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A B S T R A C T   

Equivalent circuit models (ECMs) have been widely used to describe the electrical dynamics of lithium-ion 
batteries. A high model accuracy is important for effective simulation and control of the battery system. The 
model accuracy depends on the design of experiment (DoE) method for battery test and the optimisation 
approach for ECM parameter identification. While many optimisation approaches have been proposed in liter-
ature to identify the parameters, the effect of DoE on the model accuracy is usually overlooked and undervalued. 
A novel DoE method is proposed in this paper which uses both partial discharge test (PDT) and deep discharge 
test (DDT) for battery testing. It is shown through careful test data analysis that, the conventional DoE methods 
using either PDT or DDT cannot capture the battery's dynamics to sufficient accuracy. Experimental data are 
collected using a commercial lithium ion battery. Results show the new DoE method can significant improve the 
ECM accuracy, i.e., reducing the root mean square error by ~70% in comparison with conventional DoE 
approach. In addition, the improved model accuracy contributes to a significant increase in the SoC estimation 
accuracy using extended Kalman filter.   

1. Introduction 

Lithium-ion batteries (LIBs) are widely used in electric vehicles and 
stationary energy storage which play a key role in decarbonizing the 
transport and energy sectors [1]. A battery management system (BMS) is 
essential to monitor and control the real-time operation of the battery 
system to ensure safety and efficiency. To enhance the BMS function-
ality, a battery model is usually required to predict the system dynamics 
under various operating conditions [2]. Among different types of 
models, including electrochemical models, reduced order models and 
black-box models [3–7], the equivalent circuit model (ECM) is usually 
favoured for onboard BMS implementation due to its simple structure, 
ease of parameterisation and desirable accuracy [8–10]. ECM has been 
widely used for model-based real-time parameter and state estimation of 
LIBs [9,11–13]. 

Improving the ECM's accuracy is important for the BMS and the 
battery system. First, a high ECM accuracy leads to accurate prediction 

of the battery's power capacity, which is a key parameter for real-time 
power management of the battery system, e.g. during EV's accelera-
tion and regenerative break [14]. Second, the ECM accuracy affects the 
estimation accuracy of the battery's internal power loss and heat gen-
eration, as well as the resulting temperature rise, which is key to 
ensuring proper thermal management. Further, ECM-based estimation 
algorithms such as the extended Kalman filter, unscented Kalman filter, 
particle filter, etc., have been used for state of charge (SoC) estimation 
[15–19]. The SoC estimation accuracy depends on the model accuracy 
[20]. In addition, a high model accuracy is vital in preventing the 
divergence of the Kalman filter estimation [21]. 

Design of experiment (DoE) for battery test is usually the first step of 
ECM development. There are generally two types of DoE methods, i.e. 
optimal DoE and empirical DoE. Optimal DoE methods aim to optimise 
the load current profile to maximize parameter identifiability, which is 
usually measured by the Fisher information matrix. For example, the 
magnitudes and frequencies of the sine waves of the load current profile 

Abbreviations: BMS, battery management system; CC, constant current; CV, constant voltage; DoE, design of experiment; DDT, deep discharge test; ECM, 
equivalent circuit model; LIB, lithium ion battery; LS, least squares; NPM, new parametrisation method; OCV, open circuit voltage; PDT, partial discharge test; RC, 
resistor-capacitor; RMSE, root mean square error; SoC, state of charge. 
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were optimised to maximize the parameter identifiability and to 
improve the ECM accuracy in [22]. Optimal DoE methods have also 
been applied for parametrising electrochemical models in [23,24]. 
However, one disadvantage of optimal DoE methods is the high 
computational expense. Further, the mathematically optimised current 
profile, e.g., sine waves, may have low relevance with the targeted 
practical applications, e.g. in EVs. Therefore, the optimal DoE methods 
are not used in this paper. 

The empirical DoE methods include some widely-used current pro-
files for battery test, such as pulse current [9,25,26], constant current 
[27–29], multiple sine wave [30], electrochemical impedance spec-
troscopy [31] and representative drive cycles [32,33]. Here, we focus on 
discharging test and further categorize these current profiles into two 
groups, i.e. partial discharge test (PDT) that keeps the battery SoC within 
a narrow window (e.g. 10% SoC variation) and deep discharge test 
(DDT) that continuously goes through a wide SoC range, e.g. fully 
discharge from 100 to 0% SoC at constant current. Since the battery's 
internal reactions involve highly complex and nonlinear processes, the 
battery's external electrical properties, such as impedance and resis-
tance, depend on the load current profile [34]. Therefore, the PDT and 
DDT can reveal different properties of the battery. However, this effect is 
often overlooked in literature, and many DoE methods use either PDT or 
DDT for battery test and ECM parametrisation. This leads to poor 
generalisation performance of the obtained ECM. This paper will 
demonstrate that it is essential to use both PDT and DDT in order to 
capture the battery's dynamics to sufficient accuracy. 

On the other hand, although using DDT data for battery test can 
improve the model accuracy, it also introduces a challenge to model 
parameter optimisation. This is because the ECM's parameters depend 
on SoC. The most popular method to deal with this parameter de-
pendency is to ‘divide and conquer’, i.e., to identify the parameters at 
each SoC level separately to reduce complexity [9,30,32]. This results in 
a family of local models, which can then be interpolated to capture the 
parameter dependency. However, this method cannot apply to DDT 
because the test goes continuously through a wide range of SoC, and the 
parameters under these SoC levels become coupled. Although a 
nonlinear global optimisation method can be used to optimise all the 
parameters together [28,35,36], the computational cost is high due to 
the high parameter dimension, and the probability of finding global 
minima is low. To address this issue, a recently developed algorithm by 
the authors [37] is used in this paper to capture the parameter de-
pendency on SoC. The method has several advantages: low optimisation 
complexity, applicability to a wide range of operating conditions, 
smooth parameter transition, and improved model accuracy, which 
have been validated by experimental data [37]. 

The contribution of this paper is summarised as follows. A novel DoE 
method for battery test and ECM parametrisation is proposed in this 
paper. Although DoE has a high impact on ECM accuracy, this issue is 
generally overlooked and undervalued in literature. Through careful 
analysis of the experimental data collected on a LIB cell, this paper 
shows that the widely used battery test method, using either PDT or 
DDT, cannot capture the battery's dynamics to sufficient accuracy. To 
address this issue, the proposed DoE method combines PDT and DDT for 
battery test. Experimental results show that the new DoE method can 
capture both the transient and steady-state properties of the battery, and 
significantly improve the ECM accuracy, as well as the SoC estimation 
accuracy. 

This paper is organized as follows. Section 2 introduces the ECM. 
Test data are presented in Section 3. Section 4 explains the parameter 
optimisation algorithm. Experimental results of modelling and SoC 
estimation are analysed in Section 5. Section 6 concludes the paper. 

2. Battery ECM 

The ECM, shown in Fig. 1, includes open circuit voltage (OCV), a 
series resistor R0 and several resistor-capacitor (RC) pairs for capturing 

the battery's internal voltage drop resulting from current excitation 
[38]. The battery OCV can be measured directly using galvanostatic 
intermittent titration technique (GITT) or a low-rate constant current 
discharge test [39], while the RC values need to be identified by fitting 
the model's voltage prediction to measurements. 

In Fig. 1, v, i represent the battery terminal voltage and current, 
respectively. Denote nrc as the number of RC networks. Define ij, vj, j = 1, 
2, …, nrc as the current and overpotential across Rj. Let τj = RjCj be the 
time constant. Assuming the RC parameters and the current keep con-
stant between two data samples, where Ts is the sampling interval in 
seconds, the dynamics of the RC networks can be formulated as follows, 

vj(k+ 1) = ajvj(k)+Rj
(
1 − aj

)
i(k), j = 1, 2,…, nrc (1)  

where 

aj = exp
(
− Ts

/
τj
)

and k stands for sample time. 
Note that this formulation is slightly different from the previous 

work in [37]. The formulation in [37] is: ij(k + 1) = ajij(k) + (1 − aj)i(k), 
and vj = Rjij. According to the authors' experience, the new formulation 
in Eq. (1) improves the stability of SoC estimation in comparison with 
that in [37]. This effect is explained with more details in the Supple-
mentary material. 

Define the total voltage drop across all the RC networks as 

vrc(k) =
∑nrc

j=1
vj(k) (2) 

The battery SOC is obtained using the widely employed coulomb 
counting method [9,32], 

SoC(k+ 1) = SoC(k) +
Ts

3600Cn
i(k) (3)  

where Cn in Ampere-hour is the battery's nominal capacity at 25 ◦C. 
Battery C-rate is used to represent the current magnitude, i.e., C − rate 
= i/Cn. Note that positive current stands for charging. 

Next, the battery terminal voltage can be expressed as, 

v(k) = OCV(k)+R0i(k)+ vrc(k) (4)  

3. Test data analysis 

3.1. Battery test procedure 

The battery selected in this paper is a 3.1 Ah, cylindrical 18650 LIB 
cell (Panasonic NCR18650BD) with NMC Cathode and Graphite Anode, 
using EC-DC with LiPF6 salt as electrolyte. A Biologic VMP3 battery 
cycler is used for charging/discharging the cell, which is placed inside a 
Binder thermal chamber for maintaining the ambient temperature at 
constant 25 ◦C. A K-type thermocouple is attached to the battery surface 

Fig. 1. Battery ECM.  

C. Zhang et al.                                                                                                                                                                                                                                   



Journal of Energy Storage 50 (2022) 104301

3

at the cell's middle height for temperature monitoring. The same con-
stant current (CC) constant voltage (CV) procedure is always used to 
fully charge the battery, i.e. CC charging at 1A to 4.2 V followed by CV 
phase until the current drops to 50 mA. Discharging tests include PDT (i. 
e. pulse test in Fig. 2(1a)) and DDT (i.e. CC test at 0.5C in Fig. 2(2a)). In 
addition, two drive cycle tests are conducted with average current at 
0.5C (Fig. 8 in Appendix A). The PDT in Fig. 2(1a) consists of in total 20 
steps. Each step starts with three short pulses, i.e., 10-second pulses at 
1A, 2A and 3A in turn with a short 10-second rest after each pulse. Next 
is a long pulse at C/2 that reduces the battery's SoC by 5%, followed by 
1-hour rest period. 

3.2. OCV and R0 characterization 

The battery's voltage at end of the one-hour rest period in the pulse 
test in Fig. 2(1a) is taken as the OCV. The ohmic resistance R0 is 
calculated as follows using the current jumps in the pulse test, 

R0 =
v(k + 1) − v(k)
i(k + 1) − i(k)

, if |i(k+ 1) − i(k) | > ith (5)  

where ith = 0.2C is the threshold value. Note that there are several 
current jump points in each pulse test step, and the R0 values calculated 
at these points are slightly different (relatively error within 1%). 
Therefore, the average value is used as R0. 

3.3. Resistance of the RC networks 

Once the battery's OCV and R0 are characterized, from Eq. (4), the 
total voltage drop across all the RC networks can be calculated, i.e. vrc =

v − OCV − R0i. Define the effective total resistance of the RC networks as 
follows, 

Reff =
vrc

i
(6) 

Using the PDT and DDT data, the Reff versus SoC is plotted in Fig. 3. 
The DDT shows the steady-state Reff, which is a useful indicator of the 
total resistance of the RC networks. For ECM parameter identification, 
this total resistance needs to be split into the RC branches with different 
time constants. The split ratio mainly depends on the transient response 
of the battery. Therefore, the PDT data, which shows the transient dy-
namics of Reff, is essential to identify the RC parameters at each SoC 
level. Fig. 3 clearly shows that the split ratio varies with SoC. Therefore, 
the PDT and DDT reveal different and complementary properties of the 
battery, and these two test profiles are both required in order to capture 
the battery's transient and steady-state responses. 

4. Parameter optimisation method 

This section presents the parameter optimisation method. To reduce 
the optimisation complexity, the RC time constants are set to be 
invariant. The RC time constants mainly represent the time scale of 

Fig. 2. Battery discharge test. (1a) Pulse test: current and voltage; (1b) pulse test: SoC and battery surface temperature; (2a) CC test: current and voltage; (2b) CC 
test: SoC and battery surface temperature. 
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interest when capturing the voltage dynamics, which can be considered 
independent from the SoC. 

The following SoC breakpoints are used to describe the parameter 
dependency on SoC, 

0 ≤ SoC1 < SoC2 < … < SoCnsoc ≤ 100% (7)  

where nsoc is the number of SoC breakpoints. 
It is widely known that ECM has difficulty to capture the highly 

nonlinear dynamics of LIBs in the low SoC range. To improve the model 
accuracy in the low SoC range, a new model structure needs to be 
adopted [40]. Since this paper focuses on DoE method, the parameter 
optimisation is performed at 20–100% SoC. One advantage of limiting 
the SoC range is that, as it is shown in Figs. 2 and 8, the battery's tem-
perature rise during 20–100% SoC is less than 1.2 ◦C. Therefore, the 
temperature effect on the ECM's parameters can be neglected in this 
paper. 

Next, define the dependency of the resistor value on the SoC as fol-
lows, 

Rj(SoC) =
∑nsoc

m=1
Rj,mfm(SoC), j = 1, 2,…, nrc (8)  

where Rj, m is the constant coefficient and fm is the base function at each 
SoC breakpoint. A linear interpolation function is used in this paper as 
the base function. 

Substitute Eq. (8) into Eq. (1), yielding, 

vj(k+ 1) = ajvj(k)+
∑nsoc

m=1
Rj,mfm(SoC)

(
1 − aj

)
i(k), j = 1, 2,…, nrc (9) 

Since aj is constant, Eq. (9) represents a linear system. Denote, 

qj,m(k+ 1) = ajqj,m(k)+
(
1 − aj

)
fm(SoC)i(k), j = 1, 2,…, nrc (10)  

Then 

vj =
∑nsoc

m=1
Rj,mqj,m, j = 1, 2,…, nrc 

Note that here the time step symbol k is dropped for simplicity. 
Substitute the above equation into Eq. (4), yielding 

v − OCV − R0i =
∑nrc

j=1

∑nsoc

m=1
Rj,mqj,m (11) 

Denote 

y = v − OCV − R0i
r =

[
R1,1,R1,2,…,R1,nsoc ,…,Rnrc ,1,Rnrc ,2,…,Rnrc ,nsoc

]T

q =
[
q1,1, q1,2,…, q1,nsoc ,…, qnrc ,1, qnrc ,2,…, qnrc ,nsoc

]T
(12)  

where the superscript T stands for transpose. From Eq. (11) we get, 

y = qT r 

Given a set of the time constants, τ1 < τ2 < … < τnrc, and the current 
profile i, the elements in vector q can be calculated using Eq. (10). 
Denote the value of y and q at sample step k as y(k) and q(k), respec-
tively, and let 

Y =

⎡

⎢
⎢
⎣

y(1)
y(2)
…

y(N)

⎤

⎥
⎥
⎦,Q =

⎡

⎢
⎢
⎣

qT(1)
qT(2)

…
qT(N)

⎤

⎥
⎥
⎦

where N is the total number of data samples. Then from Eq. (11) we 
obtain a least-squares formulation as follows, 

Y = Qr (13) 

The optimal solution of r to Eq. (13), r̂ can be obtained using least- 
squares solvers. This is a convex optimisation problem which can be 
solved efficiently, and if necessary, constraints can be introduced to 
ensure a smooth transition of Rj across SoC levels. The Matlab solver 
‘lsqlin’ is used in this paper for finding the optimal resistor values in Eq. 
(13). 

Next, the voltage fitting error can be calculated as follows, 

E = Y − Qr̂ (14)  

and the model's voltage RMSE is 
̅̅̅̅̅̅̅̅̅̅̅
1
NETE

√

. Note that this RMSE depends 
on the RC time constants, τj. The optimal τj can then be found by solving 
the following nonlinear parameter optimisation problem 

min
τ1 ,τ2 ,…,τnrc

̅̅̅̅̅̅̅̅̅̅̅̅
1
N

ET E
√

(15) 

This parametrisation method can take more than one test data set (e. 
g. PDT and DDT test data) for parameter optimisation. The test data will 
be concatenated to form a single Y and Q matrix in Eq. (13). 

With only a couple of time constant parameters to optimise (gener-
ally 2 to 4), the chance of finding global minimum is greatly increased 
compared with optimising all the model parameters together using the 
Genetic algorithm [41]. The Matlab solver ‘fmincon’ is used in this paper 
for finding the optimal RC time constants in Eq. (15). 

5. Experimental results 

As a comparison to the NPM, the RC parameters are also optimised 
using a conventional least squares (LS) method as in [9,26] (the 
benchmark method), where a single discharge pulse is used for identi-
fying the RC parameters at each SoC level. The parameter dependency 
on SoC is described using the linear interpolation method. 

For the proposed new parametrisation method (NPM), two cases are 
considered to compare the new DoE method with the conventional DoE 
method that only uses PDT for battery test. The first case uses only PDT 
for model parametrisation, and the second case uses both PDT and DDT 
data. 

Therefore, in total, three parametrisation methods are compared in 
this section. Denote ‘LS + p’ as the LS method with the pulse discharge 
data, ‘NPM + p’ as the NPM with the pulse discharge data, and ‘NPM +
p + cc’ as the NPM with both the pulse and CC discharge data. 

Considering that the battery shows different dynamics between 
underload and rest period which require different model parameters 
[37], only the underload data are used for model training. Following the 

Fig. 3. The total resistance of the RC breaches Reff versus SoC using the PDT 
and DDT data. 
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same procedure in [37], the number of RC networks is set to be three. 

5.1. Model validation 

The model validation results using the pulse discharge data from 
20% to 100% SoC are shown in Fig. 4. The RMSE of the model's voltage 
prediction are in turn 2.92 mV, 4.73 mV and 4.68 mV for the three 
methods, ‘LS + p’, ‘NPM + p’ and ‘NPM + p + cc’. The modelling results 
are comparable mainly because this pulse test data is used for model 
training in all three cases. The models show higher voltage error during 
the relaxation stage than underload, as shown in Fig. 4(b). This is 
because only the underload data is used for model training. 

The model validation results using the CC discharge test data from 
20% to 100% SoC are shown in Fig. 5. The RMSE for these three methods 
(‘LS + p’, ‘NPM + p’, ‘NPM + p + cc’) are in turn 21.8 mV, 4.81 mV and 
0.854 mV. In comparison with the ‘NPM + p’ and ‘LS + p’ methods, the 
proposed ‘NPM + p + cc’ method reduced the RMSE by more than 80% 
and 95%, respectively. This is mainly because the new DoE method can 
more accurately capture the voltage transition between SoC levels, as it 
is shown in Fig. 5(b) from 3000 s to 5800 s, while the conventional DoE 
method that uses only PDT data shows high voltage error under this 
continuous CC discharge test. 

The model validation results using the drive cycle discharge data set 
1 in Fig. 8(1a) from 20% to 100% SoC are shown in Fig. 6. Note that this 
data set is not used for model training in all three cases. Therefore, the 
model's generalisation performance is compared here. The RMSE for the 
three methods (‘LS + p’, ‘NPM + p’, ‘NPM + p + cc’) are in turn 20.8 mV, 
4.8 mV and 1.91 mV. In comparison with the ‘LS + p’ and ‘NPM + p’ 
methods, the proposed ‘NPM + p + cc’ method reduced the model error 
by about 90% and 60%, respectively. This is mainly because the pro-
posed DoE method can better capture the transition effect between 
neighbouring SoC levels, and this drive cycle test goes continuously 
through a wide SoC window. The new DoE method achieved noticeably 
higher model accuracy by eliminating the bias error in Fig. 6(b) from 
3500 s to 5500 s. 

The model's generalisation capability is a critical performance indi-
cator for practical implementation. The above validation results show 
that the proposed NPM with the new DoE achieves noticeably higher 
model accuracy and better generalisation performance in a new data set 
that is not used during model training. The root cause is that the battery 
is a complex nonlinear system, and the parameters of the simplified ECM 

are dependent on the load profile, and the PDT and DDT are the two 
most common load profiles in EV applications. 

5.2. SoC estimation results 

The ECM-based SoC estimation performance is also compared using 
the three parameterisation methods. The drive cycle test data set 2 in 
Fig. 8(2a) from 20% to 100% SoC are used here. 

Since the model structure is the same and only the parameters are 
different, the same extended Kalman filter (EKF) is applied for a fair 
comparison. The EKF has been widely used in literature for battery SoC 
estimation. Klintberg et al. has shown that if model uncertainties are 
ignored, EKF already achieves a close-to-optimal estimation accuracy (i. 
e. close to the so-called Cramer-Rao lower bound) [42]. The same EKF 
implementation procedure in [32] is followed here, and therefore the 
EKF equations are omitted. 

The same initial condition is applied in all three cases. The initial Fig. 4. Model validation results using the pulse discharge data.  

Fig. 5. Model validation results using the CC discharge test data.  

Fig. 6. Model validation results using the drive cycle discharge test data set 1.  
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guess of SoC is 95%, with 5% SoC error. The initial voltage over the RC 
networks is set to 0 V. The initial state estimation covariance matrix is 
set as diag([1e-4, 1e-4, 1e-4, 1e-4]), where ‘diag’ is the Matlab command 
to generate diagonal matrix from the input vector. The process noise 
covariance matrix is diag([1e-7, 1e-10, 1e-10, 1e-10]) and the mea-
surement covariance matrix is 9e-6. 

The SoC estimation results are shown in Fig. 7. Since the model 
structure and the initial conditions of the EKF are the same, the three 
methods achieved similar convergence rate, as shown in Fig. 7(a). The 
RMSEs of SoC estimation for the three methods (‘LS + p’, ‘NPM + p’, 
‘NPM + p + cc’) are in turn 2.74%, 0.774% and 0.616%. In comparison 
with the ‘LS + p’ and ‘NPM + p’ methods, the proposed ‘NPM + p + cc’ 
method reduced the SoC estimation error by about 77% and 20%, 
respectively. Further, it can be seen in Fig. 7(b), the proposed DoE 
method, ‘NPM + p + cc’, effectively eliminated the bias error in SoC 
estimation from 3500 s to 5000 s, while the conventional DoE methods 
(‘LS + p’ and ‘NPM + p’) showed high bias error. 

Finally, by comparing the SoC estimation results with the modelling 
results in Figs. 5 and 6, it is evident that the SoC estimation accuracy is 
closely related to the ECM accuracy, which reiterates the importance of 
improving the ECM accuracy through the novel DoE and NPM proposed 
in this paper. 

6. Conclusion 

Equivalent circuit model (ECM) is widely used for simulation and 
control of lithium ion battery systems. The model accuracy is key to its 
success in practical implementation. Apart from model parameter 
optimisation, design of experiment (DoE) for battery test also has a high 
impact on the ECM accuracy. However, this effect is generally over-
looked in literature leading to low model performance. To address this 
issue, this paper develops a novel DoE method for battery test by 
combining two complementary load profiles, i.e., partial discharge test 
(PDT) and deep discharge test (DDT). While many existing DoE methods 
use either PDT or DDT for battery test, the test data analysis in this paper 

shows only a combination of PDT and DDT can capture the battery's 
dynamics with sufficient accuracy. The experimental results confirm 
that the proposed DoE method can significantly improve the ECM ac-
curacy and reduce the modelling root mean square error (RMSE) by 
~70% in comparison with the benchmark conventional DoE approach. 
The improved model accuracy in turn leads to a significant increase of 
the SoC estimation accuracy by ~70%. This work highlights the 
importance of proper DoE for ECM parametrisation. Since the ECM and 
SoC estimation accuracy is key to effective simulation and control of 
battery systems, and the two load profiles under study (PDT and DDT) 
are most common battery usage, this work should be of interest to ac-
ademic and industrial researchers in area of battery energy storage. 

Since this work focuses on the novel DoE method, to limit the scope, 
the effect of temperature, current rate on the ECM parameters is not 
considered in this paper. However, the developed DoE and model par-
ametrisation algorithm can apply to different temperature levels and 
current rates to take into consideration of the parameter dependency on 
these factors. Future work will address these aspects. 
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Appendix A 

This section presents the two sets of drive-cycle test data used for validating the model and SoC estimation algorithms in Section 5. 

Fig. 7. Comparison of SoC estimation results of the three parametrisation methods using the test data in Fig. 8(2a).  
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Fig. 8. Battery discharge test. (1a) Drive cycle 1: current and voltage; (1b) drive cycle 1: SoC and battery surface temperature; (2a) drive cycle 2: current and voltage; 
(2b) drive cycle 2: SoC and battery surface temperature. 

Appendix B. Supplementary data 

A comparison of the two ways to formulate the dynamic equation of RC network. Supplementary data to this article can be found online at htt 
ps://doi.org/10.1016/j.est.2022.104301. 
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