
 

 

 

Exploring dynamical properties of a Type 
1 diabetes model using sensitivity 
approaches 

 
Al Ali, H., Daneshkhah, A., Boutayeb, A., Malunguza, N. J. & 
Mukandavire, Z 
Published PDF deposited in Coventry University’s Repository  
 
Original citation:  
Al Ali, H, Daneshkhah, A, Boutayeb, A, Malunguza, NJ & Mukandavire, Z 2022, 
'Exploring dynamical properties of a Type 1 diabetes model using sensitivity 
approaches', Mathematics and Computers in Simulation, vol. (In press), pp. (In 
press). https://doi.org/10.1016/j.matcom.2022.05.008 
 
 
DOI    10.1016/j.matcom.2022.05.008 
ISSN   0378-4754 
 
 
Publisher: Elsevier 
 
 
© 2022 The Author(s). Published by Elsevier B.V. on behalf of International 
Association for Mathematics and Computers in Simulation (IMACS). This is an open 
access article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.matcom.2022.05.008


Journal Pre-proof

Exploring dynamical properties of a Type 1 diabetes model using
sensitivity approaches

Hannah Al Ali, Alireza Daneshkhah, Abdesslam Boutayeb, Noble
Jahalamajaha Malunguza, Zindoga Mukandavire

PII: S0378-4754(22)00196-3
DOI: https://doi.org/10.1016/j.matcom.2022.05.008
Reference: MATCOM 5716

To appear in: Mathematics and Computers in Simulation

Received date : 20 June 2021
Revised date : 2 April 2022
Accepted date : 9 May 2022

Please cite this article as: H. Al Ali, A. Daneshkhah, A. Boutayeb et al., Exploring dynamical
properties of a Type 1 diabetes model using sensitivity approaches, Mathematics and Computers
in Simulation (2022), doi: https://doi.org/10.1016/j.matcom.2022.05.008.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2022 The Author(s). Published by Elsevier B.V. on behalf of International Association for
Mathematics and Computers in Simulation (IMACS). This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.matcom.2022.05.008
https://doi.org/10.1016/j.matcom.2022.05.008
http://creativecommons.org/licenses/by-nc-nd/4.0/


Journal Pre-proof

E1

d2

Abd davire2,3

UK

AE

3 , UAE

rocco

6 nology,

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Keyw28

∗Co om
Jo
ur

na
l P

re
-p

ro
of

xploring dynamical properties of a Type 1

iabetes model using sensitivity approaches

Hannah Al Ali1,2,3∗, Alireza Daneshkhah1,4 ,

esslam Boutayeb5, Noble Jahalamajaha Malunguza6, Zindoga Mukan
1Centre for Computational Science and Mathematical Modelling, Coventry University,

2Institute of Applied Research and Technology, Emirates Aviation University, Dubai, U

Centre for Data Science and Artificial Intelligence, Emirates Aviation University, Dubai

4School of Computing, Electronics and Mathematics, Coventry University, UK

5Department of Mathematics, Faculty of Sciences, University Mohamed 1er, Oujda, Mo

Department of Insurance and Actuarial Science, National University of Science and Tech

Bulawayo,Zimbabwe

Abstract

The high global prevalence of diabetes, and the extortionate costs imposed on healthcare

providers necessitate further research to understand different perspectives of the disease.

In this paper, a mathematical model for Type 1 diabetes glucose homeostasis system was

developed to better understand disease pathways. Type 1 diabetes pathological state is

shown to be globally asymptomatically stable when the model threshold T0 < 1, and ex-

changes stability with the managed diabetes equilibrium state i.e. globally asymptotically

stable when T0 > 1. Sensitivity analysis was conducted using partial rank correlation coef-

ficient (PRCC) and Sobol′ method to determine influential model parameters. Sensitivity

analysis was performed at different significant time points relevant to diabetes dynamics.

Our sensitivity analysis was focused on the model parameters for glucose homeostasis

system, at 3 to 4 hour time interval, when the system returns to homeostasis after food

uptake. PRCC and Sobol′ method showed that insulin clearance and absorption rates

were influential parameters in determining the model response variables at all time points

at which sensitivity analysis was performed. PRCC method also showed the model sub-

cutaneous bolus injection term to be important, thus identified all parameters in T0 as

influential in determining diabetes model dynamics. Sobol′ method complemented the

sensitivity analysis by identifying relationships between parameters. Sensitivity analysis

methods concurred in identifying some of the influential parameters and demonstrated

that parameters which are influential remain so at every time point. The concurrence of

both PRCC and Sobol′ methods in identifying influential parameters (in T0) and their

dynamic relationships highlight the importance of statistical and mathematical analytic

approaches in understanding the processes modelled by the parameters in the glucose

homeostasis system.

ords: Diabetes model, equilibria, stability, Gaussian process, sensitivity analysis.
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2019, a total of US$760 billion had been spent on diabetes, representing 10% of

health expenditure [1]. This is set to increase as global prevalence of the diseas

s [2] and recently due to COVID-19 infection which makes diabetes treatment diffi

fluctuations in blood glucose levels [1]. Diabetes, has two main forms that are,

ulin dependent diabetes) and Type 2 (non-insulin dependent diabetes). Globally

er of patients with diabetes in 2019 was 463 million, of which 10% were of Type 1 [

1 diabetes is classified as an autoimmune disease (a disease where the immune sy

kenly attacks the body [3]). The immune system attacks the β-cells, which are re

or producing insulin, therefore preventing production of insulin. Thus as the β-cel

yed, very few (if any) β-cells remain in the body, resulting in little or no insulin ava

body. Therefore, biologically it is assumed that a Type 1 diabetic has negligible β

ir body [4–6]. As blood glucose levels rise due to food uptake, insulin plays a si

ole in controlling the blood glucose back to normal levels [6]. Symptoms of the di

creased thirst, hunger, food intake, urination, weight loss, blurred vision and ext

ess [6]. If not treated, diabetes may cause heart disease, kidney failure, nerve dam

and eventually death [1, 4]. Chronic elevation of blood glucose levels (hyperglyce

ong periods of time, due to lack of insulin, results in complications such as cardiovas

e [7]. Individuals with Type 1 diabetes therefore need daily exogenous insulin dosag

to control their blood glucose levels. Without the administration of insulin, the ind

ould die [1, 6]. Insulin injections can be delivered as insulin bolus or continuous in

ions. Alternatively an insulin pump can also be used [8]. Insulin pumps are open

s and are not automated. Recently, an artificial pancreas providing an automated in

ry and eliminating the need for human intervention to calculate dosages has gone

9–11].

matical modeling is an important tool to better understand insulin and its analo

o dynamics in order to design future treatment approaches for individuals with Ty

es [8]. Several types of models have been formulated for Type 1 diabetes, dependin

rms of insulin delivery. Currently there are models for depot injections of insulin ana

mpartmental and systemic models [12–18]. Most of these models are based on [12] w

ed that insulin absorption is inversely proportional to concentration of insulin in

[8]. Systems made up of nonlinear differential equation with non-autonomous in

es would be of interest to provide a different perspective on current models [8, 12

ng models on diabetes do not capture important biological processes. For example,

athematical model has so far incorporated the role of the growth hormone [22] and

other models represent insulin molecules rather than the system as a whole (i.e glu

and growth hormone). In addition, existing mathematical models of diabetes hav

odeled Type 1 diabetes pathway, which describes the zero insulin steady state [8,17

s study, we propose a simple Type 1 diabetes model with an insulin bolus injection
2
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ponent. Exploring the mathematical properties of such a model is important in understanding70
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used to model Type 1 diabetes, do not take into account the fact that Type 1 dia

duals have no β-cells [22] and this is a major drawback of such models.

s study rigorous analysis of the model is conducted using classical mathematical

approaches and global sensitivity analysis methods. We use the concept of thre

ities to provide insights on the important model parameters [23–29]. Global sensi

is methods used in this study are partial rank correlation coefficient (sampling-b

d) [30] and Sobol′ method (variance-based method) [31].

Model formulation

s study, we developed a diabetes model consisting of the following variables: insulin

e (GL) and growth hormone (H). Insulin (I) is secreted by the β-cells and is depen

e glucose level within the body, therefore if there are no β-cells, no insulin is prod

We thus included a subcutaneous insulin injection term (I0), which represents a

The injection is done up to 3 times a day (15-30 minutes before meals depen

od glucose levels) [11]. The insulin levels in the blood are a product of the am

ulin externally injected and the absorption rate, ψ. The insulin injection term

ed to have an inversely proportional relationship with insulin concentration in the b

2, 33–35]. We model this relationship using the term
I0

1 + I
. The choice of the fun

ew formulation term to clearly capture the state with zero-insulin. The 1 mIU/m

rm is an assumed shape value to model a zero-insulin state. Overtime, blood in

rops as glucose is absorbed by muscle, fat and liver cells and clears at a constant

lucose (GL) level is increased by the growth hormone through suppression of gl

e by insulin, at a constant rate c. The parameter a represents average glucose obt

arbohydrate intake and body production. The growth hormone(H) in model system

reased by the rate of production by the somatotropic cells in the pituitary gland

nt rate ρ. Growth hormone is decreased by the rate of w due to the absorption b

36]. It has been demonstrated [37], that growth hormone increases glucose produ

od through gluconeogenesis and glycogenosis [38, 39]. Model variables, parameter v

eir symbols are provided in Table 1. The model dynamics are governed by the follo

of differential equations.

dI

dt
=
ψI0I

1 + I
− δI,

dGL

dt
= a− (b+ cI)GL + cH,

dH

dt
= ρ− wH.




3
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A summary description of model variables and parameter values is given in Table 1.102

Parameter/variable definition Symbol Baseline value[Range] Unit Reference

Biolo

Gluco ed

Gluco ed

Insuli ed

Grow
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Insul ed

Insul

Insul
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gical parameters

se production rate a 864[850− 20000] mg/dlmin Assum

se clearance rate independent of insulin b 1.44[1− 5] min−1 Assum

n induced glucose uptake rate c 0.85[0.1− 1] ml/mIU min Assum

th hormone production rate by somatotropic cells ρ 15.06[5− 30] mIU/ml min [36]

th hormone clearance rate by the liver w 1958.40[2000− 4000] min−1 [36]

in absorption rate ψ 0.2143[0.1− 1] min−1 Assum

in clearance rate δ 0.0215[0.01− 1] min−1 [21]

in bolus I0 5[5− 30] mIU/ml [21]

l response variables Range

s β 600− 1000 mg [4]

n I 0− 25 mIU/ml [40]

se GL 70− 200 mg/dl [41]

th hormone H 10− 40 mIU/ml [42]

1: Model parameters, variables and their definition. ∗Note that baseline values are from

ces and associated ranges are assumed values for sensitivity analysis.

Mathematical analysis and results

Model basic properties

odel system (1) has an initial condition given by I(0) ≥ 0, GL(0) ≥ 0, and H(0)

the model represents fluid concentrations in the human body, all variables shou

egative for biological feasibility in the following region,

D = {(I,GL, H) ∈ R3
+}.

we establish the following result and proof in Theorem 1.

rem 1. The region D ⊂ R3 is positively invariant with respect to the system of equa

on-negative solutions exist ∀ 0 < t <∞. Let the initial data be I(0) > 0, GL(0) > 0

> 0, then solutions (I(t), GL(t), H(t)) of model system (1) with positive initial data

n positive ∀ t > 0.

Suppose that t1 = sup{t > 0 : β > 0, I > 0, GL > 0, H > 0,∈ [0, t]}. Under the

conditions it can be shown that solutions of model system (1) are positive for t > 0

that this is true ∀ t > 0 by proceeding as follows. The first equation in model system

n by

I ′(t) =
ψI0I

1 + I
− δI,

gives

d

dt
ln I(t) ≥ −δ =⇒ I(0) exp

{
−
∫ t1

δ dt

}
> 0.
0

4
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It follows that the solution to the equation is positive ∀ t > 0. In a similar fashion, we provide

the proof for each equation in model system (1) as follows. For GL we have
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d

dt
lnGL(t) ≥ −(b+ cI) =⇒ GL(0) exp

{
−
∫ t1

0

(
b+ cI

)
dt

}
> 0.

rly H gives

d

dt
lnH(t) ≥ −w =⇒ H(0) exp

{
−
∫ t1

0

w dt

}
> 0.

solutions for model system (1) are positive ∀ t > 0 hence the model is biolog

osed.

Model equilibria

l system (1) has two steady states which are as follows:

iabetes (pathological) equilibrium state is given by

P0(I
∗, GL

∗, H∗) =
{

0,
aw + cρ

bw
,
ρ

w

}
.

anaged diabetes equilibrium state is given by

P1(I
∗∗, GL

∗∗, H∗∗) =

{
ψI0
δ
− 1,

cρδ + awδ

ψcI0w + bwδ − cwδ ,
ρ

w

}
.

equation (3), the managed diabetes state exists if I0ψ
δ
− 1 > 0 implying that I0ψ

δ
i

old parameter, T0. T0 = 1 becomes a bifurcation point above which a diabetic indiv

ntrol of diabetes and below which, the individual is diabetic and failing to manag

e as they will be in a state of hyperglycemia. There are two solutions for I,

I∗ = 0 and I∗∗ =
I0ψ

δ
− 1 = T0 − 1.

I∗ = 0, we obtain a Type 1 pathological state (no insulin) and when I∗∗ = T0− 1 w

anaged diabetes equilibrium state.

Stability of equilibria

e the threshold parameter T0 to investigate the stability of both P0 and P1.
5
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3.3.1 Local stability of P0120

Linearising model system (1) gives the following Jacobian matrix.

(4)
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J =




ψI0
I∗ + 1

− ψI∗I0
(I∗ + 1)2

− δ 0 0

−cG∗L −b− cI∗ c

0 0 −w




e the J to determine local stability of the steady states in the following sections.

rium state P0 is a pathological steady state as the individual has Type 1 diabetes (I∗

g J at the pathological equilibrium P0 gives the following eigenvalues, λ1 = −b,
d λ3 = ψI0

(1)2
− δ. Equilibrium P0 is defined as stable if λ3 < 0 which occurs when T0

a 1. The pathological state P0 is locally stable for T0 < 1.

rem 2. The managed diabetes steady state P1 of system (1) is locally asymptotically s

ver it exists.

Linearising the system at P1 we obtain the following eigenvalues at P1, λ1 = −b−cT0
= −w < 0 and λ3 = δ

(
δ

ψI0
− 1

)
. Therefore for P1 to be stable, λ3 < 0. We can re

the following, λ3 = δ

(
1

T0
− 1

)
. On solving λ3 < 0 we obtain T0 > 1.

eans that when diabetic individuals are in the managed diabetic state, they will re

t state for as long as the threshold quantity T0 > 1.

Global stability of P0 and P1

rem 3. If T0 < 1, the pathological state P0 is globally asymptotically stable.

Define a Lyapunov function

L(I(t), GL(t), H(t)) = I + k1GL + k2H

constants k1 and k2 to be defined such that the derivative of L(t) is negative definite

k1 =
bw(ψI0 − δ)
aw + cρ

and k2 =
w(ψI0 − δ)

ρ
.

L(I∗, G∗L, H
∗)= 0 +

bw(ψI0 − δ)
aw + cρ

(
aw + cρ

bw

)
+
w(ψI0 − δ)

ρ

( ρ
w

)

= 2(ψI0 − δ)
6
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Thus L(I,GL, H) = L(I∗, G∗L, H

∗) = 0 if and only if ψI0 = δ i.e the insulin absorption bolus

will be equal to the clearance rate and L(I,GL, H) > 0 hence L(I,GL, H) ≥ 0 in P0
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d

dt
L(t) =

d

dt
I(t) + k1

d

dt
GL(t) + k2

d

dt
H(t),

=

(
ψI0

1 + I
− δ
)
I +

bw(ψI0 − δ)
aw + cρ

d

dt
GL(t) +

w(ψI0 − δ)
ρ

d

dt
H(t),

≤
(
ψI0

1 + I
− δ
)
I + (ψI0 − δ)

[(
bw

aw + cρ

)
GL(t) +

(
w

ρ

)
H(t)

]
,

≤ (ψI0 − δ) I + (ψI0 − δ)
[(

bw

aw + cρ

)
GL(t) +

(
w

ρ

)
H(t)

]
,

= (ψI0 − δ)
[
I +

(
bw

aw + cρ

)
GL(t) +

(
w

ρ

)
H(t)

]
,

= δ (T0 − 1)

[
I +

(
bw

aw + cρ

)
GL(t) +

(
w

ρ

)
H(t)

]
,

≤ 0.

the Lyapunov stability theorem dL(t)
dt

is negative definite. The ω-limit set of each sol

largest invariant set for which I = I∗, GL = G∗L and H = H∗ for which P0 is a singl

Salle’s invariance principle [43], the pathological state P0 is globally asymptotically s

hows us that individuals with managed diabetes will remain in this state wheneve

old quantity T0 < 1. This confirms that Type 1 diabetes is a non-reversible cond

it exists.

rem 4. The managed diabetes state P1 is globally asymptotically stable for T0 > 1.

Let I = x1 ,GL = x2 and H = x3 and consider a possible Lyapunov function

(
x1 − x∗∗1 − x∗∗1 ln

[
x1
x∗∗1

])
+

(
x2 − x∗∗2 − x∗∗2 ln

[
x2
x∗∗2

])
+

(
x3 − x∗∗3 − x∗∗3 ln

[
x3
x∗3

ady state x∗∗3 =
ρ

w
⇒ ρ = wx∗∗3 . Thus

(
ψI0

1 + x1
− δ
)

(x1 − x∗∗1 ) + [a+ cx3 − (b+ cx1)x2]

(
1− x∗∗2

x2

)
+ ρ− ρx

∗∗
3

x3
− wx3 + w

(
ψI0

1 + x1
− δ
)

(x1 − x∗∗1 ) + [a+ cx3 − (b+ cx1)x2]

(
1− x∗∗2

x2

)
− w

x3
(x∗∗3 − x3)2 ,

0

the expressions

(
ψI0

1 + x1
− δ
)

and [a − (b + cx1)x2 + cx3] are positive by definiti

system (1) and xi ≤ xi
∗∗ everywhere in D. We used the Lyapunov stability theore

that V̇ < 0 for all (I∗, GL
∗∗, H∗∗) > 0 ∈ D and the strict equality V̇ = 0 holds onl
7
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I = I∗∗, GL = GL

∗∗ and H = H∗∗. The equilibrium state P1 is the only positively invariant147
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m in [43], the managed diabetes state P1 is globally asymptotically stable.

uilibrium state is also shown to be globally stable when T0 > 1. This is a case w

ividual has well managed diabetes. This state is in line with biological findings

duals with well managed diabetes will have a balanced glucose homoeostasis system

Numerical simulations and results

er to illustrate some of the mathematical analysis, numerical simulations of model sy

e conducted using a code in R programming environment [44] and parameter valu

1. Figures 1 and 2 illustrate the time series plots based on simulating the model

nt initial conditions. Figure 1 shows the solution profiles for the concentration of I

for T0 < 1. Simulation results in Figure 1 show that solutions will converge to the

etic steady state (as in Lemma 1). The glucose levels are approximately 500 mg
dl

levels are at zero, a hyperglycemic state. Figure 2 shows the solution profiles fo

ntration of I, GL and H for T0 > 1 and this also confirms the non-diabetic steady

stable (as in Theorem 2). The glucose and insulin levels are within the normal r

o hyperglycemic state is occurring. Both results in Figures 1 and 2 agree with the bi

disease that Type 1 diabetes is a non-reversible stable state as illustrated by a for

ation in Figure 3.
8
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1: Simulations of model system (1) with different initial conditions for T0 = 0.049837

eter values used are as in Table 1 with I0 = j
2

and ψ = 2.143× 10−4 where j is the

which is varied in the range 1− 200. Note that the y-axis scale for the figures is diff

er to make figures clearer.
9
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2: Simulations of model system (1) with different initial conditions for T0 = 4.983721

eter values used are as in Table 1 with I0 = j
2 and ψ = 2.143× 10−2 where j is the step

is varied in the range 1− 200. Note that the y-axis scale for the figures is different in ord

figures clearer.
10
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3: Bifurcation diagram showing a forward transcritical bifurcation occurring. The bold

presents a Type 1 diabetic, the dashed blue line represents a unstable diabetic equilibrium

d represents a stable non-diabetic equilibrium.

olution for I∗ = 0 is given by the bold blue/dashed line and a Type 1 diabetic.

solution for I∗∗ = T0 − 1 is given by the red line and is a non-diabetic state.

Sensitivity analysis and results

s section, various sensitivity analysis (SA) methods were used to assess the relative im

of the input parameters when varied over wide ranges (as given in Table 1) to the m

ts (I, GL, H) which are derived by solving model system (1). Here we mainly focus o

GL and I which are the most important components in the glucose homeostasis sy

managing diabetes. We will begin by conducting SA using the partial rank correl

ient (PRCC) and then proceed to use probabilistic SA methods. The partial rank

n coefficient, as one of the widely used global SA approaches will be briefly introd

tion 4.1. The PRCC values for each input parameter and their corresponding p-v

mputed in Matlab Statistics and Machine Learning toolbox (R2019b) [45]. We intro

l probabilistic SA methods, including main and interaction effects and Sobol′ meth

n 4.2, including the Gaussian process. We also develop a computational algorithm

aussian process emulator to efficiently evaluate these SA measures. The SA mea

sed for the Sobol′ method are computed using tgp package in R [46].

Partial Rank Correlation Coefficient

and their corresponding p-values are used to evaluate parameter importance on

outputs. The method is combined with Latin hypercube sampling and explore
11
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entire parameter space [30]. The PRCC values illustrate the correlation between the model185

outputs (I, GL, H) and the input parameters. PRCC will give the singular effect of each input186
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eter on the model output of interest. The corresponding p-values highlight the lev

tainty of each input parameter on the model output. The input parameters with l

values are those which have more impact on the model output, and the ones with

insignificant values could be removed from the model as they are regarded of bein

tant (see [30, 47] for similar analysis). The input parameters with p < 0.05 are rega

e significant impact on the model output. Scatter plots were also generated to vis

ate the relationship between input parameters and model outputs at time t = 210

Scatter plots showing sensitivity analysis results of input parameters (a, b, c, δ, I0, ψ,

t I are in Supplementary Figures S1 and S2. The PRCC results for the entire

and corresponding p-values for all the parameters against I are shown in Table 2

ated in Figure 4 (a). The results suggest that the parameters that are most influe

ere δ, I0 and ψ. In exploring most influential parameters on I, we calculate the P

-values at different time points. Initial time point (t = 5 minutes), is called the “fas

n an individual and usually observed in the morning. However, it can also repres

post food as the system should reach homeostasis within 3-4 hours. The second

of interest is immediately after food, when glucose is high due to the ingested s

cose entering the blood stream. This is at t = 10 minutes, where we assume the

en within 5-10 minutes after waking up. The third time is t = 60 minutes, an

andrial. This is when glucose level should be reducing towards homeostasis. Time p

and 180 minutes, corresponds to 2 and 2.30 hours postpandrial meaning if an indiv

ot diabetic or had good management of their diabetes the glucose, insulin and gr

ne level should be nearly at homeostasis levels. Finally t = 210 minutes when gl

hould be normal. The remaining PRCC tables for each time point are in Suppleme

S1-S31. Results demonstrate that, regardless of time point, the parameters whic

cant remain significant. Parameters identified as influential are parameters that ma

ype 1 diabetes threshold quantity.

r plots showing sensitivity analysis results of input parameters (a, b, c, δ, I0, ψ, ρ, w) ag

e in Supplementary Figures S3 and S4. The PRCC results and corresponding p-v

the parameters against GL are shown in Table 3 and illustrated in Figure 4 (b).

s suggest that the parameters that are most influential on GL were δ, ψ, I0, ρ, w. Pa

δ and ρ have positive PRCC values suggesting that these parameters have positive

cose concentration thus are important in maintaining glucose homeostasis. These re

how the importance of growth hormone in the glucose homeostasis system as param

shown to influence GL. Model parameters which have shown to be significant remai

t at different time points and after t > 90 minutes, two extra parameters are highlig

nificant and these are ρ and w. The remaining PRCC tables are shown in Suppleme

S32-S61.

catter plots showing sensitivity analysis results against H are shown in the Suppleme
12
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Figures S3 and S4. The PRCC results and corresponding p-values for all the parameters against227

H are shown in Supplementary Tables S62-S91 and illustrated in Supplementary Figures S5228

and S d w.229
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6. The results show that the parameters that are most influential against H are ρ an

arameter p-values PRCC

p < 0.0001 0.7758

p < 0.0001 0.8550

p < 0.0001 -0.8009

p = 0.3003 0.0629

p = 0.4578 0.0422

p = 0.5555 -0.0654

p = 0.8186 -0.0634

p = 0.8397 0.0278

2: PRCC sensitivity analysis of param-

ranked in terms of importance to the

variable I for entire time period.

Parameter p-values PRCC

ψ p < 0.0001 -0.8307

I0 p < 0.0001 -0.8795

δ p < 0.0001 0.8816

ρ p < 0.0001 0.4534

w p < 0.0001 -0.3081

c p = 0.0104 -0.0238

b p = 0.9627 0.2222

a p = 0.9856 0.2869

Table 3: PRCC sensitivity analysis of param-

eters ranked in terms of importance to the

model variable GL for entire time period.

(b)

4: Plot (a) shows a tornado plot of the parameters with their PRCC values showing the

t parameters on I and (b) is a tornado plot of the parameters with their PRCC values sh

ect of input parameters on GL.

Probabilistic sensitivity analysis

ition to the PRCC method, we employ the variance-based SA methods as more effi

SA methods to evaluate the relative importance of input parameters when they a

extensively. This would allow us to take into account inputs uncertainty as they

wide range. One of the motivations to use these efficient probabilistic SA metho

he system is complex in regard to the relationships between the inputs and output

ghly non-linear. In addition, PRCC as the common regression analysis-based globa
13
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method, assumes that there must be a monotonic relationship between the output and each237

input parameter of interest, which is often violated by the underlying input-output relation-238
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xhibited by the system of interest in this paper [48, 49]. Furthermore, the PRCC-b

ach is not capable to evaluate the uncertainty levels of each input parameter affectin

outputs. Finally, the variance-based SA methods are able to allocate the variance o

t and quantify the effect of high-order interactions between input parameters, but P

d is not able to evaluate the impact of the interactions between inputs.

robabilistic global SA methods of interest in this study is based on the analysis of var

model response variable [31]. The approach can capture the fraction of the mod

e variable variance explained by model input on its own or by a group of model input

on, it can also provide the total contribution to the output variance of a given inpu

rginal and cooperative contribution). The main challenge of this approach, for the c

under study, is in computing the Sobol′ indices, and other variance-based SA meas

ing main effects, the variance contributions of each input parameter to the model ou

rresponding uncertainty levels. There are different computational techniques to per
′ method SA [31,50,51]. This study reports the final results of sensitivity indices comp

the emulator-based method [52,53], which will be briefly discussed in Section 4.2.2.

rform the variance-based SA methods, we will examine how a function f(x) dep

input variables. For the case of this study, f(.) will typically be the function that

I, GL and H as a function of a vector of biological input parameters illustrated in Ta

tant notations that will appear in the next sections are introduced in the following

e a d-dimensional random vector as X = (X1, . . . , Xd), where Xi is the i th element

bvector (Xi, Xj) is shown by Xi,j. In general, if p is a set of indices, then Xp can be

r the subvector of X whose elements have those indices. X−i is defined as the subv

containing all elements except Xi. Similarly, x = (x1, . . . , xd) denotes the correspon

ed random vector X. Here, X is considered as an input vector consists of all biolo

parameters discussed in Table 1. The output, denoted by Y , represents either I, G

iables.

Variance-based sensitivity analysis methods

s section we briefly introduce the variance-based SA methods of interest. These met

lly measure the sensitivity of model output, Y (i.e., I, GL or H), to the variation

dual input Xi. In other words, they measure the sensitivity of model output, whe

inputs are varied over a wide range, in terms of reduction in the variance of Y .

art by introducing the main and interaction effects. Follow Sobol′ [31], it can be s

ny quadratically integrable function f(·) can be decomposed in terms of its main e

teractions as follows:

y = f(x) = z0 + Σd
i=1zi(xi) + Σi<jzi,j(xi,j) + . . .+ z1,2,...,d(x)
14
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where f(.) is a function of uncertain quantities x, and its expected value is denoted by z0 =

E[f(X)]. The function zi(xi) presented in equation(5) is so-called the main effect of the ith

variab erms

of min
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le, xi. The main effect, zi(xi) is the function of xi that best approximates f(.) in t

imizing the variance (calculated over the other variables) [55,56]. It is defined as:

zi(xi) = E[f(X) | xi]− E[f(X)]

rst order interaction between xi and xj, which is denoted by zi,j(xi,j) in equation

given in equation (7).

zi,j(xi,j) = E[f(X) | xi,j]− zi(xi)− zj(xj)− E[f(X)].

rly the second order interaction between xi and xj is denoted by zi,j,k(xi,j,k), and s

etails of higher order interactions given in equation (5) can be found in [52,53].

ain effects, the first-order interaction and their plots can be considered as a pow

tool to investigate how the model output responds to each individual input, and

inputs interact in their influence on the model output. The variance of main effec

erpreted as the amount by which the overall variance of f(.) would be reduced if we

useful SA measure which is given in equation (8), can be considered as the exp

nt by which the uncertainty in Y will be reduced if we learn the true value of Xi.

Vi = var{E(Y | Xi)}.

uld be also noted that Vi given in equation (8) can be written as Vi = var(zi(Xi)) w

nction of the main effect of Xi.

econd measure, proposed in [54], can be written as:

VTi = var(Y )− var{E(Y | X−i)}

is the remaining uncertainty in Y that is unexplained after everything has been l

t Xi.

two measures, given in equations (8) and (9), can be converted into scale inva

res by dividing by var(Y ) as follows:

Si =
Vi

var(Y )
, STi =

VTi
var(Y )

= 1− S−i

Si can be considered as the main effect index of Xi, and STi is the total effect ind

Emulators-based sensitivity analysis

mpute the variance-based methods in previous sections, we use an emulator to re

tation costs. The reason we do this is that the function f(x) (the Type 1 dia
15
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model) is a complex case as the outputs must be computed by solving the nonlinear model277

hence computation is costly if done without an emulator.278
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) is not complex (computationally cheap), the standard Monte Carlo (MC) met

be sufficient to estimate var(Y ) and other SA measures described in Section 4.2.

tation techniques proposed in [31, 50] require many function evaluations meaning

t suitable with complex, costly functions. We use a further developed methodology b

e Bayesian paradigm that was proposed in [52, 55, 57] in order to overcome the co

al complexity. By using Bayesian method we are able to estimate all the quantit

st required to examine the SA in modelling diabetes.

nctional relationship, f(.), is unknown for any particular input configuration x unt

is run for those inputs, therefore we specify a prior distribution for the values take

t different values of x within the Bayesian setting. This prior is then updated accordi

ual Bayesian paradigm, using the generated data, D = {(xi, yi) : yi = f(xi), i = 1, . .

set of runs of the model. The result will be then a posterior distribution for f(.), w

d to make formal Bayesian inferences about the SA measures. Although we are sti

n about the function f(·) at parameter values where it was not evaluated, the uncert

e further reduced by taking into account the correlation of function values from one

ther. The expected value of the posterior distribution is used as a point estimat

There are two different distributions being used in the SA computation. The first i

ution of input parameters which represents the uncertainty in the model paramete

hich is propagated to the output values through the function f(·). The second i

ior distribution on f(·) which plays a pure computational role, and can be reduc

as required by computing the function f(·) by increasing the training points x, and

ve any operational interpretation.

Gaussian process emulators

ian processes are a class of supervised machine learning algorithms, that describe a

relation as a multivariate Gaussian distribution and can thus be used for non-l

sion and classification problems. The key requirement to use the Gaussian proc

(·) should be a smooth function, so if we know the value of f(x) we should then

idea about the value of f(x′) for x close to x′. The advantages of the Gaussian pr

ing a smooth, continuous function is that it is computationally much quicker and ch

sing the standard MC methods. This approach usually ignores the expected prox

function values evaluated at close by points.

ean of f(x) conditional on the hyper-parameters β, is modelled as

E[f(x)|β] = h(x)Tβ

h(·) is a vector of q known functions of x, and β is a vector of coefficients. The cho

arbitrary, but it should be chosen to incorporate any beliefs that we might have a
16
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the form of f(·). The covariance between f(x) and f(x′) is given by,

′ 2 2 ′ (12)
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cov(f(x), f(x )|σ ) = σ c(x,x )

c(·, ·) is a monotone correlation function on R+ with c(x,x) = 1, and decreases as |x
ses. Furthermore, the function c(·, ·) must ensure that the covariance matrix of an

puts {y1 = f(x1), . . . , yn = f(xn)} is positive semi-definite. Throughout this pape

e following correlation function which satisfies all the conditions mentioned above a

used for its computational convenience,

c(x,x′) = exp{−(x− x′)TB(x− x′)},

B is a diagonal matrix of positive smoothness parameters, {(
√

2bi)
−2}di=1, and d i

sion of x. The matrix B has the effect of re-scaling the distance between x and x an

B determines how close two inputs x and x′ need to be such that the correlation bet

and f(x′) takes a particular value. Oakley and O’Hagan [52] suggest, for fixed h

eters z, V, a and d, the following conjugate prior, the normal inverse gamma distribu

, σ2)

p(β, σ2) ∝ (σ2)−
1
2
(d+q+2) exp{−{(β − z)TV −1(β − z) + a}/(2σ2)}

utput of f(·) is observed at n design points x1, . . . ,xn to obtain y = {f(x1), . . . , f

ered as data. It should be noticed that these points, in contrast with MC method

osen randomly but are selected to give good information about f(.). The design p

ually be spread to cover X , the input space of X. Since X is unknown, the beliefs abo

resented by the probability distribution G(X). Therefore, the choice of the design p

lso depend on G(.) (the choice of design points is discussed in [60]). The standar

ior distribution of f(·) given y = {f(x1), . . . , f(xn)} is

f(x)−m∗(x)

σ̂
√
c∗(x,x′)

| y ∼ td+n

td+n is a student t random variable with n+ d degrees of freedom and d is the dime

he posterior mean is given by,

m∗(x) = h(x)T β̂ + t(x)TA−1(y−Hβ̂),

dated correlation function described in equation (13) given the observed data ca

n as,

c∗(x,x′) = c(x,x′)− t(x)TA−1t(x′) + (h(x)T

− t(x)TA−1H)(HTA−1H)−1(h(x′)T − t(x′)TA−1H)T

t(x)T = (c(x,x1), . . . , c(x,xn)),

HT = (hT (x1)
T , . . . ,hT (xn)T ),
17
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A =  ...
. . .

c(xn,x1) . . . 1



β = V ∗(V −1z +HTA−1y),

σ̂2 =
{a+ zTV −1z + yTA−1y− β̂

T
(V ∗)−1β̂}

(n+ d− 2)

V ∗ = (V −1 +HTA−1H)−1.

utputs corresponding to any set of inputs will now have a multivariate t-distribu

ovariance between any two outputs given by equation (14). Note that the t-distrib

as a marginal distribution for f(.) after integrating out the hyper-parameters β an

ctice, further hyper-parameters, the smoothness parameters B, will be associated

odelling of the correlation function, c(·, ·). It is not practical to give B a fully analy

ian treatment, as it is nearly always impossible to integrate the posterior distrib

ically with respect to these further parameters. We can keep B fixed as the sim

. An alternative approach is to use a numerical method to integrate the posterio

ion. It is possible to integrate numerically, in particular, by using Markov chain M

(MCMC) sampling however it is a highly intensive computational task. We can esti

per-parameters of c(·, ·) from the posterior distribution and then to substitute the

es into c(·, ·) wherever they appear in the above formulae, this is a more robust app

sed in [52]. These estimates can be obtained by using the posterior mode in combin

cross validation approach [58]. The GEM-SA [59] is capable of estimating the smoot

eters using both methods.

Sobol′ method results

er to compute the emulator-based SA measures, we first evaluated the outputs of m

(1) for 100 data points selected over a range of input parameters in Table 1 usin

hypercube sampling [53] which is a space filling design originally proposed in [60]

ompute first and total order variance-based sensitivity indices using the Gaussian pr

tor at significant time points. Parameters with sensitivity greater than 0.05 were co

o be significant [61]. The Sobol′ indices are analysed for the insulin bolus injection

investigate if model influential parameters are affected by the amount of insulin inje

uld be noted that the insulin bolus injection (I0) is a dosage level such as I0 = 5 an

eter, thus should not be confused with the output variable insulin concentration (I

5 and Table 4 illustrates the first order variance-based sensitivity indices for in

level of I0 = 5 for insulin concentration (I). Results were produced for different in

levels of I0 = 10, 15, 20, 25, 30 and are presented in Supplementary Tables S93-S97.

sensitivity indices for I at insulin bolus levels (I0 = 5, 10, 15, 20, 25, 30) are in Supple

ables S109-S114. The figure shows that, parameters δ and ψ are critical in influenci
18
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Parameter δ is the most influential with a total order index of 0.9127 (at t = 60 minutes) and335

this is followed by parameter ψ, other model parameters are not significant in determining I.336
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ionally, parameter δ has an extremely high total order index in comparison with its

implying there is lots of interaction with other parameters suggesting the signific

ng global methods or SA methods that evaluate parameter relationships between

The first order and total order indices did show some change at different time p

heless the parameters which are influential remained significant. Results also sh

egardless of bolus amount injected, δ remains significant and its significance incr

ime points. Explanation for this increase of clearance term δ is due to the fact tha

sed insulin bolus I0 injected requires higher clearance to maintain the glucose level

stasis is reached. Conversely, ψ and I0 indices, although remain significant, they re

ime when t > 60 minutes. This can be explained by the fact I0 is highest when

ed and gradually decreases as it is used up and the absorption term ψ is therefor

cant due to clearance of insulin.

6 and Table 5 illustrate the first order variance-based sensitivity indices at insulin

0 = 5 for GL. The remaining values of I0 within the range given in Table 1, on

variance-based sensitivity indices for GL are in Supplementary Tables S98-S102).

sensitivity indices for GL are presented in Supplementary Tables S115-S120. Sensi

is results show that parameters δ (with total order index of 0.3126 at t = 60 minu

ψ are the most influential parameters on GL. The total order and first order indic

parameters are similar, suggesting that these parameters have no interaction with

eters. Sensitivity analysis results based on Sobol′ method for H are shown in Supple

igures S6 and S5, Tables S103-S108, S121-S126. Results also show the change in var

h parameter on the variable over the different time points converges. Parameters w

he most influence at a certain time have shown to have the most effect. Results o
′ method for different insulin bolus injection terms I0, showed that significant param

ned significant throughout variations in values for the insulin injection term. The in

ed glucose uptake rate (c) is not substantially affected by changes in the insulin bolus

rameter c clears the insulin therefore as bolus levels increase the parameter perform

t an increased rate (i.e. up-taking the glucose). At 10 minutes the absorption term

cance is increased as this is when the bolus is injected. The significance of param

eases over time. However, after 180 minutes, δ importance begins to decrease and

ed to the need to clear insulin once blood glucose level is maintained. The proc

y achieved in 2 hours and consequently insulin clearance is reduced as homeosta

ained [40,41].

esults showed that all the parameters for H have first order indices close to zero (<

xception of ρ and w. Using both PRCC and Sobol′ method sensitivity analysis was

cted at different times and similar conclusions were reached.
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(b)

5: Plot (a) shows first order and total effects sensitivity indices of the model paramete

, I0, δ, ρ and w) on insulin for model system (1) using Sobol′ method at time t = 210. Pl

rly shows first order and total effects sensitivity indices of the model parameters (a, b, ψ,

d w) on insulin for model system (1) using Sobol′ method at time t = 60.

(b)

6: Plot (a) shows first order and total effects sensitivity indices of the model paramete

, I0, δ, ρ and w) on glucose for model system (1) using Sobol′ method at time t = 210. Pl

rly shows first order and total effects sensitivity indices of the model parameters (a, b, ψ,

d w) on glucose for model system (1) using Sobol′ method at time t = 60.
20
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Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

Table with

I0 = 5

Table with

I0 = 5

4.4375
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in thi more377
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a 0.0040 0.0003 0.0017 0.0012 1.92× 10−5 0.0051

b 0.0051 0 0.0003 0.0050 0.003 0.0351

ψ 0.2335 0.1485 0.0938 0.0299 0.0196 0.0034

c 5.21× 10−5 0 0.0002 0.0007 0.0004 0.0036

I0 0.2312 0.1619 0.0574 0.0028 0.0132 0.0278

δ 0.3431 0.4957 0.6084 0.2149 0.7357 0.0352

ρ 0 0 0.0006 0.0038 0.0216 0.0359

w 0.0097 0 0.0002 0.1024 0 0.0241

4: First order Sobol′ indices of each model parameter for I at significant time periods

.

Time(in minutes)

Parameter t = 5 t = 10 t = 60 t = 90 t = 180 t = 210

a 0.0951 0.0498 0.0610 0.0599 0.0803 0.0246

b 0.0073 0.0346 0.1043 0.0386 0.0457 0.0049

ψ 0.0389 0.1470 0.1140 0.1328 0.1531 0.0296

c 0.2080 0.3535 0.1863 0.3190 0.1706 0.0429

I0 0.0990 0.1027 0.0557 0.0699 0.1120 0.1383

δ 0.0676 0.1337 0.1140 0.1807 0.2157 0.0162

ρ 0.0045 0 0.0020 0.0007 0 0.0009

w 0.0150 0.0008 0.0105 0.0036 0 0.0102

5: First order Sobol′ indices of each model parameter for GL at significant time periods

.

Comparison with PRCC results

mpare the results obtained from PRCC method with the variance-based methods

s study. We note that the PRCC highlighted more influential parameters (i.e.

eters are shown to affect the model outputs; insulin, glucose and growth hormone). S

d identified a smaller set of influential parameters than the PRCC method, as not

studies [49, 67]. The explanation for this could be that the PRCC assumes a mono

and output relationship, unlike the Sobol′ method. However, the Sobol′ method is

ntify the effect of the high-order interactions between input parameters, thus prov

h further insight on understanding the model system [49]. The results from the S

d showed consistently the parameters that are influential against I and GL were δ a

parameters were also identified as influential by the PRCC method. The PRCC me

fied I0 as significant constantly, however Sobol′ method only highlighted its signific

time point. However, the Sobol′ method identified the high interaction of δ with
21
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parameters, something PRCC method was unable to show. Both methods concurred completely388

on the influential parameters against H and the parameters identified were ρ and w.389
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Discussion

matical models of Type 1 diabetes [8, 12–20] have been developed to understand

e and develop more effective treatment methods in order to provide better lifestyle

es patients. Current treatment methods are invasive, inconvenient and require con

oring. Presently, the treatment methods include daily self injections, constant reco

od glucose levels, carbohydrate counting and even transplant of islets [11]. Severa

models [8, 10, 12–20] have managed to describe molecular dynamics in a Type 1 dia

ad to the development of open-loop insulin pumps based on mathematical algorit

er, the current mathematical models of diabetes do not consider the condition with

concentration in the blood as expected in a Type 1 diabetic [12, 62]. In light o

tion, we developed a new mathematical model to fully capture Type 1 diabetes dyna

esults of the mathematical analysis showed that the model has two stable steady st

odel threshold quantity T0 was derived and it was shown that the pathological equilib

cally asymptotically stable for values of T0 < 1. The importance of the model thre

n determining key parameters governing the dynamics of Type 1 glucose homeostasi

urther, pathological equilibrium was shown to be globally stable. The managed dia

rium was shown to be globally stable for values of T0 > 1. Numerical analysis o

showed a transcritical bifurcation (Figure 3), confirming results illustrated by the

plots (Figures 1 and 2).

ivity analysis was conducted to systematically evaluate key parameters influencin

at different time points using PRCC and Sobol′ methods. PRCC method identifie

arameters which appeared in the Type 1 diabetes threshold quantity as important.

eters which were significant remained so for different time points. However, for gl

ntration, at t = 90 minutes two additional parameters, growth hormone clearance

rowth hormone production rate, were identified as significant. The growth hormone

uencing glucose concentration is most important at 2 hours postprandial. The PRCC
′ methods concurred in many scenarios but showed some differences. Both methods

the importance of insulin clearance rate (δ) and insulin absorption rate (ψ) as influe

eters in determining insulin concentration (see Figures 4(b), Supplementary Figure

able 2, Supplementary Tables S1-S31 for PRCC, Figure 5 and Table 4, Suppleme

S93-S97, S109-S114 for Sobol′ indices). However, for the Sobol′ method the in

term (I0) was only shown to be significant at t = 60 minutes, unlike in the PRCC me

it was shown to be significant throughout all time points. Furthermore, the diffe

total order and first order indices for δ against insulin concentration was large, imp

here was interaction with other parameters. Global sensitivity analysis methods w

us to explore relationships between parameters are important in understanding the ov
22
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influence of each parameter in a model. PRCC method also showed that the most influential428

parameters on blood glucose concentration are insulin clearance (δ) and insulin absorption rates429

(ψ) (s 61 ).430
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ee Figures 4(b), Supplementary Figures S3, S4, Table 3, Supplementary Tables S32-S
′ method also confirmed these findings and highlighting that, the parameters have

ctions with other parameters (Figure 6 and Table 5, Supplementary Tables S98-S

S120).

esults showed that, PRCC method managed to identify all key parameters in gl

sulin concentration dynamics. However, Sobol′ method managed to provide ins

rameter interaction, thus demonstrating the importance of using other global SA m

long with the PRCC method. One advantage of using variance based methods su
′ method is that they are computationally more efficient and suitable for complex

t is clear that classical mathematical analysis alone is not sufficient in understan

dynamics and parameter interactions, thus SA methods should be used to fill this

ivity analysis insights on important model parameters varied by method [63–65]. O

s [63, 66] have proposed selection of SA methods to be used based on model compl

teristics and research question.

gs from this study have some similarities and differences from those in [22]. Both

though different, highlighted the significance of using both PRCC and Sobol′ metho

methods can offer different but important model insights. For example, in this stu

r that the PRCC method identified more influential parameters including all param

threshold, T0. However, Sobol′ method provided insights on interaction between m

eters. In [22], both methods managed to identify the importance of all the paramet

odel threshold quantity, but similarly revealed that Sobol′ method provides more ins

rameter interaction.

esults of this study are important in informing the building of suitable mathema

thms to use in an artificial pancreas. This model provides a potential open-loop

framework which captures a zero-insulin state, a condition which occurs frequent

duals with Type 1 diabetes and has so far not been considered in previous models

ial pancreas is vital to ease the life of Type 1 diabetic individuals by offering better t

to those suffering with the disease. However, the building of suitable artificial pancr

es accurate and efficient mathematical algorithms.

tudy has several limitations, the model is parameterised using estimates in [68] and

ed parameters and only considers sensitivity analysis using PRCC and Sobol′ met

heless, it would be interesting to explore how these results vary when the model i

d using experimental data and if other global sensitivity analysis approaches are

so assumed that, insulin injection is inversely proportional to insulin concentration i

following [12], however it would be interesting to confirm the validity of the assum

robust data-driven modeling approaches. Experimental data on the relationship bet
23
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insulin injection and insulin in the blood would be key in informing the building accurate and470

efficient diabetes models. Additionally, the model is based on short term injection, whereas471

it wou ould472

affect elop-473

ing CO p an474

in-viv mita-475

tions, rtant476

frame tical477

and se478

Ack479
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ld be interesting to explore if having a long-term insulin injection term instead w

the results. In light of the current COVID-19 pandemic and increased risk of dev

VID-19 complications among diabetic individuals, it would be interesting to develo

o model to understand COVID-19 infection and diabetes dynamics. Despite these li

this study presents a new way of modelling Type 1 diabetes and provides an impo

work for understanding nonlinear model parameters using a combination of mathema

nsitivity analysis approaches.
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[66] Brevault L., Balesdent M., BÈrend N. and Le Riche R. Comparison of different global658

sensitivity analysis methods for aerospace vehicle optimal design. In: 10th World Congress659

o660

[67] M ming661

g logy,662

2663

[68] T -cell664

m logy,665

2666
Jo
ur

na
l P

re
-p

ro
of

n Structural and Multidisciplinary Optimization, WCSMO-10, (May 2013).

arino, S., Hogue, I.B., Ray, C.J. and Kirschner, D.E. A methodology for perfor

lobal uncertainty and sensitivity analysis in systems biology. Journal of theoretical bio

54(1), 178-196, (2008).

opp B., Promislow K., Devries G., Miura R.M. and Finegood T.D. A model of β

ass, insulin, and glucose kinetics: pathways to diabetes, Journal of Theoretical Bio

06(4), 605-619, (2000).
30


	A Open Access Coversheet (1) (1) (1)
	1-s2.0-S0378475422001963-main (1)

