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Bulawayo, Zimbabwe
Abstract

The high global prevalence of diabetes, and the extortionate costs imposed on healthcare
providers necessitate further research to understand different perspectives of the disease.
In this paper, a mathematical model for Type 1 diabetes glucose homeostasis system was
developed to better understand disease pathways. Type 1 diabetes pathological state is
shown to be globally asymptomatically stable when the model threshold 7y < 1, and ex-
changes stability with the managed diabetes equilibrium state i.e. globally asymptotically
stable when 7y > 1. Sensitivity analysis was conducted using partial rank correlation coef-
ficient (PRCC) and Sobol’ method to determine influential model parameters. Sensitivity
analysis was performed at different significant time points relevant to diabetes dynamics.
Our sensitivity analysis was focused on the model parameters for glucose homeostasis
system, at 3 to 4 hour time interval, when the system returns to homeostasis after food
uptake. PRCC and Sobol’ method showed that insulin clearance and absorption rates
were influential parameters in determining the model response variables at all time points
at which sensitivity analysis was performed. PRCC method also showed the model sub-
cutaneous bolus injection term to be important, thus identified all parameters in 7y as
influential in determining diabetes model dynamics. Sobol’ method complemented the
sensitivity analysis by identifying relationships between parameters. Sensitivity analysis
methods concurred in identifying some of the influential parameters and demonstrated
that parameters which are influential remain so at every time point. The concurrence of
both PRCC and Sobol’ methods in identifying influential parameters (in 7p) and their
dynamic relationships highlight the importance of statistical and mathematical analytic
approaches in understanding the processes modelled by the parameters in the glucose

homeostasis system.

Keywords: Diabetes model, equilibria, stability, Gaussian process, sensitivity analysis.
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1 Introduction

As of 2019, a total of US$760 billion had been spent on diabetes, representing 10% of total
global health expenditure [1]. This is set to increase as global prevalence of the disease in-
creases [2] and recently due to COVID-19 infection which makes diabetes treatment difficult
due to fluctuations in blood glucose levels [1]. Diabetes, has two main forms that are, Type
1 (insulin dependent diabetes) and Type 2 (non-insulin dependent diabetes). Globally, the
number of patients with diabetes in 2019 was 463 million, of which 10% were of Type 1 [1].

Type 1 diabetes is classified as an autoimmune disease (a disease where the immune system
mistakenly attacks the body [3]). The immune system attacks the [-cells, which are respon-
sible for producing insulin, therefore preventing production of insulin. Thus as the [-cells are
destroyed, very few (if any) S-cells remain in the body, resulting in little or no insulin available
in the body. Therefore, biologically it is assumed that a Type 1 diabetic has negligible -cells
in their body [4-6]. As blood glucose levels rise due to food uptake, insulin plays a signifi-
cant role in controlling the blood glucose back to normal levels [6]. Symptoms of the disease
are increased thirst, hunger, food intake, urination, weight loss, blurred vision and extreme
tiredness [6]. If not treated, diabetes may cause heart disease, kidney failure, nerve damage,
coma and eventually death [1,4]. Chronic elevation of blood glucose levels (hyperglycemia)
over long periods of time, due to lack of insulin, results in complications such as cardiovascular
disease [7]. Individuals with Type 1 diabetes therefore need daily exogenous insulin dosages in
order to control their blood glucose levels. Without the administration of insulin, the individ-
ual would die [1,6]. Insulin injections can be delivered as insulin bolus or continuous insulin
injections. Alternatively an insulin pump can also be used [8]. Insulin pumps are open loop
devices and are not automated. Recently, an artificial pancreas providing an automated insulin
delivery and eliminating the need for human intervention to calculate dosages has gone into
trial [9-11].

Mathematical modeling is an important tool to better understand insulin and its analogues
in vivo dynamics in order to design future treatment approaches for individuals with Type 1
diabetes [8]. Several types of models have been formulated for Type 1 diabetes, depending on
the forms of insulin delivery. Currently there are models for depot injections of insulin analogs,
and compartmental and systemic models [12-18]. Most of these models are based on [12] which
assumed that insulin absorption is inversely proportional to concentration of insulin in the
body [8]. Systems made up of nonlinear differential equation with non-autonomous insulin
dosages would be of interest to provide a different perspective on current models [8, 12-21].
Existing models on diabetes do not capture important biological processes. For example, only
one mathematical model has so far incorporated the role of the growth hormone [22] and most
of the other models represent insulin molecules rather than the system as a whole (i.e glucose,
insulin and growth hormone). In addition, existing mathematical models of diabetes have not
fully modeled Type 1 diabetes pathway, which describes the zero insulin steady state [8,17-20].

In this study, we propose a simple Type 1 diabetes model with an insulin bolus injection com-
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ponent. Exploring the mathematical properties of such a model is important in understanding
the key parameters for insulin management [8]. Glucose homeostasis models, that are some-
times used to model Type 1 diabetes, do not take into account the fact that Type 1 diabetic
individuals have no f-cells [22] and this is a major drawback of such models.

In this study rigorous analysis of the model is conducted using classical mathematical ana-
lytic approaches and global sensitivity analysis methods. We use the concept of threshold
quantities to provide insights on the important model parameters [23-29]. Global sensitivity
analysis methods used in this study are partial rank correlation coefficient (sampling-based
method) [30] and Sobol’ method (variance-based method) [31].

2 Model formulation

In this study, we developed a diabetes model consisting of the following variables: insulin (1),
glucose (Gr) and growth hormone (H). Insulin (/) is secreted by the S-cells and is dependent
on the glucose level within the body, therefore if there are no f-cells, no insulin is produced
132]. We thus included a subcutaneous insulin injection term (Iy), which represents a bolus
value. The injection is done up to 3 times a day (15-30: minutes before meals depending
on blood glucose levels) [11]. The insulin levels in the blood are a product of the amount
of insulin externally injected and the absorption rate, . The insulin injection term Iy, is

assumed to have an inversely proportional relationship with insulin concentration in the blood
I
(1) [12,33-35]. We model this relationship using the term 1+—0I' The choice of the function

is a new formulation term to clearly capture the state with zero-insulin. The 1 mIU/ml in
the term is an assumed shape value to model a zero-insulin state. Overtime, blood insulin
level drops as glucose is absorbed by muscle, fat and liver cells and clears at a constant rate
5. Glucose (Gp) level is increased by the growth hormone through suppression of glucose
uptake by insulin, at a constant rate ¢. The parameter a represents average glucose obtained
from carbohydrate intake and body production. The growth hormone(# ) in model system (1)
is increased by the rate of production by the somatotropic cells in the pituitary gland at a
constant rate p. Growth hormone is decreased by the rate of w due to the absorption by the
liver [36]. It has been demonstrated [37], that growth hormone increases glucose production
in blood through gluconeogenesis and glycogenosis [38,39]. Model variables, parameter values
and their symbols are provided in Table 1. The model dynamics are governed by the following

system of differential equations.

dl Il )

dt  1+1 o,

d

f;L:a—(b+c])GL+cH, (1)
dH

= — )~ wH.

aw P )
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A summary description of model variables and parameter values is given in Table 1.

Parameter /variable definition Symbol Baseline value[Range] Unit Reference

Biological parameters

Glucose production rate a 864[850 — 20000] mg/dl min Assumed
Glucose clearance rate independent of insulin b 1.44[1 — 5] min~! Assumed
Insulin induced glucose uptake rate c 0.85[0.1 — 1] ml/mIU min Assumed
Growth hormone production rate by somatotropic cells P 15.06[5 — 30] mIU/ml min [36]
Growth hormone clearance rate by the liver w 1958.40[2000 — 4000] min =t [36]
Insulin absorption rate Y 0.2143[0.1 — 1] min =t Assumed
Insulin clearance rate 0 0.0215[0.01 — 1] min~! [21]
Insulin bolus Iy 5[5 — 30] mlIU/ml [21]
Model response variables Range

B-cells B 600 — 1000 myg [4]
Insulin 1 0—-25 mlIU/ml [40]
Glucose Gp 70 — 200 mg/dl [41]
Growth hormone H 10 — 40 mlIU/ml [42]

Table 1: Model parameters, variables and their definition. *Note that baseline values are from given

references and associated ranges are assumed values for sensitivity analysis.

3 Mathematical analysis and results

3.1 Model basic properties

The model system (1) has an initial condition given by I(0) > 0,G(0) > 0, and H(0) > 0.
Since the model represents fluid concentrations in the human body, all variables should be
non-negative for biological feasibility in the following region,

D={(,Gr,H)eR>}
Hence we establish the following result and proof in Theorem 1.

Theorem 1. The region D C R? is positively invariant with respect to the system of equations
and non-negative solutions exist V 0 < t < co. Let the initial data be 1(0) > 0,G(0) > 0, and
H(0) > 0, then solutions (I(t), GL(t), H(t)) of model system (1) with positive initial data will
remain positive ¥ t > 0.

Proof. Suppose that t; = sup{t >0: 8 > 0,1 > 0,G; > 0,H > 0,€ [0,¢]}. Under the given
initial conditions it can be shown that solutions of model system (1) are positive for ¢ > 0. We
show that this is true V ¢ > 0 by proceeding as follows. The first equation in model system (1)

is given by
_ Wlod

I'(t
(¥ L+1

-4,
which gives

t1
%lnl(t)z—(S — I(O)exp{—/ 5dt}>0.
0

4
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It follows that the solution to the equation is positive V ¢ > 0. In a similar fashion, we provide

the proof for each equation in model system (1) as follows. For G we have

%IHGL(t) > —(b+cl) = GL(O)eXp{ —/Ot1 (b—i—c]) dt} > 0.

Similarly H gives

dt

d "
—InH(t) > —w = H(0) exp{ —/ w dt} > 0.
0

Thus, solutions for model system (1) are positive V ¢ > 0 hence the model is biologically

well-posed. ]

3.2 Model equilibria

Model system (1) has two steady states which are as follows:

The diabetes (pathological) equilibrium state is given by

* I aw +cp p
PGy i) = { 0, B2 2 2)

The managed diabetes equilibrium state is given by

Wiy cpd + awd P
P I** G ko H** — TV N , ’_ . 3
(7, G 1) { J pelpw + bwd — cwd’ w )
From equation (3), the managed diabetes state exists if IOTU — 1 > 0 implying that I"TL is the

threshold parameter, Ty. 7o = 1 becomes a bifurcation point above which a diabetic individual
has control of diabetes and below which, the individual is diabetic and failing to manage the
disease as they will be in a state of hyperglycemia. There are two solutions for I,

I
I* =0 and 1**:071”—1:75—1.

When [* = 0, we obtain a Type 1 pathological state (no insulin) and when I** = 75 — 1 we get

the managed diabetes equilibrium state.

3.3 Stability of equilibria

We use the threshold parameter 7, to investigate the stability of both Fy and P;.
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3.3.1 Local stability of F,

Linearising model system (1) gives the following Jacobian matrix.

Yo I I
I'+1 (I*41)? g 0 0
J = —cG7 —b—cl* ¢ (4)
0 0 —w

We use the J to determine local stability of the steady states in the following sections. The
equilibrium state P is a pathological steady state as the individual has Type 1 diabetes (I* = 0).
Solving J at the pathological equilibrium F, gives the following eigenvalues, \; = —b, \y =

= ¥l _ §. Bquilibrium P, is defined as stable if A3 < 0 which occurs when T < 1.

—w and A3 = 02

Lemma 1. The pathological state Py is locally stable for Ty < 1.

Theorem 2. The managed diabetes steady state Py of system (1) is locally asymptotically stable
whenever it exists.

Proof. Linearising the system at P; we obtain the following eigenvalues at P, A\ = —b—cTy+c <
)
0, g =—w<0and \3=4¢ (7/1_1 — 1). Therefore for P to be stable, A3 < 0. We can rewrite
0
1
A3 as the following, A3 = ¢ (? - 1). On solving A3 < 0 we obtain T > 1. O
0

This means that when diabetic individuals are in the managed diabetic state, they will remain
in that state for as long as the threshold quantity 7, > 1.

3.3.2 Global stability of F, and P,

Theorem 3. If Ty < 1, the pathological state Py is globally asymptotically stable.

Proof. Define a Lyapunov function
L), Gr(t),H(t)) =1+ kG + koH

with constants k; and ks to be defined such that the derivative of £(t) is negative definite. Let
bw(ly — o w(Ply — 0o
:7(“ 0 >andk2:7(‘ 0 )

ki
aw + cp P

L Gy )= 0 4 ) (e nleh=0) (1)

aw + cp bw P w

= 2(¢1y —9)



Thus L£(I,Gp,H) = L(I*,G},H*) = 0 if and only if /Iy = ¢ i.e the insulin absorption bolus
will be equal to the clearance rate and £(I,Gr, H) > 0 hence L(I,Gp,H) > 0in P,
Then

d d d d
L) = 1) + k1= Gu(t) + ks - H(1),
N bw(wo —6)d w(ly — 8) d
B (1+I _(5)[ aw + cp dtGL(t)+ p %H(t)’

< (- o) 1+ wh-0) | () Guo + (2w
< Wl =01+ =) | () Gl + (2)e)]

= wh -0 |1+ (Y et + (4) 50

5=y [ () aun + (L) mw).

<0.

L) -
dt

i is the largest invariant set for which I = I*, G = G} and H = H* for which F is a singleton.

135 Using the Lyapunov stability theorem is negative definite. The w-limit set of each solution

w7 By LaSalle’s invariance principle [43], the pathological state P, is globally asymptotically stable
138 1n D. []

139 This shows us that individuals with managed diabetes will remain in this state whenever the
o threshold quantity 7o < 1. This confirms that Type 1 diabetes is a non-reversible condition
11 when it exists.

12 Theorem 4. The managed diabetes state Py is globally asymptotically stable for To > 1.

Proof. Let I =2, ,G, = x5 and H = x3 and consider a possible Lyapunov function

) x3
+ | 2y — 25 — 25 In + | g — 2% — 2% In .
) (2 C L? ) (3 P LJ)

us At steady state z3* = LN p = way". Thus
w

V(z) = (xl — " — a7 In [x*l*
x

1

V- (;ioxl — 5) (1 — 27) + [a + cxs — (b+ cxy)x] <1 - 3;22 ) +p— PZ — way + wry,

<ﬂ — (5) (1'1 — .TT*) + [CL -+ Cr3 — (b =+ C.Il)l'g] (1 — I§*> — R (;L’;:* — 373)2,

1 + 21 ) XT3

IN

0

Yy

+ I
*k

us since the expressions <1 — 5) and [a — (b + cx1)xe + cx3] are positive by definition of

s model system (1) and z; < x;** everywhere in D. We used the Lyapunov stability theorem to
ws show that V < 0 for all (I*,G™, H*) > 0 € D and the strict equality V = 0 holds only for
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I = I, G = G and H = H**. The equilibrium state P; is the only positively invariant
set of the solution for model system (1) contained entirely in D. By the asymptotic stability
theorem in [43], the managed diabetes state P; is globally asymptotically stable. ]

P, equilibrium state is also shown to be globally stable when 7y > 1. This is a case where
an individual has well managed diabetes. This state is in line with biological findings that

individuals with well managed diabetes will have a balanced glucose homoeostasis system.

3.4 Numerical simulations and results

In order to illustrate some of the mathematical analysis, numerical simulations of model system
(1) are conducted using a code in R programming environment [44] and parameter values in
Table 1. Figures 1 and 2 illustrate the time series plots based on simulating the model with
different initial conditions. Figure 1 shows the solution profiles for the concentration of I, G,
and H for 7y < 1. Simulation results in Figure 1 show that solutions will converge to the Type
1 diabetic steady state (as in Lemma 1). The glucose levels are approximately 500 %7 and
insulin levels are at zero, a hyperglycemic state. Figure 2 shows the solution profiles for the
concentration of I, Gy, and H for Ty > 1 and this also confirms the non-diabetic steady state
is also stable (as in Theorem 2). The glucose and insulin levels are within the normal range,
and no hyperglycemic state is occurring. Both results in Figures 1 and 2 agree with the biology
of the disease that Type 1 diabetes is a non-reversible stable state as illustrated by a forward

bifurcation in Figure 3.
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Figure 1: Simulations of model system (1) with different initial conditions for 7, = 0.049837 < 1.
Parameter values used are as in Table 1 with Iy = % and ¢ = 2.143 x 10~* where j is the step
value which is varied in the range 1 — 200. Note that the y-axis scale for the figures is different

in order to make figures clearer.



[

[

=]
1

Concentration of | mIU/m

T T T T T
0 100 200 300 400 500
Time (minutes)

500 1

400 4

300 1

200 4

100 4

Concentration of G, mg/dl

0 100 200 300 400 500
Time {minutes)

10,04

T.54

5.0

2.51

Concentration of H miU/m|

0.04

T T T
0 100 200 300 400 500
Time (minutes)

Figure 2: Simulations of model system (1) with different initial conditions for 7o = 4.983721 > 1.
Parameter values used are as in Table 1 with Iy = % and 1 = 2.143 x 10~2 where j is the step value
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make figures clearer.
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Figure 3: Bifurcation diagram showing a forward transcritical bifurcation occurring. The bold blue
line represents a Type 1 diabetic, the dashed blue line represents a unstable diabetic equilibrium and

the red represents a stable non-diabetic equilibrium.

The solution for I* = 0 is given by the bold blue/dashed line and a Type 1 diabetic. The

second solution for I** = 7y — 1 is given by the red line and is a non-diabetic state.

4 Sensitivity analysis and results

In this section, various sensitivity analysis (SA) methods were used to assess the relative impor-
tance of the input parameters when varied over wide ranges (as given in Table 1) to the model
outputs (I, G, H) which are derived by solving model system (1). Here we mainly focus on the
SA of GG;, and I which are the most important components in the glucose homeostasis system
and in managing diabetes. We will begin by conducting SA using the partial rank correlation
coefficient (PRCC) and then proceed to use probabilistic SA methods. The partial rank cor-
relation coefficient, as one of the widely used global SA approaches will be briefly introduced
in Section 4.1. The PRCC values for each input parameter and their corresponding p-values
are computed in Matlab Statistics and Machine Learning toolbox (R2019b) [45]. We introduce
several probabilistic SA methods, including main and interaction effects and Sobol’ method in
Section 4.2, including the Gaussian process. We also develop a computational algorithm using
the Gaussian process emulator to efficiently evaluate these SA measures. The SA measures
proposed for the Sobol’ method are computed using tgp package in R [46].

4.1 Partial Rank Correlation Coefficient

PRCC and their corresponding p-values are used to evaluate parameter importance on the

model outputs. The method is combined with Latin hypercube sampling and explores the

11
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entire parameter space [30]. The PRCC values illustrate the correlation between the model
outputs (I, G, H) and the input parameters. PRCC will give the singular effect of each input
parameter on the model output of interest. The corresponding p-values highlight the level of
uncertainty of each input parameter on the model output. The input parameters with larger
PRCC values are those which have more impact on the model output, and the ones with rela-
tively insignificant values could be removed from the model as they are regarded of being less
important (see [30,47] for similar analysis). The input parameters with p < 0.05 are regarded
to have significant impact on the model output. Scatter plots were also generated to visually
illustrate the relationship between input parameters and model outputs at time ¢ = 210 min-
utes. Scatter plots showing sensitivity analysis results of input parameters (a, b, ¢, 0, Iy, ¥, p, w)
against [ are in Supplementary Figures S1 and S2. The PRCC results for the entire time
period and corresponding p-values for all the parameters against I are shown in Table 2 and
illustrated in Figure 4 (a). The results suggest that the parameters that are most influential
on I were 4, Iy and . In exploring most influential parameters on I, we calculate the PRCC
and p-values at different time points. Initial time point (¢ = 5 minutes), is called the “fasting’
level in an individual and usually observed in the morning. However, it can also represent 3
hours post food as the system should reach homeostasis within 3-4 hours. The second time
period of interest is immediately after food, when glucose is high due to the ingested source
of glucose entering the blood stream. This is at ¢ = 10 minutes, where we assume the meal
is taken within 5-10 minutes after waking up. The third time is ¢ = 60 minutes, an hour
postpandrial. This is when glucose level should be reducing towards homeostasis. Time points
t = 90 and 180 minutes, corresponds to 2 and 2.30 hours postpandrial meaning if an individual
was not diabetic or had good management of their diabetes the glucose, insulin and growth
hormone level should be nearly at homeostasis levels. Finally ¢ = 210 minutes when glucose
level should be normal. The remaining PRCC tables for each time point are in Supplementary
Tables S1-531. Results demonstrate that, regardless of time point, the parameters which are
significant remain significant. Parameters identified as influential are parameters that make up
the Type 1 diabetes threshold quantity.

Scatter plots showing sensitivity analysis results of input parameters (a, b, ¢, 0, Iy, 1, p, w) against
G, are in Supplementary Figures S3 and S4. The PRCC results and corresponding p-values
for all the parameters against G, are shown in Table 3 and illustrated in Figure 4 (b). The
results suggest that the parameters that are most influential on G were 9,9, Iy, p, w. Param-
eters 0 and p have positive PRCC values suggesting that these parameters have positive effect
on glucose concentration thus are important in maintaining glucose homeostasis. These results
also show the importance of growth hormone in the glucose homeostasis system as parameter
w has shown to influence G. Model parameters which have shown to be significant remain sig-
nificant at different time points and after £ > 90 minutes, two extra parameters are highlighted
as significant and these are p and w. The remaining PRCC tables are shown in Supplementary
Tables S32-561.

The scatter plots showing sensitivity analysis results against H are shown in the Supplementary

12



271 Figures S8 and S4. The PRCC results and corresponding p-values for all the parameters against

2 H are shown in Supplementary Tables S62-591 and illustrated in Supplementary Figures S5

229

231

232

233

234

235

236

and S6. The results show that the parameters that are most influential against H are p and w.

Parameter p-values PRCC

P p < 0.0001
Iy p < 0.0001
0 p < 0.0001
w p = 0.3003
c p = 0.4578
p p = 0.5555
a p = 0.8186
b p = 0.8397

0.7758
0.8550
-0.8009
0.0629
0.0422
-0.0654
-0.0634
0.0278

Table 2: PRCC sensitivity analysis of param-

eters ranked in terms of importance to the

model variable I for entire time period.
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p < 0.0001
p < 0.0001
p < 0.0001
p < 0.0001
p < 0.0001
p=0.0104
p = 0.9627
p = 0.9856

-0.8307
-0.8795
0.8816
0.4534
-0.3081
-0.0238
0.2222
0.2869

Table 3: PRCC sensitivity analysis of param-

eters ranked in terms of importance to the

model variable G, for entire time period.
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Figure 4: Plot (a) shows a tornado plot of the parameters with their PRCC values showing the effect

of input parameters on I and (b) is a tornado plot of the parameters with their PRCC values showing

the effect of input parameters on

Gr.

4.2 Probabilistic sensitivity analysis

In addition to the PRCC method, we employ the variance-based SA methods as more efficient

global SA methods to evaluate the relative importance of input parameters when they are al-

tered extensively. This would allow us to take into account inputs uncertainty as they vary

over a wide range. One of the motivations to use these efficient probabilistic SA methods is

that the system is complex in regard to the relationships between the inputs and output that

are highly non-linear. In addition, PRCC as the common regression analysis-based global SA
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method, assumes that there must be a monotonic relationship between the output and each
input parameter of interest, which is often violated by the underlying input-output relation-
ship exhibited by the system of interest in this paper [48,49]. Furthermore, the PRCC-based
approach is not capable to evaluate the uncertainty levels of each input parameter affecting the
model outputs. Finally, the variance-based SA methods are able to allocate the variance of the
output and quantify the effect of high-order interactions between input parameters, but PRCC
method is not able to evaluate the impact of the interactions between inputs.

The probabilistic global SA methods of interest in this study is based on the analysis of variance
of the model response variable [31]. The approach can capture the fraction of the model re-
sponse variable variance explained by model input on its own or by a group of model inputs. In
addition, it can also provide the total contribution to the output variance of a given input (i.e.
its marginal and cooperative contribution). The main challenge of this approach, for the costly
system under study, is in computing the Sobol” indices, and other variance-based SA measures,
including main effects, the variance contributions of each input parameter to the model output,
and corresponding uncertainty levels. There are different computational techniques to perform
Sobol’ method SA [31,50,51]. This study reports the final results of sensitivity indices computed
using the emulator-based method [52,53], which will be briefly discussed in Section 4.2.2.

To perform the variance-based SA methods, we will examine how a function f(x) depends
on its input variables. For the case of this study, f(.) will typically be the function that com-
putes I, G and H as a function of a vector of biological input parameters illustrated in Table 1.
Important notations that will appear in the next sections are introduced in the following. We
denote a d-dimensional random vector as X = (X7, ..., Xy), where X is the iy, element of X,
the subvector (X;, X;) is shown by X; ;. In general, if p is a set of indices, then X, can be writ-
ten for the subvector of X whose elements have those indices. X_; is defined as the subvector
of X containing all elements except X;. Similarly, x = (z1,...,z4) denotes the corresponding
observed random vector X. Here, X is considered as an input vector consists of all biological
input parameters discussed in Table 1. The output, denoted by Y, represents either I, G or
H variables.

4.2.1 Variance-based sensitivity analysis methods

In this section we briefly introduce the variance-based SA methods of interest. These methods
generally measure the sensitivity of model output, Y (i.e., I, G, or H), to the variation of an
individual input X;. In other words, they measure the sensitivity of model output, when the

model inputs are varied over a wide range, in terms of reduction in the variance of Y.

We start by introducing the main and interaction effects. Follow Sobol’ [31], it can be shown
that any quadratically integrable function f(-) can be decomposed in terms of its main effects

and interactions as follows:

y = f(x) =20 + Sy 2i(m:) + Sicjzij (i) + ..+ 212,..4(X) (5)
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where f(.) is a function of uncertain quantities x, and its expected value is denoted by z; =
E[f(X)]. The function z;(x;) presented in equation(5) is so-called the main effect of the it
variable, z;. The main effect, z;(z;) is the function of x; that best approximates f(.) in terms

of minimizing the variance (calculated over the other variables) [55,56]. It is defined as:

zi(wi) = E[f(X) [ @] = E[f(X)] (6)

The first order interaction between x; and x;, which is denoted by z; j(x;;) in equation (5),

and is given in equation (7).

zij(%ij) = E[f(X) | xi5] = zi(2:) — 2(x;) — E[f(X)]. (7)

Similarly the second order interaction between x; and x; is denoted by z; jx(X; ), and so on.
The details of higher order interactions given in equation (5) can be found in [52,53].

The main effects, the first-order interaction and their plots can be considered as a powerful
visual tool to investigate how the model output responds to each individual input, and how
those inputs interact in their influence on the model output. The variance of main effect can
be interpreted as the amount by which the overall variance of f(.) would be reduced if we knew
X;. A useful SA measure which is given in equation (8), can be considered as the expected

amount by which the uncertainty in Y will be reduced if we learn the true value of Xj.
Vi =var{E(Y | X;)}. (8)

It should be also noted that V; given in equation (8) can be written as V; = var(z;(X;)) which
is a function of the main effect of X;.

The second measure, proposed in [54], can be written as:
Vi, = var(Y) —var{E(Y | X_;)} 9)

which is the remaining uncertainty in Y that is unexplained after everything has been learnt
except Xj.

These two measures, given in equations (8) and (9), can be converted into scale invariant
measures by dividing by var(Y") as follows:

v L
Si = var(Y)’ 51 = var(Y) =1-5 (10)

where S; can be considered as the main effect index of X;, and S, is the total effect index of
X;.

4.2.2 Emulators-based sensitivity analysis

To compute the variance-based methods in previous sections, we use an emulator to reduce
computation costs. The reason we do this is that the function f(x) (the Type 1 diabetes
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model) is a complex case as the outputs must be computed by solving the nonlinear model

hence computation is costly if done without an emulator.

If f(x) is not complex (computationally cheap), the standard Monte Carlo (MC) methods
would be sufficient to estimate var(Y) and other SA measures described in Section 4.2. The
computation techniques proposed in [31,50] require many function evaluations meaning they
are not suitable with complex, costly functions. We use a further developed methodology based
on the Bayesian paradigm that was proposed in [52,55,57] in order to overcome the compu-
tational complexity. By using Bayesian method we are able to estimate all the quantities of

interest required to examine the SA in modelling diabetes.

The functional relationship, f(.), is unknown for any particular input configuration x until the
model is run for those inputs, therefore we specify a prior distribution for the values taken by
f(x) at different values of x within the Bayesian setting. This prior is then updated according to
the usual Bayesian paradigm, using the generated data, D = {(x;,¥;) : v = f(xi),i =1,...,n},
from a set of runs of the model. The result will be then a posterior distribution for f(.), which
is used to make formal Bayesian inferences about the SA measures. Although we are still un-
certain about the function f(-) at parameter values where it was not evaluated, the uncertainty
can be further reduced by taking into account the correlation of function values from one point
to another. The expected value of the posterior distribution is used as a point estimate for
f(-). There are two different distributions being used in the SA computation. The first is the
distribution of input parameters which represents the uncertainty in the model parameters x,
and which is propagated to the output values through the function f(-). The second is the
posterior distribution on f(-) which plays a pure computational role, and can be reduced as
much as required by computing the function f(-) by increasing the training points x, and does

not have any operational interpretation.

4.2.3 Gaussian process emulators

Gaussian processes are a class of supervised machine learning algorithms, that describe a func-
tional relation as a multivariate Gaussian distribution and can thus be used for non-linear
regression and classification problems. The key requirement to use the Gaussian process is
that f(-) should be a smooth function, so if we know the value of f(x) we should then have
some idea about the value of f(x’) for x close to x’. The advantages of the Gaussian process
assuming a smooth, continuous function is that it is computationally much quicker and cheaper
than using the standard MC methods. This approach usually ignores the expected proximity

of the function values evaluated at close by points.

The mean of f(x) conditional on the hyper-parameters (3, is modelled as

E[f(x)|8] = h(x)"B8 (11)

where h(-) is a vector of ¢ known functions of x, and £ is a vector of coefficients. The choice of

h(-) is arbitrary, but it should be chosen to incorporate any beliefs that we might have about
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the form of f(-). The covariance between f(x) and f(x’) is given by,
cov(f(x), f(x)|o?) = o%c(x,x) (12)

where ¢(+, -) is a monotone correlation function on Rt with ¢(x,x) = 1, and decreases as |x —X/|
increases. Furthermore, the function c¢(-,-) must ensure that the covariance matrix of any set
of outputs {y; = f(x1),...,yn = f(x,)} is positive semi-definite. Throughout this paper, we
use the following correlation function which satisfies all the conditions mentioned above and is

widely used for its computational convenience,
(%, %) = exp{—(x - x')"B(x — x)}, (13)

where B is a diagonal matrix of positive smoothness parameters, {(v/2b;)72}%,, and d is the
dimension of x. The matrix B has the effect of re-scaling the distance between x and x and x’.
Thus B determines how close two inputs x and x’ need to be such that the correlation between
f(x) and f(x') takes a particular value. Oakley and O’Hagan [52] suggest, for fixed hyper-
parameters z, V, a and d, the following conjugate prior, the normal inverse gamma distribution,

for (3,0?)
p(B.0%) o (0%) 2D exp{—{(B — 2)TV (B — 2) + a}/(20%)}

The output of f(-) is observed at n design points Xy, ...,X, to obtain y = {f(x1),..., f(x,)}
considered as data. It should be noticed that these points, in contrast with MC methods, are
not chosen randomly but are selected to give good information about f(.). The design points
will usually be spread to cover X, the input space of X. Since X is unknown, the beliefs about X
is represented by the probability distribution G(X). Therefore, the choice of the design points
will also depend on G(.) (the choice of design points is discussed in [60]). The standardised
posterior distribution of f(-) given y = {f(x1),..., f(x,)} is

f;(")‘—(ff? 'y~ o (14)

where t4., is a student ¢t random variable with n + d degrees of freedom and d is the dimension

of x, the posterior mean is given by,

m"(x) = h(x)"B + t(x)" A" (y — Hp), (15)
the updated correlation function described in equation (13) given the observed data can be
written as,

& (x,x) = c(x,x) — t(x)T At (x) + (h(x)"
—t(x)TATTHY(HT AT H) Y (h(2) —t(xX) A H)T (16)
and
t(x)" = (c(x,x1), ..., ¢(x,%,)), (17)

HT = (hT(Xl)Ta s 7hT(Xn)T)’
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The outputs corresponding to any set of inputs will now have a multivariate ¢-distribution,
with covariance between any two outputs given by equation (14). Note that the ¢-distribution
arises as a marginal distribution for f(.) after integrating out the hyper-parameters 3 and o?.
In practice, further hyper-parameters, the smoothness parameters B, will be associated with
the modelling of the correlation function, ¢(-,-). It is not practical to give B a fully analytical
Bayesian treatment, as it is nearly always impossible to integrate the posterior distribution
analytically with respect to these further parameters. We can keep B fixed as the simplest
option. An alternative approach is to use a numerical method to integrate the posterior dis-
tribution. It is possible to integrate numerically, in particular, by using Markov chain Monte
Carlo (MCMC) sampling however it is a highly intensive computational task. We can estimate
the hyper-parameters of ¢(+,-) from the posterior distribution and then to substitute these es-
timates into c(+,-) wherever they appear in the above formulae, this is a more robust approach
proposed in [52]. These estimates can be obtained by using the posterior mode in combination
with a cross validation approach [58]. The GEM-SA [59] is capable of estimating the smoothness

parameters using both methods.

4.3 Sobol’ method results

In order to compute the emulator-based SA measures, we first evaluated the outputs of model
system (1) for 100 data points selected over a range of input parameters in Table 1 using the
Latin hypercube sampling [53] which is a space filling design originally proposed in [60]. We
then compute first and total order variance-based sensitivity indices using the Gaussian process
emulator at significant time points. Parameters with sensitivity greater than 0.05 were consid-
ered to be significant [61]. The Sobol’ indices are analysed for the insulin bolus injection term,
Iy, to investigate if model influential parameters are affected by the amount of insulin injected.
It should be noted that the insulin bolus injection (/) is a dosage level such as Iy = 5 and is a

parameter, thus should not be confused with the output variable insulin concentration (7).

Figure 5 and Table 4 illustrates the first order variance-based sensitivity indices for insulin
bolus level of I, = 5 for insulin concentration (/). Results were produced for different insulin
bolus levels of Iy = 10, 15, 20, 25, 30 and are presented in Supplementary Tables S93-597. Total
effect sensitivity indices for I at insulin bolus levels (1, = 5, 10, 15, 20, 25, 30) are in Supplemen-
tary Tables S109-S114. The figure shows that, parameters ¢ and 1 are critical in influencing I.
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Parameter J is the most influential with a total order index of 0.9127 (at ¢t = 60 minutes) and
this is followed by parameter 1, other model parameters are not significant in determining I.
Additionally, parameter § has an extremely high total order index in comparison with its first
order, implying there is lots of interaction with other parameters suggesting the significance
of using global methods or SA methods that evaluate parameter relationships between each
other. The first order and total order indices did show some change at different time points,
nevertheless the parameters which are influential remained significant. Results also showed
that regardless of bolus amount injected, d remains significant and its significance increases
over time points. Explanation for this increase of clearance term ¢ is due to the fact that the
increased insulin bolus I injected requires higher clearance to maintain the glucose level once
homeostasis is reached. Conversely, 1) and [ indices, although remain significant, they reduce
over time when ¢ > 60 minutes. This can be explained by the fact [y is highest when first
injected and gradually decreases as it is used up and the absorption term 1 is therefore less

significant due to clearance of insulin.

Figure 6 and Table 5 illustrate the first order variance-based sensitivity indices at insulin bolus
level Iy = 5 for G. The remaining values of I, within the range given in Table 1, on first
order variance-based sensitivity indices for G, are in Supplementary Tables S98-S102). Total
effect sensitivity indices for GG, are presented in Supplementary Tables S115-S120. Sensitivity
analysis results show that parameters ¢ (with total order index of 0.3126 at ¢ = 60 minutes),
c and v are the most influential parameters on GG;. The total order and first order indices for
these parameters are similar, suggesting that these parameters have no interaction with other
parameters. Sensitivity analysis results based on Sobol’ method for H are shown in Supplemen-
tary Figures S6 and S5, Tables S103-S108, S121-5126. Results also show the change in variance
of each parameter on the variable over the different time points converges. Parameters which
have the most influence at a certain time have shown to have the most effect. Results of the
Sobol” method for different insulin bolus injection terms I, showed that significant parameters
remained significant throughout variations in values for the insulin injection term. The insulin
induced glucose uptake rate (c) is not substantially affected by changes in the insulin bolus term
Iy. Parameter ¢ clears the insulin therefore as bolus levels increase the parameter performs its
role at an increased rate (i.e. up-taking the glucose). At 10 minutes the absorption term (v)
significance is increased as this is when the bolus is injected. The significance of parameter
0 increases over time. However, after 180 minutes, 0 importance begins to decrease and this
is linked to the need to clear insulin once blood glucose level is maintained. The process is
usually achieved in 2 hours and consequently insulin clearance is reduced as homeostasis is

maintained [40,41].
The results showed that all the parameters for H have first order indices close to zero (< 0.05)

with exception of p and w. Using both PRCC and Sobol’ method sensitivity analysis was also
conducted at different times and similar conclusions were reached.
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Figure 5: Plot (a) shows first order and total effects sensitivity indices of the model parameters (a,
b, ¥, ¢, Iy, §, p and w) on insulin for model system (1) using Sobol’ method at time ¢t = 210. Plot ()
similarly shows first order and total effects sensitivity indices of the model parameters (a, b, 9, ¢, Io,

d, p and w) on insulin for model system (1) using Sobol’ method at time ¢ = 60.
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Figure 6: Plot (a) shows first order and total effects sensitivity indices of the model parameters (a,
b, ¥, ¢, Iy, 0, p and w) on glucose for model system (1) using Sobol’ method at time ¢ = 210. Plot (b)
similarly shows first order and total effects sensitivity indices of the model parameters (a, b, 1, ¢, Iy,

d, p and w) on glucose for model system (1) using Sobol’ method at time ¢ = 60.

20



375

376

377

378

379

380

381

382

383

384

385

386

387

Time(in minutes)

Parameter =25 t=10 t=60 t=90 t =180 t =210
a 0.0040 0.0003 0.0017 0.0012 1.92 x 107° 0.0051
b 0.0051 0 0.0003 0.0050 0.003 0.0351
P 0.2335 0.1485 0.0938 0.0299 0.0196 0.0034
c 5.21 x 1079 0 0.0002 0.0007 0.0004 0.0036
Iy 0.2312 0.1619 0.0574 0.0028 0.0132 0.0278
) 0.3431 0.4957 0.6084 0.2149 0.7357 0.0352
p 0 0 0.0006 0.0038 0.0216 0.0359
w 0.0097 0 0.0002 0.1024 0 0.0241

Table 4: First order Sobol’ indices of each model parameter for I at significant time periods with
Iy = 5.

Time(in minutes)
Parameter =25 t=10 t=60 t=90 ¢t=180 ¢t=210

a 0.0951 0.0498 0.0610 0.0599 0.0803  0.0246
b 0.0073 0.0346 0.1043 0.0386 0.0457  0.0049
P 0.0389 0.1470 0.1140 0.1328 0.1531  0.0296
& 0.2080 0.3535 0.1863 0.3190 0.1706  0.0429
Iy 0.0990 0.1027 0.0557 0.0699 0.1120 0.1383
o 0.0676 0.1337 0.1140 0.1807 0.2157  0.0162
p 0.0045 0 0.0020 0.0007 0 0.0009
w 0.0150 0.0008 0.0105 0.0036 0 0.0102

Table 5: First order Sobol” indices of each model parameter for G, at significant time periods with
Iy = 5.

4.4 Comparison with PRCC results

We compare the results obtained from PRCC method with the variance-based methods used
in this study. We note that the PRCC highlighted more influential parameters (i.e. more
parameters are shown to affect the model outputs; insulin, glucose and growth hormone). Sobol’
method identified a smaller set of influential parameters than the PRCC method, as noted in
other studies [49,67]. The explanation for this could be that the PRCC assumes a monotonic
input and output relationship, unlike the Sobol’ method. However, the Sobol’ method is able
to quantify the effect of the high-order interactions between input parameters, thus providing
us with further insight on understanding the model system [49]. The results from the Sobol’
method showed consistently the parameters that are influential against I and G, were ¢ and 1,
these parameters were also identified as influential by the PRCC method. The PRCC method
identified Iy as significant constantly, however Sobol’ method only highlighted its significance
at one time point. However, the Sobol’ method identified the high interaction of § with other
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parameters, something PRCC method was unable to show. Both methods concurred completely

on the influential parameters against H and the parameters identified were p and w.

5 Discussion

Mathematical models of Type 1 diabetes [8,12-20] have been developed to understand the
disease and develop more effective treatment methods in order to provide better lifestyles for
diabetes patients. Current treatment methods are invasive, inconvenient and require constant
monitoring. Presently, the treatment methods include daily self injections, constant recording
of blood glucose levels, carbohydrate counting and even transplant of islets [11]. Several dia-
betes models [8,10,12-20] have managed to describe molecular dynamics in a Type 1 diabetic
and lead to the development of open-loop insulin pumps based on mathematical algorithms.
However, the current mathematical models of diabetes do not consider the condition with zero
insulin concentration in the blood as expected in a Type 1 diabetic [12,62]. In light of this

limitation, we developed a new mathematical model to fully capture Type 1 diabetes dynamics.

The results of the mathematical analysis showed that the model has two stable steady states.
The model threshold quantity 7y was derived and it was shown that the pathological equilibrium
was locally asymptotically stable for values of 7y < 1. The importance of the model threshold
Ty is in determining key parameters governing the dynamics of Type 1 glucose homeostasis sys-
tem. Further, pathological equilibrium was shown to be globally stable. The managed diabetes
equilibrium was shown to be globally stable for values of 7y > 1. Numerical analysis of the
model showed a transcritical bifurcation (Figure 3), confirming results illustrated by the time
series plots (Figures 1 and 2).

Sensitivity analysis was conducted to systematically evaluate key parameters influencing the
model at different time points using PRCC and Sobol’ methods. PRCC method identified all
key parameters which appeared in the Type 1 diabetes threshold quantity as important. The
parameters which were significant remained so for different time points. However, for glucose
concentration, at ¢ = 90 minutes two additional parameters, growth hormone clearance rate
and growth hormone production rate, were identified as significant. The growth hormone role
in influencing glucose concentration is most important at 2 hours postprandial. The PRCC and
Sobol’ methods concurred in many scenarios but showed some differences. Both methods iden-
tified the importance of insulin clearance rate () and insulin absorption rate (1) as influential
parameters in determining insulin concentration (see Figures 4(b), Supplementary Figures S1,
S2, Table 2, Supplementary Tables S1-531 for PRCC, Figure 5 and Table 4, Supplementary
Tables S93-S97, S109-S114 for Sobol’ indices). However, for the Sobol’ method the insulin
bolus term (1) was only shown to be significant at ¢ = 60 minutes, unlike in the PRCC method
where it was shown to be significant throughout all time points. Furthermore, the difference
of the total order and first order indices for § against insulin concentration was large, implying
that there was interaction with other parameters. Global sensitivity analysis methods which

allow us to explore relationships between parameters are important in understanding the overall
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influence of each parameter in a model. PRCC method also showed that the most influential
parameters on blood glucose concentration are insulin clearance (¢) and insulin absorption rates
(1) (see Figures 4(b), Supplementary Figures S3, S4, Table 3, Supplementary Tables S32-561).
Sobol’ method also confirmed these findings and highlighting that, the parameters have little
interactions with other parameters (Figure 6 and Table 5, Supplementary Tables S98-5102,
S115-5120).

Our results showed that, PRCC method managed to identify all key parameters in glucose
and insulin concentration dynamics. However, Sobol’ method managed to provide insights
on parameter interaction, thus demonstrating the importance of using other global SA meth-
ods along with the PRCC method. One advantage of using variance based methods such as
Sobol’ method is that they are computationally more efficient and suitable for complex mod-
els. It is clear that classical mathematical analysis alone is not sufficient in understanding
model dynamics and parameter interactions, thus SA methods should be used to fill this gap.
Sensitivity analysis insights on important model parameters varied by method [63-65]. Other
studies [63,66] have proposed selection of SA methods to be used based on model complexity,
characteristics and research question.

Findings from this study have some similarities and differences from those in [22]. Both mod-
els, although different, highlighted the significance of using both PRCC and Sobol’ methods as
these methods can offer different but important model insights. For example, in this study it
is clear that the PRCC method identified more influential parameters including all parameters
in the threshold, 7;. However, Sobol’ method provided insights on interaction between model
parameters. In [22], both methods managed to identify the importance of all the parameters in
the model threshold quantity, but similarly revealed that Sobol’ method provides more insights

on parameter interaction.

The results of this study are important in informing the building of suitable mathematical
algorithms to use in an artificial pancreas. This model provides a potential open-loop algo-
rithm framework which captures a zero-insulin state, a condition which occurs frequently in
individuals with Type 1 diabetes and has so far not been considered in previous models. An
artificial pancreas is vital to ease the life of Type 1 diabetic individuals by offering better treat-
ment to those suffering with the disease. However, the building of suitable artificial pancreases
requires accurate and efficient mathematical algorithms.

This study has several limitations, the model is parameterised using estimates in [68] and other
assumed parameters and only considers sensitivity analysis using PRCC and Sobol’ methods.
Nonetheless, it would be interesting to explore how these results vary when the model is cal-
ibrated using experimental data and if other global sensitivity analysis approaches are used.
We also assumed that, insulin injection is inversely proportional to insulin concentration in the
blood following [12], however it would be interesting to confirm the validity of the assumption

using robust data-driven modeling approaches. Experimental data on the relationship between
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474

475

476

477

478

479

480
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482

insulin injection and insulin in the blood would be key in informing the building accurate and
efficient diabetes models. Additionally, the model is based on short term injection, whereas
it would be interesting to explore if having a long-term insulin injection term instead would
affect the results. In light of the current COVID-19 pandemic and increased risk of develop-
ing COVID-19 complications among diabetic individuals, it would be interesting to develop an
in-vivo model to understand COVID-19 infection and diabetes dynamics. Despite these limita-
tions, this study presents a new way of modelling Type 1 diabetes and provides an important
framework for understanding nonlinear model parameters using a combination of mathematical

and sensitivity analysis approaches.
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