denote the maximum number of the hth ambulance type which are available to respon

emergency. Here, 𝑐1 and 𝑐2 present the purchasing cost of general and advanced ambula

s, respectively. The fixed activation and construction cost of each station is assumed to

tical for all stations and denoted by C, and the maximum number of stations which can b

ation is denoted by D. We have two zero-one variables 𝑦𝑗 and 𝑥𝑗
ℎ in which 𝑦𝑗 indicates whe

t station j is in operation and 𝑥𝑗
ℎ shows the number of ambulances of types 1 and 2 alloc

ergency station 𝑗. Given the definitions of parameters and variables mentioned above,

ose the following bi-objective network location model to find the optimal number of neces

ns and allocated ambulances in terms of their types: 

   ∑ 𝐶𝑦𝑗 + ∑ ∑ 𝑐ℎ𝑥𝑗
ℎ2

ℎ=1                               𝑚
𝑗=1  𝑚

𝑗=1                                      (3-1) 

x   ∑2ℎ=1 ∑ 𝑤𝑙
𝑘
𝑙=1 ∑ 𝜆𝑖

𝑙𝑛
𝑖=1 ∑ 𝑠𝑙

𝑚
𝑗=1 (𝑡𝑖,𝜌𝑖𝑗)(1 − 𝜋𝜌𝑖𝑗

𝑥𝜌𝑖𝑗
ℎ

) ∏ 𝜋
𝜌𝑖𝑟

𝑥𝜌𝑖𝑟
ℎ

𝑗−1
𝑟=1           (3-2) 

𝑥𝑗
ℎ ≤ 𝑍ℎ,        ℎ = 1,2,1                                                                                (3-3) 

𝑦𝑗 ≤ 𝐷,1                                                                                                      (3-4) 

≤ 𝑀𝑦𝑗           ℎ = 1,2; 𝑗 = 1,2, … ,𝑚,                                                         (3-5) 

≥ 𝑦𝑗              ℎ = 1,2; 𝑗 = 1,2, … ,𝑚,                                                          (3-6) 

(3
15 
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∈ ℤ0+,          ℎ = 1,2; 𝑗 = 1,2, … ,𝑚,                                                          (3-7) 

{0,1},           𝑗 = 1,2, … ,𝑚.                                                                       (3-8) 

first objective function includes two components: the construction cost of EMS centers 

otal cost of  buying ambulances. Contrary to model (1), the second objective function (3-2

ralized to two types of ambulances to maximize the overall expected survival probabilit

nts which is of the essence for designing an emergency medical services system. Notice 

lar to model (1), 𝜌𝑖𝑗 denotes the jth preferred station for the ith demand point and 𝑥𝜌𝑖𝑗
ℎ is

ber of allocated ambulance type h to the preferred station. Constraints (3-3) ensure that

 allocated type h ambulances are at most 𝑍ℎ. Constraint (3-4) guarantees that the t

tructed stations are at most D. Constraints (3-5) and (3-6) help to define zero-one variabl

demand distribution of each demand point is estimated by the use of the historical call 

h are collected in the emergency system on a daily basis.  

edly, the above model cannot be easily solved in the way that Knight et al. (2012) propo

 solving two conflicting objective functions on the basis of queuing theory is quite com

adds time. Due to the fact that the real-world EMS problems are dynamic, it is also hig

able to analyze the problem over time while the existing optimization tools are not sufficie

opriate. Therefore, we present a structured framework in this study to achieve our objecti

nd an initial solution in model (3), the stochastic variables are first assumed to be represe

eir expected values. Therefore, the stochastic model is transformed into a deterministic mo

solving methodology is based on a series of steps as follows: 

) Determining the potential locations for an emergency station based upon various fac

such as population density and accessibility. 

) Defining the demand points. All people living in a city are potential demand points.

simplicity’s sake, the gravity centers of areas in the city are considered as demand poi

) Estimating travelling time between each station and demand points in the light of var

important factors such as the traffic and weather conditions. 

) Estimating the costs of buying the ambulances and constructing the emergency station
16 
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) Solving the proposed model (3) under the static condition to reach the primary solut

This solution is used as a primary input for the computer simulation model in Step 6. 

) Applying simulation to analyze the different scenarios which can help consider the r

world conditions in the mathematical model. A range of scenarios can be defined

changing (i) the number of emergency stations, (ii) the allocated ambulances and (iii)

probability of ambulances’ availability.  

) Using DEA to assess and rank the results of the scenarios obtained from simulation in S

6. The scenario with the superior score is the best arrangement (design) for the emerge

medical services system. 

ase study 

is section, we present an application to the province of Isfahan in Iran. Isfahan is locate

ern central Iran, 1430 meters above sea level, with about 5 million population and cover

of nearly 107,027 square km. The current state of the Isfahan emergency system shows 

osts associated with the emergency and service time for serving patients (transport, immed

ment, and medical transmission) are relatively high. This issue has been discussed with exp

managers in several lengthy meetings in the form of brainstorming and the Delphi meth

an health officials have concluded that the root cause of the problem is the improper loca

ergency centers and ineffective ambulance allocation. Moreover, the Isfahan health autho

ecided to rise the survival rate by increasing the number of ambulances. 

city of Isfahan is the provincial capital consisting of 15 areas (see Figure 3). The most crow

 of Isfahan are areas 1, 3, 5 and 6. On the basis of the ageing population, the average ag

 areas is higher than others and historically more than 41 per cent of the total emergency c

eceived from these four areas of Isfahan. Therefore, their EMS coverage plays a vital role

ealth care managers of the city. For this reason, we apply the proposed method in this pa

eas 1, 3, 5 and 6 of Isfahan. Each area is divided into 3 smaller sections, resultantly, there

rban (demand) points. In addition, patients are classified into 3 types as shown in Table 2

Table 2. Patient types 

type Description 
Standard response time 

(Minute) 
17 
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I Urgent and emergency help 9 

II Serious but not urgent 15 

III Non-life-threatening 20 

 
Figure 3. Isfahan areas 

point out that the standard response times in Table 2 are determined by 

stry of Health, Treatment and Medical Education of Iran. Defining different response ti

ct the heterogeneous groups of the population that the EMS system serves. As the dem

and traffic conditions affect response time, we partition all hours of the day into four sma

vals including dawn (0:00 – 5:59), morning (6:00 – 11:59), afternoon (12:00 – 17:59), 

ing (18:00 – 23:59). The demand rate of the different demand points in terms of each pat

 was collected for a 2-month period of time as summarized in Table 3. 

Table 3. Demand rate of each patient type 

Time 

terval 

Demand 

points 

Patient types Time 

interval 

Demand 

points 

Patient types 

I II III I II III

Dawn 

1 

52 61 60 Dawn 

7 

32 38 41

orning 81 83 81 Morning 36 40 39

ternoon 111 116 95 Afternoon 68 70 64
18 
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vening 163 158 102 Evening 67 84 72

Dawn 

2 

42 46 40 Dawn 

8 

26 34 29

orning 63 64 62 Morning 45 48 37

ternoon 104 106 114 Afternoon 48 52 48

vening 125 169 171 Evening 53 68 55

Dawn 

3 

76 82 62 Dawn 

9 

21 29 24

orning 77 86 52 Morning 30 33 28

ternoon 131 142 130 Afternoon 46 48 41

vening 122 130 141 Evening 48 50 49

Dawn 

4 

65 66 68 Dawn 

10 

12 16 18

orning 83 85 75 Morning 16 18 22

ternoon 92 94 94 Afternoon 25 29 35

vening 121 127 103 Evening 62 65 58

Dawn 

5 

33 36 28 Dawn 

11 

18 27 23

orning 89 92 74 Morning 19 21 20

ternoon 127 140 135 Afternoon 26 29 34

vening 156 161 124 Evening 38 42 36

Dawn 

6 

47 54 46 Dawn 

12 

15 18 18

orning 48 54 38 Morning 18 23 17

ternoon 82 92 84 Afternoon 48 52 41

vening 51 92 75 Evening 54 61 57

health care management team decided to establish 12 emergency stations at most to cove

ons in the four areas. In addition, in collaboration with several practitioners, a poten

ion for the emergency center in every section is determined, and the population gravity cen

sed to form the coordinate of all demand points. Table 4 displays the travel time betw

gency station j, 𝑗 ∈ {𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹, 𝐺, 𝐻, 𝐼, 𝐽, 𝐾, 𝐿 } and demand point i, 

, 3, 4, 5, 6, 7, 8, 9,10, 11, 12} in four pre-determined time intervals, which are obtained u

software and google maps. 

Table 4. Travel time between demand points and service nodes 

e interval 
Demand 

points 

Service nodes (minutes) 

A B C D E F G H I J K 

Dawn 

1 

3.1 12.4 13.3 4.1 3.6 14.5 15 3.2 2 14 15.1 1

orning 3.7 12.6 13.3 4.1 3.7 14.8 15.1 3.4 2.4 14.2 15.4 

fternoon 3.9 13.5 13.8 4.9 4 15.4 15.6 3.7 2.5 14.5 16 1

vening 4.2 14 14.1 5.3 5.1 15.8 16 14.1 3 15.3 16.2 

Dawn 

2 

12.5 14.1 13.6 15 2.4 13.1 13 14.8 16.5 17.3 14.1 

orning 12.7 14.2 13.7 15 2.5 13.3 13.2 15 16.8 17.5 14.4 2

fternoon 13 14.5 14 15.4 2.9 13.9 13.4 15.2 17.2 17.7 14.6 2

vening 13.5 15 14.8 16.1 3.5 14.7 14 15.8 17.6 18.2 15.4 3

Dawn 

3 

17.5 15 3.7 16.8 4.1 12.2 13.8 14.9 6.4 8.2 3.4 2

orning 17.8 15.4 4 17 4.5 12.5 14.2 15.4 7 8.5 3.8 1

fternoon 18.2 16 4.5 17.5 5 13 14.9 16 7.7 9.1 4.2 

vening 18.5 16.6 5.2 18.1 5.7 13.6 15.4 16.7 8.2 9.8 4.9 1
19 
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Dawn 

4 

19.5 5.2 8.2 14.2 21.1 17.5 25.1 9.3 8.8 22.4 25.4 3

orning 19.7 5.4 8.5 14.6 21.3 17.8 25.6 9.5 9 22.6 25.7 3

fternoon 20 6.1 8.9 15 21.6 18.2 25.9 10.1 9.2 23.1 26.3 4

vening 20.3 6.1 9.2 15.3 22.2 18.6 26 10.6 9.6 23.4 26.7 4

Dawn 

5 

9.9 28.1 18.1 16.8 26.2 8.5 4.2 16.2 18.3 21.1 18.4 3

orning 10.2 28.4 18.3 16.9 26.2 8.6 4.3 16.2 18.5 21.3 18.6 3

fternoon 10.6 28.5 18.8 17.5 26.5 9 4.6 16.5 18.9 21.6 19 3

vening 11 28.7 19.2 17.9 26.9 9.4 4.6 17 19.2 21.8 19.4 

Dawn 

6 

14.2 8.2 6.4 12.2 18.1 5.4 4.3 3.1 17.9 4.5 5 6

orning 14.5 8.4 6.4 12.4 18.1 5.7 4.5 3.4 18.2 4.8 5.3 

fternoon 14.7 8.7 6.6 12.8 18.5 6 4.8 3.6 18.3 5 5.5 7

vening 15.1 9 6.9 13 18.7 6.2 5 3.8 18.7 5.5 6 7

Dawn 

7 

3.2 4.1 5.6 10.3 11.4 5.6 17.8 14.3 3.1 2.2 5.7 1

orning 3.3 4.3 5.9 10.5 11.6 5.8 18 14.5 3.3 2.5 6 1

fternoon 3.5 4.5 6.2 10.7 11.8 6 18.2 14.7 3.5 2.7 6.3 1

vening 3.7 4.8 6.5 11 12 6.3 18.5 15 3.8 3 6.7 1

Dawn 

8 

5.4 10 9.8 8.7 13.4 15.4 6.1 17.4 14.2 16.3 11.2 

orning 5.6 10.5 10.2 9 13.5 15.5 6.3 17.5 14.4 16.5 11.5 1

fternoon 6 10.8 10.5 9.8 13.8 15.8 6.5 17.7 14.7 16.8 11.8 1

vening 6.6 11.3 11 10.2 14.2 16.2 6.8 18.2 15 17.5 12.3 1

Dawn 

9 

15.8 14 10.2 8.9 13.5 16.8 3.2 4.1 5.3 4.8 18.3 6

orning 16 14 10.5 9.1 13.7 17 3.5 4.3 5.5 5 18.5 

fternoon 16.2 14.5 10.8 9.4 14 17.3 3.8 4.5 5.8 5.3 18.7 7

vening 16.5 14.7 11.2 9.6 14.2 17.5 4.2 5 6.3 5.8 19 7

Dawn 

10 

3.4 5.5 4.2 12.8 8.5 6.7 7.8 10.2 11.3 15.4 17.2 9

orning 3.6 5.7 4.5 13 8.7 7 8 10.5 11.5 15.8 17.5 9

fternoon 4 6 4.8 13.3 9 7.2 8.3 10.7 11.7 16 17.9 9

vening 4.5 6.4 5.3 13.5 9.5 7.5 8.8 11.1 12 16.5 18.3 

Dawn 

11 

12.2 10.1 6.8 4.2 3.3 14.8 15 12.1 3.4 2.1 5.8 1

orning 12.5 10.3 7 4.5 3.5 15 15.2 12.3 3.6 2.2 6 

fternoon 12.8 10.5 7.3 4.8 6 15.2 15.5 12.5 4 2.5 6.3 1

vening 13.2 10.8 7.5 5.2 6.5 15.5 16 12.8 4.5 3 6.8 1

Dawn 

12 

3.2 2 4.6 8.8 9.8 12.3 13.5 16.8 7.8 9.2 13.7 5

orning 3.5 2.2 5 9 10 12.5 13.8 17 9 9.6 14 5

fternoon 3.9 2.8 5.4 9.5 10.4 12.8 14.2 17.3 9.4 10 14.3 6

vening 4.4 3.3 6 9.8 11 13 14.5 17.6 9.9 10.6 14.7 

de variety of survival functions can be used to show the probability of survival. There are 

ral survival functions consisting of exponential decay functions and step functions. In

nential decay function, the survival probability decreases over a period of time while the 

tion is a piecewise constant function for the survival probability that jumps by a given amo

inite number of points. In this paper, standard response time is considered to define the 

ival functions. Table 8 shows the survival functions and relative importance associated w

 patient type. 
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Table 5. Proposed survival functions and relative importance of each patient type 

Patient type Step survival functions Weights 

I 𝑠𝐼(𝑡) =  {
1  𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 9
0          𝑓𝑜𝑟 𝑡 > 9

} 4 

II 𝑠𝐼𝐼(𝑡) =  {
1  𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 15
0          𝑓𝑜𝑟 𝑡 > 15

} 2 

III 𝑠𝐼𝐼𝐼(𝑡) =  {
1  𝑓𝑜𝑟 0 ≤ 𝑡 ≤ 20
0          𝑓𝑜𝑟 𝑡 > 20

} 1 

r consultations with the health care management team of Isfahan, the maximum numbe

ulances that the EMS procurement team can provide are 37 general ambulances and

nced ambulances. The proposed model (3) is solved by the use of CPLEX solver in the gen

raic modelling system3 (GAMS) to solve the Mixed Integer Linear Programming (MI

find a primary solution. The weighted sum method is used to solve the two-objec

ization problem4. The number of ambulances allocated to the emergency stations is repo

ble 6 and the respective total cost is $2,152,037. In addition, the survival rates of the pat

s I, II and III are 0.125, 0.638 and 0.803, respectively. It should be noted that we do

ider the dynamic conditions and divided time when running the model. It means that the eq

unt is considered for demand rate and travel time at all times.  

Table 6. Ambulances allocated to the emergency stations 

Service nodes A B C D E F G H I J K L 

General type  4 5 3 5 4 3 3 2 2 2 2 2 

Advanced type 1 2 1 1 1 0 2 1 1 0 1 1 

 of interest to study the design problem over time. The complexity in observing the dyna

itions in the proposed model leads us to apply the simulation model and provide insight ba

e results. Simulation is an advantageous method to assess and analyze the situation of cur

ewly designed systems (Robinson, 2005; Morohosi and Furuta, 2013).  

le an optimization model aims to calculate the optimal values of decision-making variab

ng the model with multiple dynamic and uncertain parameters is often intricate 

 
s://www.gams.com/ 

ording to Toro-Díaz (2015), meta-heuristic methods can be used to solve large-scale problems. 
21 
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onomical. To solve and analyse these types of problems, simulation models can be comb

optimization models, which is referred to as a simulation-based optimization meth

lation-based optimization is a structural method for determining the optimal parameter

ystem and, in turn, the objective function is measured based on the simulation model (Ai

. 2020). The simulation-optimization in a constant time enables us to evaluate the syste

vior at specific values of input variables. A simulation experiment is defined as a test 

s of tests in a way that significant variations are made to the input variables of the simula

ization. Thereby, the results obtained from simulation experiments can help the decis

er to analyze changes in input variables (parameters) and select the best values for t

son and Maria, 1997). Generally, a simulation optimization model includes n input varia

𝑥2, … , 𝑥𝑛) and m output variables (𝑦1, 𝑦2, … , 𝑦𝑚) with the aim of defining a set of opti

t variables which optimize the output variables. The simulation-optimization model 

ble method for solving complicated and dynamic problems. As shown in Figure 4, the ou

simulation model is used by an optimization strategy to find the optimal value for ou

bles along with getting feedback on how improvement can be made based on the [nea

al solution. Obviously, the role of defining an appropriate optimization strategy is of g

rtance in this approach.  

Figure 4. A Simulation-optimization model 

 

s construct the following six steps with the aim of analyzing the problem dynamically

lation and reaching a more realistic and reliable solution: 

Mathematical Model 
(Deterministic Model) Simulation Model 

(Scenario Simulation) 

Uncertain Parameters 

Simulation-Optimization 

DEA 
(Scenarios Appraisal)   
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. The primary solution is calculated from model (3). 

. Assigning an emergency station to each demand point with the maximum 3 general an

advanced ambulance.  

. Assigning an emergency station to every two neighbor demand points with a maximu

general ambulances and 2 advanced ambulances. 

.  Assigning a fixed emergency station to every two neighbor demand points with

maximum 6 general and 2 advanced ambulances as well as allocating a tempo

emergency center (a mobile general ambulance located in crowded points temporarily

each pair of demand points. 

. Allocating a fixed emergency station to every two neighbor demand points with

maximum 3 general ambulances and 1 advanced ambulance as well as allocatin

temporary emergency center (a mobile general ambulance located in crowded po

temporarily) to each pair of demand points. 

. Allocating an emergency center to demand points that receive the most call rate (80%)

patient type I with the maximum 3 general ambulances and 1 advanced ambulance. 

remaining demand points are treated by Scenario 3. 

idering Figure 1, the simulation runs the corresponding model for defined scenarios via A

are. Notably, historical data collected from Isfahan Health Organization is fitted t

retical distribution of the proposed framework. The validation of the proposed model for

study is carried out by tracking the entities ambulances and patients) and resources of

lation model and their adaptability to the expected cases is inspected by Isfahan He

nization experts. The subject matter experts therefore follow the entities to make sure tha

onstraints in the proposed mathematical model have been covered by the simulation mo

ermore, the outputs of simulation model for some certain situations and well-kno

itions have been considered (Hatami-Marbini et al. 2020).  The simulation model inclu

abilistic parameters. The historical data are used to estimate the probability distribution

 parameter as resulted in Table 7. 
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Table 7. Parameters’ distributions for the simulation model  

ceiving 

one call  

Time for 

getting 

initial 

information 

Probability 

of physician 

requirement 

Time for 

identifying 

the level of 

emergency 

care 

Probability 

of 

ambulance 

requirement 

Ambulance 

allocation 

time 

Service ti

on the si

oisson 

tribution 

th mean 

 calls per 

day 

Triangular 

distribution 

with (1, 2, 3) 

minutes 

Bernoulli 

distribution 

probability 

75%  

Exponential 

distribution 

with average 

1 minute 

55% for the 

general type, 

35% for the 

advanced 

type, and 

10% does not 

need an 

ambulance 

Exponential 

distribution 

with mean 1 

minute 

Exponent

distributi

with mean

minutes

ould be noted that the demand rate of each patient type and ambulance response tim

rted in Tables 3 and 4, respectively. Furthermore, the constant parameters are shown in T

Table 8. Constant parameters  

t of the EMS 

struction ($) 

Purchasing cost of 

ambulance vehicles ($) 
Maximum ambulances  

Maximum EMS

General  Advanced General  Advanced 

275,000 62,500 87,500 37 12 12 

 is not straightforward to define the start and endpoints for the simulation model, a stea

 model is presumed. Therefore, the number of replications needs to be first determined. F

odel is run 30 times and the statistical description of the outputs is shown in Table 9. 

Table 9. Statistical output of initial replications 

Average Standard deviation Minimum output Maximum outp

rvival rate 
Cost 

Survival rate 
Cost 

Survival rate 
Cost 

Survival rate 

II III I II III I II III I II III 

0.640 0.800 2,000,540 0.011 0.059 0.080 224,338 0.117 0.57 0.79 2,000,003 0.127 0.642 0.806 

0.624 0.849 2,320,001 0.012 0.061 0.081 231,109 0.119 0.618 0.848 2,478,945 0.125 0.627 0.855 

0.697 .0607 1,628,798 0.017 0.068 0.059 163,594 0.129 0.694 0.605 1,435,379 0.137 0.701 0.702 

0.685 0.740 1,943,762 0.028 0.059 0.070 189,341 0.127 0.679 0.738 1,799,856 0.135 0.687 0.747 
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0.692 0.712 1,822,395 0.011 0.057 0.070 179,835 0.134 0.690 0.711 1,796,853 0.136 0.697 0.714 

0.643 0.818 1,998,879 0.013 0.059 0.078 188,576 0.123 0.641 0.817 1.987,874 0.127 0.645 0.825 

equation 𝑛 ≅  𝑧
1−

𝛼

2

2 𝑠2

ℎ2
   is used to identify the total number of replications, in which s is

ard deviation of the initial replications and h is a fixed number showing the half domai

idence interval. Table 10 consequently shows the total number of replications of each scena

Table 10. Required number of replications 

Scenario Total required replications 

1 106 

2 112 

3 101 

4 107 

5 103 

6 110 

ng gone through Table 10, the results allow us to think of 110 imitations for the simula

el. The replication length in this model is 24 hours for each repetition. A warm-up period

en applied to help determine the running time for simulation and ensure that the objec

tion values are measured in a steady state. Let us focus on Scenario 1 for example.   As

el is sought to obtain the values of three survival rates and cost, fours Ts is considered

ario 1. Comparing the four trends in Figure 5 shows that the longest convergence tim

ed to the survival rate (c). In other words, the survival rate for Scenario 1 reaches the stea

 status when T = 8000 hours, Likewise, T can be estimated for the remaining scenarios.  

 

Steady-State : T=7000 

Survival rate (A) 

Steady-State: T=6000 

Survival rate (B) 
25 
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Figure 5. Steady-State  (Warm-up period) 

e 11 exhibits the survival rates and total cost of each scenario after simulating the model 

s.  

Table 11. Results of simulation 

Scenario 
Survival rate 

Cost ($) 
Estimation interval 

for cost ($) I II III 

1 0.125 0.638 0.803 2,031,665 2,031,665±41923.22 

2 0.122 0.623 0.852 2,587,221 2,587,221±43188.55 

3 0.132 0.698 0.609 1,639,999 1,639,999±30571.67 

4 0.130 0.683 0.743 1,953,359 1,953,359±35383.14 

5 0.133 0.694 0.710 1,839,025 1,839,025±33606.71 

6 0.122 0.642 0.821 2,011,628 2,011,628±35240.18 

rally, results show that the additional service station and ambulance lead to an increas

ival rates and total cost. Scenario 2 as the simplest scenario is not acceptable to some ex

use it has the maximum cost compared with other scenarios and the survival rates of A an

inimal. It means that increasing cost in Scenario 2 does not improve all the survival r

iderably. In addition, it might be difficult to make decisions on the basis of Scenarios 3 

o the conflicting results for the four decision variables as summarized in Figure 6. That 

though the survival rate plays a key part in an EMS system, resource limitation does not al

ion-makers to improve this factor by unreasonable and infeasible decisions. 

Steady-State: T=8000 

Survival rate (B) 

Steady-State: T=2000 

Cost 
26 
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Figure 6. Survival rates and total cost of each scenario 

 

s use the DEA model to compare these 6 scenarios and choose the best scenario. To do

 is a need to define the inputs and outputs for each scenario. The inputs are (i) the numbe

ted EMS stations, (ii) the number of the general type of ambulances allocated to stations,

the number of advanced ambulances allocated to stations and the outputs are (i) total cost

urvival rates of types I, II and III. The results obtained from the DEA model are presente

e 12. 

Table 12. DEA’s results for 6 scenarios 

Scenarios DEA scores 

1 0.72 

2 0.94 

3 0.86 

4 1 

5 1 

6 0.88 

he basis of DEA analysis, scenarios 4 and 5 are superior followed by scenario 2. Although

ival rates of scenarios 4 and 5 are not the greatest, DEA compares the scenarios based on b

ts and outputs to find the best choices. Comparing scenario 4 with scenarios 1 and 2 sh

adding the portable station can help to increase the survival rate with incurring less cost. 

ce at the result in Table 12, it can be drawn that patient types I and II have a significant ef

oosing scenarios 4 and 5. Thus, building the portable station in the regions that have the m

f patient I can lead to the increase in the survival rate. Convincingly, scenario 3 is penultim

e ranking order while it has the highest survival rate for types I and II and lower cost comp

 scenarios 4 and 5.  
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rding to the developed approach in this paper, scenarios 4 and 5 are the best configuration

MS system for areas 1, 3, 5 and 6 of Isfahan. Let us compare these findings with the exis

ival rates in other areas (see Table 13). Clearly, the survival rates of types I and II for area

and 6 are higher than other areas at the minimum cost and the survival rate of types I

ptable.  

Table 13. Survival rate of Isfahan municipality regions 

Areas of Isfahan 
Survival rate 

I II III 

1,3,5 and 6 (scenario 4) 0.130 0.683 0.743 

1,3, 5 and 6 (scenario 5) 0.133 0.694 0.710 

2 0.121 0639 0.802 

4 0.116 0.583 0.765 

7 0.110 0.551 0.553 

8 0.102 0.621 0.664 

9 0.113 0.589 0.816 

10 0.117 0.579 0.746 

11 0.103 0.563 0.589 

12 0.100 0.521 0.486 

13 0.109 0.549 0.568 

14 0.110 0.572 0.621 

15 0.100 0.512 0.439 

onclusion 

 study integrates the simulation and optimization methods to find the best EMS configura

mbulances allocation with the aim of increasing survival rate and decreasing cost across

 system. It is difficult to embed dynamic situations such as traffic conditions in mathema

els when analyzing EMS systems. Hence, this paper leverages the simulation method to s

roblem across different scenarios.  

simulation-based optimization model was implemented in four selected municipal region

an to obtain a proper design for emergency center locations and ambulances allocation

regard, six scenarios were defined to simulate the model in a dynamic environment 

ure the survival rate and the total cost of each scenario. In view of the survival rate and co

 was then used to rank scenarios and select the best ones (scenarios 4 and 5). The cho

arios show that patient types I and II play a crucial role in increasing the survival rate and

tial to be regarded in designing EMS facilities, which can help to improve the survival ra
28 
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uture research, the proposed approach can be extended by considering some other key fac

 as seasonal variations and weather affecting the travel time of ambulances. With the grow

ications of machine learning techniques, this method could also be studied in combina

 on-going research on identifying the location of expected emergency events thro

iques like artificial neural networks and decision models for location-allocation.Additiona

uld be a worthwhile study to apply the proposed method in this paper to similar problem

r emergency response systems such as urban firefighting facilities systems. 
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lights

A dual-objective optimization model is  formulated to design an E

system by  maximizing  survival  rates  and  minimizing  the  total  c

simultaneously. 
The  mathematical  model  culminates  in  the optimal  number  a

location of required EMS as well as allocating the optimal number

ambulances to the selected EMS locations.
A  computer  simulation  analysis  is  applied  to  take  account  of  

dynamic conditions of the EMS system in order to reach an appropri

response.

We draw on the dataset from the Emergency Management Centre

Isfahan  to  illustrate  the  applicability  and  efficacy  of  the  propos

framework. 

The results show that the implementation of our proposed framew

leads to improved survival rate.
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