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Chapter 1

Introduction

1.1 Motivation

In the real world, most systems, whether man-made or naturabre nonlinear.
However, in some cases, the nonlinearities can be considemnegligible, especially
when some systems are intended to operate about a xed opéaraj point. In such
cases, linearisation around this operating point is ofterusient in practice. As
a consequence, linear control techniques are still in higlerhand, due mainly to
their performance, yet practicability and ease of implemeation.

In particular, the non-minimal state-space (NMSS) approdt o ers a
further simpli cation in terms of control design, since allthe system states are
measurable, i.e. current and previous system output values well as previous
system input values, which removes the need for a state obgavestimator (Hes-
keth 1982; Young et al. 1987).

Inspired by the above mentioned useful and practical propees, model-
based control strategies in the NMSS framework have been éqed. Particularly,
NMSS model-based predictive control (MPC), where the NMSS RLC in incre-

mental input form (Wang and Young 2006) and making use of antiegral-of-errors


















Chapter 2

Background Concepts

In this Chapter, the methodological background concepts,favhich use is made
in this Thesis, are introduced. Generally, the conceptualpproach is presented
in this Chapter only, since these concepts are taken from t#rooks and other
publications so that detailed information can be found in tle respective references
provided and further references therein.

The system models considered in this Thesis are in discreiexe domain
and mainly in a discrete-time di erence equation form, herethe focus builds on
this structure. Based on this model structure and under theansideration of a
linear system model, in Section 2.1, the concept of a non-nmmal state-space
(NMSS) system representation is depicted.

Extending this concept to a nonlinear framework, in Sectior2.2, the
state-dependent parameter (SDP) system representation iigroduced.

Subsequently, the system identi cation methods used in ost to identify
the, essentially unknown, model parameters of the linear N85, as well as the
nonlinear SDP model are presented in Section 2.3.

Furthermore, in this Thesis, two model-based control stragies are con-

sidered. Section 2.4 is concerned with a model-based prége control (MPC)
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approach, where the model on which the MPC is based, is in a Ni@S$orm, hence
linear. Moreover, the handling of imposed constraints is &b considered.

The second model-based control approach considered, is fineportional-
integral-plus (PIP) controller, which is introduced in Setion 2.5. Here, the PIP
controller based on the linear NMSS and based on the nonlime8DP model, is

considered.

2.1 Non-minimal state-space system representa-
tion

Consider the linear, discrete-time, single-input singleutput (SISO) system model

in di erence equation form

Yt @Yk 1t a2y 2t 11+ @n, Yk na
(2.1)

=b U 1t b U 2% 1ii+ by Uk o,
where the subscriptk denotes the sampling time instance and;, h 2 R denote
the model parameters, respectively. The system output andput are denoted by
y and u, respectively. Alternatively, (2.1) can formulated in a Inear, discrete-time

transfer function of the form

_ Bz
Yk = Az D) Uk (2.2)
with
Az D=1+ az+az?+:::+a,z "™ (2.3a)
BzhH=bz'+bhz?+:::+h,z™ (2.3b)




Background Concepts

wherez ! denotes the backward time-shift operator, i.ez ' y, = yx 1. In gen-
eral, a time delay can be introduced by setting the respecBveading parameters
in (2.3b) to zero.

The NMSS representation of the system can be directly deduté&om
the discrete-time transfer function or from the di erence quation (Young et al.
1987), i.e. (2.2) and (2.1), respectively. This follows fro the de nition of the
state vector of the NMSS model in which elements consists it current and pre-
vious system output measurements and previous system inguisee e.g. (Young

et al. 1987; Wang and Young 2006; Wang 2009), i.e.

Xk = [Yk Yk 1 Y na+1 Uk 1Ug 2 Uy par]” 2 RMa*ne D2 (2.4)

so that the NMSS system representation becomes

Xk =G Xk 1+ B Uk 1

(2.5a)
Yk = C Xk
where the(n,+ n, 1) (ny+ ny 1) state transition matrix is
2 3

a a an, 1 dn, o) bﬂb 1 bﬂb

1 0 0 0O O 0 0

0 1 0 0O O 0 0
G=80 o0 1 0 0 0 0 (2.5b)

0 0 0 0O O 0 0

0 0 0 0 1 0 0

0 0 0 0O O 1 0
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and

B=[00O 010 off 2 R(Ma*m 1 1
(2.5¢)
C=[10 0] 2 Rt (na*mo 1)

In the case of a multi-input multi-output (MIMO) system, the dimension of the
di erence equation representation (2.1) increases accamndly and, consequently,

so do the matrices involved in the NMSS representation, sets@ Chapter 3.

2.2 State-dependent parameter system represent-
ation

Similar to the linear NMSS system model representation (2.5the SDP model
can be represented in a NMSS formulation as well. While the rdel parameters
of the linear NMSS representation are constant quantitieshe model parameters
of the SDP representation are dependent on the states of thea\i$S state vector
(2.4), i.e. the current and previous system outputs as welkahe previous system
inputs. Moreover, the SDP model parameters are not restrietl to be dependent
on the states only, they also can be dependent on further vahles (Young 2000,
2011).
In a similar manner as the linear NMSS system model represatibn

of (2.5), the SDP model in a NMSS formulation can also be dededt from a

discrete-time di erence equation (Young 2000),

Vet ar( k) Ve 1+ @( k) Yk 2% 200+ @n,( k) Yk na

=b( W) ue 1+ (W) ue 2+ i b (k) Uk on,

(2.6)

where the state dependency on the non-minimal states in thesstor (2.4) is

10
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denoted by
= Dxp #e (2.7)

and #, denotes a vector comprised of some variables the SDP modetgraeters
may also depend on.
Consequently, for the sake of brevity and simplicity, the p@meters can

be viewed as time varying, so that (2.6) becomes

Yet @ik Yo 1+ @k Yo 2F 200t @n,k Y na
(2.8)

= bk U 14 B Uk 2+ 2004 By Uk i,
where the subscriptk indicates the time varying nature of the model parameters
and subsequently, a non-minimal state-space formulatioras be obtained, such

as (2.5), in which the parameters are state dependent.

2.3 System identi cation

In the previous sections of this chapter, the system repregations have been
introduced. In this Section attention is given to system ideti cation methods
in order to obtain the associated model parameters. The sysh identi cation
methods considered here, are those used in this Thesis orgbavhich an under-
lying concept is adopted, in particular, in Chapter 5, wherea SDP modelling

approach of a DC-DC boost converter is proposed.

2.3.1 Linear system identi cation methods

Consider the linear system model in discrete-time, di ereze equation form (2.1).
A straightforward method in order to obtain the parameters $ the least-squares

(LS) algorithm (Hsia 1977) and its recursive version, i.e.ecursive least-squares

11
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(RLS), which provides additional information on statistial properties (Hsia 1977;
Soderstrom and Stoica 1989; Wellstead and Zarrop 1991; Lyi999).
Since the LS algorithm identi es the unknown model paramets by

representing (2.1) in regression vector form, i.e.

yie="" (2.9)
where' T = vy 1 Yk 2 Yk na Uk 1 Ux n,] denotes the regres-
sion vector and =[a; & an, b bn]]T denotes the parameter vector,

also parameters of nonlinear functions can be identi ed ifhte function is linear
w.r.t. the parameters and can be expressed in the form (2.9,9. n  th order

polynomials, which is also used in Chapter 5.

2.3.2 SDP system identi cation methods

Identifying the parameters of a SDP system model is not as sightforward as
identifying the parameters of a linear model, although the 3P and linear model
considered here are both of identical structure, i.e. in a stirete-time di erence
equation form (2.1) and (2.8), respectively. The main di cuty, however, lies in
the fact that the SDP model parameters are themselves unknawunctions of
the non-minimal states which are required to be identi ed.

In order to identify these functions, several approaches ¥ been made,
such as based on arti cial neural networks (Akesson and Tawen 2006). An e -
cient method, which also provides an underlying concept thas used in Chapter
5, is the recursive xed interval smoothing (FIS) method (Yaing et al. 2001). The
SDP model is initially viewed as a linear, time-varying panaeter (TVP) model
and identi ed by making use of recursive linear system identation methods.

Subsequently, these parameters are ordered in a non-temalomanner, e.g. they

12
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convex, quadratic form (Maciejowski 2001; Rossiter 2004a@acho and Bordons

2007), e.g.
X N 1
J = (Vi ij rk+ijk)TQi(yk+ijk Merijk) + Uijk i Uksjk (2.10)
i=1 j=0
which is required to be minimised and whergy = [Yik Y2k ::: yny;k]T, reg =
[Fik rax oo rny;k]T denote vectors ofn, system outputs and respective refer-

ence signalsuy = [Uyx U2k :::Un,x]" denotes a vector ofn, system inputs,
Qi 2 R and ; 2 R" " denote positive de nite and positive semidef-
inite weighting matrices, respectively, and = 1 z ! denotes the dierence
operator. The subscriptk + ijk denotes thei-th prediction based at the current
sampling time instancek. Consequently, the cost function containdN, system
output predictions, henceN, denotes the prediction horizon, andN. 1 system
input predictions, henceN. denotes the control horizon.

Now, consider the issue of constraint handling. Minimisinghe cost
function (2.10) w.r.t. the system input prediction sequeref uy.ixgi =0;1;:::;
N. 1, can be regarded as the unconstrained case, consequenttg tonstrained
case can be formulated as an optimisation problem

min: J

Ukjks Uk+1jkis Uk+N¢ 1jk

subject to: Yiri = F(Ykei jiUksi 1) (2.11)
Yirei 2 Y i=1;2000 Ny

Uk+i 2 U 1 =0;1;:::;Ne. 1

whereY and U denote constraint sets on the system output and input, respe
ively.

In the MPC approach, at every sampling time instance, a set ofptimal,

14
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current and predicted system inputs are calculated by obtaing the solution of
the optimisation problem (2.11), i.e. fuyj; Uks1jk; 25 5 Ukene 1k9, SO that
N. 1 future system inputs are obtained. The current system inputy, i.e.
the rst element of this sequence, however, is actually appl to the system and
the remaining, predicted inputs are discarded. This procede is repeated at each
sampling instance. Therefore, the MPC method is also termedreceding horizon
control (RHC) (Kwon and Han 2005). Additionally, the systeminput beyond
the control horizon is assumed to be constant, i.eUy:ng+ijk = Uk+ne 15k 8 =
0,12 ::..

However, in (Bemporad et al. 2000, 2002) a multiparametricugdratic
programming approach is proposed so that the optimisationrpblem (2.11) is not
required to be solved online. This, however, is beyond theage of this Thesis.

Furthermore, note that N, > N .. This becomes obvious when consid-
ering a linear system model (2.1) and the last element in th@put prediction
sequence, i.eUx.n. 1jk, @s Well as the corresponding output predictioyic njx-
In the case ofN; > N, the input sequence is optimised beyond the prediction
horizon and these additional predicted inputs do not a ect he system output
predictions that appear in the cost function (2.10), hencehie choice ofN, > N ..

Next, obtaining the solution of the optimisation problem (211) is of
interest. As mentioned above, the optimisation problem (21) is convex and of
a quadratic form, so that (2.11) can be cast as the followingegeral quadratic

optimisation problem

in: f()=2TH +cT
my, fO=3TH v
subjectto: Ag = bg (2.12)
A| b|

15
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whereAg 2 R" Me A, 2 R" ™ denote matrices andog 2 R™e 1 b, 2 R™ 1

denote vectors that account for the equality and inequalityconstraints, respect-
ively, H 2 R" " denotes a positive de nite matrix andc 2 R" ! a constant
vector. Due to the linear constraints and the positive de rieness oH , (2.12) is
a strictly convex, quadratic programming (QP) problem, forwhich a solution is
global and unique (Goodwin et al. 2005, Chap. 2). Moreoverh¢ solution of the
problem (2.12), denoted , must satisfy the constraints as well as the ( rst-order

necessary) Karush-Kuhn-Tucker (KKT) conditions (Goodwinet al. 2005)

H +c+Af e+A] =0
0 (2.13)
T(A, b)=0

where ¢ 2 R™ ltand , 2 R™ ! denote vectors of Lagrange multipliers.
The area of optimisation is a wide eld, ranging from linear pogram-
ming (LP) methods (Hillier and Lieberman 2001) via QP methos (Fletcher 2000;
Goodwin et al. 2005; Boyd and Vandenberghe 2004; Nocedal aidght 2006) to
semide nite programming (SeDP) (Boyd et al. 1994) and numeus other meth-
ods. In particular, the SeDP method, developed by (Nemiroks and Gahinet
1994; Gahinet and Nemirovski 1997), allows the e cient solion of linear mat-
rix inequalities, which are used in the development of robtyjsconstrained MPC
methods (Kothare et al. 1996; Kouvaritakis et al. 2000, 20p2Also, this method
is readily implemented in the Matlal® Robust Control Toolbox. However, this
is beyond the scope of this Thesis and therefore, the focugdés on algorithms
in order to solve QP problems. The most common algorithms inrder to solve
QP problems are the active set method and interior point methds (Maciejowski

2001). Matlal®® provides the function quadprog in the Optimisation Toolbox,

16
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inequality constraints into a QP problem with equality congraints only, i.e.

min: f()
2R 4 (2.14)
subjectto: aj =h 8i2A

which can be easily solved by making use of the KKT conditior2(13), see e.g.
(Nocedal and Wright 2006, Chap. 16.1).

In order to identify the active constraints, an initial feasble point is
required, which is a problem in its own right and can be dicul to obtain,
especially in large scale QP problems. However, since thenais to minimise
the cost function (2.12), a decreasing directiod 2 R" ! is calculated at each
iteration such that f ( x+1) f( ) wth 1 = ¢+ dg where 2 (0;1]
denotes the step-length. If ( =1 and dx 6 0 does not yield a feasible solution,
then a line search alongly is performed, i.e. reducing appropriately. Moreover,
this also means that there exists a constraint i along the directiondy, which
is not considered in the active set. Consequently, the cosgonding constraint
index is obtained by nding the constraint indexi 2 A, that yields the smallest
step length , such that adding this constraint index to the active set, adasible
solution is obtained. A constraint becomes inactive (and neoved from the active
set), if it is a feasible point and the corresponding Lagrargmultiplier in the KKT
condition is negative. In the case of more than one negativagrange multiplier,
the constraint index corresponding to the most negative onis removed from
the active set. The algorithm terminates ifd, = 0, the Lagrange multipliers
are positive or zero, the solution is feasible and the KKT calition is satis ed.
Detailed explanations on the active set method can be found,ie.g. (Fletcher

2000; Nocedal and Wright 2006).

18
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2.4.2 Interior point method

E cient interior point optimisation methods emerged initi ally for solving LP
problems (Karmarkar 1984) and were later adopted for solvinconvex QP prob-
lems (Nesterov and Nemirovskii 1994; Renegar 2001). Furth&re, interior point
methods are also used in order to solve optimisation problenwhere linear matrix
inequalities are involved (Boyd et al. 1994), however, th@tus here is on convex,
QP problems.

Interior point methods start at an initial feasible point and iteratively
converge to the solution of the QP problem. Other than the acte set method,
interior point methods search in the interior of the feasild region and not only
on the boundary for the solution. However, it is not always saightforward to
obtain an initial feasible point. This led to the developmenof infeasible interior
point methods, which do not require an initial feasible stamg point (Wright
1997). A drawback of these algorithms is that they cannot beetminated before
convergence to the solution, since an intermediate point mde infeasible.

There is a wide variety of interior point algorithms, howeve here an
interior point method using barrier functions is consider® The barrier func-
tion describes the boundary of the feasible region, predigethe boundary of the
inequality constraints. Moreover, barrier functions are remooth, monotonically

decreasing functions and are often of a logarithmic form,ce.
1 X
( ;)= = loghh a ) i2l (2.15)

i=1

so that the QP problem (2.12) can be formulated to be

min: f()+( ;) (2.16)

subjectto: Ag = bg

19
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see e.g. (Taylor et al. 1996a, 2000). Additionally, the PIPan be implemented
based on the feedback and forward path structure, details dhe di erences can
be found in (Taylor et al. 1996b).

Since Chapter 4 is concerned with the PIP feedback contrallstructure,

this con guration is shown in Figure 2.1. The controller paameter polynomials

Mk K 1 Uk B(Z 1) Yk
- G(z b A(z 1)
F(z 1)

Figure 2.1: Block diagram of the linear PIP feedback structe
are denoted byF (z 1) and G(z 1), respectively, which are de ned to be

F(zH)=fo+fizt+:i+f, 2" n=ny 1
(2.17)

G(z =1+ gz *+ 111+ g,z ™ ng=np 1

and K, denotes the integral gain, while = 1 z ! denotes the discrete-time
di erence operator, i.e. yx = Yx Yk 1. From Figure 2.1, the control law is

obtained to be
_ 1 1 Ki
Uc = F(zZ Iy G(z Jue+ —(rc  Y) (2.18)
with G(z 1) = G(z ') 1. Alternatively, in state-variable feedback form
Ug= CRy (2.19)

wherec=[fo f,, o 6y, KiJand®y =[xy «]" denotes the augmented

NMSS vector by the integral-of-errors state, = Y«  Note that in the case of

21
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Ny = Ny =1, the integral gain K, and the gainf, are present only, which can be
seen as a proportional gain so that, e ectively, a Pl contrdégr is obtained. Also,

from Figure 2.1, the closed-loop transfer function is giveby

Yk B(z YK,

e (A HYG(z Y+ B(z YF(z )+ K\B(z 1)

(2.20)

The controller parameters are obtained by assigning the ded-loop poles, i.e.

Dz YH)Y= A@ YH6(z H)+ Bz HYF(@z Y + KBz Y (2.21)

whereD(z 1) denotes a prede ned polynomial, which represents the desit char-
acteristic equation of the closed-loop system, i.e. the deminator of (2.20), and
by comparing coe cients of like powers ofz yields the controller parameters.
Alternatively, the state feedback gains are obtained by makg use of optimal
control techniques, such as LQ and LQG design, however, thgnot considered
in this Thesis. Further detailed information on the linear RP can be found in
the references given above in this Section and the referemdherein.

An attempt of using linear PIP control for nonlinear systemscan be
found in (McCabe et al. 2000) where feedback linearisationatinods are used.
In the following developments, in order to deal with nonlinar systems, the PIP
is used in conjunction with SDP models to form the SDP-PIP, wére at each
sampling instance the SDP model is considered ‘frozen'/mstaneous linear,
so that linear control techniques can be applied, see e.g. ditoroupis et al.
2003; Taylor et al. 2009). Hence, the nonlinear SDP model isrsidered to be
linear at each sampling instance, while, overall it is cordred to be nonlinear.
Consequently, these dierent “levels’, i.e. linear and ndinear, of consideration

are re ected in the formulation of the SDP-PIP controller in Chapter 4.
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Chapter 3

Multivariable Decoupling NMSS
MPC Control

This Chapter is concerned with an input-output decoupling antrol strategy for
multivariable systems where the number of system outputs, is equal to the
number of system inputsn,, i.e. ny = n, = n.

Furthermore, an approach for system output decoupling is pposed
making use of an input transformation term which diagonalies the closed-loop
system, hence compensates for the cross-coupling e ectshid'is adapted from
(Plummer and Vaughan 1997) and (Kubalcik and Bobal 2006) whe pole as-
signment control is used. Here, however, model based préuhie control is used
whereby the model is of the non-minimal state-space form. eover, the NMSS-
MPC controller in incremental input form (Wang and Young 20®) as well as that
of the integral-of-errors state variable form (Exadaktyls et al. 2006) is used, and,
in this context, their relative merits are evaluated. In paticular, when imposing
constraints, it is desired that the output decoupling is noimpaired. In order to
achieve this, a modi cation of the incremental input represntation is proposed

so that it is straightforward to obtain decoupled control ofthe system outputs,

24
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despite the imposed constraints.

Existing output decoupling control methods are often eithebased on
optimisation procedures, see e.g. (Lees et al. 1995; Sos2801; Gunnarsson et al.
2003; Exadaktylos and Taylor 2010), aiming for minimisinghe cross-coupling
e ects, or by introducing compensation terms that ideally Bminate the cross-
coupling e ects completely by diagonalisation of the restihg closed-loop system.

A decoupling NMSS MPC strategy based on optimisation procedes is
proposed in (Exadaktylos and Taylor 2010), which is based anmulti-objective
optimisation approach, similar to (Bemporad and de la Pena®?9), using the
goal attainment optimisation method, which is also used inLees et al. 1995)
in a decoupling pole-assignment context. Most recent deqding NMSS PIP
developments in the continuous-time domain can be found iffgylor et al. 2012).
However, the discrete-time domain is considered in this Cpter only.

The method of closed-loop system diagonalisation by makinge of a
compensation term, in conjunction with pole-assignment otrol, can be found
in, e.g. (Lin and Hsieh 1991; Plummer and Vaughan 1997; Kulzé and Bobal
2006; Wei et al. 2010).

3.1 Multivariable system representation

The system model considered throughout this Chapter is in dstrete-time, multi-

input multi-output (MIMO) transfer function form (Alberto s and Sala 2004)
Yk = G(z Huy (3.1)

where

Vi = [Yak Yo 00 YoxdT @and Uy = [Upk Ui 530 Ung]” (3.2)

25
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denote the vectors containing then system outputs and then system inputs,
respectively. Also,

2 3
911(Z 1) Oin(z 1)
G(z ! g : : % (3.3)
gnl(z ) gnn (Z 1)

denotes a square matrix containing individual transfer fuctions

1 24 ... "
I B . .
] 1 + allj Z 1 + a2|j Z 2 + 4+ a ai i Z N ajj

with i;j = 1;2;:::;n. Moreover, assume that the numerator and denominator
polynomials in (3.4) are coprime, (3.4) is controllable anthat G(z 1) is of full

rank.

Remark 3.1.1. Without loss of generality, in order to incorporate time delys,

the corresponding leading numerator parameters i(8.4) are set to zero.

3.1.1 Left matrix fraction description (LMFD)

The transfer function matrix representing the MIMO system 8.3) can be formu-

lated in a left matrix fraction description (LMFD) (Kailath 1980)

GzhH=A (zhHhB(@z Y (3.5)

so that the system representation (3.1) becomes

A(z Yy« =B (z Hux (3.6)
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with
Az D=1, +Az + Az %+ 0+ Az
(3.7)
B(z)=Bz'+Byz?+:::+B,z"™
where |, denotes then n identity and A; 2 R" " denote diagonal matrices

containing the corresponding system model parameters. Sianly, B; 2 R" "

denote matrices of corresponding system model parameters.

3.1.2 System diagonalisation

Considering the system representation (3.6) (3.7), it isloserved that the cross-
coupling e ects arise from the non-zero o -diagonal eleménin B (z 1). In order
to obtain a diagonal matrix (Plummer and Vaughan 1997; Kubaik and Bobal
2006) proposed to include a cross-coupling compensationtmawhich diagonal-

ises the system by, e ectively, transforming the system ing

ux = E(z Hvy (3.8)

with v = [Vix Vax i 10 Vak]T @and E (z 1) being de ned to be

E(z Y= ad[B(z Y]z (3.9)

the forward time shift z is chosen such thaE (z ') just remains causal, see e.g.

(Oppenheim et al. 1998), i.eE (z 1) can be written as

E(z )= Eo+E;z Y+ Epz 2+ 111+ Ep .z M (3.10)
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where E; 2 R" " denote matrices of corresponding model parameters. When

substituting (3.8) into (3.6) yields
yk=A (z HBa(z Mk (3.11)

with
Ba(z )= B(z HE(z ") = defB(z Yz I,
(3.12)
= Bg1Z "+ Bz ?+ 111+ Byp,z ™

being a diagonal matrix, and a diagonalised system represation (3.11) from

the transformed or arti cial input v\ to the output yy is obtained.

3.2 Decoupling non-minimal state space MPC

The general non-minimal state-space system model, upon wthithe MPC con-
trollers in their respective representations are based, mebe straightforwardly
obtained from the diagonalised system in the LMFD represeation (3.11), as

follows

Xgk = GgXgk 1+ BgVk 1
g gXg g (3.13)

Yk = CgXgk

28



Multivariable Decoupling NMSS MPC Control

with
2
A A An, 1
I'n On On
On I n On
GQ = On On I n
On On On
On On On
and

Cy=1[ln 0,

where 0O, denotes an n matrix of zeros. The state vector is given by

T N S T ...
Xgk =[Yk Yk 1 770 Yk nae1 Vk 1 -5

3.2.1 Incremental input form

An,
On
On
On
On

On

On

Onl

B d;2

On
On

On
On

I'n

On

On I'n On

On
On

On
On
On

0.]"

T T
Vk nbd+l]

Bd;nbd 1 Bd:nbd

On
On
On
On

On

On

(3.14)

(3.15)

(3.16)

As presented in (Wang and Young 2006; Wang 2009), the non-rimmal state-space

system representation in incremental input form is given by

yk = C X

'k

(3.17)
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with
3 > 3
G, O B
G =9 7% ™" B =9 79L c =10, o, (318)
CeGy  In CeBq
and
XTy=[ XLyl (3.19)

A modi cation to the usual linear state-space MPC formulaton, see
e.g. (Ikonen and Najim 2002; Kwon and Han 2005; Camacho andrBons 2007;
Wang 2009), is proposed here, that allows to assign individuprediction and
control horizons, denotedNp and Nc, respectively, to then input-output pairs
( vi;yi) 1 =1;2;:::;n. The vectors of the predicted system outputy , future

input di erences V and the future reference trajectoryR are de ned to be

Yi = [Vik+1jk Yik+2jk yi;k+Npijk]T
(3.20a)
Y =[Y Y Y, T
Vi=[ Vikjk Vik+1jk Vik+ne k]
(3.20b)
V=] V1T V2T VnT]T
so that
Vi = [Vi;kjk Vik +1jk Vik + Nc; 1jk]T
(3.20¢)
V = [VlT VzT VnT]T
and
Ri = [rik+1jk Mik+2jk Fik+ Npsjk] T
(3.20d)

R=[R;R; RyI"
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respectively. For completeness,

Ui =[ Uk Uik+1jk Uik+Ne k]
(3.20€)
Uu=[ U/ U; Usl
and
Ui = [Uikjk Uik+1jk Ui:k + Nc; 1jk]T
(3.20f)

U=[U{ U] U T’
denote the current and predicted incremental inputs as welis the current and
predicted inputs, respectively.
The cost function required to be minimised, however, is of ¢hsame

form as in (Wang and Young 2006)

J =(Y R)'Q(Y R)+ VT Vv (3.21)

where Q = diag(Q:Q.:::Q,) and = diag( 1 2::: ) are positive de nite
and positive semi-de nite block diagonal weighting matries, respectively, where
the individual matrix blocks Q; 2 RNPi NPi gnd ; 2 RN¢ N¢ gre themselves
diagonal matrices.
In order to minimise the cost function (3.21) w.r.t the deci®n variables
V , i.e. input di erences, requires that the output predictims Y are expressed

interms of V. As an exemplary, yet representative case, the output prextions
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of the ith output, by taking (3.17) into account, are given by

Yik+1jk = C iX x+1jk=C ;iG x 4+ C ;B

i Vik
Yike2ik = C iG?X xk+ C 4G B 4 Vikk
+C B i Viks1jk
Vikeajk = C 4G3*X 4+ C 4G?B 4 Vikjk
+C G B ;i Viksjk+t C iB i Viks2jk

(3.22)
Viksnejk = C iGNOX ik
N 1
+C G'B i Vikene 1 jjk
j=0

Yik+npiik = C G PIX i
pr Nc;j
+C G'B
j=Npi 1

Vik+Npi 1 jjk

whereC . denotes theith row of C and B . denotes theith column of B

respectively. Furthermore, (3.22) can be written in a moreanpact form

Yi=FX «+ i Vi (3.23)
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with

2 3
C ,G?
Fi=a6 C ;iGNCi (3.24)
C 'GNCi+l
il
Cc ;G"P
and
2 3
C ;iB i 0 0
C .G B C B 0
i=ac ;,GN B , C ;GN% 2B | C .B (3.25)
C ;iGNCiB i C ;iGNCi ‘B ;i C .G B
c,G"™ B ; c,G"™ B, c ;G\ "B

Subsequently, the predictions of then outputs are obtained from
Y =Fx 4+ V (3.26)

P n .
with F =[F/ F] FT]T 2 R = Npi n(ha*ma) gnd = diag( 1 » n) 2
P n P n . . .
R = NPi s Nei heing a block diagonal matrix.
Substituting (3.26) into the cost function (3.21) and solvig the optim-

isation problem

mi\p: J (3.27)
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the incremental arti cial input predictions are obtained in the usual state variable

feedback form, cf. (Wang 2009)

V= Kyx y+Kg R (3.28a)

where
Ky =( "Q + ) ! TQF (3.28b)
Kr =( 'Q + )*' 7Q (3.28¢)

n

P P
denote the L, N¢; n(n, + nyg) and L, Ng . Np; feedback gain

matrices, respectively.

System input recovery

Solving the optimisation problem (3.27) results in obtaimg the transformed sys-
tem input (3.28a), however, the system inputy is required to be obtained since
this input is applied to the actual system.

Consider the input transformation (3.8) and associated trasformation

matrix E (z ) de ned in (3.9) and (3.10), respectively, which can also beritten

as 2
euz ) ez
E(z Y g : (3.29)
ezl em(z?
where
gz )=6,+8g.z +eg,z°+11+g,,2"™ (3.30)
8j;1 =1;2;:::;n. Moreover, without loss of generality and for the sake of sim

plicity, let the order of all the polynomials (3.30) identially be n., which also

follows directly from (3.10). This may mean that some of thea cients g, are
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set to zero.

Remark 3.2.1. In the case of MIMO systems with multiple time delays, i.e.
the time delay of the individual transfer functions in(3.3) di er, some leading

coe cients in (3.30) are set zero anyway.

So, theith input can be obtained as

X1 1
Uik = e (z “)vix (3.31)

1=1
and, subsequently, the predictions of thé&h input are given by

xXn
Uik+j = &1 (Z YVik+j 8 =1:2:::;N¢g 1 (3.32)
=1

and, as a consequence, the entire vector containing curregmd predicted input

values (3.20f) can be recovered by

U=EV +EV (3.33)
where
2 3
2 3 g, O 0O O
Er En g, €, 0 O
Ezg % with B =8 ¢ 1 17 2RNa Ne
En En 0O O g, O
0 0 €, €,
(3.34)
and
N
E= g7 &7 ... EJ (3.353)
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with

€1, §u 0 0 €2, G2 0 0

2
€u §1, €1, 1 G G212 G2, €20 1 G20
€1, €1, € 1, 0 g2 g2 € 2., 0
g1, O 0 0 gz, O 0 0

0 0 0 0 0 0 0 0
3
in Qﬂz Qn ne 1 Qn ne
qnz qﬂs qn ne 0

qns Qn4 0 0

Pn
2 R = Nei me (3 35h)

€n,. O 0 0
0 0 0 0
0 0 0 0

Essentially, (3.33) is the representation of (3.31) and (32) in a compact matrix
form. Also, note that (3.33) consists of a term correspondinto the current and

predicted inputs and a term corresponding to previous inpstonly, since

V' =[Vik 1 Vik 2 500 Vik ne Vak 1 Vak 2 111 Vak ne

it Vn;k 1 Vn;k 2 i Vn;k Ne+1 Vn;k ne]T (336)
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Handling constraints

When imposing constraints on the system, it is desired thahiese do not introduce
cross-couplings of the outputs. Consequently, if there ischange of the reference
signal a ecting, e.g. Y;, then, the remaining outputs are not supposed to be
a ected, despite imposed constraints on the input and/or otput. The proposed
modi cation of the NMSS MPC formulation in incremental input form allows one
to consider the input-output pairs ( Vi, Y;) individually. This, in turn, allows
the choice of which outputs are allowed to change and whicheanot by making
use of the reference governor approach, see e.g. (Bemporad dMosca 1994;
Gilbert and Kolmanovsky 1995; Bemporad et al. 1997; Angelind Mosca 1999;
Exadaktylos et al. 2008). Similar to the closed-loop paragm (CLP) (Rossiter
2004), where a perturbation term is added to the optimal, i.e unconstrained,
control law such that the constraints are ful lled, the refeence governor adapts

the reference signal in order to avoid constraint violationi.e.
W =R+ (3.37)
whereW 2 RP = NPi 1 denotes the adapted reference signal and
=[ 7 T T (3.38)
denotes the reference signal perturbation vector where
D= kg ike2jk 0 ik Npik] (3.39)

denotes the reference signal perturbation corresponding the ith system output

reference trajectory.
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Since describes a deviation from the desired reference trajecypthe
values of its elements .« are ideally zero, which corresponds to the case
of inactive constraints. Moreover, in order to maintain o ®t-free steady-state
set-point tracking, the sequence$ ix+1jx ik+2jk i ik+npk9 8 =120
are required to converge to zero, which is assumed here. Huoare to keep the
deviation as small as possible, the following quadratic aptisation problem can

be formulated
min: T
(3.40)
s:t: M N
where the constraints are required to be ful lled element we. The matricesM
i i P n P n P n P n
and N of dimension(4 |, N¢;+2 ., Np;) izs Npi and (4 ;_; N¢; +
P
2 . Np) 1, respectively, formulate the constraints on the incremeat system

input, system input as well as system output, i.e.

2 3 2 3

M U NU
Mzgmué and N:ENUE (3.41)
N

MY Y

respectively, and are subsequently derived.
At rst, consider the case of imposing constraints on the inemental
inputs U, i.e.

U U U (3.42)

where () and () denote the lower and upper boundaries, respectively. The -op
timal predicted control sequence (3.28), when consideririge adapted reference

signal W , becomes

V= KX x+Kgr(R+ )= Vgt Kg (3.43)
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where the subscript( )., denotes optimal, i.e. unconstrained, and is the solution
of (3.21), i.e. (3.28). Substituting (3.43) into (3.33) afer multiplying throughout

with , gives
U=FE Vu+E V+EKgr = Ug+ EKg (3.44)

so that the matrices formulating the constraints associatewith U, are given

by 2 3 2 3

Mou=8 RLoN =8 U P (3.45)

EK R U Uopt

- - - P n P n P n -
which are of dimensior2 ._, N¢; -y Npiand2 .., Nc; 1, respectively.

Next, consider constraints on the input magnitude otJ, i.e.
u u u (3.46)

these can be directly derived from above by expressingU in a compact matrix
form, i.e.

U= U 2 Uk 1 (347)
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where
2 9 3
10 0%
00 OENcl
2 3 - "9
1 0 0 0 01 03
1 1 0 0 00 och2
1=80 1 1 0 and ,= L (3.48)
' 9
0 O 11 00 1%
00 0=
: Nc,

= VW

: . . P P, P, :
denote matrices of dimension ;_; N¢; i-; Nciand ;_; Nc; n, respectively.

So, the constraints can be formulated to be

2 3 2 3

Mu=§ RL. N,=§ U T g (3.49)

EK R 1U Uopt 2Uk 1

P P P
and these matrices are of dimensio2 ., N¢; i-g Nppand2 _, N¢; 1,
respectively.

Finally, consider constraints on the outputsy , i.e.
Y Y Y (3.50)

Substituting (3.43) into the output prediction equation (3.26), the constraints
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formulation is obtained as
2 3 2 3

F . V Y
My=§ (RE Ny =§ KRt Ve Yg (3.51)

n

P P
where the dimensions oM v and Ny are given by2 .-, Np; i”:l Np; and
P
2 . Npi 1 respectively.
Regarding the optimisation problem (3.40) and the subseqguiederiva-

tion of the constraints formulation, the following observéions can be made:

" When constraints are not violated by (3.28), then = 0, so that, from
(3.40), N 0. This, in turn, means that (3.40) is required to be solved
only if at least one element in the vectoN is negative, i.e.[N ], < 0 8j,

where[N ]; denotes thejth element ofN .

A

In order to avoid cross-coupling e ects introduced by the onstraints, cor-
responding reference trajectory deviations can be choseang. = .,
which are allowed to vary. This, e ectively, forces the remiaing reference
trajectory deviations to be zero. Also, the matrice$! and N can be trun-
cated accordingly. This allows the dimension of the optimadion problem

(3.40) to be kept low.

3.2.2 Integral-of-errors state variable formulation

The NMSS model with an integral-of-errors state variable (dung et al. 1987;
Wang and Young 1988), based on the general NMSS represeriat{3.13) (3.15)

of the diagonalised system, is given by

Xk =GXyx 1+ Bvy 1+ Dr g
(3.52)

Yk = CXy
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with
2 3 2 2 3

3
| G, 0
o= 9 g=§ C0 Ol go§ Bog (3.53)
) CGy I C4Bq

where = ¢ 1+ rx Yk denotes the integral-of-errors state variable and
C=[l1,0,:::0,] D =[0, :::0,1,]" (3.54)

In the MPC formulation based on the NMSS model that uses an iagral-
of-errors state variable, which ensures set-point trackip instead of the system
outputs, the state vector is predicted (Exadaktylos 2007, Ikap. 4). Consequently,

the cost function that is required to be minimized w.r.tV , is given by
J=XTQX +VT VvV (3.55)

where

X = [Xgarjk Xkazjk 5 XLijk]T (3.56)

denotes then(n, + nyg)N, 1 dimensional vector of predicted states and
V = [Vlek Vl-<r+ljk D Vs Ne 1jk]T (3.57)

denotes the transformed input prediction vector of dimensh nN. 1. Addition-
ally, Q 2 R"(Na*Moa)Np n(na*nua)Np gngd 2 R™e ™e denote positive de nite and
positive semi-de nite weighting matrices, respectively.

In a similar manner as in (3.22) and, subsequently, in (3.23he pre-
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dicted states are obtained by

X =Fx(k)+ V+HR (3.58)
where
F=[GT (G®)T::: (GN)T]" (3.59a)
2 3
B 0 0 0
GB B 0 0
GNe 2B GNe 1B B 0
= aGNe 1B G Ne 2B GB B (3.59b)
GNeB GNe 1B G’B GB +B
GNetlp G NeB G3B G?B +GB +B
GNp 1B GNp ZB GNp Nc+1B P |N:% NcGiB
2 3
D 0 0
GD D 0
H = : : L (3.59¢)
GNe ID GNe 2D D

and the vector of the future reference trajectories is de rieto be
R = [r-kr+1 r-kr+2 e r-kr+Np]T (360)

A detailed derivation and further information on the MPC bagd on NMSS models
with an integral-of-errors state variable can be found in (Eadaktylos 2007, Chap.

4).
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The (unconstrained/optimal) control law is obtained by soling the op-
timisation problem

min: J (3.61)

\%

for which the solution is given by, similar to (3.28),

V = K,xg+ KgR (3.62a)

with
Ky=( TQ + ) ' "QF (3.62b)
Kr= ( 'Q + )*' "QH (3.62c)

Remark 3.2.2. The cost function of the NMSS MPC in the integral-of-errors
state variable representatior{3.55) implicitly depends on the reference trajectories
via the integral-of-errors state variable y and its predictions, so that o set free
steady-state tracking is achieved (Exadaktylos 2007, Chép

As a consequence, when making use of a cost function similar(8.21),
ie. J=(Y R)TQ(Y R)+ VT V, instead of (3.55) applied to the NMSS
MPC with integral-of-errors state variable via the relatioship y, = Cx from
(3.52) in order to obtain the required output predictions, resultén nullifying the
integral-of-errors state variables so that the performaacis impaired and, con-

sequently, o set free set-point tracking is not ensured.

At this juncture, certain observations can be made regardgithe NMSS
MPC with integral-of-errors state variable compared to theNMSS MPC in incre-

mental input form:

" Due to the dierent cost functions used (3.21) and (3.55), espectively,

in particular that (3.21) depends explicitly on the system atput predic-
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A

tions while (3.55) depends on the state vector predictionsad implicitly

on the system output predictions), it is straightforward to “separate’ the
input-output pairs (Y;; V;) and assign individual control and prediction
horizons to each pair in the incremental input form, which ca be used
as additional tuning parameters. Other than in the integralof-errors state
variable form where the prediction horizon relates to the ate vector and
not to the system outputs. Consequently, there is a single @diction and

control horizon only.

Although both NMSS MPC representations are based on the sasrdiagon-
alised system representation (3.13), which was achieved aysystem input
transformation (3.8), the matrices involved in recoveringf the system in-
put predictions (3.33), di er due to the de nitions of the tr ansformed input

prediction vectors (3.20b) and (3.57), respectively.

System input recovery

As mentioned above, the system inpuuy cannot be recovered using (3.33)

(3.36), however, since (3.8) also applies to the NMSS MPC intégral-of-errors

state variable form, (3.8) written in matrix form, similar to (3.33), yields

U=EV +EV (3.63)

where

U= [u-l[jk u-ll<-+1jk e ULNC 1jk]T (3.64)
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denotes thenN. 1 vector of the current and predicted system inputs. Taking

(3.10) into account and similar to (3.34),E 2 R™< ™c¢ s given by

2 3
Eo On 0, O,
E:i Eo 0, O,
E=g§: & i (3.65)
0, O, Eo Op
0, O, E:1 Eo

and similar to (3.35),E 2 R™¢ e js given by

2 3

El EZ Ene 1 Ene
E2 E3 Ene On
E3 E4 On On

e=g ' ' (3.66)
Ene On On On
On  On On Oy
On  On On Oy

and
\l) = [Vl-<r 1 Vl-<r 2 L Vl-<r ne+l V-kr ne]T (367)

Handling constraints

Since here, as mentioned above, the actual system output®arot predicted but
rather the state vector, the method of constraint handling \a reference traject-
ory adaptation is not straightforwardly applicable. Morewer, as discussed above,

since the performance of the system is greatly determined the integral-of-errors
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state variable, which includes the reference signal, as ansequence, reference tra-
jectory adaptation impacts the performance signi cantly. Hence, the constraints
are handled by using the “conventional' method as proposet(Exadaktylos 2007,

Chap. 4), i.e. the quadratic optimisation problem

min: J
v (3.68)
s:t MV N
is required to be solved, where
2 3 2 3
E U+EV
E U EV
E U+ EV u
M = ' N=f — 2kt (3.69a)
1E U BV + Uk
C Y +CFxy+CHR
C Y CFxx CHR
with
2
In On  On On 2 3
I'n
In In On On
0
=80, I, I, 0,2 2 R™Ne ™e = 872 R™: " (3,69h)
On
0, O, Ih In

Handling the constraints in this way, clearly impairs the otput de-
coupling properties, see Section 3.3.1, and, other than ithd NMSS MPC in

incremental input form that uses the reference trajectory daptation method,
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function c2d where the sampling time is chosen to b& = 5s. The discrete-time

system model is obtained as

2 3 2 3
1:7271 0 0:7423 0
A= 2 g 2= 2 g (3.70a)
0 1:7924 0 (:8007
and 2 3 2 3
0:2014 0011 0:1621 00108
Bi= 9 % B2= 9 g (3.70b)
0:006 Q1513 0:0056  0:1281

Implementation results of the NMSS MPC in incremental inputform
incorporating the proposed modi cation, according to Sean 3.2.1, are presen-
ted in Figure 3.2. Here, both the NMSS MPC in incremental inpuform using
the diagonalised system model (solid line) according to Sen 3.1.2, i.e. the de-
coupling technique, and using the non-diagonalised systemodel (3.70) directly
(dashed line), are shown.

The reference signal is a step frorh2 units to 14 units at sampling in-
stancek = 200 for system outputy; and at sampling instancek = 700 for system
output y,. The prediction and control horizons are chosen to Q¢p; = Np, = 25
and Nc; = Nc, = 20, respectively, for both MPC controller formulations. The
weighting matrices are chosen to be identity matrices for .nMPC based on the
diagonalised model and the diagonal elements of the MPC bdsen the non-
diagonalised model are chosen such that similar output respses are achieved.

It can be observed that, as expected, when the system model dir
agonalised form is employed, the cross-coupling e ects agéiminated (without
model-mismatch). This is in contrast to the case where the nediagonalised sys-
tem model is used, where cross-coupling e ects are clearkgible. Moreover, it is

observed that the transformed system inputsy; and v, respond to the reference
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while , = 0, which accounts for a set-point change ig; while y, is supposed to
be constant, hence the optimisation problem (3.40) becomes
min: 1

) (3.71)
s:t:. M (ll)Jl 1 N Us

where
2 3 2 3

" (lz, _ 9 Eu K ng o R2Net Npi N = 9 U 1;0pt &g 5 R2Ne: 1
1 1 [
EulK R1 U 1 Ul;opt

(3.72)
Considering (3.33) in conjunction with (3.34), it can be seethat the matrix E

can be patrtitioned into

E=[E], ELI (3.73)
so that,
Eu, =[En E12]
(3.74)
Eu, = [Ea E2]
Similarly, K g can be patrtitioned into
K R = [K R1 K Rz] (375)

whereK g, 2 R(NP1#Np2) NP1 g ggsociated with 1 and K g, 2 R(NP1#Np2) Npz jg
associated with ,, respectively. This can be deduced from (3.43).
Now, in the second scenario,, 6 0 while ; = 0, which accounts for a

set-point change iny, while y; is supposed to be constant, hence the optimisation
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problem (3.40) becomes

min: ]

2 (3.76)
St M(Z&l 2 Ny,

where
2 3 2 3

Eu,K Ui U
M (2311 - 2 U RZ% o R2Ne1 Npz = 2 Lopt —1g o RANe1 1
EulK R2 u 1 Ul;opt

(3.77)

Remark 3.3.2. In the case of disturbances, which may cause constraint ael
tions, it might be advisable to allow the entire referenceajectory perturbation

vector to take on non-zero values in order to improve disturbancejeetion.

Implementation results are shown in Figure 3.4. It can be obsved that
cross-coupling e ects in the outputs are non existent.

Next, the NMSS MPC using an integral-of-errors state varidb, as dis-
cussed in Section 3.2.2, is considered. Again, constraiots the increments of the
rst system input, as above, are imposed.

The constraints are handled by solving the optimisation piglem (3.68),
accompanied by (3.69). However, since constraints onU; are imposed only,
the matrices (3.69a) are required to be adapted accordinglye. the constraints
associated with U, are required to be considered only. The matrices in (3.69a)
are adapted to be

2 3 2 3
E U, + EV u

1 g N Ul:g 1 1 2 klg
E U, 1EV + Uk 1

M o, =3 (3.78)

1
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Figure 3.4: Implementation results of the NMSS MPC in incremental input form
with imposed constraints

whereM , 2 R®MNe MNe N ;2 RNe 1 gnd

2
1 0000O0 0
00100 0
=00

0001 0 07 2 RNe e (3.79)
00000 1
such that
U= U (3.80)

the incremental input predictions of the rst system input ae extracted from

the entire incremental input prediction vector. The optimsation problem (3.68),
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adapted and required to be solved here, is given by

min: J
v (3.81)
sstt M y vV N

Implementation results are shown in Figure 3.5. It can be obsved, and as
expected, cross-coupling e ects are visible since the ctmaints involved in the
optimisation problem (3.81) do not prevent this, i.e. the opmisation problem
(3.81) allows the transformed inputv; to respond to a set-point change iry,
and vice versa. This becomes apparent when comparing Figsird.4 and 3.5.
However, it might be possible to construct the constraintsi such a way that the
cross-coupling e ects are eliminated, similarly to (3.71and (3.76), respectively,
without impairing the overall performance signi cantly. This, however, is left as

an open problem.
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Chapter 4

Generalised Discrete-time State
Dependent Parameter Proportional

- Integral - Plus Control

In this Chapter, the state dependent parameter proportionaintegral-plus (SDP-
PIP) controller in closed-loop is analysed. Particular emmasis is placed on the
generalised SDP model structure. Equivalent to its linearaunterpart, the SDP-
PIP is a pole-placement controller so that it is essential tbe able to formulate the
closed-loop characteristic equation. It is apparent thatmear systems theory (see
e.g. Gajic and Lelic 1996; Ogata 1997; Nise 2008), such as tia¢ion and concept
of system poles and zeros, cannot necessarily be carried pner referred to, when
dealing with nonlinear systems and their respective nonkar system models.
However, considering linearised system models at a seriésdistinct operating
points, the notion of equivalent system poles and zeros iger envisaged from an
engineering point of view. Such a notion is valid in a restried region around the
considered operating point and it can be said, at least lodgethat the nonlinear

system exhibits equivalent poles and zeros, that may be op#éing point, and/or
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consequence, the time shift operator may be considered to bpplied to the
parameters as well as the signals.
Throughout this Chapter, for simplicity, the following assimptions are

made (unless otherwise stated):

Assumption 1. There is no mismatch between the system and the model.
Assumption 2. The system (and model) is noise free.

Assumption 3.

" The system model polynomialg4.2) are coprime 8k

" The system model(4.1) satises m n,, i.e. proper.

The system model is obtained as a SDP model in di erence equ@t

form
_Bk(z Yz _Bk(z Y y
= Az T Az "

(4.1)

where 2 N denotes the sampled time delay and the system model polynais
are given by
Ax(z 1) =1+ apxz 1+ aZ 24 4 an,kz "

4.2)
Bk(z D=byx +buwz "+ bpyz 2+ i+ bipmxz ™

The subscriptk is used to denote the time-varying nature of the polynomialgt.2),
indicating the state dependency of the associated paramete Also, n; 2 Ng
denotes the order of the system model whilen 2 Ny denotes the order of the
numerator polynomial.

Regarding the SDP system model in the context of the SDP-PIPqgbe-

assignment control approach, it is, in the authors view, imprtant to take certain

points into consideration at the outset:
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the signals. Re-arranging (4.1) yields the general systerapresentation

Az *) Yk = Bz 1) uk (4.3)

in which, regarding the time shift operator, two scenariosra of interest.

Scenarios of interest:

1. The parameters as well as the signals are time shifted,.i.e * a;x yx =
a1k 1Yk 1, which is similar to the observations and interpretation wth the

approach proposed in (Ziemian 2002).

2. The signals only are time shifted, i.ea;x z * yx = aik Yk 1.

Following Scenario 1, and re-arranging (4.3), the system tput becomes

Yk = ik 1Yk 1 A2k 2Y¥k 2 i1 @ngk na Yk na
by uk +buak iU 1+bok 2U 2 (4.4)

+:::+b+m;k m Uk m

while, following Scenario 2, and re-arranging (4.3), the siem output equation
becomes

Ye= Qk Yk 1 QkYck2 7 @nak Yk ona
(4.5)

+hye Ue +Darx U 1+boxU 2+l Dipk Uk m
Both Scenarios are in compliance with Proposition 1 since teg the shift mech-
anisms are contained inside the polynomials only. When malkj use of the in-
terpretations according to Scenarios 1 and 2, the system nm&dutput quantity
yk obtained from each Scenario, i.e. (4.4) and (4.5), must beeidtical if both

represent models of the same system. Since the state depengmrameters are
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The shift operators “inside’ the polynomials, a ect the sigals only while
shifting the whole system, with the shift operator “outsidethe polynomials, af-
fects both the system model polynomials (hence the parametg and the signals.
Essentially, the di erent use and interpretation of the time shift operator arises
from the way the SDP model and, subsequently, the SDP modelrstture is
de ned. In (4.5), the time instance of the current system ouyiut serves as a ref-
erence time instance to which the parameters are related, swt the time shift
operator a ects the signals only and not the parameters. Ppwosition 1 states
that when shifting the whole system, the parameters are a éed by a time shift,
as well.

So, for clarity, a novel, purely conceptual time shift opetar for the
latter case is proposed. Whereby use of the “standard' timéift operator z is
recognized for time shifting the signals only, the concepalitime shift operator is
used for both the signals and the parameters. The conceptuahe shift operator

is introduced in the following de nition.

De nition 4.1.1.  Let a;« be some arbitrary SDP as it appears in e.g4.3) and
restricting the time shift operatorz' i 2 Z to shift the signals only by sampling
instances, e.g.ax 2%k = &« Yk+2. While, introducing the conceptual time shift
operator Z i 2 Z, which shifts the parameters and the signals bysampling

instances, €.9.Z%ajx Yk = @k +2 Yk+2 -

Remark 4.1.2. Since the time shift operatorz according to De nition 4.1.1,
arises from the choice of the SDP model structur@l.5) and the subsequent way
the system identi cation is performed, di erent choices othe model structure and
system identi cation methodologies, respectively, maydqaire di erent interpret-

ations of the shift operator.
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attempt to operate on (4.1) with z resulting in, sincez a ects the signals only,
Az Yye = By(z YHu. This result clearly contradicts Proposition 1 where it
is shown that shifting the system in time a ects the signals iad the parameters.
Moreover, as depicted in the discussion above, the parameteare related to the
same time instance as the system model output, i.&k + , which is, here, not
the case. Consequently, the system model (4.1) is requireal lhe operated on by
z instead ofz , leading toAxs (z )y« = B+ (z Y)uy which is in accordance

with Proposition 1.

4.2 Closed-loop SDP-PIP

Figure 4.1 shows the block diagram of the SDP-PIP con guredhiclosed-loop

(Taylor et al. 2009). Here, the system is represented accang to (4.1) and (4.2).

Ik Kk 1 Uk: B«(z 1) : Yk
Gi(z )] IZ Ac(z ) [
|

Fi(z 1)

Figure 4.1: Block diagram of the SDP-PIP structure
The controller polynomials are given by

Fi(z 1): fox + foxz Ly itz "™ o np=ng 1

(4.6)
Gr(z =1+ gl;kzl"':::"'gng;kz o Ng=m+ 1
so that the control law, in polynomial form, is obtained as
— 1 1 KI;k
U= Fu(z Iy Gi(z Hue+ —=(re  Y) (4.7)
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with Gy(z 1) = Gk(z ') landK,x 2 R denotes the integral gain. Alternatively,

the control law can be formulated in the usual state variabléeedback form

Uy = CpXk

G =[fox Fuk 177 Frok Guk Qo 117 Ghgwe K|
(4.8)
Xk =Yk Yk 1 000 Vi nast Uk 21Uk 2 200 Uk mo+1 k)"

Nk Yk

k=

The integral-of-errors state variable is denoted by, and the -operator is de ned
by =1 z 1 Furthermore, it is straightforward to see that (4.7) and (48) are
identical.

For the sake of simplicity, the notation(z ') indicating function of z !
is dropped from the polynomials (4.2) and (4.6) in the follomg.

In order to obtain the closed-loop transfer function, the day is ‘re-
moved' from the system by shifting sampling instances forward in time, i.e.
operating throughout by z , so that the control law (4.7) can be substituted into

the open-loop system equation (4.1) in order to “close theodip', yielding
Yk _ M
A+ Z Yk + Bis Fryk + Bye GrUg + Bye Kk = = Bys Ky — (4.9)

To obtain the closed-loop transfer function fronry to yx+ , hence the desire to

eliminate uy in (4.9), expanding the term Gyuy = ,";I 1gi;k Ux i and substi-

. . A + i
tuting (4.1), solved forug i, i.e. ux ; = |

z 'yy+ (cf. Example 4.1), the
k+ i
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closed-loop transfer function is then obtained as

Yk+
g

B+ Kik

my 1
B+ Ak+ + B+
Bk+ . Bk+ i

i=1

(4.10)
Certain observations regarding the SDP-PIP closed-loopansfer function can be

stated:

" The characteristic equation, i.e. denominator of (4.10)contains transfer
functions itself. Hence, it is suspected that the solutionfahe closed-loop
pole-assignment problem does not necessarily yield unigumstantaneous

controller parameters (if a solution exists).

A

The characteristic equation is expressed in terms of thertie shift operator
a ecting the signals only, i.e. z, therefore, it can be anticipated that by
assigning desired, stable closed-loop poles (wz)t stability of the instant-
aneous closed-loop transfer function is achieved by desigh (Taylor et al.

2009).

4.2.1 Comparison with linear PIP

It is expected that the SDP-PIP closed-loop transfer functin is identical with
the closed-loop transfer function obtained for linear PIPisce both, linear and
SDP-PIP, are of identical structure except that the parametrs in the SDP-PIP
are time varying while in linear PIP these are time invariant Consequently, the
SDP-PIP comprises the linear PIP as a special sub-class.

It is straightforward to show this relationship. Let the pamameters be
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time invariant, i.e. Bx+; = B(z ) and Ax+; = A(z 1), it follows that

By "X ' B . mx ot
Bk Ags + 5 “ gk A iz = Az H+ Az Y gz '
k+ E i=1
I
my 1 -'
=Az?h 1+ gz' =A(zHG(zh

and substituting into (4.10), the linear PIP closed-loop tansfer function (2.20)

is obtained. Hence linear PIP coexists within the wider SDIP{P formulation.

4.2.2 Closed-loop SDP-PIP without system zeros

The SDP-PIP in closed-loop without system numerator zeros,e. m = 0 (or
equivalently By+; = by +i), as presented in (Taylor et al. 2009), is supposed to
be contained within the closed-loop transfer function (4d) as well (since (4.10)

comprises the general case of  0). Substituting By.; = b +; into (4.10) gives

Yk+

b;k+ KI;k

(4.11)
X1 b;k +
b;k+ i

A Gk A+ 12 '+ by iz + Kixbyr Z

i=1

From the closed-loop characteristic equation in (4.11), thscaling factor associ-

ated with gix (4.12), as it appears in (Taylor et al. 2009), becomes appate

Ok = Ok (4.12)

b;k+ i

Also, it is straightforward to show that the solution of the ple-assignment prob-
lem, obtained by making use of the characteristic equationivgn in (4.11), is

identical to the solution presented in (Taylor et al. 2009).
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Consider the desired, instantaneous linear time-invariarcharacteristic
equation

0+ _
D(z H=1+ diz' (4.13)

and note that making use of the -operator on the polynomials yields, e.g.
Ak+j = Ak+j Ak+jZ 1= Ak+j J 27 (414)

where
'X+1 _
Ak+j =1+ Aik+j Z !
i=1 (4.15)
Qik+j = Qik+j Qi Lk+j an,+1k+j =0
so that nally, the pole-assignment problem is formulated ¢ be
X1 _
D(z?Y A = OkAk+ iZ ' +2 (bxs bys z HF
i=1 (4.16)

+ KI;kb;k+ z

and can be solved by comparing coe cients of like powers af In order to solve
the pole-assignment problem (4.16) e ciently, it can be fomulated in a compact
matrix form, see e.g. (Young et al. 1987; Wang and Young 1988aylor et al.
2009),

k= k k (4.17)

where , 2 R("a* ) 1 denotes a vector corresponding to the left side of (4.16)
k = [d]_ al;k+ d2 a2;k+ dna+1 ana+1;k+ dna+2 dna+ ]T (418)

and « =[ gk rk k,«] 2 R("a*) (a* ) denotes a matrix consisting of the

three terms of the right side of (4.16) associated with the otroller parameters
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Ok, fik and K, respectively. So, 4x 2 RM* ) ( D and ¢, 2 R(Na* ) Na

yield
2 3
1 0 0 i 0
Ak 1 1 0 D 0
Ak+ 1 A+ 2 1 e 0
An,+1k+ 1 Sngk+ 2 ny Lk+ 3 LL0 0
gk = (4.19)
0 Ana+1k+ 2 Bngk+ 3 L. 0
0 0 An +1:k+ 3 it 0
0 0 0 PIT @ngkel
0 0 0 Pl Qng+lk+l
2 3
0 0 0 0
0 0 0 0
b+ 0 0 0
bx+ b+ 0 0
fik = 0 b+ 0 0 (4.20)
0 0 0 0
0 0 R o B 0
0 0 it bys b+
0 0 il 0 b+
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where the rst 1 rows consist of zeros. Finally, with
<k = [9 479 bucs 0:::0" 2RMa*) 1 (4.21)
1
the instantaneous controller parameters contained in theegtor
k=l 09wk fox it fog 1 Kigd' (4.22)
can be obtained by solving (4.17) fory, i.e.
kK — K 1 K (423)

As expected, the pole-assignment solution (4.23), compng (4.18) (4.22), de-

rived from (4.11), is identical to that presented in (Tayloret al. 2009).

4.2.3 SDP-PIP incorporating system zeros

Having shown that, in the case oim = 0, the SDP-PIP controller parameters
can be derived from the closed-loop transfer function (4.1@nd the respective
characteristic equation, now, the case ah > 0 is explored. Apart from those in
(4.11), the scaling factors ofj«x (4.12) are not scalars, instead, it is recognized,
these are now transfer functions (cf. (4.10)). In order to @ with this, a similar
procedure as that adopted in (4.9) is utilised. Substitutig the control law (4.7)
into the open-loop system equation (4.1), re-arranged in éhform Ay, z yx =
b+ Ug + P T biike Uk i, yields

Yk A

+  Dugks Ui (4.24)
i=1

Mk

Acr Z Y= by Fryk  Giug + Kk
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Again, expanding the termGyu, and re-arranging, one obtains

KI;k KI;k

A+ Z Y+ bics Fryk + b+ Ve = byt M

+ (D 41 Dy+ Gu)Uk 1+ (D ok Bice Gau)Ui 2 (4.25)

+ :::+(b+m;k+ b;k+ gm;k)uk m gm+l;kb;k+ UKk m 1

Om+ l;kb;k+ U m +1

Note, however, that the closed-loop equation (4.25) stillomtains previous system

inputs. In order to eliminate them, from the open-loop systa equation (4.1),

values of the past system inputsl 1;Ux 2;:::;Ux +1, are obtained as
1 1 b +1:k+ 1 b +2:k+ 1
uk1=7Ak+ 172 yk Yikz ’7k3
b;k+ 1 b;k+ 1 b;k+ 1
b +m;k + 1
Uk m 1
b;k+ 1
u _ 1 A 7 2y b +1:k+ 2 b +2k+ 2
k 2— k+ 2 k k 3 k 4
bk+ 2 b;k+ 2 bk+ 2
Dimk+ 2
rmkr 2,0 (4.26)
b;k+ 2
1 b +1:k+1 b +2:k+1
U +1 = Axi1 Z Yk : —Ux 1
b;k +1 b;k +1 b;k +1
b +m;k +1
—V Yk m +1
b;k +1

and substituting (4.26) into (4.25) gives

K, K.
Aks Z Ykt bs Fryk + bics ik Yk = D+ ik Ik
X 1 o (4.27)
+ ikAke iz 'yt ik Uk 41
i=1 j=1

where the parameters jx 2 R and jx 2 R arise from sequentially substituting

Uc 1;Ux 25505, U +1 from (4.26) into (4.25), hence the computation is iterative
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(denoted by the superscripts), details see Appendix A.1.

(i 1)
_ G

ik = =120 1 (4.28a)
b;k+ i
L o,
ik = CLi1 ] =1;2;:00m (4.28Db)
8
3 o DO ke m+ |
o) = Dicr | (4.28c)
)
e else

0) _

G
where b.im+ik+ =0 81=1;2;:::

b tik+ bx+ Gk
(4.28d)

So, the closed-loop characteristic equation can be obtathérom (4.27) and by

nullifying i, i.e. forcing jx such that
ik =0 j=1;2:00m (4.29)

the term associated with the remaining previous system inpsi is eliminated
from the closed-loop equation (4.27), so that subsequentlthe pole-assignment

problem is formulated to be

D(Z l) Ak+ = ( i;k)Ak+ iZ i+ z (b;k+ b;k+ Y4 1)Fk
i=1 (4.30)

+ KI;kb;k+ z

which is identical to that obtained for the case ofn = 0 (4.16), except that here,
Ok Is replaced by( k). Therefore, (4.23) solves the pole-assignment problem

(4.30) as well, if  is de ned to be

=1 1k i 1k fox 200 Foow Kk (4.31)
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" The polynomial Gy is used in order to compensate for the in uence of the

system zeros.

o Considering the closed-loop equations (4.25) and (4.2 conjunc-

tion with (4.29), it can be seen that the open-loop system pghomial

system numerator, i.e. the system zeros are eliminated.

The resulting closed-loop transfer function, when substiting the controller para-
meters obtained for the case ah = 0 in Section 4.2.2 (also, see Taylor et al. 2009)

and for the case ofn > 0, is identical and of the linear form

yk+ i=1
- 4.32
3 1+diz 1+ dyz 2+ 1+ dye z (Mat) ( )

In summary, the controller parameters required for the contl law (4.8) can be

computed in the following manner.

Algorithm 1 SDP-PIP with system numerator zeros

1: Choose desired characteristic closed-loop equation (4.13
- Compute ¢ (4.18) and  (4.19) (4.21)
. Solve (4.23) in order to obtain ¢ (4.31)

A WN

from (4.29) using (4.28)

Example 4.2. Consider the following arbitrarily chosen SDP system whenm, =
22m=1and =2. Dene ajx = 0:28% 4 +0:1uUZ 5, azx = O3y 5, by =
3yk 3 and by = 0:5yL°, + 0:3ux 4. The n, + desired closed-loop poles are
chosen to be located ap;., =0:75 0:3i and p; = p; = 0:5.
According to Algorithm 1, after having chosen the desired oked-loop

pole locations and subsequent computation of, (4.18) and | (4.19) (4.21), at
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unit step change in the reference signal, from 1 to 2, is codsred (see rst step
in Figure 4.2).

Other than linear system models, SDP models can be more coehnd
diverse in their appearance, hence general statements cahnecessarily be made
so that every system is required to be considered individusal However, since the
SDP-PIP controller is of a certain structure, there can be sticturally imposed
observations made which are most likely to a ect the closeldop performance.

The performance criteria of choice are the mean squared ego

1 X

MSE = N Yk Yax)? (4.33)
k=1

and the integral of absolute errors

X

1 X .
IAE = N Yk Yal (4.34)
k=1

whereyq.x denotes the desired closed-loop system output.

4.3.1 Model parameter uncertainties

Firstly, uncertainties on the system parametersa;x.; and axx+; i = 1;2, that
are required for calculatinguy, are considered. The uncertainties of these model
parameters are simulated to be uniformly distributed in theanges of 5% 1%
and 0:36 % of the nominal parameter values. The results obtained are @lvn

in Table 4.1. It can be observed that almos®0 % of the MC runs result in an
unstable response when the uncertainty was5 %. By trial and error, it is found
that stable results of all MC runs are obtained when the paraeter uncertainties
remain in the range of 0:36% This means, that even slight uncertainties, e.g.

1%, can lead to instability of the closed-loop system.
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Input

Samples

Figure 4.8: MC simulation results for SDP-PIP when model pameter uncer-
tainties in the range of 19%is considered.

4.4 The SDP-PIP in incremental input form

The usage of an integral-of-errors state in icts certain @ctical implementation
issues such as integrator wind-up, over ow, etc. In order tmvercome these
issues, (Taylor et al. 2009) proposes to express the contlalv in an incremental
input form so that the necessity of implementing an integrabf-errors state is
eliminated. The calculation of the controller parametershowever, is not altered.

Recall from (4.7) and (4.8), respectively, that the controlaw is given
by

u« = Gy ux Feyt Kix « (4.35)

where ¢ denotes the integral-of-errors state. By taking the dierace of the
current and previous input, the incremental input form is obained. But note

that the input of the previous sampling time instance is requed, hence operating
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on (4.35) with z 1, as discussed in Section 4.1, yields
Uk 1= Gk 11Uk 1 FeaYk 1+ Kik 1 k1 (4.36)
and subtracting (4.36) from (4.35), gives
Ug= U 1 GrUk+ Gk 1Uk 1 FrYe+ Fe aYk 1+ Kik « Kix 1k 1 (4.37)
or, equivalently,

U = U 1 Gruk+ Gy 1Uk 1 Feyk + Fr 1Yk 1+ﬁ1 Z{lZ)Kl;k § (4.38)

N
="Kk k

where it can be observed that both time varying quantities,he integral-of-errors
state and the associated integral gain, are a ected by the @irence operator,
de ned to be =1 z 1. Moreover, note that the di erence operator” di ers
from thatis de ned in . While " takes the di erence of the whole system,
i.e. signals and parameters, between consecutive samplingtances, operates

on the instantaneous linear system only, i.e. on the signals

Remark 4.4.1. Similarly as shown in Example 4.1, operating o(4.35) with  is

misleading. Since then, the incremental input of the instéaneous linear system
is obtained, but, if the instantaneous linear system of theqvious sampling time
instance di ers from the current one, the incremental inputof the overall system

IS, as a consequence, di erent as well.

So, in order to eliminate , the integral gainK .« is required to be time
invariant. Then, theterm K« « Kk 1k 1in(4.37) becomeX, « K, x 1=
Ki@ zbY =K, «=K,(rc Yy since, from (4.8), , = Y« Consequently,

time invariant integral gains in (4.35) and (4.36) are requed in order to obtain
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time invariant integral gains in (4.37).
From the solution of the pole assignment problem (4.23), asel as by
comparing (4.25) with (4.32), the integral gainK .« is obtained by
P
1+ inzdl d;

p (4.39)

KI;k =

where it can be seen that the time varying nature is introduakby the denomin-
ator term, i.e. b, . Hence, rst multiplying (4.35) with b... and (4.36) with

bx+ 1 and then subtracting, yields

Pr+e U= bs U 1 Dus Guug+ by 16k 1Uk 1
(4.40)

brs FeVe+ by 1F + K
k+ FrYet D 2P 1Yk 1 |<Ik{zlk}
=K «k=Ki(rx Y«)
P n - . - - . . - - .
whereK, =1+ X d; denotes the time invariant integral gain. Finally, dividing
(4.40) by b+ and taking (4.39) into account, the control law in incremerdl

input form is obtained by

_b;k+ 1 b;k+ 1

b Uc 1 Gy ug+ Gk 1Uk 1
K+ K+ (4.41)

b+
Fe Yk + Bk-k P11t Kik (re  Yx)

Uk

where the necessity of implementing the integral-of-errsrstate , in a practical
application is eliminated. Only the controller parameter alues of the previous
time instance are required to be stored, along with the premiis system outputs
and inputs.

Identical numerical simulation results are obtained when aking use
of (4.41) applied to Examples 4.2 and 4.3. This is expectechee the controller

parameters are also calculated according to Algorithm 1. lHee they are identical
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Chapter 5

SDP Modelling of a DC-DC Boost

Converter Operating in DCM

This Chapter is concerned with modelling a practical, lab@tory based applic-
ation example, namely, a DC-DC boost converter, operatingnidiscontinuous
conduction mode (DCM). DC-DC boost converters are switcheshode power elec-
tronic devices, that step-up a DC input voltage to a higher DGoutput voltage.
The challenge in terms of modelling a DC-DC switched-mode rogerter arises
from its hybrid nature due to the switching process. Conseegutly, two condi-
tions are required to be considered, namely: when the switch open and when
the switch is closed. In DCM operation, however, an additiai condition is in-
troduced, namely, when the switch is open and the inductor isot conducting.
Details on the operational principles are given in Section.b1.

The modelling approach proposed here, is to make use of thetst
dependent parameter (SDP) framework in order to obtain a mad of the con-
verter. In the proposed approach, the SDP model is based on asered input-
output data only, rather than on physical relationships, &. circuit components.

Modelling of a system in the context considered here is forehpurpose
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SDP Modelling of a DC-DC Boost Converter Operating in DCM

5.1.1 Operational principle

Here, the operational principle of the DC-DC boost convertds brie y summar-
ized. Detailed information can be found in, e.g. (Mohan et all995; Erickson
and Maksimovic 2001; Hitzemann 2009).

The DC-DC boost converter, essentially, consists of thre@mponents,
as shown in Figure 5.1, namely, the inductor, capacitor andhé switch. Both the
inductor and capacitor are capable of storing energy. The #ah, realised as a
N-channel MOSFET, is driven by a PWM voltage of periodls and duty-cycled,

de ned as

_ Ton
d= 2 (5.1)

whereT,, denotes the time interval within the periodTs when the PWM voltage
is high, which causes the switch to conduct. Consequentliss denotes the time
interval when the PWM voltage is low, which causes the switchot to conduct.

Hence the switching period is de ned to be
Ts = Ton + Tofs (5.2)

Now, consider the time interval of a PWM periodTs when the switch
is conducting, i.e. duringT,,. This e ectively means that the switch is short-
circuited so that the inductor only is charged by the input spply source and the
capacitor only supplies the load. The diode, however, enggr that the capacitor
is not short-circuited and the currentic is only able to ow to the load. This
basically separates the circuit in two parts as schematidglshown in Figure 5.3.

The inductor current i_ increases by

Ton

. 1
I, = — \/% dt (53)
L o
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Figure 5.3: DC-DC boost converter schematic when the switéh conducting, i.e.
during Topn.

where,v_. = V,. The increasing current builds the magnetic eld of the indator,

where energy is stored (Griths 1999). Simultaneously, theoutput voltage de-

creases by
1 Z Ton

Ve = —<
C o

i dt (5.4)

which is caused by drawing current from the capacitor. Notehat when taking
Figure 5.3 into account,vc = V, andic = ig.

Next, consider the time interval of the PWM periodTs when the switch
is not conducting, i.e. duringTys . This e ectively means that the switch is
‘removed’, so that the circuit in Figure 5.1 can be re-drawnsashown in Figure

5.4. The charged inductor transfers its stored energy to theapacitor and the

|
L1

) |
/

Figure 5.4: DC-DC boost converter schematic when the switék not conducting,
l.e. during Tegs .
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load. Hence the inductor current decreases by

i|_ = — VL dt (55)

where the voltage drop across the inductor can be approxinet byv,  V, V,,
which is negative, since in a boost converteY,, > V;. Moreover, the currenti, can
only ow through the diode in the direction towards the capador and load, which
means that,ip. 0. Consequently, if the next period begins before the induato
current i reaches zero, i.ei_ > 0 8t, the inductor conducts continuously and
the converter is said to operate in continuous conduction nde (CCM). On the
contrary, if the inductor current settles to zero and, subspiently, remains there
until the end of the period, the converter is said to operateni DCM, which is
considered here. In Figure 5.5, the inductor current wavefm for continuous and
discontinuous operation is illustrated, wherel, denotes the time interval ofT

where the inductor current is zero. Since, durinJ .+ , the capacitor is charged,

L ccMm L DCM
0 >t 0 > t
Ton _ Toff Ton Tost L
Ts Ts

Figure 5.5: Idealised inductor current in continuous (CCM)and discontinuous
(DCM) conduction mode operation.

i.e. current ows into the capacitor, the voltage across theapacitor vc increases

by z.
ic dt (5.6)

on

V_l
CCT

with vc u V, and taking (5.4) into account, an output voltage ripple is inposed.
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This ripple is largely determined by the size of the capaciteand here, the capa-
citor is chosen large enough so that the ripple may be negledt

In summary, when considering the input voltag®/; to be constant, dur-
ing Ton the inductor is charged while the capacitor only supplies thload and,
subsequently, duringTy the charged inductor transfers its energy to the capa-
citor and the load, supported by the input source. Consequtyy when adopting
the law of energy conservation, it can be concluded that theutput voltage V,
can be controlled by changing the duty-cycld of the PWM voltage, i.e. adapting
Ton and Ty , respectively.

This means, when referring the boost converter as a systemthwia
system outputy and a system inputu, that, and in the remainder of this Thesis,

for the sake of simplicity,y b V, andu b d.

5.1.2 Converter set-up

The set-up of the prototype converter used for laboratory geriments is as fol-
lows: V; =5V, L = 745H with inherent DC series resistance o-bCR 1.3
and C = 1000pF. The N-channel MOSFET used, realising the switcl®, is the
IRLB8748PbF, which on-resistanceRps,, DCR, hence negligible.

For DCM operation, the switching period, which is also equalent to
the sampling interval, is chosen to b8 = 1 ms. In order to generate the PWM
voltage signal, the load reference voltagées and to acquire the required meas-
urements, the dSPACE MicroAutobox DS1401 is used.

The maximal output voltage V, is chosen to beV, = 20V, hence the

output voltage is de ned to be in the range

fV,b2Rj5V V, 20Vg (5.7)
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The maximum current, which can be delivered by the power suppis
limited, hence the valuei, = 2 A cannot be exceeded. Consequently, the output

current is de ned to be in the range
fir2 Rj40mA ir 140mAg (5.8)

Furthermore, the duty-cycle of the PWM voltage signal can dg vary

between0 % and 100 % henced is de ned to be in the per-unit range
fd2RjO d 1g (5.9)

Regarding the realisation of the load, as shown in Figure 5.the shunt
resistor is chosen to b&, = 10 , the Op-amp is the LM358N and the transistor
is a TIP110 with, according to the datasheet, a typical DC cuent gain ofhgg =

100Q so that the requirementig ir is ful lled.

5.2 State-dependent parameter modelling

The proposed modelling approach is based on measured signahs mentioned
in Section 5.1.1, the system input is given by the duty-cyclef the PWM voltage
signal while the system output is given by the output voltage However, there
is an additional measurable signal, namely, the output cuent. Consequently,
modelling the system requires the inpudl, output V, as well as the output current
ir to be taken into account.

Naturally, the system input is a signal applied to the systemhence
known, while the output is the measured response to that inpiand the model is

required to accurately replicate the system output based ahis input. The out-
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Figure 5.6: Measured output voltage response (upper) to thstaircase input
(lower) with constant output current value ofig = 100 mA

The steady-state behaviour, directly obtained from the mesairements,
i.e. the staircase responses for constant output current lvesir = 40 mA;
50mA; ::: ;140mA are shown in Figure 5.8. Consequently, each trace corres-
ponds to a constant output current value in ascending orderdm left to right.
The steady-state behaviour for each output current value isonsidered individu-
ally and modelled by tting polynomials of the form
Xt _
yi1 (U )= jour! 8i=1;2:11 (5.10)
j=1
where the subscriptl indicates steady-state and ;; 2 R denote corresponding
coe cients.
For all the i output current values, polynomials comprising the four

coecients ;; 2 R are identied. Since thei polynomials are all of the same
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Figure 5.7: Single step response of the staircase responses

order, the coe cients can be plotted against the output curent and, consequently,
being realised themselves as functions of the output curterwhich are, again,
chosen to be of a polynomial form

X .

i(ir) = e with i=1;234 (5.11)

j=1
where ;; 2 R denote constant coe cients. The coe cients ;;, obtained from
(5.10) (solid line) and i(ir) being a function of the output current (5.11) (dashed
line), are shown in Figure 5.9.

Combining (5.10) with (5.11), the overall steady-state bedviour is char-

acterised by
Xt _
y1 (ir;ur) = i(ir) uj (5.12)
j=1
The steady-state behaviour directly obtained from measuneents and modelled
by tting polynomials (5.10) (solid lines), compared to thesteady-state charac-

teristic modelled by (5.12) (dashed line), are shown in Figa 5.10.

Remark 5.2.2. The order of the polynomials(5.10) and (5.11) are found by

evaluating the criteria chosen to be the mean integral of alste errors. Essen-
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Figure 5.8: Measured steady-state behaviour considered @instant output cur-
rent values starting atir = 40 mA increasing in steps 010 mAup toir = 140 mA,
from left to right.

tially, the order, where the di erence of the mean integral foerrors to the next
higher order is su ciently small, is selected. This means,hat the improvement

to the next higher order is marginal.

5.2.2 Dynamic behaviour

Having obtained the steady-state behaviour, the dynamicsf the system is con-
sidered now. The dynamic characteristics are identi ed by sing the individual
steps, as shown in Figure 5.7, of the staircase responsesgreby, initially, the
staircase responses corresponding to the individual outpcurrent values are ex-
amined separately. Since the dynamics are of interest, thamne-constants of the
staircase step responses are required to be obtained. Foistreason, consider the

linear, discrete-time, rst order system model representen

Ye= arYk 1+ biuk (5.13)
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Figure 5.9: Parameters ; obtained as a function of the output current (dashed
line) and obtained directly from considering the individu& steady-state beha-
viours (solid line).

wherea; 2 R and by 2 R denote model parameters, respectively. In particu-
lar, the parameter a; is of interest since this parameter relates directly to the
equivalent system time-constant at the considered operaty point.

In Figure 5.11, the identi ed model parametera;, against the output
voltage is presented, where each trace corresponds to a xedtput current value
ir =40mA; 50mA; ::: ;140 mA similar to Figure 5.8. Since the discrete-time

model parametera; relates to the time-constant by the mapping

Ts
In( a]_)

(5.14)

where 2 R denotes the equivalent time-constant of the system at a caih
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Chapter 6

SDP-PIP Controller

Implementation Results

Based on the elaborated SDP model of the DC-DC boost convarteresented in
Chapter 5, implementation results of the model based SDP-PIcontroller are now
presented. In order to demonstrate the e cacy of the proposeSDP-PIP control
approach, implementation results are compared with lined?IP control, which is,
in the case of a rst order model, structurally similar to thewidely used non-model
based proportional integral (PI) controller, in fact, the inear PIP based on a rst
order model also consists of a proportional and an integrabiy, see e.g. (Taylor
et al. 2001). In this regard, these controllers can be seenltie equivalent, however,
making use of the linear PIP controller instead of the Pl combller, provides a
comfortable way of tuning the controller by simply choosinghe desired closed-
loop poles, to provide the calculation for the controller gas. Moreover, since
the SDP-PIP ‘replicates' a linear closed-loop system behaur with closed-loop
poles at desired locations, this allows a direct performaacomparison.

The output voltage control objectives are twofold. Output wltage reg-

ulation when load steps, i.e. the case of output current steare considered. This
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Chapter 7

Conclusions and Further Work

Conclusions of the work carried out and documented in this ®sis are given in
Section 7.1. In summary, this concerns the proposed methddgical approach
to model-based state dependent parameter (SDP) control, iparticular SDP
proportional-integral-plus (PIP) pole-assignment contol, the proposed decoup-
ling strategy using linear model-based predictive contrdMPC) based on MIMO
non-minimal state-space (NMSS) models, a SDP modelling ajgach for a DC-
DC boost converter operating in discontinuous conduction ade (DCM), which
is compared to a Hammerstein-bilinear structured (HBS) maalling approach and
nally, the experimental demonstration of SDP-PIP pole-asignment control to
the DC-DC boost converter based on the developed SDP model.

Since research is an ongoing, if not a never ending proce$® tesearch
carried out in this Thesis has taken steps further but, nevéneless, as with all
research never completed to the nal extent, hence in the albrs view, potentially

fruitful directions for further research are suggested inegtion 7.2.
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Appendix A

A.1 Computation of SDP-PIP closed loop para-
meters g and b

In the following, the computation of the parameters ;x and i in the closed-loop
equation (4.27), as presented in (4.28), is shown.

Recall from (4.25) that the closed loop system is given by

KI;k KI;k

A+ Z Y+ bics Fryk + b+ Ve = bt M

+(birke  bir GuUk 1+ (Da2ke  bys U 2 A1)
+ :::+(b+m;k+ b;k+ gm;k)uk m gm+1;kb;k+ UKk m 1
Om+ l;kb;k+ Uk m +1
Also, recall from (4.28) that the computation is an iterative procedure, i.e. (A.1)

is iteration zero. So, (A.1) can be reformulated to be

KI;k

K,.
As Z Y+ bos Fryk + b+ [k Yk D+ Ik
(A.2)

0 0 0
= U1+ QU o TG Uk

Withcl(o)=b+i;k+ bx+ Gk i=1;2:::;m+  landb.jx+ =08i>m. The
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Appendix B

B.1 The DC-DC boost converter

The purpose built laboratory based DC-DC boost converter, kch is used for
experiments, is shown on the right in Figure B.1. Additiondy, the realisation of
the load, as described in Section 5.1 and schematically showm Figure 5.2, can
be observed on the left in Figure B.1. Moreover, since the inpvoltage range of
the ADC of the dSPACE MicroAutobox ranges betwee® V and 5V, the output
voltage of the converter is required to be scaled by a factof é This is realised
by the circuit shown in the front in Figure B.1.

The Simulink® block diagram, which is used for acquiring the data that
are subsequently used for obtaining the converter model, sfown in Figure B.2.

The block diagrams used for PIP control of the converter arehewn
in Figures B.3 and B.4. In Figure B.3, the load is consideredbtbe of a rst
order transfer function form (6.1), while load steps are caidered in Figure B.4.
The linear PIP controllers, as well as the SDP-PIP controlieare implemented
as an "Embedded MATLAB Function’, hence only this functions required to be
changed accordingly in order to switch between the respeati controllers.

Finally, the Simulink® subsystem “measure voltage' is shown in Figure

B.5.
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