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Abstract 

Traditional approaches to three-dimensional (3-D) visible light positioning (VLP) suf-
fers significantly in the presence of multipath propagation. This thesis overcomes such 
challenges by adopting a novel spatial and angular diversity receivers and combining 
them with various machine learning (ML) algorithms for indoor, dark, passive and 
outdoor VLP. This thesis uses light emitting diode (LED)s as transmitters and pho-
todiode (PD)s as receivers. To ensure that realistic channel models are used, the VLP 
model includes line-of-sight (LOS), non-LOS (NLOS) for all indoor applications. Only 
LOS path is considered in the outdoor as the effect of NLOS from the road is ignored. 
However, the outdoor applications consider the impact of weather condition. A range 
of ML approaches were considered, however, it is found that multi-layer perceptron 
(MLP) network offers the best performance and the lowest complexity for VLP appli-
cations. Using Levenberg Marquardt, the MLP hyper-parameters are tuned for each 
application to ensure good performance and generalisability. 

The results for each indoor application demonstrates the benefit of combining ML 
technique with received signal strength (RSS) based VLP. The ML technique offers 
good 3-D indoor VLP that is further improved using spatial receiver diversity, resulting 
in a positioning error of 0.021 m in a 5 m3 room. The application to dark VLP, which 
uses a very low duty cycle pulse width modulation (PWM), resulted in a slightly higher 
positioning error of 0.06 m, which is still a 52% positioning accuracy improvement 
compared to state-of-the-art dark VLP techniques. The more challenging passive VLP 
led to an RMS error of 0.23 m for a solution involving 9 transmitters and 21 receivers 
placed on the ceiling and walls in a 5 m ×5 m ×3 m room dimension. 

MLs are demonstrated for outdoor vehicular applications with traffic lights and 
streetlights. The two-dimensional VLP using angular and spatial receiver diversity is 
able to overcome the streetlight collinearity condition resulting in 0.22 m RMS error in 
the presence of direct sunlight, 0.29 m for dense fog and 0.14 m at night. Traffic light 
VLP with two receivers facing the direction of travel led to positioning errors of 1.33 m 
and 0.21 m using a single and double traffic light on the road, respectively. This rep-
resented a 77% and 47% improvement with the state-of-the-art traffic light-based VLP 
technique. These results highlight the degrading effect of NLOS and weather conditions 
in VLP and how ML techniques, together with spatial and angular receiver diversity 
scheme can be used to offer improved accuracy for outdoor and indoor applications. 
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Chapter 1 

Introduction 

1.1 Overall scenario 

In recent years, there has been an increase in demand for location-based services (LBSs) 
for underground parking, autonomous vehicle control, shopping centres, health appli-
cations and several more [1–4]. LBSs is a vital aspect of mobile experience and opens 
a broader platform for navigation and travel, geo-social networking, real estate and re-
tail searches, mobile marketing and advertising. Whether used for finding the nearest 
restaurant, neighbourhood advertisement or locating friends, LBSs provides end-users 
with up-to-date information about their surroundings and enables businesses to offer 
updates to potential customers. The first couple of stages in the evolution of LBSs is to 
enhance location applications (e.g. location of shops) and location-based (navigation) 
applications where the actual geographical position is provided. The development of 
hybrid technology between the intrinsic location and location information services im-
proved reliability, accuracy and the number of services that can be delivered. This 
has in turn, caused a significant amount of deployment in mission-specific applications 
such as vehicle navigation. 

Global positioning system (GPS) is a mature technology that provides accurate 
positioning in most outdoor locations. However, due to multipath propagation and 
signal path-loss, the performance of GPS degrades in areas such as tunnel, multi-
storey car parks, indoor environments and locations within GPS dead zone areas [5]. 
This happens when the beams from a single transmitter hit a surface, and the sig-
nal either deflects, diffracts or terminates [6]. The current market on LBSs focuses 
on indoor applications by using a fusion of geomagnetic field, beacons and wireless 
sensors to complement GPS. The resulting indoor positioning system (IPS) from these 
applications are based on radio frequency identification (RFID) [7,8], Bluetooth [9,10], 
Wi-Fi [11, 12] and ultra-wide band (UWB) [13, 14]. The methods for radio-frequency 
(RF) based positioning algorithms can be categorised into two, namely: range free and 
range-based methods. RFID positioning techniques exploit the range free category, 
which utilises the targets proximity rather than the geometric relationship for posi-
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tioning. The targets position is determined with the received signal, thus revealing the 
vicinity of the transmitter. In a room with several transmitters, the target chooses the 
strongest signal, and pinpointing its relative location. Range free methods can only 
provide an approximate location. In a range-based approach, the positioning process 
is divided into three phases. a) one or multiple of the received signal strength (RSS), 
time of arrival (TOA) or phase of arrival (POA) information are obtained. These are 
methods of measuring signals from the transmitter, which are detailed in the following 
Chapter 2. b) determine the distance between the transmitter and the receiver based 
on the signal measured in step one. c) a trilateration or similar algorithm is used to 
determine the receiver’s position based on values calculated in step two. Bluetooth and 
Wi-Fi-based positioning methods use this process with positioning accuracy ranging 
from decimetres to metres. Walls and furniture situated in an indoor environment 
add uncertainties to the channel model for the RF-based positioning, which deteri-
orates the positioning accuracy [15]. To reduce the effect of multipath propagation 
in RF-based positioning, correction algorithms or pre-calibration can be done, which 
can be computationally complex and labour intensive. UWB is reported to have good 
positioning accuracy (in centimetre range) by estimating the time of flight (TOF) of 
narrow pulses, which are less vulnerable to multipath propagation [13]; this utilizes 
bandwidths larger than 500 MHz which makes it easier to be measured precisely. This 
is because higher bandwidths result in higher data rates, thus resulting in more precise 
calculation. With UWB, the signal is transmitted with low power, preventing interfer-
ence with other systems using the radio spectrum such as cell phones and police radios. 
This is only achievable at a higher cost of implementation [16]. 

Traditional fluorescent and incandescent lighting are beginning to be replaced by 
solid-state lighting (SSL) LEDs and laser Diode (LD). This has led to the extensive 
development of a new communication technique, namely Visible Light Communication 
(VLC), which uses modulated light to transmit information. VLC is a promising 
communication technique with the capability of attaining multi-Gbits/s data rates [17]. 
Its promising nature has led to the development of a new research topic, VLP. 

VLP is a positioning technique using visible light. VLP has numerous advantages 
over RF-based positioning systems [18] such as a) the effect of multipath propagation 
in VLP is less than that in RF-based positioning [19], b) locations including hospitals 
and airports with RF restricted areas can successfully deploy VLP, c) VLP systems can 
leverage the existing lighting infrastructure; hence, its deployment should be low cost 
and ubiquitous, d) VLP can be deployed to work with VLC seamlessly, thus providing 
positioning and communication services simultaneously [16]. However, existing VLP 
techniques show that there is a need for distributed transmitters, which can be difficult 
in heterogeneous environments, e.g. intelligent transport system (ITS), which has linear 
array of light sources. With the advantages mentioned above, the following section list 
the motivations of this work. 
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1.2 Research Motivation 

In the field of VLP, researchers have explored different system designs and algorithms. 
Although there are several reported solutions in the literature, which address the chal-
lenges that arise in VLP, some current issues are still yet to be solved (mentioned below) 
to fully understand the VLP system and provide high accuracy for users. Hence, this 
thesis is motivated by the need to design the VLP solutions, thereby tackling the issues 
that have not been considered and critically evaluated in the literature. 

In a typical indoor environment, existing VLP techniques worsen in the presence 
of multipath propagation. This has been stated in the literature for two-dimensional 
(2-D) applications, but a majority of the existing studies in three-dimensional (3-D) 
VLP do not consider its effect. Therefore, this thesis investigates the multipath propa-
gation effect in 3-D environment and potential methods or algorithms to improve VLP 
accuracy. 

In a conventional VLP system, it is always assumed that the LEDs are turned on 
all the time. However, illumination is not always necessary, e.g. during the day when 
natural light illuminates the building or during out of office hours where the lights are 
turned off. Hence, it is of great importance to investigate the feasibility of a highly 
accurate VLP system when the lights appear ’OFF’ to the human eye. 

Contrary to active positioning systems, passive positioning offers unprecedented 
flexibility and can provide for new potential applications such as tracking without the 
need for users participating in the process. Existing simulation based studies fail to use 
an accurate channel model. Hence this thesis investigates the use of an appropriate 
technique to obtain the passive VLP channel and apply an appropriate positioning 
algorithm to track objects and evaluate its performance. 

For outdoor applications, ITS aim to provide innovative services to make safer, 
smarter, and more coordinated use of transport, which is also directly related to human 
and material safety. This focuses on using different technologies to reduce casualties 
and prevent loss of lives. VLP can complement or supplement GPS in specific areas 
such as underground parking, tunnels and GPS dead zone areas. The already existing 
lighting infrastructure and the European Union’s policy measures banning the sale of 
inefficient lighting technologies makes VLP relatively easy to deploy. Though these 
events provide ease in the deployment of VLP, challenges arise due to the lack of 
distributed transmitters for the purpose of positioning in an outdoor environment. 
Though streetlights are dynamically available, they are placed collinearly of each other, 
which makes it difficult to apply positioning methods. Since the traditional algorithms 
fail to provide positioning for a linear array of transmitters, and installing or modifying 
the existing streetlight design is not practical or cost-effective, there is a need to explore 
this research area and analyse its novel applications. 

Based on these motivations, aims and objectives are listed to narrow down the 
direction of the thesis. 
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1.3 Aims and Objectives 

This work explores the feasibility of VLP for ITS and indoor applications. 
The major challenge in deploying VLP for outdoor application is the lack of dis-

tributed transmitters (as streetlights are in a linear format) and the impact of weather 
conditions on the positioning accuracy as VLP can be prone to ambient noise. The 
challenge for indoor 3-D VLP is the avoidance of a realistic channel model, which leads 
to limitations in providing various studies in VLP, i.e. non line-of-sight (NLOS) is 
ignored. As a result, the following themes are explored in this thesis: 

• Design and critically evaluate a simplified/optimised machine learning (ML) al-
gorithm and structure for 3-D indoor VLP. 

• Evaluate the effect of the multipath channel on the 3-D VLP. 

• Design and critically evaluate a diversity scheme with ML-based VLP algorithms 
to provide accurate 3-D positioning with multipath signal prorogation. 

• Design and evaluate 3-D dark VLP in an indoor environment using ML and 
diversity receiver. 

• Design and evaluate 2-D passive VLP using ML with a realistic channel model. 

• Explore the use of streetlights and traffic light as transmitters and PD as a 
receiver for outdoor VLP. 

• Investigate spatial and angular receiver diversity scheme for streetlight-based 2-D 
outdoor VLP and investigate ML with diversity technique to provide accurate 
positioning using collinearity source. 

• Investigate the effect of different weather conditions in outdoor VLP. 

1.4 Original Contributions 

Figure 1.1 summarises the challenges, the existing and the proposed solutions for VLP 
for indoor and outdoor applications. 

The major contributions in the thesis are detailed below: 

• 3-D indoor position using receiver diversity with ANN: Proposed and 
studied receiver diversity with Artificial Neural Network (ANN) for highly accu-
rate indoor 2-D and 3-D VLP. The performance of the proposed solution is eval-
uated in line-of-sight (LOS) and NLOS propagation. This study demonstrates 
the improved positioning accuracy compared to existing solution. 
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Figure 1.1: The summary of the challenges, the existing and the proposed 
solutions for VLP in the indoor and outdoor environment. 

• RSS-based 3-D dark VLP: Proposed the use of low duty cycle pulse width 
modulation (PWM) to obtain an ’OFF’ state LED and used apparent ’OFF’ 
sources for indoor positioning. Demonstrated improved performance using ANN 
and its ability to establish positioning at a very low PWM duty cycle. 

• ML-based passive VLP: Proposed the use of ML technique for passive VLP. 
Critically evaluated the performance of the system using a realistic channel model 
under different object sizes and reflections. 

• Outdoor VLP using streetlight for vehicular application: Proposed and 
critically evaluated the ANN-based VLP accuracy using a linear array of trans-
mitters with spatial and angular diversity receiver. By considering a variety of 
different road dimensions, the study demonstrates improved accuracy and ro-
bustness of the proposed solution in the presence of different weather conditions. 
Studied and demonstrated ANN to be the most suitable ML algorithm for out-
door VLP. 
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1.5 Thesis Organisation 

This thesis is arranged into seven chapters which are structured as follows 

• Chapter 1 highlighted the background, research motivation and summary of the 
major contribution in this thesis. 

• Chapter 2 presents a comprehensive review on VLP, including channel model, 
transmitter and receiver system, VLP algorithms and applications. The review is 
then concluded by identifying the research gap in the literature and the rationale 
for selecting the approach adopted in the thesis. 

• Chapter 3 provides an overview of the mathematical model for the VLP channel 
(LOS and NLOS). Various positioning algorithms such as CMD, ANN, gated 
recurrent unit (GRU), recurrent neural network (RNN) and Long short-term 
memory (LSTM) are detailed. 

• Chapter 4 provides a review of related work that addressed NLOS channel fol-
lowed by a rationale to use ANN for 3-D VLP. Next, a description of the proposed 
multi-layer perceptron (MLP)-ANN for indoor VLP is shown. Thereafter, the 
ANN and VLP system architecture is optimised. The chapter provides detailed 
studies of 2-D and 3-D VLP using receiver diversity. Finally, a comparative 
study is given with respect to similar work in the literature. 

• Chapter 5 investigates the application of ML on passive VLP. Different transmitter-
receiver scenarios are investigated to see their impact on VLP. The chapter entails 
a study on the effect of object size and object reflectivity. This sets a theory that 
the VLP channel can be modelled based on ray-tracing software. 

• Chapter 6 proposes a new VLP technique for autonomous vehicle application us-
ing streetlights or traffic lights as transmitters and spacial and angular diversity 
receiver with ML. The chapter provides a brief review of the existing literature 
on outdoor VLP. Thereafter, proposed VLP with spatial and angular diversity 
receiver with ANN is described and system parameters are optimised for vehic-
ular application. Different ML algorithms performance is compared for outdoor 
VLP using a linear array of transmitters. Computer simulations are carried out 
to study the system’s performance under different road scenarios and weather 
conditions. 

• Chapter 7 concludes the thesis and discusses possible future direction. 
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Chapter 2 

Overview of Visible Light 
Positioning 

2.1 Introduction 

The exponential growth of electronic device technologies has led to different commu-
nication techniques being used and newer communication models being investigated 
for optimum efficiency. Various communication infrastructures and technologies in-
cluding radio wireless and optical wireless communication (OWC) based techniques 
have been investigated for a number of applications. This includes underwater, satel-
lite, free space and terrestrial environment to support the emerging sixth generation 
(6-G) of wireless communication and internet of things applications [20, 21]. OWC is 
the process of transmitting data in vacuum or air through optical (infrared, visible 
& ultraviolet) wavelengths. OWC has an array of advantages, such as an unlicensed 
and regulation-free large frequency spectrum [22]. VLC is a subset of OWC, that uses 
visible wavelength for communication. Graham Bell in 1880 demonstrated the first 
VLC system named Photophone to transmit voice signals over a 200 m distance us-
ing the sunlight. Visible light has been used for communication in different scenarios 
since ancient time such as marine lights for ships visibility and coded light signals [23]. 
However, it is only in the last few decades that significant research and development 
has been carried out in the field of VLC. The introduction of LED/LD, which has the 
capability of transmitting information/data at a high-speed of more than 32 Gb/s [24] 
has made this application more feasible. 

Over the years, there has been an increase in demand for LBSs for shopping centres, 
underground parking, autonomous robot control and health applications. GPS is one 
of the successful means of tracking objects in outdoor environments. However, GPS 
signals suffer significant attenuation, path loss and multipath fading in an indoor and 
some outdoor environment scenarios such as urban roads with high buildings and tun-
nels. This can result in large positioning errors [25]. Though the accuracy requirement 
for indoor and outdoor environments is different, in most machine control applications, 

8 
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the guidance of industrial machines, robots and vehicles require cm-level accuracy [26]. 
There are several RF-based indoor positioning techniques such as Wi-Fi, Bluetooth, 
RFID which find application in the indoor environment but exhibit limitations such as 
low accuracy in decimeter range [27] due to the multipath propagation and RF interfer-
ence of other sources. VLC and VLP on the other hand, are free from electromagnetic 
interference. The ubiquitous nature of illumination infrastructure has motivated the 
use of VLP. 

This chapter introduces indoor and outdoor VLP, various VLP technologies and key 
challenges. It is organised as follows. Section 2.2 provides a description of VLC/VLP 
transmitters and receivers, their respective link configuration and an overview of exist-
ing indoor and outdoor VLP. Section 2.3 describes the existing VLP algorithms based 
on RSS, angle of arrival (AOA), TOA, TDOA and their positioning methods. Section 
2.4 details the multiplexing techniques adopted by VLP. Section 2.5 provides detailed 
analysis in the justification of the methods and models adopted in this thesis to perform 
VLP for indoor and outdoor environments. 

2.2 Visible Light Communication/Positioning 

VLC uses visible light sources to transfer information to a targeted receiver. VLP, 
similar to VLC, has emerged due to the recent development of easily digitally modu-
lated LEDs. VLP is a competitive IPS that is capable of providing accurate 2-D and 
3-D positions to participating users. Light waves are confined by nature to the walls 
and objects in a room, which allows for the data transfer within the same bandwidth 
to be used in the room next door without interference. Moreover, the deployment of 
such a system is predicted to be low-priced as it will work with the existing lighting 
infrastructure. Figure 2.1 shows the electromagnetic spectrum and the visible light 
spectrum has a wavelength of 360 − 780 nm [28]. Using the illumination infrastructure, 
it’s possible to achieve illumination, communication and positioning. The block dia-
gram of a typical VLC/VLP system is shown in Figure 2.2. The system consists of the 
transmitters containing driver circuit & modulator, free space channel and the receiver 
containing photodiode, amplifier, electrical filter & demodulator. The transmitter and 
receiver section are detailed in the following subsection. 

2.2.1 Transmitter 

Different sources have been developed for VLC and VLP over the years ranging from 
incandescent light, LD and LEDs. The use of LED in VLP is advantageous due to sev-
eral positive reasons and little negativity to both the environment and humans. LED’s 
advantages are long lifetime, low radiant heat, instantaneous light, design flexibility, 
low power consumption and fast switching [29]. 

This technology will soon be used both for outdoors and indoor application. LED 
can be used for illumination and data transmission including audio and video at multi 
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Figure 2.1: Electromagnetic spectrum [28]. 

Figure 2.2: VLC with DD block diagram [33]. 

gigabits/sec [30, 31]. 
With this array of advantages, white LED sources are ideal for VLP and further 

aiding energy saving at a universal level. Furthermore, the application of VLP is not 
affected by electromagnetic interference [32]. Hence, VLP is eligible to be used in 
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several institutions including hospitals. 

2.2.2 Receiver 

The receivers used in VLC are normally cameras and photo-detectors. For the purpose 
of this research, photo-detectors are adopted. Photo-detectors have the ability to turn 
light received into an electrical pulse. This works by converting photonic energy to 
electrical energy. Several available photo-detectors such as photo-transistors, photo-
multipliers, photo-conductors, and PDs each have unique qualities. However, PDs 
are the preferred photo-detector due to their fast response, high sensitivity and small 
size. Avalanche Photo-Diode (APD) and P-I-N are the most common PDs used as 
photo-detector [33]. 

P-I-N photo-detector 

The P-I-N PD consists of two p-type and n-type semi-conductor materials, which are 
separated by an intrinsic sparingly n-doped region. The schematic of a P-I-N PD is 
shown in Figure 2.3. The device operates when a large reverse bias voltage is applied. 
To convert the received photon into an electrical current, the band-gap energy has to be 

Figure 2.3: Schematic of a P-I-N PD [34]. 

equal or less than the incident photon. The energy from the electron excites the photon 
to the conduction band, which generates an electron-hole pair. The concentration 
of impinging light is under conventional conditions directed to the depleted intrinsic 
region. Due to the high electric field in the depleted area, the charge carriers are 
separated, which is accumulated across the reverse-biased junction. The process then 
leads to the current flowing across the resistor, as seen in Figure 2.3. For each generated 
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pair, there is a single flow of electrons. For communication applications, a P-I-N PD 
has the capability of functioning at high bit rates over 100 Gbps [34]. However, due 
to packaging restrictions, most of the PD-based devices available in the market have a 
bandwidth of less than 20 GHz. 

APD Photo-detector 

The APD is slightly different for P-I-N as the current gain is supplied using a repeated 
electron ionization process. This results in a highly sensitive receiver due to the multi-
plication of photo-current before encountering the thermal noise of the receiver circuit. 
The APDs gain has an impact on the responsivity and given by due to standard gain 
values of the APD ranging between 50 and 300, the responsivity can be higher than 
unity [33]. This means that APD has more sensitivity when compared to P-I-N PD 
with a unity gain. However, APDs sensitive nature also makes it prone to noise as well 
as temperature due to the ionization process. These factors are to be considered in a 
practical component selection, as it is significant to the performance of the system. 

2.2.3 Intensity Modulation/Direct Detection 

Intensity modulation (IM)/DD is the process of transforming an optical signal carrying 
information into a corresponding electrical signal. Before the signal is transmitted, it is 
encoded on the frequency or radiation intensity of the optical source. For systems that 
utilize IM/DD, the radiated emission from the light source is directly modulated using 
the electric signal. Post-transmission, using optical fibre or free-space, the PDs convert 
the received optical intensity into photo-current, then the receiver system filters the 
signal. In OWC, among others, IM/DD and coherent detection with DD are the most 
used schemes due to their simplicity [17]. These attributes associate the data with the 
transmitted fields intensity variations. Figure 2.2 shows a receiver based on DD. 

For a VLP channel, there exists a physical link configuration which is explained in 
the following section. 

2.2.4 VLC link configuration 

The VLC/VLP link configuration can be classified based on the directionality of the 
receiver and transmitter. VLC/VLP links can be directed, non-directed and hybrid as 
shown in Figure 2.4. In the directed configuration, a narrow divergence angle trans-
mitter and a narrow FOV receiver are used, which are pointed to each other. This 
configuration requires precise link arrangement and a tracking system. Directed link 
configuration tends to have a higher power efficiency as it reduces geometrical prop-
agation loss and noises from artificial and ambient light sources. In the non-directed 
configuration, a wide divergence angle transmitter and wide FOV receiver are used, 
which are not directed or focused at a specific point. However, this configuration re-
quires high power levels to combat the high optical loss and the multipath-induced 
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distortions. In the hybrid link configurations, the transmitter and receiver can have a 
variety of directionalities such as a wide FOV receiver to detect a narrow beam trans-
mitter [17, 30]. Using these link configurations, indoor VLP can be deployed which is 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
found in the Lanchester Library, Coventry University.

Figure 2.4: Channel configuration models a) Directed LOS configuration 
b) Hybrid LOS configuration c) Non-directed LOS configuration d) Directed 
Non-LOS configuration e) Hybrid Non-LOS configuration f) Non-directed 
Non-LOS configuration [30]. 

discussed in the following section. 

2.2.5 Indoor visible light positioning system 

To implement indoor positioning, multiple operational techniques can be adopted such 
as Wi-Fi access point, RFID and VLP. In the application of VLP, which is the focus 
of this thesis, illumination sources serve as a transmitting unit [35]. Conventional 
light sources such as incandescent or fluorescent lamps have low bandwidth and are 
not suitable for VLC/VLP. Recently, LEDs based on SSL have emerged as a suitable 
and prominent replacement of conventional light sources with advantages mentioned 
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in Section 2.2.1. The schematic of an indoor VLP system is shown in Figure 2.5. The 

This item has been removed due to 3rd Party Copyright. The unabridged version of the 
thesis can be found in the Lanchester Library, Coventry University.

Figure 2.5: A schematic of indoor VLP [46]. 

light signal is transmitted from an LED in its modulated form carrying the information 
of the transmitter, which is then received by an image sensor or PD through a VLC 
channel. Thereafter, the position of the receiver is estimated based on the received 
signal attributes. 

Indoor light positioning systems have been initiated by certain enterprises such as 
Carrefour in Lille, France (see Figure 2.6), which introduced intelligent lighting devices 
in 2015, to help customers track products within the supermarket [2,36]. A professional 
IPS was deployed in the same year (2015) by Acuity Brands [3]. The following year 
(2016), Qualcomm piloted an LED guiding system named Lumicast [37]. The Lumicast 
system was capable of achieving centimetre level accuracy in indoor environments. VLP 
systems can be deployed in the various scenarios, which are discussed below. 

Indoor Public Spaces 

VLP would be a valuable asset for guiding people in public settings such as museums, 
theatres, exhibition centres and opera houses where tourists and the general public can 
get lost, VLP can guide users to their desired locations [10]. This can also be used to 
navigate visitors to elevators, toilets, their respective seats, exits and emergency exits. 
Since the aforementioned places are already equipped with LED lights, the deployment 
of LED-based IPS should come at ease with minor additional modifications. 
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Figure 2.6: LED-based indoor positioning by Philips, Carrefour France 
[2]. 

Shopping Centers 

IPS can support shoppers in shopping centres to navigate through the complex nature 
of supermarket floor plans where items are scattered throughout the building. The 
application of VLP in shopping centres could help customers navigate to their desired 
products in a timely manner. This would reduce the time spent in shops, increase 
shoppers throughput and ensure a shopper can keep a safe distance from other shoppers 
during the pandemic. This would also benefit merchants by exploiting VLC for coupons 
and advertisements to potential customers in the vicinity. Moreover, this would help 
promote a personalised shopping experience by sending users information on price 
comparisons on items for different brands. Furthermore, customer purchase behaviour 
can be studied to pinpoint sales hot spots, enabling shelf layout optimisation by the 
merchant. 

Factories and Logistics 

VLP can be used in factories and logistics where managers could efficiently locate 
assets and employees, thus improving management and security [38]. This could also 
be used for inventory storage by autonomous robots. Furthermore, deployment of 
VLP in factories and logistics can provide flexibility for rezoning and reconfiguration 
for changing mandates and needs, thus contributing to operational efficiency, as well 
as energy and maintenance savings [39]. 
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Figure 2.7: LED-based indoor positioning by Philips, EDEKA Paschmann 
supermarket, Germany [36] 
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Healthcare Facilities 

RF-based IPS are challenging to deploy in hospitals as they may interfere with crit-
ical care equipment such as ventilators and external pacemakers. As most hospitals 
are already equipped with LED luminaries, VLP can be deployed without the need 
for additional transmitters and their associated costs. VLP can be used in hospitals 
to track medical devices, wheelchairs, beds, provide more accessibility to emergency 
services and further navigate patients through wards. 

Airports and Train Stations 

In areas with a high volume of people like airports and train stations, VLP can be used 
to assist passengers in reaching boarding points, bus exits, trains, restrooms, booking 
offices and stores. This can be very helpful for the first time and foreign visitors. 
Similarly, this can be used in traffic control and information hub. 

2.2.6 Outdoor light positioning system 

Urgent positioning techniques are needed for vehicular navigation to provide service 
in urban and city centre locations where GPS offers poor performance [40] due to 
multipath propagation and signal path-loss. This is needed to effectively deploy and 
improve driver safety in ITS. The application of VLP for the outdoor environment is 
relatively in infancy. In [41], vision-based navigation methods are proposed for one-
dimensional (1-D) positioning. With more LED traffic lights being deployed, their use 
as a transmitter for positioning has been proposed to obtain the distance between the 
traffic light and the vehicle using cameras [42, 43]. However, only the relative position 
of the vehicle is attained. Figure 2.8 shows the most recent outdoor VLP schematic 
using streetlight. Figure 2.8 shows the existing schematic of outdoor VLP schematic. 
The study proposes streetlights and cameras for vehicular positioning [44]. However, 
the aforementioned methods for outdoor VLP require a complex image processing 
procedure and an expensive high-speed camera to determine the position of the vehicle. 

Having reviewed VLP, its existing and potential applications, the following section 
presents the review of VLP. 

2.3 VLP algorithms 

VLP can be categorised into active and passive positioning. Passive positioning does 
not require the target to carry any active tag or active device. Furthermore, there is no 
need to modify the lightning infrastructure [45]. In active positioning, the target device 
has a receiver(s) that estimates its position. For active localisation, image sensors or 
PDs at the target device are responsible for receiving signals from the transmitter and 
estimate its position based on the various algorithm discussed in the following section. 
The transmitted signals have the geographical location or the Identification of the LED, 
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Figure 2.8: Existing outdoor VLP model [44]. 

which enables the receiver to estimate its position. Note that this thesis considers both 
passive and active positioning. 

The design in Figure 2.5 shows a typical indoor active VLP system configuration. 
Multiple transmitters, often LEDs, are used to transmit the signals. Time Division 
Multiplexing (TDM) or Frequency Division Multiplexing (FDM), as detailed in section 
2.4 are used so that the receiver can separate signals from different sources. A target 
analyse/process the received signal from multiple sources and estimates its position [46]. 

Figure 2.9 summarises several positioning algorithms and techniques. By measuring 
the signal through RSS, AOA, TOA, TDOA or hybrid methods, a positioning method 
is applied to retrieve the receiver position ranging from triangulation/trilateration, 
fingerprinting, imaging, proximity or hybrid methods. Different studies use different 
peripherals ranging from inertial measurement unit (IMU), laser, RF, PDs and extra 
transmitters. The following section provides a brief review of these techniques. The 
analysis of the selected algorithm is presented in Chapter 3. 
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Figure 2.9: VLP algorithms 

2.3.1 Received Signal Strength 

RSS is the measurement of the power in the received signal [47]. The RSS algorithm 
in VLP is designed to attain the location of the target using the signal strength with 
the mathematical model given by [17]: (

(m+1)Ar 

2πd2 cosm(ϕ)Ts(ϕ)g(ψ)cos(ψ)0 ≤ ψ ≤ Ψc
Pr = , (2.1)

0, ψ > Ψc 

where m is the Lambertian emission order, Ar is the PDs physical area, ϕ is the ir-
radiance angle Ts(ψ) is the optical filter gain, ψ is the angle of incidence, g(ψ) is the 
optical concentrator gain, d is the distance between the receiver and the transmitter, 
Ψc is the PDs field of view. RSS is combined with a positioning method (trilater-
ation/triangulation) to localise the target. Note that the positioning methods are 
discussed later in Section 2.3.5. 

In [48,49], RSS-based 2-D positioning systems were proposed for VLP using the light 
from three LED base stations on the ceiling. LEDs were modulated using quadrature 
phase-shift keying (QPSK) at non-identical frequencies. At the receiver end, each signal 
was processed distinguished. The distance between the receiver and each transmitter is 
attained in two steps. The first step taken was to estimate the rough distance without 
considering the effect of incidence and irradiance angle on the power. The effect of 
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these two angles is ignored because of the absence of sensors such as a gyroscope or 
accelerometer, which can slow the estimation process. However, the signal strength 
is reduced, leading to an overestimation of the distance. The second step determines 
the maximum possible distance where the lighting coverage of the LED and height 
is known. The distance obtained after the second step is then subtracted from the 
distance in the first step to provide the final distance estimated. The localisation is 
then done using trilateration and the linear least squares (LLS) method. Using the 
aforementioned methods, an accuracy of 6cm was reported for a room of dimensions 
60 cm×60 cm ×85 cm. 

The work in [50] uses three PD receivers in a circular form each 20 cm apart on a 
mobile device. The research assumed that locating the PD over a diameter of 40 cm 
is acceptable in the case of large autonomous machine applications. Note that such a 
large receiver separation may be restrictive for other applications. The distance from 
each receiver to the transmitter is first calculated using the RSS. The relative position 
of the PD is then determined by exploiting the known LEDs locations. The proposed 
model yielded an RMS error less than 1.5 m in a room dimension of 2 × 2 × 2 m3. 

Optical symmetrical code (OOC) was utilised in [51] to differentiate different sig-
nals. Using RSS, the distance to the base station was calculated and the position of 
the receiver was determined using trilateration. In a 12 m ×35 m area, an average 
error of 8 cm was achieved in a simulation environment. 

In [52], dual-tone multi-frequency (DTMF) was used to distinguish different base 
stations from the LED. DTMF is traditionally used in electronic banking systems, 
telephone dialling and voicemail. An algorithm was developed to calculate the path 
loss based on different frequencies corresponding to the RSS. The coordinates to the 
LED base stations were assumed to be pre-set on the mobile device. In a 2 m ×2 m 
area, an average error of 18 mm was achieved in a simulation environment. 

A deep neural network (DNN) approach to VLP was proposed in [53]. The trans-
mitted signals are multiplexed using FDM and the RSS information to a single receiver 
is fed to the DNN for training. The training was achieved based on Bayesian regula-
tion with sparse training points. An RMS error of 4.58cm was achieved in a room of 
1.8 m×1.8 m×2.1 m. A modified particle swarm optimisation (PSO) algorithm was 
proposed in [46, 54] for 3-D positioning. However, only 605 points were tested in a 
room of 3 m× 3 m ×4 m. An error of 3.9 mm is achieved with only 20 iterations. 

A 2-D VLP system with multipath reflection was analysed in [55]. Using the RSS 
and trilateration, the distance between the LED base station and the mobile device was 
calculated. Simulation studies with a PD receiver resulted in an average RMS error of 
4cm for LOS scenario and up to 80 cm with reflected light in a room of 6 m×6 m×3.5 
m. ANN for indoor VLP was used in [56] to mitigate the effect of reflected light on 
VLP in 2-D VLP. Simulation studies demonstrated that an average error of 6.39 cm is 
achievable using multiple transmitters and a single PD in a room of 5 m×5 m×3 m. 

The 3-D VLP based on ANN is investigated in [57]. The study assumes a receiver 
array of 19 × 19 and a 4 × 4 grid of LED each 1 m apart. The model yielded an 
RMS error of 0.4 mm in a 4 m× 4 m ×3 m room. The work in [58] demonstrated the 
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feasibility of 3-D VLP using a two-layer ANN. The study works under the assumption 
that the room is divided into multiple trilateral positioning cells and the RSS was fed 
into the ANN. In a room of 0.9 m× 1 m ×0.4 m, the model yielded an RMS error of 1 
cm. Though it’s not an improved accuracy on the work reported in [57], it provides a 
more realistic study with less system structure. The reduction in the system structure 
is from three ANN with 16 nodes to a single ANN with 8 nodes for [57] and [58], 
respectively. 

A VLC based vehicle positioning using LED street light and rolling shutter CMOS 
sensors was proposed in [44]. The vehicles were assumed to be equipped with cameras 
able to receive information on the position of the transmitters. The position of the 
vehicle was determined based on the geometric relationship between the LED and the 
cameras. A small scale experiment was conducted where the transmitters were 2.5 
m high with longitudinal and lateral distances between any 2 LEDs equal to 0.6 m. 
The proposed system yielded an average and maximum error of 15 cm and 150 cm, 
respectively. 

A passive VLP approach considering the effect of reflection, shadow and ambient 
light was investigated in [59]. The simulated system considered random/unpredictable 
target movement patterns in a room with an array of 60 × 60 LEDs on the ceiling and 
25 receivers on the floor. It considered LOS and NLOS signal propagation paths as 
well as possible blockage due to shadowing. A min-max filter and a Kalman filter were 
adopted to track the target position resulting in an RMS error of less than 0.5 cm in 
a 10 × 10 × 3 m3 room. 

In [60,61], an RSS-FDM approach to passive VLP is used to construct a 3-D human 
skeleton. By using five transmitters on the ceiling and 324 receivers on the floor, the 
model had a 10 degree mean angular error in a room of 3 × 3 m2 and RMS error of 9.7 
cm (95% of the case). 

A RSS-TDM approach to VLP to detect occupancy of a room was proposed in [62]. 
The proposed system employed six transmitters and twenty-four receivers on the ceiling 
of a room with dimensions 7.5 × 6 × 2.74 m3. A median error of 0.89 m was achieved. 

The work in [63] proposed a RSS-fingerprinting approach to passive VLP for object 
identification. The experimental model, with 14 light sensors on the wall in a room of 
2 × 3.6 m2, yielded an RMS error of 13 cm. The authors experimentally extended the 
work in [64] to detect human participants with an error of 84 cm in a 4.8 × 9.6 m2 lab. 

A study in [65] used the object impulse response to establish positioning. By using 
nine transceivers on the ceiling in a room of 5 × 5 m2, the model yielded an RMS error 
of less than 10 cm. 

2.3.2 Angle of Arrival 
AOA is the measurement of the angle that the transmitted signal reaches the receiver. 
AOA calculations are done based on the angulation (triangulation) of the signals from 
different light sources [66]. Figure 2.10 shows the basic configuration of AOA where 
ϕ1 and ϕ2 is the irradiance angle of the first and second LED, respectively. With the 
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AOA obtained, the target’s position is calculated using the point of intersection of the 
signals. 

Figure 2.10: AOA localization using 2 LEDs [18]. 

AOA is very advantageous in VLP as compared to RF in LOS scenarios as the signal 
in VLP is mostly transmitted in LOS. Unlike other positioning techniques including 
TDOA and TOA, AOA does not require synchronisation between the transmitters. 
However, AOA calculations generally require extra sensors or peripherals, thus resulting 
in higher complexity in system structure and algorithms [66]. 

A PD array (two and above) can be used to obtain the AOA. The LED emission 
follows a Lambert cosine law. The change of AOA can therefore be predicted based 
on the measured or calculated power received by the PD. The signal’s angle can be 
deduced from the difference between the power received at the current angle and the 
power received at a known angle. 

The authors in [67] proposed an array of PDs to estimate the AOA as shown in 
Figure 2.11 where ψ is the incidence angle. The irradiance angle of the light was 
determined using a truncated-weighting algorithm, which is a weighted sum of angles 
of PDs in the PD array. The magnitude of each PD angle was determined by comparing 
the received power at each angle. Simulation studies resulted in distance errors of less 
than 30 cm. 

In [68, 69], a simulation study was used to demonstrate the feasibility of using an 
accelerometer to calculate the AOA with a single PD. The PDs angle was changed in 
different directions, and the received power with respect to the direction was calculated 
for a given position of the transmitter. The PD’s orientation was estimated with the 
help of the accelerometer. Two measurements were taken for each base station for each 
PD orientation. With the measurements taken (received power), the irradiance angle of 
the signal is calculated. The present location of the transmitter was sent using VLC to 
the receiver, where all the transmitters transmit at different times, thereby employing 
TDM. The position of the device was obtained after the successful acquisition of the 
three corresponding irradiance angles. The model yielded an average error of 25 cm 
while the receiver is not in motion. 

Research conducted in [70] enhanced the work in [68,69] by including a second PD. 
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Figure 2.11: Receiver setup for estimating AOA [18]. 

When the PDs are combined with the accelerometer, the AOA is estimated without 
tilting the PD. The computational speed was improved, allowing the users to become 
mobile. The accuracy was also improved by mitigating the errors that were caused by 
the non-zero distance between multiple PDs. The simulation result showed an average 
position error of less than 6 cm even while the receiver was in motion at speed up to 
1.3 m/s. 

An approach to estimating AOA was proposed in [71] by using a group of three 
orthogonal PDs to receive signals from multiple LED base stations. The transmitter 
uses FDM with ranging frequencies between 2 kHz to 3 kHz. The PDs were placed at 
different angles, thus making them preferentially sensitive to the light incident to help 
with the angulation. The complexity of the mathematical expression was challenging 
to solve algebraically. Therefore the incidence angle was estimated using least angle 
regression (algorithm for fitting linear regression models to high-dimensional data [72]). 
In a simulation environment, a positioning error of 5 cm was attained. 

To improve practicality, the work in [73] used a single PD to determine the AOA 
information. The PD is assumed to be perpendicular to the floor, thus assuming an 
identical incidence and irradiance angle. This also provides for a higher signal-to-noise 
ratio (SNR) due to the directionality of the transmitter and receiver. The multipath 
propagation of reflections was also considered, hence adding a path loss exponent to 
the equation. The receiver was assumed to know the maximum received power that 
was calculated beforehand. Hence, with the received power, the irradiance angle can be 
calculated. Each signal for a transmitter was modulated using Orthogonal frequency 
division multiplexing (OFDM). 

The study in [74] proposed the use of a single receiver for AOA for vehicular po-
sitioning. The system uses vehicle tail lights or headlights as the transmitter, and a 
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PD-based receiver is placed on the vehicle. The underlying assumptions of the work 
were: a) the transmitter and receiver are perfectly synchronised for communication 
purposes, b) the transmitting and receiving vehicle can measure their real-time speed 
and global headings with on-board sensors, c) the transmitter is capable of transmit-
ting the speed and global heading information through the VLC channel and d) the 
receivers measure the AOA of the transmission beam. The study demonstrates that 
the vehicles heading can be detected with a mean error of 11 cm. 

2.3.3 Time of Arrival 
TOA is propagation time-dependent. In the TOA approach, the transmitters send 
signals simultaneously to the receivers to calculate arrival time, then use this informa-
tion to estimate the receiver position. This is the same approach used in GPS cases. 
The speed of light is multiplied by the propagation delay of the signal to calculate the 
distance. According to [75,76], to estimate the location in 2-D, the signal from at least 
three transmitters is required. As shown in Figure 2.12, transmitters A, B, and C have 
a corresponding distance of R1, R2 and R3 to the device. The intersection of circles A, 
B and C is then utilised to estimate the receiver’s position. 

Figure 2.12: Mobile phone TOA localization using 3 LEDs [18]. 
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For most TOA applications, the location of the device is determined using the LLS 
algorithm. This is a mathematical process that minimises the sum of the squares of 
the offsets for finding the best-fitting curve to a given set of points [15]. 

The authors in [77] investigated the TOA based VLP. By employing OFDM, each 
signal was transmitted to make it distinguishable to the receiver, where the transmitters 
and receiver are assumed to be synchronised. Using Cramer-Rao bound, the system 
showed a positioning error of less than 7cm. The work in [78] proposed the use of 
smartphones cameras to measure the modulated signals from the LEDs and TOF of 
sound waves from speakers placed in the room. The LED signal contains a time 
reference that is used to synchronise the receiver. Thereafter, multi-lateration is used 
to determine the receiver position. The model yielded an average error of 10 cm. 
The complex nature of TOA that comes from the need to perfectly synchronise the 
transmitter and receiver has led to limited studies in VLP. This lead to more research 
in TDOA, which is discussed in the following subsection. 

2.3.4 Time Difference of Arrival 
TDOA is a popular ranging technique that is more versatile than TOA [79]. This is 
because only the transmitters need to be synchronised. In the TDOA application, all 
the transmitters transmit the signal simultaneously. Due to the difference in distance 
between the transmitters to the receivers, the arrival times of all the signals will be non-
identical. In the TDOA algorithm, the time difference of arrival is used to determine 
the position of the receiver. The distance calculated will then help estimate the position 
of the receiver. The speed of light is multiplied by the propagation delay of the signal 
to calculate the distance. 

Hence, for each TDOA measurement whose distances to the pair of base stations 
have a constant difference, its respective hyperbola of possible positions can be deter-
mined as illustrated in Figure 2.13. To achieve 2-D positioning, the signal from at least 
three transmitters should be received by the PD. Figure 2.13 illustrates the distances 
R3 − R1, and R2 − R1 with respect to transmitter A, B, and C. These distances 
intersect at a certain point which is regarded as the estimated position of the receiver. 

In [80], an indoor VLC localisation system based on TDOA was proposed for de-
partmental stores, theatres, museums and restaurants. Four different transmitters were 
modulated using binary phase-shift keying (BPSK). The LLS algorithm was used to 
estimate the position of the receiver. In a simulation environment, the system had a 
positioning error of 0.14 m in a radius circle between 0.16 m and 0.2 m. 

The authors in [75] proposed a TDOA based VLP where the PD has prior knowledge 
of the transmitter position. The signal transmitted from the LED does not convey any 
information. However, with the use of TDM, the receiver was able to distinguish 
between signals. Once all the signals are received, a special guessing mechanism is 
used to identify the signals, finding the device’s location. In a simulation environment 
of 5 m×5 m×3 m, the system had a positioning error of 3 cm. 
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Figure 2.13: TDOA based localisation [18]. 

The authors in [81] used a sinusoidal signal instead of a square pulse as introduced 
in [75]. This is done to consider the rising and falling edge of the PD and LED for 
real-time implementation. In the simulation, the falling and rising times of the LEDs 
were taken into consideration to obtain the TDOA. The simulation results showed an 
average error of 68.2 cm in a room of 5 m ×5 m ×3 m. 

In [82], a TDOA localisation for automobiles was proposed using the tail light of the 
vehicle as a transmitter. The LEDs transmit signals which are modulated at different 
frequencies to the car behind where PDs are placed in front of the car. The signals were 
then filtered at the receiver end using a band-pass filter. Thereafter, the phase differ-
ence of arrival at each receiver is determined. With the known modulated frequency, 
the speed of light and phase difference, the distance difference is then calculated. In a 
simulation environment, the system had a positioning error of 1 cm. 

The work in [68] and [48] used a similar method of modulation and multiplexing. 
The first step taken was to modulate the signal from the transmitters at different 
frequencies. A band-pass filter was present at the receiver which to extract signals of 
different transmitters. The phase of each pair of signals was calculated by using Hilbert 
transform to distinguish the quadrature and in-phase components of every signal. The 
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second step was to switch the modulated frequencies between each transmitter and 
calculate the phase difference based on it. With the distance from the transmitters 
and phase differences calculated, the receiver’s location was then estimated using tri-
lateration. In a simulation environment, the system had a positioning error of 1 cm. 

The authors in [83] proposed to improve the research conducted in [48] by adding 
additive white Gaussian noise (AWGN) to the simulation and using statistical methods 
to predict the position of the receiver. The proposed method is shown to reduce error 
from 15.3 cm to 2 cm in a room of 5 m ×5 m ×3 m. 

The authors in [84] proposed Darklight positioning, a positioning technique when 
the lighting system is not necessary. With the use of low power LEDs, the study 
proposed a TDM and pulse width modulation (PPM) scheme to measure the TDOA 
signal from five different transmitters. The three strongest received signals are selected 
and their respective distances (hyperbola) are defined. The intersection between the 
three hyperbolae is the target’s position. In a room of 6 m ×6 m ×3 m, the model 
yielded an error of 5 cm. 

The work in [85] modulated signals from different transmitters at different frequen-
cies in a sinusoidal form. The phase difference was calculated by measuring the peak 
to peak amplitude of the sinusoidal light signal. The position can then be determined 
based on TDOA which is calculated based on the calculated phase difference, the speed 
of light and the known modulation frequency. 

In most standard conditions, a TDOA based system requires three base stations 
or receivers to predict the estimated position accurately. The work in [42] proposed 
2-D positioning using the minimum requirement of one traffic lighting transmitting 
a signal to two PDs at the vehicle’s facial. This concept is detailed in Figure 2.14. 
During t1, the transmitting signal collected by the two PDs and the TDOA ∆t1, is 
calculated alongside the corresponding hyperbola H1 is obtained. During t2, when the 
vehicle is in a closer approximation to the traffic light, the second hyperbola H2 is 
obtained, which is in response to TDOA ∆t2 being obtained. In the assumption that 
both periods t1 and t2 are known, the position of the traffic light in relation to the 
vehicle is obtained and calculated as the intersection between the two hyperbolas H1 

and H2. The unconditionally absolute position of the vehicle can be calculated based 
on the relative and absolute position of the traffic light. The results of this proposed 
concept were provided in a simulation analysis that displays the system’s accuracy 
depends on the difference in distance between the vehicle and the traffic light. The 
study also shows the accuracy is affected by the speed of the vehicle. The simulation 
shows a decrease in accuracy when the distance decreased, i.e. the positioning errors 
were extremely high when the distance was less than 5 m. However, when the distance 
increased to 50 m, the positioning errors reduce to 0.5 m. The positioning errors 
increase when the speed of the vehicle increases, which is to be expected. However, 
when the distance was larger than 20 m, the vehicle’s speed had a minimum effect on 
the accuracy. 

The preceding sub-sections have discussed the existing literature based on the re-
ceived signal measurement technique. In the following sub-section, the positioning 
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Figure 2.14: Two PDs to traffic light TDOA [42]. 

methods will be discussed. 

2.3.5 Positioning Methods 

As seen in Figure 2.9, after measuring the signal using an appropriate technique, the 
signal goes through a positioning method that is explained in this section. 

Trilateration 

The most generic name given to positioning algorithms that use a geometric rela-
tionship to establish positioning is triangulation [1]. This technique is classified into 
angulation and lateration techniques. In the angulation technique, the angle relative 
to several points is measured (AOA). Then, the intersection points of direction lines 
are used to determine the position. Lateration methods exploit the distance between 
several points to estimate position. These distances can be calculated based on RSS, 
TDOA or TOA. 
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Fingerprinting 

Fingerprinting, also called scene analysis, entails positioning techniques that match pre-
measured location-related data with online measured data. This method exploits the 
irregularities in the distribution of transmitters in the presence of different barriers in 
the environment. For example, in a room with an uneven distribution of transmitters, 
the scatter of light and reflections off the wall and appliances will make the received 
power at different positions in the room different. Furthermore, the transmitted power 
in each transmitter is made different to ensure uneven distribution of received power. 
This method relies on these differences to establish positioning. 

Imaging 

Imaging is also known as vision/scene analysis is a method for positioning an object 
with multiple known image sensors. In this application, the geometric relationship is 
established using a pinhole camera. Using this method, complex positioning scenarios 
such as collinearity condition can be addressed [18]. 

Proximity 

Proximity is the most straightforward positioning technique that outputs the proxim-
ity information of the transmitters but not their relative or absolute positions. In this 
technique, only a single transmitter is needed to provide the proximity of the transmit-
ter. The transmitter transmits its identification code which is pre-installed and stored 
in a database. When a mobile device receives the signal, the corresponding information 
is looked up in the database to link it with its associated location. The position of the 
receiver is then provided based on an area of coverage. 

2.4 Multiplexing Technique 

As the majority of VLP techniques utilise multiple sources in the same space, multi-
plexing at the transmitter is required to enable signal separation at the receiver. Mul-
tiplexing is a fundamental technique as VLP can fail without it [18]. The commonly 
used multiplexing techniques in VLP are TDM and FDM. 

2.4.1 Time Division Multiplexing 

In the TDM approach, different transmitters transmit their respective signals at dif-
ferent points in time. The TDM has the advantage of a simple implementation as 
compared to other techniques. However, this is not efficient when there is a large num-
ber of transmitters. This is because it requires significant time to receive individual 
signals from all transmitters. Furthermore, TDM requires perfect time synchronisation 
of all the transmitters for positioning. However, the burden of synchronisation can be 
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avoided by employing a random-access mechanism such as additive links on-line hawaii 
(ALOHA) [86]. Moreover, to use TDM in positioning, the number of transmitters need 
to be limited to avoid flickering. 

2.4.2 Frequency Division Multiplexing 

In FDM, the transmitters are modulated at different frequencies. This method intro-
duces complexity in designing the de-multiplexer. However, many positioning systems 
employ FDM as it provides a platform for asynchronous positioning. A comparison of 
TDM and FDM on their application for indoor positioning is done in [86] which stated 
FDM base positioning systems perform better than TDM. A time synchronisation error 
as low as 10% makes TDM based designs perform poorly. 

2.5 Analysis 

Amongst the aforementioned algorithms, TOA is the most straightforward mechanism 
in terms of estimating the receiver location. Once the TOA has been obtained for each 
transmitter, the receiver’s position can be calculated by the intersecting TOA circles. 
However, this method is known to produce high error magnitudes for the following 
reasons. First, the transmitter and the receiver need to be perfectly synchronised to 
measure the propagation time of the signal. This has been reported in [18] to provide 
issues even for indoor applications. Second, the accuracy of the measured propagation 
time between the transmitter and receiver is low. This is because the transmitter 
introduces a time delay to prepare the message to be sent. Third, the measured time 
accuracy relies on the response of the PD and clocks resolution. Due to these challenges, 
the accuracy of TOA in practical applications is low, thus limiting its applicability to 
VLP. 

TDOA is more complex, in terms of mathematical formulation, compared to TOA. 
However, the application of TDOA based localisation only requires synchronisation 
on the transmitters side. This is more practical than synchronising both receivers 
and transmitters. However, TDOA requires a very precise time measurement. The 
accuracy of the time measurement is limited by the PD response time and the clock 
resolution. These limitations can result in errors in time measurement that will reduce 
the localisation accuracy. 

AOA triangulation algorithms tend to yield the highest accuracy at the cost of 
complex implementation and set-up. It requires an accurate estimation mechanism 
and multiple receivers. For mobile devices, additional inertial sensors such as a 6-axis 
sensor or gyroscope are used to measure the AOA [48, 49]. This makes the practical 
realisation of this algorithm expensive. A major disadvantage of AOA triangulation is 
that the accuracy drops drastically when the distance from the receiver to the trans-
mitter increases. This is because a small error in calculating the AOA results in a large 
positioning error. 
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The most investigated positioning algorithms in the literature are RSS-based due 
to their ease of implementation and asynchronous operation. The most popular al-
gorithm with RSS is trilateration. In practice, the effects associated with incidence 
and irradiance angles are challenging to determine from the path loss model due to 
changes in the environment. Hence, the system works better when PDs are placed 
horizontally to the transmitter. Recent developments have shown that artificial intel-
ligence (AI) methods can be used to enhance 2-D positioning accuracy in RSS based 
VLP ANN [56,58] and DNN [53] as well as 3-D positioning [57]. This is achieved with 
more powerful and higher cost micro-controllers such as field-programmable gate array 
(FPGA) [87] at the receiver end, which is capable of handling the complex process 
of ANN. However, the aforementioned studies use a large ANN structure (3 ANNs) 
without optimisation. This has therefore been identified as a gap in the literature to 
study an optimised ANN structure for 2-D and 3-D VLP. 

Most of the indoor VLP systems reviewed have not considered the NLOS path. 
However, [55,56,88] indicated that NLOS increases positioning error. It is found in [55] 
that, for a 2-D environment, there is a 90% increase in positioning error when NLOS is 
considered. The research in [56] proposed the use of ANN to reduce the effect of NLOS 
in VLP. The model improved the VLP performance with a positioning error of 0.065 
m. However, all the aforementioned work only studied a 2-D VLP system. Therefore, 
this has been identified as a gap in the literature to study indoor 3-D VLP with a 
diffuse link and investigate methods to improve system performance. ANNs have been 
selected based on their demonstrated benefits and will be applied to 3-D VLP with 
NLOS. A singular research has been conducted in [84] for 2-D dark VLP using TDOA. 
This thesis also investigates the feasibility of applying an RSS-based approach for 3-D 
dark VLP. 

Few studies have been conducted in the field of passive VLP. All these exploit RSS-
based approaches as the receiver is not on the target. Most of the existing studies have 
considered the use of techniques such as shadowing (places with lower RSS due to signal 
blockage [59]) and numerous receivers [60–62]. Given the successful application of ANN 
for active positioning in the literature, this thesis will investigate its performance for 
passive VLP. 

A significant amount of research has been done on indoor positioning applications. 
However, only a limited amount of work has considered the outdoor VLP system. It 
has been argued in [89] that alternative technology should coexist with GPS due to 
the limited accuracy of GPS in cities, tunnels and GPS dead zones. The introduction 
of VLP for autonomous vehicles is a promising area of research to improve position-
ing accuracy. The application intended for vehicles require the use of streetlights and 
traffic lights for localisation. In many instances, small sets of streetlights (3 to 5) are 
positioned along an almost straight line. This makes it challenging to apply traditional 
positioning techniques due to collinearity conditions. According to [18], achieving lo-
calisation with transmitters that are collinear is close to impossible using a single PD. 
The work in [44] proposed the use of cameras to solve the collinearity condition. Al-
though a straight road with the streetlights located along a straight line are considered, 
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the study assumes the use of a distributed transmitter, i.e. streetlights on both sides 
of the road. This means that the proposed model will not work when the streetlights 
are only on one side of the road. This thesis proposes a diversity technique with ML to 
address the collinearity condition and make VLP work when the streetlights are either 
on both or on a single side of the road. 

ML algorithms can enhance VLP performance as shown in various studies in the 
literature. The performance of an ML algorithm is dependant on the optimisation of 
the network structure and the respective data set. Hence, this work optimises ML to 
enhance the VLP system performance and identify the best ML for this application. 
The study in [90] applied different ML algorithms such as GRU, RNN, MLP and LSTM 
for vehicle tracking using IMU sensors. These algorithms will also be investigated 
for outdoor vehicular VLP to select the most suitable neural network (NN) for the 
application. CMD has been shown to be well suited to both indoor and outdoor VLP. 
It has been investigated and experimentally studied to provide high accuracy without 
the need for extra hardware or processing power [91]. Therefore, this thesis adopts 
CMD as a benchmark for performance comparison for indoor and outdoor VLP. 

This thesis considers the use of CMD as a benchmark for performance compari-
son. This algorithm has been investigated and experimentally studies to provide high 
accuracy without the need for extra hardware or processing power [91]. 

2.6 Summary 

This chapter has reviewed VLP technologies. LEDs have become the technology of 
choice for transmitters due to their environmental friendliness, ruggedness, controlla-
bility, energy efficiency, fast switching and long lifetimes. The prominent receivers of 
VLP are cameras and PD. Though cameras are capable of capturing images in real-
time, their application requires complex image processing technology (more processing 
power), and their high cost makes their realisation more difficult. PDs on the other 
hand, are cheaper and easier to deploy when compared to a camera and offer compet-
ing accuracies compared to camera-based VLP. The main VLP algorithms are RSS, 
AOA, TDOA and TOA, with positioning techniques ranging from triangulation, fin-
gerprinting, imaging and proximity. One of the gaps identified in the literature is the 
need to account for the effect of NLOS in 3-D VLP. ANN has proven to help improve 
performance in NLOS link, thus making it the algorithm of choice. Given the limited 
research in indoor dark VLP and passive VLP, the application of ANN to improve 
the existing state-of-the-art is a novel area that this thesis will explore. A gap was 
also identified in outdoor VLP for vehicular application. This thesis will then investi-
gate the feasibility of using PDs for vehicular VLP and critically evaluate the system’s 
performance for different road and weather conditions. 



Chapter 3 

VLP System Modelling 

Visible light positioning is a promising positioning technique delivering centimetre ac-
curacy and widespread coverage for indoor and outdoor applications. VLP has emerged 
as an inexpensive, easy to configure and viable indoor and outdoor positioning tech-
nique. However, to make VLP a reality, certain challenges still need to be addressed. 
This includes the presence of multipath reflection (NLOS), weather conditions, system 
infrastructure and a suitable positioning algorithm. To do this, it is paramount to 
model and understand the characteristics of the optical channel. A summary of the 
methodology in this thesis is presented in Figure 3.1. 

This chapter outlines the channel model for both indoor (active and passive1) and 
outdoor environments using LED luminaries as transmitters and PD as the receiver in 
Section 3.1. The remainder of this chapter is organised as follows: Section 3.2 describes 
the RSS estimation with respect to different noise and weather environments. Section 
3.3 details the computation of neural networks, the different networks considered in 
this thesis and how a network can be over or under fitted when training. Section 3.4 
describes the CMD algorithm and its cost function, which can be used to extend 2-D 
VLP to 3-D. The performance criteria are detailed in Section 3.5. 

This chapter considers both indoor environment (see Figure 3.2) and outdoor en-
vironment (see Figure 3.3). Generally, a VLP system incorporates three components 
namely a transmitter, a channel and a receiver. In the proposed active VLP sys-
tem with M transmitter and N receivers, the receiver determines its absolute position 
(xbj ,ybj ,zbj ) based on spatially distributed light signals where j = 1 . . . N . As mentioned 
in section 2.3, the receiver should have a prior knowledge of the transmitter coordinates 
(i.e. (xt,i, yt,i, zt,i)) where i = 1 . . .M . This limited knowledge may also be transmit-
ted using VLC. Moreover, only the receiver will have information about the estimated 
coordinates thus making it a one-sided positioning. This provides privacy and reduces 
the chances of exploitation by intruders. 

To establish positioning, the existing lighting infrastructure needs to be modified to 
transmit the signal without voiding its primary purpose (illumination). In this thesis, 

1We define active and passive positioning as positioning that takes place with and without user 
participation, respectively. 

33 



CHAPTER 3. VLP SYSTEM MODELLING 34 

Figure 3.1: Thesis methodology. 

LED driver is added to modulate the signal using TDM or FDM as outlined in Chapter 
2.4. With each transmitter having a different time or frequency, the receiver can 
distinguish each signal using an appropriate filtering technique, thus the transmitters 
need not be synchronised. The PDs detect the transmitted signals and generate photo-
currents, which are digitized. The resulting digital signals are filtered in RSS values to 
the transmitter and receiver. The channel links are discussed in the following sections. 

3.1 Channel Model 
As seen in Figure 2.4, there are several possible link configurations in VLP. This can 
be classified depending on the degree of directionality between the transmitter and 
receiver. To cover both active and passive positioning, both LOS and NLOS links will 
be considered. 
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Figure 3.2: Indoor localisation model for VLP 

3.1.1 Line of sight channel gain 

The DC channel gain depends on the link distance, the channel configuration and the 
angle of incidence. This VLP application uses LED as transmitter and PD as receiver. 
Using a generalized Lambertian radiant intensity (R0), the angular distribution is given 
by [17]: (

(m+1) 
2π cosm(ϕ) for ϕ ∈ [−π/2, π/2]

R0(ϕ) = (3.1)
0 for ≥ π/2 

where ϕ = 0 at maximum radiated power and m is the Lambertian emission order 
expressing directivity of the source beam, which is given by: 

−ln2 
m = (3.2)ln(cosϕ1/2) 

where ϕ1/2 represents the half-power angle of the LED. The radiant intensity at a given 
transmitted power Pt is given by: 

(m + 1) 
S(ϕ) = Pt cosm(ϕ) (3.3)

2π 

The radiation incidence angles ψ is collected by a photo-detector and is modelled as 
an active area which is given by: (

Adcosm(ψ) 0 ≤ ψ ≤ π/2 
Aeff (ψ) = (3.4)

0 ψ > π/2 
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Though having a PD with a large area would provide for higher power reception, this 
will bring issues in practice, such as increased junction capacitance, receiver noise, 
manufacturing cost and reduced receiver bandwidth. Thus, a concentrator is intro-
duced as a cost effective mechanism to increase the effect of the collection area . The 
optical concentrator gain with a refractive index nc is given by [17]: ( 

2nc 
sin2ψg(ψ) = 

0 ≤ ψ ≤ Ψc 

0 ψ > Ψc 

(3.5) 

where Ψ ≤ π/2 is the FOV. 
Base on the Etendue limit theorem, the collection area of the lens Acoll is directly 

related to the FOV of the receiver and its PD area is: � � 
Acollsin 

F OV ≤ Ad (3.6)
2 

It is clear from 3.6 that the concentrator gain is inversely proportional to FOV. Con-
sidering a link with a Lambertian source, a receiver with concentrator gain g(ψ) and 
optical filter Ts(ψ), the DC gain at an angle ϕ and distance d between the transmitter 
and receiver (see Figure 3.2) is given by [17]: (

(m+1)Ar cosm(ϕ)Ts(ϕ)g(ψ)cos(ψ) 0 ≤ ψ ≤ Ψc 
i,jHlos(0)i, j = 2πd2 (3.7) 

0, ψ > Ψc 

Hence the received power for the LOS path is given as: 

Pr−los = PtHlos(0) (3.8) 

3.1.2 Non Line of Sight 

In diffuse links and NLOS links, factors such as the orientation of transmitter and 
receiver, reflectivity of the walls, ceilings and objects within the room need to be 
considered, thus making it more complex to predict [88]. The received power is given 
as: 

Pr−nlos = (Hlos(0) + Hnlos(0))Pt (3.9) 
where Hnlos is calculated under the assumption that the reflective surface (wall) consist 
of several reflectors ∆A and a reflection coefficient of ρ and is given by: (P (m+1)Ar ρ∆A cosm(ϕ1)cos(ψ1)cos(ϕ2)cos(ψ2)Ts(ϕ2)g(ψ2) 0 ≤ ψ2 ≤ Ψcwall 2π2d2d2 

2Hnlos(0)i,j = 1

0, ψ2 > Ψc 

(3.10) 
where ψ1 and ψ2 are the angles of incidence, d1 and d2 are the reflected distances (see 
Figure 3.2), and ϕ1 and ϕ2 are angles of irradiance. 
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3.2 RSS Estimation 

For the proposed VLP application, an environment with M (where M > 1) LED 
luminaires and N ≥ 1 PDs based receiver is considered as shown in Figure 3.2 and 
Figure 3.3. The transmitters transmit TDM or FDM signals encoded with their unique 
position information as outlined in section 2.4. The LEDs can be dimmed to reduce its 
brightness using PWM scheme. The PWM signal consists of a periodic train of pulses 
with adjustable widths relative to varying values of D, thus resulting in a variation of 
the DC level of the waveform. By using PWM, LEDs can be dimmed to have a very-
low average transmitted power. Furthermore, flickering can be avoided by adjusting 
the value of (D) with the respective frequency of the PWM signal. The period of the 
PWM signal a(t) equals TPWM , and for 0 ≤ t ≤ TPWM , a(t) is given by: (

1 0 ≤ t ≤ τ 
a(t) = (3.11)

0 T1 < t ≤ TPWM 

where τ is the duration of the PWM pulse. 
The VLP in this study is based on RSS, which requires the estimation of the 

received power from the various transmitters. Hence, to estimate the received from the 
ith transmitter to the jth receiver, 3.9 can be modified as: 

Pr−i,j = (Hlos(0)i,j + Hnlos(0)i,j )Pt,i (3.12) 

where Pt,i is the average transmitted optical power of the respective LED. 

3.2.1 Noise 

The VLP system is affected by thermal and shot noises, which are generally modelled 
as AWGN [17]. The background light and the photo-current generated by the desired 
signal is known as the shot noise and its variance is calculated as [17]: 

ω2 = 2qIbgI2B + 2qRp (3.13)shot,j Pr−i,j B 

where Ibg represents the background current, I2 is a noise bandwidth factor of the 
current, B represents the bandwidth, q is the electronic charge and Rp is the receiver 
responsivity. The thermal noise that arises from the amplifier at the receiver is given 
as [17]: 

8πkTk 16π2kTkΓ 
ω2 = ηAI2B

2 + η2A2I3B
3 (3.14)thermal,j G gm 

where k represents the Boltzmann’s constant, Tk, G and η represent absolute tem-
perature, open-loop gain and fixed capacitance of the PD. gm and Γ represent FET 
trans-conductance and FET channel noise factor, respectively. In VLP, the value of Ibg 

differs across different noise environments and are provided in table 3.1 [92, 93]. The 

http:2qRp(3.13
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This item has been removed due to 3rd Party Copyright. The unabridged version of the 
thesis can be found in the Lanchester Library, Coventry University.

Figure 3.3: Outdoor localisation model for VLP 

Table 3.1: Noise Parameters 

Ibg(A) Noise environment 
5100µ 
1000µ 
190µ 
740µ 
58µ 
40µ 

Direct sunlight without optical filter 
Direct sunlight with an optical filter 

Indirect sunlight with an optical filter 
Indirect sunlight without optical filter 

Incandescent light and fluorescent light with an optical filter 
Fluorescent without optical filter 
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Table 3.2: Simulation Parameters 

Parameter Symbol Value 
Boltzmann’s 

Electronic charge 
Absolute temperature 

Open-loop voltage gain 
Noise bandwidth factor 
FET trans-conductance 

FET channel noise factor 
Fixed capacitance of the PD 

k 
q 
Tk 

G 
I2 

gm 

Γ 
η 

1.38 × 10−23(J/K) 
1.6 × 10−19(C) 

300(K) 
10 

0.562 
30 (ms) 

1.5 
112(pF/cm2) 

list of the values commonly used in the noise model parameters are shown in Table 
3.2 [93]. 

Finally, the average SNR given as SNR can be calculated as: 

M NXX 
, 

i=1 j=1 
MN ω2 + ω2 

shot,j thermal,j 

)21 (Pr−i,j Rp (3.15)SNR = 

3.2.2 Fog Model 
Among the various atmospheric conditions that cause signal attenuation, fog is consid-
ered to contribute the most severe attenuation [94]. The atmospheric attenuation due 
to fog is related to the visibility V and wavelength λ. Using the empirical approach, 
the relationship between V and the fog attenuation given by Kruse model [17] is: 

10log10Tth �−w 
V (km) = 

� λ (3.16)
βλ λ0 

where βλ is the atmospheric attenuation, Tth is 2% visual threshold, w is the particle size 
distribution coefficient and λ0 is the solar band maximum spectrum, where λ0 = 550 
nm in this study. The fog attenuation is estimated using Kims model from the w value 
and visible - NIR wavelengths, which is a function and V and is defined as [94]: ⎧ ⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎩ 

1.6 for V > 50km 

1.3 for 6 < V < 50km 

w = 0.16V + 0.34 for 1 < V < 6km (3.17) 
V − 0.5 for 0.5 < V < 1km 

0 for V < 0.5km 

Table 3.3 shows the visibility range under different weather conditions [17]. 
The atmospheric attenuation given by Beer-Lambert law as [95]: 
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Table 3.3: Weather conditions and their visibility range values [94]. 

Weather condition Visibility range (m) 
Dense fog 
Thick fog 

Moderate fog 
Light fog 

Thin fog/heavy rain 
Haze/medium rain 

Clear/drizzle 
Very clear 

< 50 
200 
500 

770 − 1000 
1900 − 2000 
2800 − 40000 
18000 − 20000 
23000 − 50000 

βλ = 
ln I0 

I 

d 
[km−1] (3.18) 

where I0[W.m−2] is the optical intensity at zero distance (d = 0), I is the optical 
intensity at distance d. 

3.3 Machine Learning Positioning algorithm 

The novelty of this work is the combination of ML algorithms with receiver diversity 
and a realistic channel model to enhance positioning accuracy. The most prominent 
algorithm is MLP-ANN [56, 57, 96] which is examined at the first instance in this 
thesis. Thereafter, a variety of ML algorithms are considered to see their impact on 
performance. Hence in this section, the proposed ML algorithms are explained. 

3.3.1 Computation of a neural network 

ANNs are inspired from biological brains and consist of an arbitrary number of nodes, 
each representing a biological neuron. There is an arbitrary input and output data 
stream for each node. These can be considered as the neural fibre of the neural network. 
There is an activation function per node that enumerates a new value to be transmitted 
to adjacent neurons. This is similar to the electric transmission in the brain [97]. The 
node consists of an integration function that will produce a single value from the 
number of input values. This is fed to the activation function. 

The common non-linear activation functions are Logistic Sigmoid and hyperbolic 
tangent activation function, also known as Log-sig or Sigmoid and Tan-sig or Tanh, 
respectively. As it can be seen in Figure 3.4, Logistic Sigmoid works on the probability 
of output being between 0 and 1, hyperbolic tangent operates between −1 and 1. 
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Figure 3.4: Hyperbolic tangent v/s Logistic Sigmoid [97]. 

3.3.2 Feed-forward neural networks 

In a feed-forward neural network, information is considered to move in only one direc-
tion starting from the input to the output, see Fig 3.5. This interprets that in each 
training iteration, the activation signal will always progress and never revisit nodes 
that they have encountered before [98]. Moreover, each training data point is treated 
independently of other training data points. There are three types of feed-forward 
neural network namely single layer perceptron (SLP), MLP and ”other feed-forward 
neural network”. A SLP consists of a single input and output layer. Due to its single-
layer structure, a SLP is only capable of learning linear problems. A MLP consists of 
one or more hidden layers between the input and the output layers. Unlike SLP, MLP 
can be used to solve non-linear problems. However, the weight-update procedure is 
more complicated. An effective way to solve this issue is by using a back-propagation 
algorithm which is detailed in the following section 3.3.3. Other feed-forward neural 
networks include CNN, RBFN, RNN, LSTM and GRU. These networks vary in the 
structure where some nodes with (with no children) are the designated outputs and 
some nodes (with no parents) are the designated inputs. 
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Figure 3.5: MLP-ANN with one hidden layer [85]. 

3.3.3 Artificial Neural Network (ANN) 

In ML, propagation is widely used to train a feed-forward neural network. Unlike other 
naive fitting techniques in a neural network with direct computation of the gradient 
for each weight, back-propagation in ML efficiently evaluates the gradient of the loss 
function to the weights of the network for a single input-output example [97]. This 
makes it possible to employ gradient methods or variants, such as stochastic gradient 
descent efficiently, for training MLPs. In this work, the Levenberg-Marquardt super-
vised training algorithm is adopted to train a feed-forward back-propagation network. 
This algorithm requires less training time but more memory. Once the generalisa-
tion stops improving, the training stops automatically as indicated by an increase in 
the mean squared error (MSE) of the validation samples. This second-order training 
method has speed similar to the quasi-Newton methods, without the need to solve the 
Hessian matrix. In a typical feed-forward network where the performance function en-
tails the form of a sum of squares, the Hessian matrix denoted as H can be calculated 
as [98]: 

H = JT J (3.19) 
where T represents transpose, the gradient gr is 

gr = JT e (3.20) 
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In (3.19) and (3.20), J represents the Jacobian matrix. This holds the weights and the 
biases for the first error derivatives. e represents the vector of the network errors, hence, 
the Jacobian matrix can be computed. Thus, the Levenberg-Marquardt algorithm 
(Xk+1) can be calculated as follows: 

Xk+1 = Xk − [JT J + µI]−1JT e (3.21) 

where µ is a scalar close to zero and is a Newton-like update method that approximates 
the Hessian matrix. When µ attains a large magnitude, it becomes gradient descent 
with a small step size. The aim is to shift towards Newton’s method quickly as it is 
more accurate and faster to converge to a minimum error. Hence, after each successful 
step, µ decreases and otherwise only increases when a tentative step increases the 
performance function. 

A common issue in estimating the weights in a network is the over fitting of the neu-
ral network (discussed later in this section). The Bayesian regularisation approach is 
proposed in [99] to solve this issue. This algorithm (Bayesian regularisation) requires 
less memory but more time as compared to Levenberg-Marquardt algorithm. How-
ever, this can result in a better generalisation for noisy, small or difficult data sets. 
The training stops on adaptive weight regularization. This is when there in no longer 
an improve in generalisation. Therefore this technique was also considered in this the-
sis. The approach of Bayesian regularization occurs within the Levenberg-Marquardt 
algorithm. The Jacobian matrix (jX) of the performance is calculated using back-
propagation with respect to the bias and weight and bias variables x. Hence each 
variable is adjusted as [99]: 

J = jX.jX (3.22) 
je = jX.E (3.23) 

dX = −(J + I.µ)/je (3.24) 

3.3.4 Simple Recurrent Neural Network (sRNN) 

RNN differ from the MLP by their ability to learn relationships within sequences. 
They have feedback loops, which helps in connecting relationships learnt in the past. 
The connections are sometimes called memory. Such information learnt within the 
sequential dimension of the data are stored within the hidden state of the RNN which 
extends to the defined number of time steps and are mapped forward and continuously 
to the output. The unrolled architecture of the RNN is presented in Figure 3.6. The 
equation governing the operation of the sRNN are: 

ht = tanh(Uhht−1 + Wxxt + bh) (3.25) 

yt = σ(W0ht + bo) (3.26) 
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Figure 3.6: Unrolled RNN architecture [90]. 

where yt is the output state, tanh is the hyperbolic tangent function, Uh is the hidden 
weight matrix, xt is the input state, bh is the hidden bias vector, bo is the output bias 
vector, ht−1 is the previous state, Wx is the input matrix and W0 is the output weight 
matrix. The detailed operation of the sRNN is given in [90, 100]. 

3.3.5 Long Short-Term Memory (LSTM) neural network 

LSTM’s are a variant of the RNN. They were created to address the long-term de-
pendency problems of the sRNN. Through the use of gated architectures: input gate, 
forget gate and output gate, LSTM can recall information from long periods of time. 
The cell structure of LSTM is presented in Figure 3.7. The gated operations of the 
LSTM are shown by the following equations: 

forget gate : ft = σ(Wf xt + Uf ht−1 + bf ) (3.27) 

input gate : it = σ(Wixt + Uiht−1 + bi) (3.28) 
current memory state : cbt = tanh(Wcxt + Ucht−1 + bc) (3.29) 

cell state : ct = ft ∗ ct−1 + it ∗ cbt (3.30) 
output gate : ot = σ(Woxt + Uoht−1 + bl) (3.31) 

final memory : ht = ot ∗ tanh(ct) (3.32) 
where ht−1 is the previous state and ∗ is the Hadamard product. Wi, Wf ,Wc and 
Wo are the weight matrices of the input gate, forget gate, current memory state and 
output gate respectively, Ui, Uf , Uc and Uo are the hidden weight matrices of the 
input gate, forget gate, current memory state and output gate respectively, and bi, bf , 
bc and bl are the bias of the input gate, forget gate, current memory state and output 
gate respectively. 
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Figure 3.7: LSTM cell structure [90]. 

3.3.6 Gated Recurrent Unit (GRU) neural network 

Cho et al in [101], introduced the GRU to address the vanishing gradient problem of 
the RNN giving it the ability to learn long term dependencies. Just like the LSTM, 
the GRU cellular operation is characterised by gated operations with its cell structure 
shown in Figure 3.8. However, the GRU has its hidden state and cell state merged to 
form a more computationally efficient model. The operations of the GRU are governed 
by the following equations: 

update gate : zt = σ(Wzxt + Uzht−1 + bz) (3.33) 

reset gate : rt = σ(Wrxt + Urht−1 + br) (3.34) 

current memory state : hbt = tanh(Whxt + rt ∗ Uhht−1 + bm) (3.35) 

final memory : ht = zt ∗ ht−1 + (1 − zt) ∗ hbt (3.36) 
where Wh, Wr and Wz are the weight matrices of the current memory state, reset 
gate and update gate respectively, Uh, Ur and Uz are the hidden weight matrices of 
the current memory state, reset gate and update gate respectively, and bm, br and bz 

are the bias of the current memory state, reset gate and update gate, respectively. 

3.3.7 Over-fitting and under-fitting neural networks 

A neural network is said to be over-fitted when it has either too many layers and nodes 
or when a data set is presented to the network too many times. This results in tiny 
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Figure 3.8: Cell structure of GRU [90]. 

training error and medium-large testing error. However, this can be spotted by plotting 
the test and training data errors. A graphical presentation is seen in Figure 3.9, the 
optimum number of iterations is the inflexion point, also known as the early stopping 
point. At the inflexion point, the network exhibits a god compromise between small 
testing as well as training errors. A neural network is under-fitted when the training 
does not reach the inflection point. This can be caused by low number of iterations, 
which result in a large training and testing errors. Hence, it is important to monitor 
the number of iterations, also known as epochs. 

In summary, a degradation in descent is observed until the testing error stops 
decreasing and starts to increase. Thereafter, the training is stopped. This process is 
known as early stopping and is widely used in NN training. 

3.4 Cayley Menger Determinant 

Trilateration has been selected as a benchmark for VLP based on its effectiveness 
and wide use, see Chapter 2.3.5. A recent study in [15] uses trilateration based on 
CMD for positioning. The aforementioned work achieves high accuracy using LEDs 
and PDs without the need for extra hardware hence making it a better model for 
comparison. CMD is a trilateration based algorithm that extends the cost function 
for positioning using RSS as described in [15]. This enables 3-D positioning with the 
receivers knowledge of its height. Figure 3.10 illustrates the transmitter position labeled 
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Figure 3.9: Illustration of error from training and test sets with increasing 
number of iterations [85]. 

as r1, r2 and r3, with r4 being the unknown receiver location. Only three transmitter 
signals are required for the CMD algorithm. Hence, the three strongest signals are 
selected for further calculations. 

The Cayley–Menger bi-determinant of two sequences of n points [r1, r2, . . . , rn] and 
[q1, q2, . . . , qn] is given as [102]: 

−1 
D(r1, . . . , rn, q1, . . . , qn) = 2( )n 

2 

����������� 

0 1 1 1 1 
1 D(r1, q1) D(r1, q2) . . . D(r1, qn) 
1 D(r2, q1) D(r2, q2) . . . D(r2, qn) 
... ... ... . . . ... 
1 D(rn, qn) D(rn, qn) . . . D(rn, qn) 

����������� 
(3.37) 

where D(ri, qj ) is the squared distance between point ri and qj . The CMD occurs when 
there are two identical sequences of point i.e. ri = qj , then D(r1, . . . , rn, q1, . . . , qn) is 
given as D(r1, . . . , rn). Hence, 3.37 can be written as: 
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Figure 3.10: The schematic diagram for the CMD trilateration problem 
and its parameters. 

1 
D(r1, r2, r3, r4) = 

8 

���������� 
0 1 1 1 1 
1 0 D(r1, r2) D(r1, r3) D(r1, r4) 
1 D(r1, r2) 0 D(r2, r3) D(r2, r4) 
1 D(r1, r3) D(r2, r3) 0 D(r3, r4) 
1 D(r1, r4) D(r2, r4) D(r3, r4) 0 

���������� 
(3.38) 

where r4 is the unknown receiver location, D(r4, r1), D(r4, r2) and D(r4, r3) are the 
calculated distances db1, b
position r4 can be calculated using [103]: 

r4 = r1 + k1v1 + k2v2 ± k3(v1v2) (3.39) 

where v1 = r2 − r1, v2 = r3 − r1 and ± accounts for two mirror symmetric locations. 
However, given that the receiver cannot be above the ceiling, one of the possibilities is 
ignored. Thus, k1, k2 and k3 are given by: 

d2 and db3. With transmitter coordinates (r1, r2, r3), the receiver 
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p
D(r1, r2, r3; r1, r3, r4) D(r1, r2, r3; r1, r2, r4) D(r1, r2, r3, p4)

k1 = − , k2 = , k3 = 
D(r1, r2, r3) D(r1, r2, r3) D(r1, r2, r3) 

(3.40) 

The predicted receiver coordinates (b y, bx, b z) are then revealed as the CMD output for a 
given change in height δh. The most probable 3-D position of the receiver is the found 
at a minimum cost function c(h) given as: X p

c(h) = 
1 

N

= 1[ dbi(h) − (xb(h) − xi)2 + (yb(h) − yi)2 + (zb(h) − zi)2]
2 (3.41)

N 
i 

3.5 Performance criteria 

In this thesis, five criteria to analyse the results of the proposed algorithms are adopted. 
These are RMS error, CDF and confidence interval (CI), percentage difference and 
percentage increase. The average RMS error evaluates the mean positioning error of 
all the sampled points. CDF analyses the distribution of error across the sampled 
points. CI computes the RMS value between the range of s = 0 to s = 100%, where 
s is the confidence level. Percentage difference measures two differences between two 
values and percentage increase measures the increase (%) of performance from the 
previous one. The RMS error is defined as: p

RMS error = (x − xb)2 + (y − yb)2 + (z − zb)2 (3.42) 

where (x, y, z) is the actual receiver position and (b y, bx, b z) is the estimated receiver 
position. In statistics and theory, CDF F (x) is the likelihood that the value will be 
less than the threshold, which is given as: 

FX (x) = P (X ≤ x) (3.43) 

where FX (x) is the function of x, X is the real value of the variable and P is the 
probability that X will have a value less than or greater than x. This is used in 
examining the distribution of data. Furthermore, an overlay can be made in a plot 
to analyse two distribution data. The confidence interval is the probability that a 
population parameter will fall between a set of values for a certain proportion of times. 
The CI criterion will be used in this thesis to determine the RMS error values attained 
95% of the time. The CI of the error is given by: 

s 
CI = x̄± w √ (3.44) 

n 

where x̄ is the sample mean, s is the sample standard deviation and n is the sample 
size. The percentage difference between two RMS error values can be calculated as: 

|∆RMSerror|
Percentage Difference(%) = ∑ × 100 (3.45)

RMSerror [ ]
2 
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The percentage increase between two RMS error values can be calculated as: 

RMSerror2 − RMSerror1
P ercentage increase(%) = × 100 (3.46)

RMSerror1 

Finally, the computational complexity of the neural network assessed by the number 
of multiplications each network has is given by: 

O = On × Oe(L1 × L2 + L2 × L3) (3.47) 

where On and Oe represent the number of training samples and epoch, respectively. 
L1, L2 and L1 represents the first, second, and third hidden layer respectively. 

3.6 Summary 

This chapter introduced the generic system model for VLP that includes the channel 
model, noise model, fog model and positioning algorithms used for both indoor and 
outdoor purposes. For passive VLP, ray-tracing is used to model the channel. The 
positioning algorithms used in this thesis are ANN, RNN, GRU, LSTM and CMD. 
These algorithms are detailed for the application of VLP in this chapter. Finally, the 
method of analysing the results is shown as RMS error, CDF, CI, Percentage difference 
and Percentage increase. 



Chapter 4 

Indoor 3-D Visible Light 
Positioning 

4.1 Introduction 

This chapter presents a novel indoor 3-D VLP system using a realistic optical wireless 
channel model with receiver diversity. Recently, there has been an increase in demand 
for LBSss for indoor and underground parking, autonomous robot control, shopping 
centres and health applications. For several years, GPS has been one of the most suc-
cessful means of tracking objects in outdoor environment. However, GPS signals suffer 
significant attenuation and multipath fading in urban cities and indoor environment, 
which results in large positioning errors [25]. There are several RF-based indoor posi-
tioning techniques such as Wi-Fi, Bluetooth, RFID but exhibit certain limitations as 
discussed in Chapter 1. The localisation accuracy of an RF system is in the decimetre 
range due to multipath propagation and interferences [27]. However, applications such 
as autonomous robots and drones require accuracy in the cm to mm range. In addition 
to conventional 2-D positioning, indoor applications such as indoor drone require 3-D 
positioning. VLP has shown to offer the high accuracy required by these applications 
and hence has been an active research topic for indoor positioning [18]. The suitabil-
ity of VLP lies in its precision, ubiquity and cost-effectiveness. VLP is also free from 
electromagnetic interference but may suffer from ambient light interference. 

The remainder of this chapter is organised as follows: Section 4.2 describe the 
related work. Section 4.3 present the indoor VLP system model. This modelling 
approach is then exploited in Section 4.4 to provide the data for the ANN design. 
Improvement to the baseline approach is then presented in Section 4.5, where the 
importance of receiver diversity, separation and FOV are demonstrated. The approach 
is then applied to 3D VLP in Section 4.6, where the impact of the channel model 
realism, in terms of LOS and NLOS link, on the result accuracy is demonstrated. The 
approach developed for 3-D VLP is then applied to 2-D VLP in Section 4.7. Following 
a critical evaluation of the VLP using ANN in Section 4.8, the best approach is applied 
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to Dark VLP, with CMD used as a benchmark in Section 4.9. The chapter summary 
is then provided in Section 4.10. 

4.2 Related Work 

Most works on indoor VLP focused on 2-D localisation assuming a fixed receiver height 
which ignores the position error introduced by variation in the height [57,104]. Limited 
work has been reported in the application of VLP in 3-D. An AOA approach to 3-D 
VLP was investigated using an aperture-based receiver in [105]. Using multiple posi-
tioning algorithms such as triangulation, maximum likelihood and AOA, the system 
yielded an average RMS error of 0.1 m in a room of 5 m×5 m×2 m. An accelerometer 
in combination with LED was studied in [106] for 3-D positioning. The aforementioned 
work required the received power to be measured twice at different receiver orientations 
and a smartphone accelerometer was used to determine the receiver’s orientation. Such 
work relies on the accuracy of the accelerometer, which is less accurate if the target 
device is affected by a significant amount of movement [107]. A hybrid indoor localisa-
tion method was proposed in [104] using AOA and RSS with multiple optical receivers. 
The study demonstrated that an RMS error of less than 0.06 m was achievable for a 
2 m× 2 m× 2.5 m room. However, the proposed system required information on the 
angles of the receiver for the 3-D positioning. In [108], a 3-D VLP was proposed based 
on fingerprinting using K-means and random forest. However, the process of using the 
fingerprinting technique is considered labour intensive and time-consuming with re-
spect to the size of the room [18]. A recent study in [109] considered the use of receiver 
tilt to establish a 3-D VLP using RSS. The mathematical analysis demonstrated that a 
RMS error of 0.0795 m was achievable for a 2.5 m× 2.5 m× 3 m room. Note that most 
of the aforementioned studies did not consider the effect of reflection on the accuracy 
of the positioning. A recent study in [88] considered the effect of NLOS link on VLP 
using geometric relationships. The simulated and experimental results demonstrated 
that the positioning error increased linearly with respect to the reflection coefficient 
of the walls. It was shown that by using irregular LED coordinated, resulting in a 
non-symmetric transmitter matrix, RMS errors up to 0.06843 m was achievable in a 
room of 6 m×6 m ×3 m. The LED arrangement does, however, reduce the practicality 
of the solution for real-life applications. 

The adaptability and self-learning capability of AI has recently led to the develop-
ment of several 2-D and 3-D positioning applications using AI [46, 53, 54, 57]. Among 
them, the work in [57] reported the best performance with RMS error of 4 mm. How-
ever, the work required a large transmitter and receiver array with 4 × 4 LEDs grid at 
the ceiling with 1 m spacing and a 19 × 19 receiver grid. Three ANNs (one for each 
dimension), each with 16 nodes in the input layer and 19 nodes in the output layer, 
were required to determine the 3-D position. This made the approach complex as well 
as impractical due to the large ANN structure and the requirement for a large number 
of transmitters and receivers arrays. A recent study in [58] demonstrated the feasibility 
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of 3-D VLP using a two-layer ANN. It was assumed that the room was divided into 
multiple trilateral positioning cells and only considered receivers below 0.8 m in a room 
with a ceiling height of 2.7 m hence only containing 30% of the room. In addition, the 
effect of multipath propagation was not considered in the study as well as most of the 
study in the literature. 

Therefore, this chapter considers 2-D and 3-D VLP using a realistic channel model 
that includes multipath reflections. An optimised two layers ANN is designed for po-
sitioning. The same approach is then adapted to dark VLP, with CMD used as a 
benchmark as it provides high performance without extra hardware or power require-
ment. All approaches presented in this chapter are also critically evaluated against 
solutions presented in the literature. 

4.3 Indoor VLP System Model 
For indoor application, a typical indoor room with M (where M > 1) LED luminaires 
and N ≥ 1 PD based receiver is considered as shown in Figure 3.2. The transmitters 
transmit FDM analog signals encoded with the unique position information as outlined 
in section 2.4. The VLP in this study is based on RSS, which requires the estimation 
of the received power from the various transmitters. The received power Pr,i from 
the ith transmitter to the jth receiver is given by 3.9. The transmitters are located 
at (1.25, 1.25) m, (3.75, 1.25) m, (1.25, 3.75) m and (3.75, 1.25) m on the ceiling (see 
Figure 4.1) to provide uniform illumination [17]. The simulations are all carried out 
on a laptop computer (Intel(R) Core(TM) i7-6820HQ CPU of 2.70 GHz clock rate, 16 
GB RAM that runs 64-bit Windows 10 operating system). 

When two receivers are placed in the middle of the room (2.5, 2.5) m with a receiver 
spacing of 0.02 m, the received power and SNR values are presented in Figure 4.2. 
This shows a uniform received power and SNR across the two receivers from the four 
transmitters. However, this is not the case in all parts of the room as the distance 
between the transmitters and receivers changes. Figure 4.3 shows the received power 
distribution across the room with a peak value of 2 dB at the centre of the room 
and as low as −2 dB at the edges. These calculated received power values across the 
receiver(s) are fed into the NN as shown in the following section. This allows the ANN 
to exploit the differences in received power, compared to the expected received power 
in ideal conditions, to identify the location of the receivers. Note that the room is 
assumed to be empty without furniture. 

4.4 ANN Design for Indoor Positioning 

This section describes the proposed supervised feed-forward back propagation MLP 
ANN for 3-D localisation, as shown in Figure 4.4. This illustrates that the transmitted 
signal from i LEDs through the free space channel is received by j PDs. The study 
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Figure 4.1: 2-D View of Tx and Rx 
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Figure 4.2: Transmitter plot a) received power and b) SNR 

assumes that each transmitter transmits TDM or FDM as outlined in section 2.4. 
This is crucial to enable the receiver to distinguish the signals from each transmitter. 
The received signal from the transmitters (in this case, four transmitters) at various 
receivers given by 3.12 are first de-multiplexed and then fed to an ANN. 
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Figure 4.3: Received power across the room 

4.4.1 ANN setup and tuning 

This section describes the determination of the most appropriate network structure 
as well as the selection of hyper-parameters (ANN parameters) for the proposed su-
pervised feed-forward back propagation MLP ANN for 3-D localisation. MLP-ANN 
with an input layer, a range of hidden layer(s) and an output layer is considered. The 
Levenberg-Marquardt algorithm is adopted to determine the weights of the network. 
The number of neurons in the input layer is equal to M × N . The number of neurons 
in the hidden layer is varied from 8 to 40 (i.e. 5M × N). A maximum of 5M × N 
nodes are considered to avoid the chances of over-fitting. The estimated RMS error for 
the various networks investigated is then calculated to evaluate the most appropriate 
network. The output layer has three neurons corresponding to the three coordinates 
to be estimated. A total of 60, 025 random 3-D positions within the room are sampled, 
1500 randomly selected points are chosen for tuning the ANN with 70% of these points 
for training, 15% used for validation and 15% for testing. 

The following subsection describes the determination of appropriate hyper-parameters 
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Figure 4.4: Schematic of proposed VLP using ANN. 

to improve the network performance. 

Hidden layers and nodes 

By starting with a single hidden layer and N = 2 receivers, the number of layers and 
nodes are increased by a factor of one. Each layer is set to have an equal amount of 
neurons, as seen in Table 4.1. It is seen from the table that the ANN performs better 
with an increase in the number of nodes using a single hidden layer. However, when 
multiple layers are used, this behaviour changes. From 2 to 5 hidden layers, the best 

Table 4.1: RMS error (m) based on nodes and hidden layers 

RMS error (m) 
Number of hidden layers/Nodes 8 16 24 32 40 Time (s) 

1 
2 
3 
4 
5 

0.4219 
0.1292 
0.0968 
0.0858 
0.0757 

0.1741 
0.0632 
0.0657 
0.0652 
0.0651 

0.1128 
0.0680 
0.0675 
0.0694 
0.0756 

0.0858 
0.0740 
0.0891 
0.0824 
0.0912 

0.0831 
0.0814 
0.0775 
0.0907 
0.1022 

1.7 
1.1 
3.9 
7.2 
11.7 

performance is achieved at 16 nodes (2M × N) in the hidden layer. The performance 
of the system deteriorates for nodes greater than 16 due to over-fitting. The best 
performance obtained when 2 hidden layers are used. A computational time analysis 
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demonstrated that the shortest computational time was 1.1s for a network comprising 
2 layers with 16 nodes. Hence, such a network was selected for VLP. 

Activation function 

Different combinations of activation functions are investigated to determine their im-
pact on the overall performance. It was found that the log-sigmoid transfer function 
in both hidden layers yielded the best result. However, the difference in performance 
between the combinations is not significant (i.e. < 5%). 

Table 4.2: RMS error at different activation function combination 

RMS error (m) 

Log-sig 
Tan-sig 

Log-sig 
0.0651 
0.0663 

Tan-sig 
0.0678 
0.0654 

ANN performance optimisation 

The performance of the proposed ANN is analysed with respect to MSE over 100 
epochs as shown in Figure 4.5. The ANN was only able to achieve an MSE of 10−3 

over 100 epochs. A drop in MSE is noticed from 1 − 70 epochs. This performance 
then slightly improves until 100 epochs are reached. Hence, 100 epochs were selected 
as a good compromise between simulation time (0.8s), training accuracy and risk of 
over-fitting. 

The impact of the number of training points is investigated. The RMS error of the 
VLP system is analysed when the ANN is trained using points ranging from 1 to 1500 
with a step size of 50. As seen in Figure 4.6, the accuracy of the system visibly improves 
from 1 to 250 points. Thereafter, the performance does not significantly improve, with 
the percentage difference being < 5% from 500 to 1500. 

Hence, a network with eight input nodes (M × N), two hidden layers with sixteen 
nodes (2(M × N)) in each hidden layer and log-sigmoid transfer function, and three 
nodes in the output layer is used for indoor VLP. Having identified the most appropriate 
tuning for the ANN hyper-parameter, the next section focuses on the impact of the 
VLP system parameters. 
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Figure 4.5: MSE of ANN training against the number of training epochs. 

4.5 System optimisation 

This section details the VLP parameters optimisation process that was used to set 
up the proposed positioning system in a typical home/office/industrial environment. 
This ranges from the number of receivers (receiver diversity), receiver separation and 
receiver field of view. 

4.5.1 Receiver diversity 

A CDF analysis for 3-D VLP using the proposed ANN is performed to determine the 
impact of receiver diversity. Diversity orders of 1 to 4 for the LOS link are consid-
ered. The receivers are located in a rectangular grid with a separation of 0.02 m. As 
demonstrated in Figure 4.7, there is a significant improvement in VLP using receiver 
diversity. For example, the RMS error using a single receiver is 0.037 m and 0.57 m at 
0.95 CDF for 2-D and 3-D, respectively. This value reduces to less than 0.033 m and 
0.28 m for 2-D and 3-D, respectively, when two or more receivers are used. It is noted 
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Figure 4.6: ANN training performance with respect to number of points 
used for training. 

that increasing the number of receivers beyond two does not improve the performance 
significantly. For example, the RMS error values at 0.95 CDF (and average RMS er-
rors) are 0.22(0.0124) m, 0.022(0.0122) m and 0.21(0.0136) m for diversity order of 
2, 3 and 4, respectively. There is a marginal error improvement when the number of 
receivers is increased from N=1 to N=2. The performance of the system improves with 
an increase in the number of receivers, however, at the cost of longer training time 
and ANN size. Hence, only two receivers are considered in the rest of the studies as 
this provides the best trade-off between complexity, computational requirements and 
system performance. Note that from 3.47 and Figure 4.8 it is that the complexity 
of the neural network increases linearly with the number of receivers. This increases 
the input vector, which in turn increases the number of weights in the hidden layers, 
respectively. Hence, it is deduced that the more the number of receiver, the more com-
putationally complex the NN becomes, assuming the number of transmitters is kept 
constant. 

4.5.2 Receiver separation 

In this section, the separation between the PDs is investigated as it plays a vital 
role in VLP (i.e. the distance between two receivers can also affect the positioning 
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Figure 4.7: RMS error versus the CDF for 3-D VLP with diversity order 
of N = [1, 4] receivers for LOS link. 

accuracy). Both functionality and practicality of the system are considered. Hence, 
the separation between the receiver elements for the diversity order of two is optimised. 
Due to the size of the PD, a minimum distance of 0.02 m is considered. A maximum 
receiver spacing of 0.2 m is considered to maintain a safe PD separation that can be 
applied on mobile phones and autonomous drones. Figure 4.9 shows the positioning 
RMS error against the CDF for the various receiver separations. For example, at 0.95 
CDF, the 3-D position accuracy improves from 0.11 m to 0.10 m when the receiver 
separation is increased from 0.02 m to 0.05 m, respectively. Increasing the receiver 
separation beyond 0.05 m provides some improvements. This illustrates that increasing 
the receiver separation improves the accuracy of the model. The average RMS errors 
for the receiver separation of 0.02m, 0.05 m, 0.1 m and 0.2 m are 0.012 m, 0.012 m, 
0.011 m and 0.01 m, respectively. The error is seen to reduce with respect to increasing 
the receiver separation because the receivers take advantage of a very low probability 
of simultaneous dropouts with larger distances between them. Hence, in the following 
discussion, only the diversity receiver with a separation of 0.2 m is considered. 
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Figure 4.8: Computational complexity as a function of receiver. 

4.5.3 Receiver FOV 

The performance of 3-D VLP also depends on the FOV of the receiver. Determining 
the optimum FOV helps to ensure that the position of the receiver will be determined 
effectively to minimise the occurrence of dead-zone [110]. Figure 4.10 shows the CDF 
of 3-D VLP against the receiver FOV of 40◦ to 90◦. To differentiate the performance 
improvement due to FOV from signal strength gain (i.e an increase in SNR), the opti-
cal gain at all the FOVs are considered unity. Note that the optical gain and FOV are 
related and the maximum gain for a given FOV is governed by Etendue [111]. Figure 
4.10 shows that increasing the receivers FOV from 40◦ to 60◦ offers a significant per-
formance improvement. However, FOVs beyond 60◦ degrade the performance. Though 
increasing the FOV reduces the dead-zone area in the room, the receiver is prone to 
receiving higher noise, thus reducing the SNR and performance of the system (see sec-
tion 4.9 on the effect of SNR in VLP). Hence, in the rest of the study, a receiver FOV 
of 60◦ is selected as this provides near the optimum performance. 
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Figure 4.9: RMS error versus the CDF for 3-D VLP with diversity order 
of two and different receiver separation distance. 

4.6 3-D VLP using ANN 

The performance of the proposed 3-D VLP system using receiver diversity is evaluated 
using the parameters identified as being the most suitable. This section investigates 
the performance of the proposed ANN structure with and without the nLOS link in 
VLP. 

4.6.1 Positioning using LOS link 

Using the optimum parameters obtained for the 3-D VLP ANN, the performance of 
3-D VLP using receiver diversity and ANN is simulated considering the LOS link and 
results are shown in Figure 4.11. Figure 4.11(a) shows the positioning errors in x, y 
and z-axis separately. It can be observed that each axis contributes almost equally 
to the overall error. Figure 4.11(b) shows the CDF of the estimation error at various 
height ranges, separated into the region of [0, 1] m, [1, 2] m and [2, 2.5] m. Below a 
2 m height, the average errors are found to be of similar magnitudes, equal to 0.0119 
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Figure 4.10: CDF of 3D VLP as a function of receiver FOV. 

m and 0.0091 m for [0, 1] m and [1, 2] m, respectively. However, the position error 
in the height range of 2 m to 2.5 m is higher than the height of less than 2 m with 
an average error of 0.0198 m. Figure 4.11 (c) to (e) shows the average RMS error 
distributions across the room over the height of [0, 1]m, [1, 2]m and [2, 2.5] m. There is 
an interesting pattern found in the error distribution. The highest position estimation 
error occurs across the diagonal where the signal strength from two transmitters to 
the receivers are identical. There is a higher estimation error at the edge of the room, 
and the highest error occurs at the corner of the room. Throughout the room, the 
estimation error is higher for heights above 2 m than it is for height below 2 m. At the 
height of 2 m, due to the limited divergence angle of the LEDs and limited FOV of the 
receiver, the received signal strength from one or more LEDs is very weak, leading to 
higher estimation error. To reduce the estimation error above this height, the number 
of transmitters needs to be increased. 

4.6.2 Positioning using LOS and nLOS link 

As mentioned in the previous section, the multipath propagation also affects the po-
sition estimation especially close to the wall where the reflected signal strength is at 
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(a) (b) 

(c) (d) 

(e) 

Figure 4.11: CDF versus RMS error for 3-D VLP using receiver diversity 
for a LOS link: (a) error across the three different axes, (b) error across 
various height (c) average RMS distribution across the room averaged over 
the height of 0 m to 1 m (d) average RMS distribution across the room 
averaged over the height of 1 m to 2 m and (e) average RMS distribution 
across the room averaged over the height of 2 m to 2.5 m 



65 CHAPTER 4. INDOOR 3-D VISIBLE LIGHT POSITIONING 

the highest. The performance of receiver diversity in VLP is evaluated considering 
a) LOS path only and b) LOS and nLOS propagation path for one and two receivers 
with the results presented in Figure 4.12. Figure 4.12 clearly shows that multipath 
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Figure 4.12: CDF of 3D LOS vs non-LOS 

propagation reduces the accuracy in the position estimation for a single receiver. The 
RMS error value at CDF of 0.95 increases from 0.037 m for a LOS link to 0.094 m for 
a nLOS, using a single receiver. However, diversity receiver significantly improves the 
performance for both LOS and nLOS links with an RMS error of 0.0198 m and 0.021 
m, respectively. Therefore, the diversity receiver scheme reduces the effect of NLOS 
by 77.7%. 

The RMS error is sampled at 2500 random locations in the room and is analysed 
using a histogram, as shown in Figure 4.13. The error pattern follows a gamma dis-
tribution. It is seen that the RMS error with the most occurrence (461) is 0.015 m. 
All the RMS error instances fall below 0.08 m. A CI analysis is done to determine the 
upper bounds of the RMS error at 95% CI in a 3-D environment. This analysis is done 
over 2500 random locations with 100 different data set collected. Given n is 100 and 
w is 95%, the CI plot is shown in Figure 4.22. It can be seen that the estimated value 
falls under 0.07 m and 0.0003 m. Few points on the boundaries are seen to go beyond 
0.1 m, with all points below 0.15 m. A combined standard deviation of 0.0072 m is 
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Figure 4.13: Histogram of RMS error across the room in 3-D VLP. 

noted over the hundred data sets. This shows that the results in both Figure 4.13 and 
Figure 4.14 follow the same pattern. 

4.7 2-D VLP using ANN 

In this section, the performance of the proposed system in a 2-D environment is dis-
cussed. 

The CDF of the RMS error for 2D VLP considering the LOS and non-LOS link 
using receiver diversity and ANN and receiver diversity is shown in Figure 4.15(a). 
There is a reduction in performance between the LOS and nLOS link for a single 
receiver with RMS error values of 0.033 m and 0.066 m, respectively at the CDF of 
0.95. The average errors for LOS and nLOS links with two receivers are 0.0103 m 
and 0.0133 m, respectively. This has a respective standard deviation of 0.0066 m and 
0.0085 m. The RMS error distributions in Figure 4.15(b) and (c) shows that receiver 
diversity reduces error close to the walls yielding to a lower average and RMS errors. 

4.8 Comparative Study 

A comparative study of the proposed technique is performed with other states of the 
art 3-D-VLP techniques. The findings are summarised in Table 4.3. Note that some 
of the work in the literature considered small room dimensions (e.g. [108], [58]), which 
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Figure 4.14: CI analysis over 100 positions across the room in 3-D VLP. 

tends to improve the accuracy. The best performance is achieved in [57]. However, such 
a solution may be challenging to deploy as it requires a large number of transmitters 
(16) and receivers (361). Most of the existing work does not include the nLOS link. 
However, as reported in [88], the inclusion of nLOS increases the RMS error up to 
0.06843 m. Therefore, whilst the work in [112] yielded an average RMS error of 0.01 
m, including nLOS link and a larger room volume would likely increase the stated 
error. By comparison, simulating the system using the identical condition to that 
presented in [112], results in an average RMS error of 0.007 m, compared to 0.01 m 
in [112]. Based on these results, the proposed solution is practical and offers the best 
3-D positioning results among the algorithms studied whilst accounting for LOS and 
nLOS. 

Having demonstrated the benefits of ANN-based VLP, the following section applies 
the approach to dark VLP where the LED lights appear to be ’OFF’ to the human 
eye [114, 115]. 
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(a) (b) 

(c) 

Figure 4.15: CDF versus RMS error for 2D VLP using ANN and receiver 
diversity: a) CDF of RMS error for LOS and non-LOS link with 1 and 2 
receivers. b) RMS error distribution for an nLOS link in a quarter of the 
room with 1 receiver and c) RMS error distribution for the nLOS link in a 
quarter of the room with 2 receivers. 
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Table 4.3: Comparative study of the proposed system with published work. 

Paper Method 
Channel 
model Transmitter Receiver 

Room 
dimen-
sion(m) 

RMS error 
(m) 

[57] 
[105] 
[108] 

[88] 

[54] 

[58] 

[113] 

[112] 

This 
work 

Three ANN 
AOA 
Fingerprinting 
Geometrical 
relationship 
Genetic 
algorithm 

2-layer ANN 

Trilateration 
Differential 
evolution 
algorithm 
ANN with 
receiver 
diversity 

LOS 
LOS 
LOS 

LOS+nLOS 

LOS 

LOS 

LOS 

LOS 

LOS+nLOS 

4 × 4 
4 
4 

4 

4 

4 

4 

4 

4 

19 × 19 
1 
1 

1 

1 

1 

1 

1 

2 

4 × 4 × 3 
5 × 5 × 2 
2 × 2 × 5 

6 × 6 × 3 

3 × 3 × 4 

0.9×1× 
0.4 
5 × 5 × 5 

4 × 4 × 3 

5 × 5 × 5 

0.0004 
0.1 
0.0445 

0.06843 

0.021 

0.009 

0.091 

0.01 

0.021 

4.9 Dark VLP 

In dark VLC or Darklight, the communication data rate is encoded into ultra-short 
signals imperceptible by human eyes. Darklight is mostly applicable where natural 
light illuminates the room, thus requiring no additional illumination during the day or 
late at night. It has been shown in [114, 115] that at duty cycle D of 6.25%, 92% of 
the participants (aged 22 to 60) perceived the LED to be ’OFF’ under indirect viewing 
conditions. Under direct viewing conditions, the value of D drops to 0.0071% with 
80% of the participants perceiving it to be ’OFF’. This thesis will therefore consider 
these two duty cycles as the best and worst-case scenarios. The application of Dark-
light is extended in [84] for positioning. The study proposed a TDOA approach to 
VLP, thereby locating devices in a 2-D environment. In a room of 6 × 6 × 3 m3, the 
model yielded an RMS error of 5 cm. The method used in the aforementioned study 
requires perfect synchronisation between the transmitters, hence making it difficult in 
a practical environment [18]. Furthermore, the effect of nLOS is ignored in the channel 
model. 

This section describes the proposed dark RSS-based VLP, a positioning technique 
that allows localisation when the LEDs emit very low luminance, which practically 
appears as ’OFF’ to human eyes. The use of RSS for positioning as compared to 
TDOA in the literature means the transmitters do not need to be synchronised. 

In this study, a dark room with no ambient noise is assumed. No windows and 
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furniture are also considered; hence any possible reflection originates from the walls. 
Each transmitter is assumed to transmit PWM signals to attain a really low transmitted 
power. 

The respective PWM signals (a(t)) used in this section are presented in Figure 
4.16 where Figure 4.16 (a) represents D = 0.0071% and Figure 4.16 (b) represents 
D = 6.25%. 

(a) (b) 

Figure 4.16: PWM signal with varying duty cycle of a) D = 0.0071% and 
b) D = 6.25%. 

First, CMD is used as a benchmark for dark RSS-based VLP. Thereafter, the opti-
mised ANN model presented in Section 4.4.1 is adopted for dark VLP using the same 
system architecture. 

4.9.1 2-D dark VLP 

CMD 

Assuming a fixed height of h = 0, VLP is studied. Figure 4.17 (a) shows the 2-D RMS 
error distribution across the room using receiver diversity at D = 6.25% using CMD. 

The model yields an average RMS error of 0.0943 m. Due to low SNR values at 
D = 0.007%, the CMD algorithm fails to yield any results. It has been found that for 
this algorithm to work, a minimum duty cycle of D = 0.17 is needed, resulting in an 
RMS error of 0.71 m. The corresponding RMS error distribution is shown in Figure 
4.17 (b). To improve system performance and chances of attaining positioning at low 
SNRs, ANN is introduced. 

ANN 

The performance of the ANN model for 2-D positioning was first compared to the CMD 
algorithm for D = 6.25%. Figure 4.18 shows the RMS error across the room for ANN-
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(a) (b) 

Figure 4.17: 2-D RMS error analysis across the room using CMD at a) 
D = 6.25% and b) D = 0.17%. 

based dark VLP. The ANN provide improve VLP with an average RMS error of 0.02 m. 
Furthermore, positioning errors in the corners of the room were significantly reduced, 
hence demonstrating the effectiveness of ANN to reduce multipath propagation in VLP. 

4.9.2 3-D dark VLP 

Increasing the dimensions to 3-D reduces the performance of both CMD and ANN 
positioning as shown in Figure 4.19 (b). At a duty cycle D = 0.0071%, the accuracy 
of the ANN model from 2-D to 3-D reduces to an average RMS error and RMS error 
at 0.95 CDF of 0.28 m and 0.57 m, respectively. At a duty cycle of 6.25%, the ANN 
model yielded an average RMS error and RMS error at 0.95 CDF of 0.06 m and 0.10 
m, respectively. At a similar duty cycle of 6.25%, the CMD model yielded an average 
RMS error and RMS error at 0.95 CDF of 0.194m to 0.34 m, respectively. From these 
results, it is understood that the performance of the system increases at higher duty 
cycles. Note that there is a 69% increase in performance between CMD and ANN. 
This thus makes ANN more viable for dark VLP. 

The effect of SNR on 3-D dark VLP is analysed to understand its relationship to 
duty cycle and performance. It can be seen in Figure 4.20 that increasing the SNR 
values reduces the RMS error. The system’s accuracy improves until an SNR value of 
35 dB is achieved. Thereafter, the gradient of the RMS error reduces with no significant 
increase per rising values of SNR with respect to D. The corresponding value of D at 
35 dB is D = 3%, which offers the best trade-off between duty cycle and performance. 
Hence at D = 3%, the system yields an RMS error of 0.064 m in a 3-D environment. 
Figure 4.20 reveals relationship between duty cycle and SNR, and their impact on RMS 
error. The dotted line show the dark VLP range, which correspond to a duty cycle 
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Figure 4.18: 2-D RMS error analysis across the room using ANN. 
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Figure 4.19: CDF of VLP using CMD and ANN in a) 2-D and b) 3-D. 
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between 0.0071% and 6.25%. Increasing the duty cycle increases the SNR from 9 dB 
to 41 dB and reduced the RMS error ranges from 0.1 m to 1.02 m. 
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Figure 4.20: Average SNR analysis at different duty cycle D. 

4.9.3 Analysis 

Using the optimum simulation parameters, the RMS error sampled at 2500 random 
locations is analysed using a histogram, as shown in Figure 4.21. The error pattern 
follows a gamma distribution. It is seen that the RMS error with the most occurrence 
(278) is 0.03 m. Only in 24 instances, the RMS error is seen to go beyond 0.1m with 
a single occurrence at 0.14 m. 

A CI analysis determines the upper bounds of the RMS error at 95% CI for D = 3%. 
This analysis is done over 2500 random locations with 100 different data set collected. 
Figure 4.22 shows the CI plot for n = 100 and w = 95%. It can be seen that the 
estimated value falls between 0.01 m and 0.08 m. Few points on the boundaries are 
seen to go beyond 0.1 m with a point above 0.15 m. A combined standard deviation 
of 0.0185 m is noted over the hundred data sets. This shows that the results in both 
Figure 4.21 and Figure 4.22 follow the same pattern even after 99 more simulations. 
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Figure 4.21: Histogram of RMS error across the room in 3-D dark VLP. 

Finally, the RSS-based ANN model developed is compared to the TDOA model 
presented in [84] using the same room and simulation parameters with D = 0.014. The 
approach proposed in this thesis outperforms that in [84] by 52% with the RMS error 
reduced from 0.05 m to 0.024 m. 

4.10 Summary 

This chapter has introduced a realistic 3-D ANN-based VLP using receiver diversity for 
indoor applications. The channel model adopted considered the effect of not only LOS 
but also nLOS, which has been ignored in most of the literature to date despite being 
known to have an impact on VLP. By designing an ANN model to best fit the scenario, 
the ANN was trained using 1500 sampled RSS points across the room. To ensure 
reliable performance, the system architecture was optimised to determine the most 
appropriate combination between the number of receivers, the receivers’ separation 
and the receivers’ FOV. The model’s performance was analysed using LOS only and 
compared to LOS and NLOS. Simulation results demonstrated that ignoring NLOS 
leads to a percentage increase of 87% compared to LOS in the case of a single receiver. 
This statistical analysis shows that the impact of nLOS is too significant to be ignored 
by researchers in VLP. However, the introduction of receiver diversity and optimisation 
of the system architecture has been shown to reduce the difference in performance 
to 5.8% between LOS and NLOS. A comparative study is conducted, which shows 
in a tabular manner that the proposed model in this work outperforms most in the 
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Figure 4.22: CI analysis over 100 positions across the room in 3-D dark 
VLP. 

literature either by performance, structural complexity or both. Having demonstrated 
the benefits of the proposed ANN approach, the latter is applied to dark VLP in both 
2-D and 3-D environments. This is achieved by employing PWM to dim the light. By 
dimming the lights at a really low duty cycle, the light appears to be off to the human 
eye. The PWM duty cycles used are 0.007% and 6.25. It is shown that the ANN 
outperforms CMD by at least 70% and is capable of achieving an RMS error of 0.28 m 
and 0.08 m, respectively. 

In this chapter, it is verified that ANN can be used to actively determine the 
position of a receiver in a 3-D environment. However, certain positioning applications 
do not require users to actively participate in the positioning process. To cover all 
scenarios, consideration is given to passive VLP in the following chapter, where users 
do not need to participate in the positioning process. 



Chapter 5 

Passive Indoor Visible Light 
Positioning 

5.1 Introduction 

VLP for indoor application has been particularly interesting as it offers security and 
privacy benefits as the light emitted will be confined to a given room. Indoor VLP can 
be active or passive. In active localisation methods, a receiver is required in the target 
device. Using this method, accuracy in the range of cm-mm can be achieved depending 
on the size of the room. In passive positioning, the target has no tag or device [116]. 
Passive positioning has been proposed in [117,118], where the researchers used passive 
infrared sensor (PIR) to detect the presence of a person in a room. Research has been 
conducted in the field of passive VLP for different applications such as intruder track-
ing [59], civilian monitoring or object detection [60–65] and track-pad and keyboard 
application [119]. 

As seen in Figure 5.1, the study of passive VLP in this thesis relies on the reflected 
light from the room. To model a passive VLP channel, reflection of the light from 
the walls, object and furniture’s are required. Due to the complex nature of such 
channel model, researchers have proposed to place the receivers on the floor [59, 60], 
the walls [63] or the ceiling [65]. The latter uses the sum of the reflected rays, labelled 
as object impulse response (OIR), for positioning. To reduce the complexity of the 
channel model, only first-order reflection is considered. However, such assumption 
underestimates the positioning error by ignoring the impact of the higher (second) 
order reflection [55]. 

An adequate channel model needs to be developed to study passive VLP in indoor 
environments. Hence, in this chapter, a ray-tracing technique is adopted to model the 
indoor passive VLP channel. Similar to the positioning technique in chapter 4, the 
ANN will use the RSS information from the ray-trace for positioning. 

The remainder of this chapter is organised as follows. Section 5.2 describes the 
proposed passive VLP channel model. Section 5.3 presents the ANN optimisation 
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Figure 5.1: Indoor passive VLP shaded model. 

process for passive VLP. Section 5.4 investigates the ANN performance and the effect 
of object size and reflectivity. Finally, a summary of the chapter is provided in section 
5.5 

5.2 Indoor Passive VLP System 

This section describes the passive VLP parameters used in this study to establish a 
typical home or office positioning. The composition of the system is first defined for 
every element. The system consists of four elements, namely the room, transmitter, 
receiver and object. 
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Room 

The room is a cuboid room with dimensions of 5 m×5 m×3 m, as seen in Figure 5.1. 
The inner body of the room is modelled as a reflector, which consists of four walls with 
reflection coefficient of ρwall = 0.85, one floor with reflection coefficient of ρfloor = 0.7 
and a ceiling. 

Transmitter 

The transmitters used in this research are regular LED bulbs that follow the Lam-
bertian radiation pattern of a BXRE-50C3001-D-24 LED. Let M denote the number 
of transmitters. M LEDs are placed at the height of h from the ground vertically 
facing down, where h is the room’s height (3 m). The transmitters are initially evenly 
distributed across the ceiling of the room. Each transmitter has b rays that follow 
the Lambertian emission order, where b = 5 × 106 is considered for this study. The 
chosen value of b is close to the max number of rays the selected LED can emit with a 
transmitter power of 10 W. The number of reflection from each transmitter is limited 
to three as proposed in [120], thus considering up to 3rd order reflection. 

Receiver 

The receivers in this study are PD. Let N denote the number of receivers. N re-
ceivers are placed next to the transmitters (unless stated otherwise) on the ceiling. 
The distance between the transmitter and receiver is arbitrarily set at 2 cm. This is 
more realistic than the literature which assumes that the transmitters and receivers can 
have the same coordinate [65]. Note that, whilst the transmitter-receiver (transceiver)s 
are shown together in Figure 5.1, they can be arbitrarily distributed across the room 
to provide flexibility and reduce deployment cost. Moreover, where the receivers are 
placed on the wall, each receiver is placed at the height of 1.5 m. Their spatial distri-
bution is made equal to the spatial distribution of the transmitters on the ceiling. 

Object 

The object considered in this study (adapted from [65]) is a cuboid with dimensions of 
0.3 m ×0.3 m ×1.6 m placed in the room. The outer surface of the object is modelled 
as a reflector, which consist four sides with reflection coefficient of ρside = 0.6 and one 
top with reflection coefficient of ρtop = 0.5. 

A ray-tracing technique is adopted to examine the received power on the ceiling of 
the room as shown in Figure 5.2. To examine the received power pattern across the 
ceiling, a grid of 50 × 50 receivers are placed on the ceiling. It can be seen that the 
received power is higher at the position of the object. This is due to the object having 
a reflective surface and a height higher than the floor, thus reflecting a higher signal 
back to the PD. The received power is then fed into an ANN for training. 
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Figure 5.2: Received power across the room with the object in the middle 
of the room. 

5.3 ANN design for Passive Positioning 

This section describes the proposed supervised MLP ANN for passive localisation. The 
received signal from the receivers is fed into the ANN for training. 

Though a similar MLP ANN architecture proposed in chapter 4 for active indoor 
positioning is considered, the structure is modified to fit this application best and 
yield the best performance. The number of neurons in the input layer equals M × N . 
Similarly, the number of neurons in the hidden layers are made a multiple of M × N 
and are varied from 1 × (M × N) to 5 × (M × N). The network’s output is set at 2 
nodes, corresponding to the x and y coordinate of the object (O). 
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5.3.1 ANN Optimisation Process 

This section describes the ANN parameter selection procedure for passive VLP. A total 
of 2500 random positions across the room are considered with 70% of the points for 
training, 15% for validation and 15% for testing. Bayesian regularisation is adopted due 
to the complex nature of the data. This algorithm requires more time when compared 
to Levernberg Marquardt but can result in good generalisation for difficult, small or 
noisy data sets. By starting with four transmitters and four receivers (similar setup in 
chapter 4) and with a single hidden layer, the RMS error and the computational time is 
monitored for the entire simulation, as shown in Table 5.1. It is observed that the best 

Table 5.1: RMS error (m) based on nodes and hidden layers 

RMS error (m) 
Number of hidden layers/Nodes 16 32 48 64 20 Time (s) 

1 
2 
3 
4 
5 

1.3861 
0.8878 
0.7911 
0.8137 
0.8018 

1.3808 
0.8701 
0.7118 
0.7380 
0.7408 

1.3818 
0.7419 
0.7410 
0.8206 
0.9074 

1.3854 
0.7451 
0.7825 
1.1459 
1.1894 

1.3979 
0.7556 
0.8444 
1.2720 
1.2778 

94.1 
984.42 
2675.62 
7498.67 
9788.26 

performing ANN is attained with 2(M ×N) or 3(M ×N) = 32 nodes, irrespective of the 
number of hidden layers, with the best overall error obtained with 3 hidden layers and 
32 nodes. Increasing the number of neurons beyond that decreases the performance 
of the ANN as well as increases training time and system complexity. The training 
and generalisability of the neural network is illustrated in Figure 5.3. The MSEs for 
training, validation and testing reduce in a similar manner until 40 epoch. However, 
whist validation keeps decreasing until epoch 98, the testing MSE remains almost 
constant. This shows that for a network containing 4 transmitters and 4 receivers, i.e. 
16 inputs and 2 outputs 40 epochs is the minimum number of epochs required. In this 
work, this network was trained for 98 epoch, which provides the optimum results. 

The outcome of this investigation was to adopt a network containing 3(M × N) 
nodes for all other ANN MLP used for passive positioning and presented in the next 
section. Note that the number of epochs was increased for networks involving more 
transmitters and receivers to ensure good performance without over-training. 

5.4 Passive VLP using ANN 

This section analyses the performance of the proposed passive VLP system for a dif-
ferent number of transceivers and receivers. The transceiver design adopted is similar 
to that in [65]. However, this thesis investigates the impact of transceiver positions on 
the accuracy of passive VLP (see Table 5.2). 



81 CHAPTER 5. PASSIVE INDOOR VISIBLE LIGHT POSITIONING 

0 20 40 60 80 100

10
-1

10
0

10
1

Figure 5.3: ANN training performance for passive VLP over 102 epochs. 

Table 5.2: Different transceiver scenarios in the room 

Case Transmitter Receiver Receiver location 
I 4 4 ceiling 
II 4 4 wall 
III 4 8 Wall + ceiling 
IV 9 9 ceiling 
V 9 12 wall 
VI 9 21 wall + ceiling 

The ANNs structures are designed and trained for each case from I to IV using 
the approach in section 5.3.1. Note that the same data containing 2500 data points 
were used for training. The accuracy of the trained ANN is then evaluated to detect 
625 different object positions. The inputs used by the ANN are the received signal 
strength for each LED computed using ray tracing. Figure 5.4 (a) shows the RMS 
error distribution across the room. The model yielded an RMS error of 0.8191 m. A 
number of setups were investigated (Case I to VI) to improve the positioning accuracy 
of the system depending on the localisation of the receivers. Figure 5.4 (b) shows the 
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(a) (b) 

(c) 

Figure 5.4: RMS error for passive VLP using 4 transmitter when the 
receivers are located: a) on the ceiling b) on the wall and c) on the ceiling 
and wall. 

RMS error across the room when the receivers are placed on the wall. By changing the 
receiver position, the model yielded an RMS error of 0.6 m. Locating the transmitters 
on the ceiling and the walls (case III), with four transmitters on the wall and four on 
the ceiling, yielded an RMS error of 0.55 m. The respective RMS error distribution is 
shown in Figure 5.4 (c). 

Changing the receiver position has only a slight impact on the overall accuracy. The 
next step was to change the number of transmitters in the room to see their impact on 
passive VLP. By considering the receivers on the ceiling and increasing the transceivers 



CHAPTER 5. PASSIVE INDOOR VISIBLE LIGHT POSITIONING 83 

(a) (b) 

(c) 

Figure 5.5: RMS error for passive VLP using 9 transmitters when the 
receivers are located: a) on the ceiling, b) on the wall, and c) on the ceiling 
and wall. 

from 4 to 9 (case IV), the RMS error across the room reduces as seen in Figure 5.5 (a). 
With 9 transceivers, the model yielded an RMS error of 0.36 m. 

Subsequently, the receiver position is changed from the ceiling to the wall as outlined 
in case V. The performance of the model is further improved with an RMS error of 
0.27m with the RMS error distribution shown in Figure 5.5 (b). Finally, the receivers 
are located on the wall and the ceiling as outlined in case VI. Figure 5.5 (c) shows the 
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Figure 5.6: RMS error at different object height. 

RMS error distribution across the room for this scenario. The model yielded a further 
accuracy improvement with an average RMS error of 0.23 m. It can therefore be 
concluded that the number of transmitters and receivers used is more important than 
the location of the receivers, even though both can improve the positioning accuracy. 

5.4.1 Effect of Object Size 

A favourable transmitter-receiver setup is achieved in the preceding section with 9 
transmitters and 21 receivers (case VI) to locate an object of dimensions 0.3 m ×0.3 
m ×1.6 m. In this section, the performance of the system is analysed by varying the 
object size. First, the height of the object is changed from 0.2 m to 2 m with a step 
size of 0.2 m whilst maintaining the same length and width, i.e. 0.3 m ×0.3 m, see 
Figure 5.6. The smaller the object, the larger the error. The optimal object height is 
0.8 m with an RMS error of 0.2 m. However, good performance is achieved for object 
heights in the range 0.6 m to 2.0 m with an average RMS error of 0.3 m. This shows 
that even though the object’s height directly affects the performance of the system, 
acceptable performance can be achieved as long as the object has a sufficient height, 
i.e. 0.6 m in this case. 

Next, the object’s length and width were changed with the height remaining con-
stant (1.6m). Both dimensions are considered to have the same length. Therefore, the 
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Figure 5.7: RMS error at different object widths. 

length and width of the object are varied from 0.1 m to 1 m with a step size of 0.1 m, 
as shown in Figure 5.7. 

It is found that good positioning accuracy could be achieved for object length and 
width superior to 0.2 m. More voluminous objects do not significantly improve the 
positioning accuracy, with RMS errors in the range of 0.2 m to 0.22 m. These results 
show that an object with a volume of 0.6 × 0.2 × 0.2 m3 reflects a suitable amount of 
light that the PD can detect. These good quality signals create good data that are 
easier to learn by the ANN. Smaller or shorter objects reflect fewer rays, thus resulting 
in a higher average RMS error. 

Having analysed the effect of object size on the system’s performance, the following 
subsection explores the effect a reflective surface has on VLP. 

5.4.2 Effect of Object Reflectivity 

The object’s reflectivity is investigated to observe its effect on passive positioning. 
In this study, all the surfaces of the object are assumed to have the same reflection 
coefficient, i.e. ρside = ρside = ρall. The reflective coefficients investigated range from 
the object having little to no reflection at all (ρall = 0) to mirrors reflecting 100% of 
light (ρall = 1), with a third option where 50% of the light rays (ρall = 0.5) are reflected. 
Even without any reflection, it is still possible to detect an object position, but with 



CHAPTER 5. PASSIVE INDOOR VISIBLE LIGHT POSITIONING 86 
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(c) 

Figure 5.8: RMS error for passive VLP at a) ρall = 0 b) ρall = 0.5 and 
c) ρall = 1. 

a low accuracy of 1.1 m. There is no significant difference in positioning accuracy 
for reflectivity above 50%, with an accuracy of the order of 0.2 m. The positioning 
error and reflection coefficient have a negative correlation; i.e. increasing the reflection 
coefficient reduces the RMS error. The respective RMS error distribution is seen in 
Figure 5.8. 

ρall = 0 offers unfavourable performance as it is hard to relate the change in RSS 
caused by the wall and floor with respect to the object’s position. However, a uniquely 



CHAPTER 5. PASSIVE INDOOR VISIBLE LIGHT POSITIONING 87 

Table 5.3: Comparative study of the proposed system with published work. 

Paper Method Tx Rx Location 
Room 
dimension 

Performance Environment 

[119] RSS,on-off 1 2 
beside 
LED 

9 × 7 cm2 median 0.07 m experimental 

[60] RSS,FDM 5 324 floor 3 × 3 m2 10 degree mean 
angular error experimental 

[61] RSS,FDM 20 20 floor 3.6×4.8 m2 10 degree mean 
angular error experimental 

[62] On-off, 
TDM 

6 24 ceiling 7.5 × 6 m2 0.89 m experimental 

[63] shadow 
based RSS 

NA 14 wall 2 × 3.6 m2 0.021 m experimental 

[64] shadow 
based RSS 

NA 14 wall 4.8×9.6 m2 0.84 m experimental 

[65] IR 9 9 ceiling 5×5×3 m3 0.1 m 
theoretical 
simulation 

This 
work 

RSS,ANN 9 21 
wall and 
ceiling 

5×5×3 m3 0.23 m simulation 

similar pattern is noticed across all reflection coefficients. Better system performance 
is noted in the middle of the room, with most peak errors at walls and edges. Note 
that even though ρall = 1 offers the lowest RMS error, more peaks are observed at the 
edge as compared to ρall = 0.5. 

The passive VLP comparison between the work proposed in this thesis and that 
of the literature is summarised in Table 5.3. Unsurprisingly, experimental studies 
exhibit higher errors than simulation studies due to the inherent realism of the system. 
Simulation studies use a range of approximations to model light reflection on the object. 
The research in [65] is the closest to that presented in this chapter with the same room 
dimension, object size, and reflective coefficient of the room and the object. However, 
the main difference relies on the channel model and the positioning algorithm. In [65], 
the channel model only considers the 1st order reflection. This means that any ray 
of light that hits the wall’s surface, than to the object to bounce back to the PD, 
is ignored. However, the work in [55] shows that the impact of 2nd order reflection 
is significant for VLP. Hence, this chapter also considers the 3rd order reflection as 
proposed in [120] for VLP. The ANN-based model approach proposed in this thesis 
provided an average RMS error of 0.23 m with 9 transmitters and 21 receivers and 
compared to 0.1 m in [65] with 9 transmitters and 9 receivers. The rationale for using 
a realistic channel model with up to 3rd order reflection is to reduce the gap in error 
between simulation and practical results. 
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5.5 Summary 

This chapter introduced a passive VLP using ANN. By employing a ray-tracing tech-
nique, the passive VLP channel model was accurately modeled, thereby taking up to 
3rd order reflection into consideration. Six different transmitter-receiver systems were 
considered to investigate their relationship with passive VLP performance. Unsurpris-
ingly, the higher the number of transmitters and receivers, the better the positioning 
accuracy. In this work, the best performance is attained using 9 transmitters and 21 
receivers, located both on the wall and on the ceiling, resulting in an average RMS 
error of 0.23 m. The best performance was attained at an object height of 0.8 m with 
a length and width above 0.2 m. Finally, it was demonstrated that the reflection coef-
ficient of the surface of the target object is negatively correlated with the positioning 
accuracy. 



Chapter 6 

Outdoor Visible Light Positioning 

Autonomous vehicles are expected to benefit ITS through improved efficiency, reduced 
traffic congestion and increased road safety. The practical realisation of these ex-
pected benefits requires autonomous vehicles to have precise localisation, perception (to 
identify their surroundings and the presence of obstacles), control functionalities and 
efficient communication [121]. Vehicles need precise localisation, often at centimetre 
accuracy for safety requirements [43]. Widely used outdoor localisation techniques such 
as GPS and differential GPS (dGPS) used by autonomous vehicles rely on satellites 
transmitting position information using the RF spectrum. The localisation accuracies 
of these technologies are in the meter range and worsen in adverse conditions [122,123]. 
Although recent developments of dGPS for autonomous vehicles provide decimeter-
level accuracy [124], these signals do not extend to tunnels, underground areas and 
suffer significant path-loss and multi-path propagation in urban roads. Hence, there is 
a need for alternative localisation techniques to either complement or replace GPS (in 
the case of GPS failure) to improve the current localisation availability and accuracy 
for safety requirements and also to facilitate indoor navigation for smart parking. The 
popularity and wide availability of SSL such as LEDs for outdoor illumination, traffic 
signalling and variable message signs provide a unique platform to utilise them for 
high-speed communication and accurate localisation [125]. The current energy-saving 
schemes funded by the European Commission aiming to replace existing street lighting 
solutions with LED street lamps is attractive for outdoor positioning systems due to 
their ubiquity, especially in tunnels and underground roads [126]. 

Several studies have already proved that VLP system can provide accuracy in the 
centimetre range for indoor positioning. However, the use of VLP for outdoor po-
sitioning, especially for autonomous vehicle applications, is still under development. 
Outdoor localisation for vehicular applications is challenging due to the unavailability 
of a distributed light network. Streetlights are generally in a straight line. Techniques 
such as triangulation or similar algorithms form a reference plane equation for each 
transmitter. However, the transmitters must not be collinear for the algorithms to 
compute any valid output. Hence, these algorithms cannot be used, and most of the 
outdoor localisation strategies estimate the relative position or separation between ve-

89 
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hicles (using the traffic light with head and tail light of vehicles), which is only adequate 
for vehicle collision avoidance. 

The aim of this Chapter is to demonstrate the possibility of vehicle position irre-
spective of the alignment of the light. The remainder of this chapter is composed as 
follows. The following section reviews related work to identify the research gap and 
justify the approach adopted in this Chapter. Section 6.3 describes the systems for 
the two use cases considered. The first use case is positioning using outdoor street-
light. The second use case is positioning using traffic light(s). Section 6.4 presents 
the initial ANN design and tuning. Section 6.5 exploit the ANN to investigate the 
impact of angular and spatial receiver diversity and separation to determine a good 
setup for outdoor VLP. Section 6.6 evaluates the effectiveness of a range of ML al-
gorithms. Section 6.7 describes the benchmark algorithm, namely CMD with spatial 
and angular diversity. Section 6.8 presents the best ML algorithm and evaluate its 
robustness against different solar illumination, weather conditions and road scenarios. 
Section 6.9 presents a traffic light based VLP using ANN. 

6.1 Related work 

A PD-based VLP was proposed in [74] for vehicular application. By mounting a PD on 
the vehicle as the receiver and using the headlights or taillights as the transmitter, the 
AOA information can be calculated. The study employs VLC, where each transmitter 
can transmit its actual speed. The speed information together with the AOA can then 
be used for vehicle collision avoidance. A camera-based navigation system based on 
traffic lights was proposed in [41] where cameras are used to take images within 1 s 
interval. They analyse images by taking three shots before the traffic light turns from 
red to green. The study has shown the ability of monitoring vehicles but has not shown 
the feasibility of pinpointing the exact location of a vehicle. In [127], a VLP technique 
using car tail light and tunnel lighting infrastructure is proposed. Image processing was 
adopted to extract information from a camera placed in front of the vehicle. However, 
the study assumes the constant availability of a neighbouring vehicle several meters 
ahead, continuously sending its updated position information. 

Bai et al in [42] proposed a VLP based on a LED traffic light and PD. The traffic 
light conveys the position information to two photodiodes placed on the vehicle through 
a VLC link. The received information together with the TDOA of the signal is then 
used to estimate the location of the PDs mounted on the vehicle. The use of TDOAre-
quires a perfect synchronisation between the transmitters (traffic light), which may be 
difficult in a heterogeneous environment. Furthermore, the best results were obtained 
with receivers located 2 m meters apart, which makes it not practical for a range of 
vehicles. The system yielded an RMS error of 5 m and 3.4 m for single and dual traffic 
lights, respectively. The feasibility of using streetlights for positioning using two rolling 
shutter CMOS sensors was shown in [44]. However, the streetlight setup adopted in 
the study, i.e. two-sided streetlight in a single two-lane road, provides distributed 
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transmitter setup, hence, voiding the collinearity condition, as it can exploit trilatera-
tion. The performance of the system was affected by the blooming effect, which causes 
the LED images to be less clear in real-life applications. The streetlight location and 
design are heterogeneous. However, the aforementioned algorithms require a specific 
streetlight setup and are not compatible with non distributed streetlights. Hence, for 
VLP to work universally in all the streets, a method must be developed which works in 
the worst-case scenario where the streetlights are located in a linear array on only one 
side of the road. This thesis proposes a method combining spatial and angular receiver 
diversity with a supervised ANN to accurately estimate vehicles positions irrespective 
of the relative locations of the streetlights. 

6.2 Outdoor VLP System Model 
The proposed VLP system architecture is shown in Figure 6.1. Streetlights are installed 
on the side of the road and used as transmitters. It is assumed that each transmitter 
transmits TDM or FDM signals as outlined in section 2.4. The vehicles are assumed 
to travel on a tarmac road with a gradient close to zero. Therefore, the vehicle’s 
movement along the x and y axis is significantly larger than the displacement along 
the z-axis. Consequently, this work focuses on 2-D localisation and considers only two 
degrees of movement along the x-axis and y-axis,. The proposed architecture of the 
receiver system with spatial and angular diversity is shown in Figure 6.1. The receiver 
system consists of multiple PDs, pointed in different directions. The tilting angles are 
independent for each PD and optimised for vehicular VLP in Section 6.5.3. 

For outdoor application, a road with M (where M > 1) LED luminaires and N ≥ 1 
PD-based receiver is considered as shown in Figure 6.1. The transmitters are positioned 
collinearly of each other. Each transmitter/streetlight stands at 7 m high and are sep-
arated by 30 m from each other. This results in transmitter coordinates equal to (0, 0) 
m, (30, 0) m and (60, 0) m and a road dimension of 60 m ×5 m. The power distribution 
across the road is shown in Figure 6.2. Less power reduction is noticed across the y-axis 
due to shorter link distances to the transmitters. In a situation where there is high 
signal reception, the signal from the three streetlights are received adequately, the PDs 
are capable of receiving up to 5 dB. This then worsens to SNR values of −10 dB when 
the signal received from the third street light is low. This scenario could happen at 
a sample receiver coordinates of [35, 2.5] m; see Figure 6.3 which shows the respective 
SNR value for each transmitter-receiver link at the aforementioned coordinates. As 
expected, there is more signal received from the second transmitter (TX2) located at 
(30, 0) m. The signal from the first transmitter (TX1) is the lowest, thus revealing the 
farthest transmitter from the receivers. It is observed from the simulation results that 
the PD is not capable of detecting a signal from TX1 beyond [35, 2.5] m. However, it 
could detect a signal if there were a fourth transmitter at [90, 0] m. The rest of the 
simulation parameters can be found in chapter 3. 
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Figure 6.1: Street light localisation model for VLP 

6.3 ANN Design for Outdoor Positioning 

This section describes the proposed supervised feed-forward back propagation MLP 
ANN for outdoor 2-D VLP as illustrated in Figure 4.4. The different transmitters 
can be distinguished at the receiver end by employing TDM or FDM. The received 
signal from the transmitters (in this case, three transmitters) at various receivers given 
by 3.12 is first de-multiplexed and then fed to the ANN. For simplicity, the nLOS 
component is ignored for this application. 

6.3.1 ANN setup and tuning 

In this subsection, a base MLP-ANN is developed to establish positioning. The ANN 
structure developed in Chapters 4 and 5 is adopted as it has proved to work efficiently 
for VLP. However, the performance of the MLP-ANN is tuned for the system consid-
ered. Increasing the number of neurons tends to offer better performance at the cost 
of longer training time, larger training set, higher memory requirement and system 
complexity. 



93 CHAPTER 6. OUTDOOR VISIBLE LIGHT POSITIONING 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis 
can be found in the Lanchester Library, Coventry University.

Figure 6.2: Received power across the road that peaks at the same x 
coordinate than that of the transmitters located at (0, 0) m, (30, 0) m and 
(60, 0) m. 

Hidden layers and nodes 

To simplify the optimisation problem, the number of neurons in the hidden layers 
are made equal and is taken as a multiple of the diversity order (i.e. M × N). By 
considering a two-layer ANN, the number of neurons in the hidden layer are varied 
from 6 to 36 (i.e. 6M × N), where M = 3 and N = 2. The RMS error for various 
number of neurons is calculated as seen in Figure 6.4. There is a large decrease in RMS 
error when the number of neurons is increased from 6 to 18. Thereafter, no significant 
drop in RMS error is noticed. Therefore, an MLP with 18 (i.e. 3(M × N)) neurons is 
adopted in the rest of this section. Note that this architecture will be further optimised 
once the optimum VLP system parameters are obtained. 

Activation function 

The impact of the activation functions is then investigated. It can be seen from Table 
6.1 that the best performance is attained when both hidden layers use the log-sigmoid 
transfer function. Also, the worst performance is measured when the hidden layers 
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Figure 6.3: SNR of across four receivers facing upwards positioned at 
[35,2,5]m. 

Table 6.1: RMS error at different activation function combination 

RMS error (m) 

Log-sig 
Tan-sig 

Log-sig 
0.3210 
0.3553 

Tan-sig 
0.3757 
0.4399 

have a tan-sigmoid transfer function. Using both transfer functions in the hidden layer 
slightly deteriorates the performance. Therefore, the log-sigmoid transfer function is 
adopted. 

6.4 Outdoor VLP system setup 

In this section, the VLP system architecture is optimised using the base ANN model. 
Several steps are taken to optimise the model ranging from the number of receivers 
(receiver diversity), receiver tilt angle (angular diversity) and receiver spacing (spatial 
diversity). First, the optimum number of receivers needed in the model is investigated 
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Figure 6.4: RMS error versus the number of neurons. 

to demonstrate the need for receiver diversity in VLP. The following simulation assumes 
an environment with direct sunlight without an optical filter, thus considering the 
maximum noise as seen in Table 3.1. The noise parameters are provided in Table 3.1 
and the rest of the simulation parameters are provided in Table 6.2. 

6.4.1 Receiver diversity 

Figure 6.5 shows the relationship between the RMS error and the number of receivers. 
Here, all the receivers are facing upwards. Note that the RMS error reduces as the 
number of receivers is increased. There is a significant performance improvement when 
the number of receivers increases from 1 to 4 with a percentage decrease of 35%, 10% 
and 26% for one to two, two to three and three to four, respectively. This is due to 
the direct proportionality between the number of receivers and the gain of the system. 
Though selecting a higher number of receivers will improve system performance, this 
will come at the cost of higher system complexity and longer training time. Moreover, 
increasing from four to five and five to six receivers only offers a 7% and 5% decrease 
in RMS error. Hence, four receivers are selected in the rest of the study as it offers the 
best trade-off between performance and complexity. 
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Table 6.2: Parameters used for simulation 

Parameter Value 
Road parameters [L × W ] (m) 60 × 5 
Number of transmitters (M) 3 
Transmitter height (m) 7 
Transmitter spacing (m) 30 
Transmitter power Pt (W) 90 
Transmitter semi-angle (degree) 60 
No. of receiver (N) [1 − 6] 
Receiver area, A (mm2) 1 
Optical filter gain 1 
Noise bandwidth, B (MHz) 1 
Noise bandwidth factor (I2) 0.562 
FET channel noise factor Γ 1.5 
Fixed capacitance of PD (pF/cm2) 112 
Noise bandwidth factor (I3) 0.0868 

6.4.2 Receiver separation 

The impact of receiver separation on VLP is also investigated to select a favourable 
receiver spacing on the vehicle. Only receiver separations from 0.02 m to 0.4 m are 
considered due to their practicality for real applications. Figure 6.6 shows the CDF of 
the RMS error for various receiver separations. The receiver separations investigated 
are 0.02 m, 0.04 m, 0.1 m, 0.2 m, and 0.4 m. At 0.95 CDF, the average RMS errors 
are 2.5 m, 1.86 m, 1.83 m, 1.3 m and 0.8 m, respectively. Figure 6.6 illustrates that 
increasing the receiver spacing increases the accuracy of the system. It is noticed 
that only a receiver separation of 0.4m (out of the chosen values) provide an RMS 
error below 1 m at 0.95 CDF. Hence, the separation between the receivers of 0.4 m is 
selected for further simulations. 

6.4.3 Angular Diversity 

Angular diversity is considered in this application to improve system performance 
through better signal reception. The first two PDs are facing the direction of travel 
(forward-facing), and the last two PDs are facing away from the direction of travel 
(rear-facing). The PDs are considered to have two degrees of freedom, namely ∠x 
and ∠y as illustrated in Figure 6.1. ∠x represents the rotation across the x axis, that 
is, tipping the receivers towards or away from the direction of travel. ∠y represents 
the rotation across the y axis, that is, tilting the receiver towards or away from the 
streetlight. ∠z is the rotation of the PD across the z-axis. This is ignored as it does 
not introduce any difference to signal reception due to the circular nature of the PD. 
However, this could change on non-circular PDs. Starting with the forward-facing PDs, 
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Figure 6.5: CDF of VLP as a function of number of receiver. 

their angles are changed from 0◦ to 90◦ and the back facing PDs from 90◦ to 180◦ with 
a step size of 10◦. The ∠y is kept constant for all the PDs, so they face towards the 
streetlights. 

Figure 6.7 (a) shows the RMS error with respect to receiver angles. The forward-
facing receivers are first considered. A rise in the error is first noticed when the receiver 
angles are tilted from 0◦ to 20◦ (note that the rear-facing receivers and ∠y are kept at 
90◦). The accuracy of the system is seen to improve between 30◦ to 60◦ with optimum 
being at 40◦. In the case of the rear-facing receivers, the RMS error reduces when 
the angle changes from 90◦ to 140◦ with 130◦ being the optimum angle. It was found 
that the RMS error decreases when ∠y is tilted from 0◦ to 50◦, where it reaches a 
minimum. The RMS error is seen to increase beyond after that. The selected receiver 
orientations are therefore ∠x = 40◦ and ∠y = 50◦ for forward-facing, and ∠x = 130◦ 

and ∠y = 50◦ for rear-facing receivers. Having optimised the number of receivers and 
their respective angles, a CDF analysis is conducted and presented in Figure 6.7 (b) to 
see their respective impact on the system’s performance. This is initiated by analysing 
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Figure 6.6: CDF analysis at different receiver separation. 
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the system using a single receiver with the optimum simulation parameters. At 0.95 
CDF, an RMS error of 1.8 m is noted for a single receiver. The value is seen to drop to 1 
m when receiver diversity is applied. Furthermore, when angular diversity is included, 
an RMS error of 0.7 m is noted at 0.95 CDF. This reduction in RMS error shows that 
the proposed concepts can help provide improved performance for positioning systems 
in outdoor applications. 

6.4.4 Receiver FOV 

The model’s performance is studied using different receiver FOV. This is attained by 
conducting a CDF analysis at different receiver FOV. The optical gains at all the 
FOVs are considered as unity to differentiate the performance improvement due to 
FOV. Figure 6.8 shows the CDF analysis ranging from 40◦ to 90◦ with a step size 
of 10. The system performance increases with an increase in FOV from 40◦ to 60◦. 
However, no significant improvement is noted beyond 60◦. In practice, though higher 
receiver FOV increases the chance of signal reception across the road, this also means 
more noise will be captured, thus reducing the accuracy of the system. Based on this 
study, a receiver FOV of 60◦ is selected for the rest of the simulation as it offers the 
best trade-off in terms of SNR. 

6.5 ML algorithms 

In this section, a comparative analysis between different ML algorithms is performed 
to determine the most suitable NN for outdoor VLP. The NNs considered are GRU, 
LSTM, sRNN and MLP-ANN (see Chapter 3.3). A total of 60, 025 2-D positions 
from the same data set were considered in the simulation studies. A subset of 1500 
positions was selected randomly to tune the NN. 70% of these positions were used 
for training, 15% for validation and 15% for testing. Each NN has a loss function of 
MSE. This is the method used to appraise the performance of the NN. However, the 
RMS values are shown for consistency with results in this thesis, as seen in Table 6.3. 
The aforementioned table shows all the parameters used to optimise the NN and the 
optimum hyper-parameters attained by the NN. Similarly to the approach in section 
6.3, the number of neurons/weights is increased by one from 12 to 60 (M × N to 
5(M × N)) with two hidden layers in the NN. Using GRU, the optimum performance 
was obtained at 16 neurons in the hidden layer with an average RMS error of 0.26 m. 
LSTM and RNN attained MSE minimum at 32 nodes with an average RMS error of 
0.26 m and 0.29 m, respectively. MLP attained the MSE minimum for 36 nodes with 
an average RMS error of 0.22 m. From Table 6.3, it is observed that MLP performs 
the best; hence it is utilised for further analysis. 

Next, the performance of the CMD and the MLP-ANN algorithms are evaluated 
using the optimum outdoor VLP structure. The simulation assumes an outdoor envi-
ronment and thus considers the effect of sunlight in all the simulations unless stated 
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Figure 6.8: CDF of VLP as a function of receiver FOV. 

Table 6.3: Hyper-parameters of the machine learning algorithms 

Training Parameters GRU LSTM sRNN MLP 
Number of weights per hidden layer 16 32 32 36 

Learning rate 0.01 0.01 0.009 0.1 
Number of hidden layers 2 2 2 2 

Activation function (hidden layers) tanh 
Kernel initialiser Glorot Uniform 

Recurrent initialiser orthogonal 
optimiser Adam LM 

Loss function Mean squared error 
Time step time step 1 -

Batch size 64 32 32 0.1 
Dropout rate - 0.25 

Recurrent dropout rate 0.15 0.15 0.5 -
RMS error (m) 0.26 0.26 0.29 0.22 
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otherwise. In this study, streetlights are assumed to be turned on all the time. Con-
sidering the standardised illumination level of LED streetlights, the proposed VLP 
system is evaluated using RMS error, CI and CDF. The main parameters used for the 
simulation are shown in chapter 3. 

6.6 CMD with Spacial and Angular Diversity 

In this section, CMD is used to estimate the positioning error. Note that the simulation 
parameters used for this study are adopted from the optimised ANN model. Moreover, 
using a single receiver, it is impossible to estimate the positioning error due to the 
collinear arrangements of the streetlights. Hence, multiple receivers with spacial and 
angular diversity scheme are adopted as shown in Figure 6.1. Figure 6.9 shows the RMS 
error distribution across the road using 4 receivers. It can be seen that the localisation 
error is high at certain parts of the road reaching RMS error values of 12.1 m. The 
RMS error is seen to increase at the part of the road where the signal from the third 
streetlight is not received adequately and reduces as the received signal ratio between 
the three transmitters’ increases. From the simulation, it is noticed that the system 
is more accurate in the x-axis than the y-axis, which yielded an average RMS error of 
0.95 m and 6.77 m, respectively. This variation in error magnitude is highly influenced 
by the collinearity of the transmitter. This high RMS error is not helpful for the target 
application such as autonomous driving. Therefore, ANN is introduced to reduce the 
positioning error and improve accuracy. 

6.7 MLP-ANN with Angular and Receiver Diver-
sity 

The performance of the proposed VLP system is first analysed during the day where 
sunlight is present. The model is simulated on a laptop computer (Intel(R) Core(TM) 
i7-6820HQ CPU of 2.70 GHz clock rate, 16 GB RAM, and runs 64-bit Windows 10 
operating system) with a computational time of 75.9ms. Each analysis is done over 
65554 test points. The RMS error analysis across the road is shown in Figure 6.10. 
The RMS error in x-axis is shown in Figure 6.10 (a). Given that the streetlights are on 
one side of the street (axis-y = 0), a rise in RMS error is noticed on the other side of 
the road due to lower signal reception. In the x-axis, an average RMS error of 0.02 m is 
recorded. It is noticed that the average RMS error in the y-axis is 0.17 m, see Figure 9 
(b). Hence, the results show that the RMS error is higher in the y-axis than the x-axis. 
Notice that, unlike the CMD analysis, the RMS error is more evenly distributed across 
the road due to the learning abilities of the NN. 
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Figure 6.9: RMS error across the road using CMD 

6.7.1 Day and Night 

The performance of the system is analysed at night and compared during the day. 
During the night, ambient noise from the sun is absent. Figure 6.11 shows the RMS 
error distribution across the road during the day and night. An average RMS error 
at night is lower than the average RMS error at day due to reduced ambient light 
noise. The resulting average SNR across the road is 41 dB and 58 dB for day and 
night, respectively. The RMS errors are 0.22 m and 0.14 m during the day and night, 
respectively. This shows a percentage decrease of 36% between the day and night. 
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(a) (b) 

Figure 6.10: RMS error across the road: a) x-axis and b) y-axis 

(a) (b) 

Figure 6.11: RMS error across the road: a) during the day and b) during 
the night 

6.7.2 Different weather conditions 

In this section, the system’s performance is analysed over the various weather condi-
tions, and results are presented in Figure 6.12. Four representative weather conditions 
are selected, which are a) sunny day time under when the shot noise due to the sun-
light is the strongest, b) night when there is very low ambient noise, c) think fog with 
visibility of 200 m and d) dense fog with visibility of 50 m when signal attenuation is 
very severe. The resulting average SNRs across the road for these conditions are 41 dB, 
58 dB, 43 dB and 36.9 dB. Figure 6.12 illustrates the CDF analysis of the respective 
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weather conditions, which reveals the best performance is obtained at night with clear 
weather when the noise is the minimum, followed by thick fog, sunny day time under 
the sun and dense fog with average RMS errors (RMS error at 0.95 CDF) of 0.14 m 
(0.49 m), 0.19 m (0.70 m), 0.22 m (0.72 m) and 0.29 m (0.98 m), respectively. As 
expected, the best performance is obtained at night when the received signal strength 
is the highest and the noise level is the lowest. The worst performance is obtained 
at the dense fog condition when the RSS is lowed due to attenuation of 78.2 dB/km. 
Though the RSS is higher during the sunny day than the thick fog condition with an 
attenuation of 39.1 dB/km, the performance is better at thick fog condition. This 
is because, in this condition, the absence of the shot noise due to sunlight outweighs 
the attenuation due to fog. Figure 6.13 shows the respective RMS error analysis at 
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Figure 6.12: CDF analysis at different weather conditions. 

different SNR values starting from 30 dB to 70 dB during the day. The model yields 
RMS error values above 0.4 m until it reaches 46 dB. A further drop in RMS error is 
noticed from 46 dB to 60 dB where an average RMS error below 0.19 m is achieved. 
Thereafter, no significant change in the gradient is noticed until an average RMS error 
of 0.13 m is recorded at 70 dB. 
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6.7.3 Different Road Scenarios 

The proposed VLP design in this chapter is for autonomous vehicle applications. In 
most urban cities, different roads entail different transmitter locations (single-sided 
or double-sided), streetlight height and road width, as seen in [128]. In this section, 
different road scenarios are covered (see Table 6.4) to analyse the performance of the 
proposed model in urban cities. All the scenarios are analysed based on average RMS 

Table 6.4: Different road dimensions in urban cities [115]. 

Height Spacing 
Road 
width 

Transmitter 
position 

RMS 
error 

RMS 
error 
at 95% 
CI 

Case I 7 m 30 m 5 m Single-sided 0.22m 0.72m 
Case II 7 m 15 m 5 m Single-sided 0.16 m 0.67 m 
Case III 7 m 20 m 15 m Double-sided 0.27 m 0.97 m 
Case IV 8 m 15 m 10 m Double-sided 0.09 m 0.29 m 
Case V 8 m 30 m 10 m Double-sided 0.27 m 1.21 m 
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error and (RMS error at 0.95 CDF) as shown in Table 6.4. By comparing Case I 
and Case II, reducing the transmitter spacing and the road width improves system 
performance. In Case III, streetlights are located on both sides of the road. Though 
the transmitter setup is distributed, the link distance is still long with 20 m transmitter 
spacing and 15 m wide road. When a 5 m reduction is made on both the transmitter 
spacing and road width, though increasing the transmitter height by 1 m as seen in Case 
IV, the performance of the system increases by 67%. Using the same transmitter height 
but increasing the transmitter spacing to 30 m in Case V provides similar performance 
in Case III. The system performs better on smaller roads, and providing a distributed 
transmitter (double-sided) enhances system performance. 

6.8 Traffic light-based VLP using ANN 

In the preceding section, streetlight based VLP has been proposed, designed and criti-
cally evaluated using ANN. However, streetlights are not the only possible transmitter 
sources available in the outdoor environment. In [127], the authors proposed the use of 
lights available tunnels for positioning. The study proposed using an image processing 
technique to determine the position of a vehicle based on three spatially distributed 
transmitters. However, the transmitter design used is not universal. To use a transmit-
ter source that is widely available in most urban roads, Bai et al. in [42] proposed the 
use of an LED traffic light and two PDs. The study uses the TDOA and coplanar ro-
tation based on the traffic lights for positioning. The research shows that Autonomous 
vehicles can use traffic light for proximity positioning in ITS application. Autonomous 
vehicles can use this to detect approaching distances to crossroads. Hence, in this 
section, MLP-ANN for 2-D traffic light-based VLP is proposed. 

Figure 6.14 shows the traffic light-based VLP model. Similar simulation parameters 
are adopted from the literature as seen in [42]. A 6 m long traffic light with a 30 W 
LED is considered, with the traffic lights placed at the side of the road. Note that the 
colour of the LED light or its effect on VLP is not considered. Two PDs are placed on 
the vehicle, each facing the direction of travel. Each simulation assumes direct sunlight 
without an optical filter unless stated otherwise. The rest of the simulation parameters 
are presented in Table 6.5. 

Note the same optimised ANN structure in Section 6.3 provides optimum near op-
timum ANN structure and is used in this section; thus, the same ANN design works for 
street light and traffic light-based VLP. In the following subsections, the performance 
of the ANN is analysed using single and multiple (two) traffic lights. 

6.8.1 Single Traffic Light 

In this subsection, the performance of the model will be analysed using a single traffic 
light. By considering a road dimension of 40 m ×5 m, the traffic light has a transmitter 
coordinate of (0, 0) m (right side of the road). The vehicle is assumed to travel towards 
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Figure 6.14: Traffic light based VLP model. 

Table 6.5: Parameters used for simulation 

Parameter Value 
Road parameters [L × W ] (m) 40 × 5 
Number of transmitters (M) [1 − 2] 
Transmitter height (m) 7 
Transmitter power Pt (W) 60 
Transmitter semi-angle (degree) 60 
No. of receiver (N) 2 
Receiver area, A (mm2) 1 
Optical filter gain 1 
Noise bandwidth, B (MHz) 1 
Noise bandwidth factor (I2) 0.562 
FET channel noise factor Γ 1.5 
Fixed capacitance of PD (pF/cm2) 112 
Noise bandwidth factor (I3) 0.0868 

the transmitter with two PDs placed on the top. Figure 6.15 shows the RMS error 
distribution across the road. The model yielded an RMS error of 0.33 m and 1.26 m 
across the x and y-axis, respectively. An average RMS error of 1.33 m is calculated 
across the road. The higher RMS error on the y-axis shows that it is difficult for the 
model to identify the lane in which the vehicle is rather than its respective distance 
in the x-axis. As seen in Figure 6.15, there is a high positioning error on the left side 
of the road where a traffic light is not present. In the following subsection, a second 
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Figure 6.15: RMS error across the road using single traffic light. 

traffic light is introduced. 

6.8.2 Double Traffic Light 

The performance of the system is analysed when a second traffic light is introduced 
across the street and the respective RMS error distribution is shown in Figure 6.16. 
The model yielded an RMS error of 0.04 m and 0.20 m in the x and y-axis, respectively. 
An average RMS error of 0.21 m is calculated. It is noted that the introduction of a 
second traffic light drastically reduced the RMS error by more than 1 m. 

Based on the analysis using single and double traffic lights, it is noticed that the 
system performance starts degrading at distances beyond 30 m from the traffic light. 
This directly relates to the SNR values at the farther points, i.e. the more distant 
the length from the traffic light, the lower the SNR value. The relationship between 
SNR and VLP performance is shown in Chapter 4.9.2. Though using two traffic lights 
provides similar performance with streetlight based VLP in the preceding section, the 
traffic light-based VLP leverages a shorter road dimension with 40 m as compared to 
60 m. Moreover, the traffic light-based VLP provides a better directionality between 
the transmitter and receiver as they are perpendicular to each other at all times in this 
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Figure 6.16: RMS error across the road using dual traffic lights. 

study. However, at a closer x-axis but farther y-axis distance from the transmitter, 
the system performance decreases due to lower SNR values caused by limited receiver 
FOV (60◦). 

The proposed RSS model in this thesis outperforms the TDOA model proposed 
in [42]. Note that a near-optimum and more practical receiver spacing of 0.4 m is used 
in this study as compared to 2 m receiver spacing defined in the aforementioned study. 
Using single and double traffic lights, comparatively, the model in this work reduces 
the RMS error from 5.9 m to 1.33 m and 0.4 m to 0.21 m, respectively. 

6.9 Summary 

This chapter has presented a vehicular VLP solution based on ANN using the spatial 
and angular diversity receiver. Detailed system optimisation was presented, ranging 
from the ANN structure, the number of receivers, receiver angles and receiver sepa-
ration. By using four PDs as the receiver and three streetlights as the transmitters, 
the received signal was identified using TDM or FDM. The distance between each 
transmitter-receiver link was calculated using the RSS. Using CMD, the model yielded 
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an average RMS error of 6.84 m, which is high due to the collinear setup of the trans-
mitter. ML algorithms were introduced to reduce this effect in VLP. Analysing the 
different ML algorithms such as GRU, sRNN, LSTM and ANN, it was found that 
MLP-ANN outperformed the rest with an average RMS error of less than 0.27 m 
under direct sunlight conditions on different road scenarios. Furthermore, the perfor-
mance of the system is tested under different weather conditions to show the system’s 
capability in adverse weather conditions. In clear weather, dense fog and at night, 
the system yielded an average RMS error of 0.22 m, 0.29 m and 0.14 m. Using just 
the forward-facing receivers (two-PDs), traffic lights were used as transmitters for 2-D 
VLP. The proposed model yielded an RMS error of 1.33 m and 0.21 m using single 
and double traffic lights on the road, respectively. This work proves that ANN with 
spatial and angular diversity receiver can overcome the collinearity condition in VLP 
using streetlight. 



Chapter 7 

Conclusions and Future Work 

7.1 Conclusion 

This research aimed to explore techniques to overcome the existing challenges that 
limit the realisation of VLP for indoor and outdoor applications. The literature study 
in Chapter 2 has identified the following gaps in research. Companies including Philip 
have deployed light positioning techniques to support user navigation focusing on rel-
ative positioning. However, VLP for actual positioning, where users can obtain their 
exact coordinates with respect to the environment, is more challenging. Research 
conducted in indoor 3-D VLP has not always considered the effect of multipath propa-
gation to provide accurate and realistic channel modelling. VLP has been proposed to 
exploit the existing road infrastructure and street lighting. However, limited studies 
considered the wide range of streetlights alignment and relative positions concerning 
various road scenarios. The use of streetlights for VLP assumes that there are always 
distributed transmitters (on both sides of the road). However, this is not the case 
in some urban roads where streetlights are only on one side of the road. This thesis 
recognises this issue and proposes suitable methods and techniques to solve them. 

In Chapter 3, the visible light channel model, including channel gains for LOS 
and NLOS were presented for a Lambertian source. The noise models used in indoor 
(shot) and outdoor (with sunlight) were detailed. The details of the proposed and 
benchmarked algorithms such as ANN, LSTM, GRU, RNN and CMD were described. 
Finally, the statistical methods of analysis such as RMS error, CDF, CI, percentage 
difference and percentage increase were stated. 

Chapter 4, described ANN-based VLP with receiver diversity to improve perfor-
mance in the presence of NLOS. The ANN used is trained using Levenberg-Marquardt 
back-propagation algorithm. The optimum ANN structure is found at 2 hidden layers, 
each with 16 neurons and a Log-sigmoid transfer function. The simulation studies 
found the best VLP link configuration with non directed LOS to use two receivers with 
a 60◦. Increasing the receiver FOV from 40◦ to 60◦ offers performance improvement. 
The presence of NLOS was seen in the literature to reduce the performance of VLP 
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systems by approximately 90%. Using more than one receiver in this study enabled 
the adoption of a receiver diversity scheme, which improved system performance by 
15% from one to two receivers. A direct correlation is noted with the accuracy of 
the VLP system and the number of receivers and the receiver separation. However, a 
system with two receivers with a spacing of 0.02 m offers the best trade-off between 
performance and system structure. Overall, it was shown that the proposed scheme, 
together with MLP-ANN, improved the VLP performance and reduced the effect of 
reflection from a difference of 87% to 5.8%. Another contribution is applying the pro-
posed MLP-ANN to dark VLP, where positioning is established despite the LED lights 
appearing ’OFF’ to the human eye. Dark VLP is achieved by using a very low PWM 
duty cycle. The very low PWM duty cycles negatively affect existing VLP algorithms, 
such as CMD, for VLP applications. However, MLP-ANN can still work at duty cycles 
as low as 0.007% and improve positioning by 70% compared to CMD for duty cycles 
of 6.25%. 

Chapter 5 studies passive VLP where transmitters and receivers are located in the 
room ceiling. The ray-tracing technique was used to calculate the received power across 
the PDs that were placed on the ceiling. The model considers different reflections on 
the walls and the respective object to be localised based on RSS change across different 
points. The simulation study presented in Chapter 5 demonstrated that using receivers 
on the ceiling and walls improves the passive VLP performance by a significant 25% 
with an accuracy of 0.23 m compared to placing them on the ceiling only. This is 
achievable with an object size of 0.3 m ×0.3 m ×1.6 m in a room of 5 m ×5 m ×3 
m. Moderately sized objects are easier to localise with a minimum object height of 0.2 
m. A negative correlation pattern is noted between system performance and objects 
reflectivity. 

In chapter 6, the work achieved in the indoor environment is extended to an outdoor 
setting for vehicle application. Outdoor VLP, however, comes with more challenges 
such as weather conditions, greater link distances and lack of distributed transmitters. 
Streetlights are considered as transmitters as they are primarily and continuously avail-
able on urban and rural roads. A demanding scenario was considered where the street 
lights were situated in a straight line. This scenario made it challenging to apply 
traditional positioning algorithms. The setup proposed in this thesis addressed those 
challenges by using an angular and spatial receiver diversity scheme with ANN. By 
adopting the aforementioned diversity scheme, higher SNR was attained for each ve-
hicle location, thus improving the system performance. The optimum vehicular VLP 
structure comprised 4 receivers situated 0.2 m apart. The optimum ANN structure 
included 2 hidden layers, each with 36 neurons. ANN offers a 96% improvement com-
pared to CMD, 18% as compared to GRU and LSTM, and 32% when compared to 
sRNN. The difference in performance does not relate to the superiority of ANN, but 
it shows that ANN is the most suitable for understanding such data structures. The 
robustness of ANN is analysed by evaluating its performance in different weather con-
ditions. The worst performance is recorded during dense fog with less than 50 m of 
visibility, resulting in a 31% reduction in performance compared to sunny conditions. 
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This still leads to an RMS error value of 0.29 m. 
A contribution also made in Chapter 6, is traffic lights based VLP using PDs. 

Traffic light-based VLP was achieved using the RSS information in the forward-facing 
PDs, thus using the same system structure as provided in the literature. The near 
optimum and a more practical receiver spacing was adopted, which are situated 0.2 
m apart. The application of ANN on traffic lights based VLP with the traffic lights 
provided a 77% and 48% improvement in system performance compared to the existing 
state of the art techniques. 

7.2 Future Work 

Though a diverse study has been conducted in this thesis ranging from indoor active 
VLP, indoor passive VLP and outdoor VLP, it is essential to state the further work 
that needs to be done to bring ML-based VLP to a reality. Promising results were 
obtained, but further research needs to be conducted for its realisation. 

The most crucial improvement under all these studies will be a practical implemen-
tation. The channel model and the ANN training are simulation-based, and results 
are obtained via offline training. Offline training is generally used just for verification 
purposes. 

A diverse study is conducted in Chapter 4 in studying and reducing the effect of 
NLOS in VLP. The impact of NLOS was decreased from 87% to 5.8% using receiver 
diversity with ANN. Further enhancement can be obtained through the transmitter 
and or receiver tilting to reduce the difference further to < 5%, i.e. not significant. 

In chapter 5, a study is conducted using ray-tracing software to model the passive 
VLP channel. With a 67% difference in accuracy with a different simulation-based 
study, it is essential to initiate a practical implementation of the specific room and 
object type to validate the reason for performance deviation. Filling this gap will 
improve the validity of the ray-tracing based channel model for VLP. 

In chapter 6, the feasibility of vehicular VLP was shown using streetlights and traffic 
lights. To move from streetlights to traffic lights-based VLP, the directionality of the 
receivers needs to be changed. A strategy needs to be developed to either optimise the 
receiver angle for both transmitters set up or include a different transmitters for traffic 
light positioning. 
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