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Abstract

This Thesis is concerned with model-based control, where models of linear non-
minimal state-space (NMSS) and nonlinear state-dependent parameter (SDP)
form are considered. In particular, the focus is on model-based predictive control
(MPC) in conjunction with the linear NMSS model and on proportional-integral-
plus (PIP) pole-assignment control in conjunction with the SDP model.

The SDP-PIP pole-assignment controller is based on a nonlinear SDP
model, however, the approach uses a linear pole-assignment controller design
technique. This ‘potential paradox’ is addressed in this Thesis. A conceptual
approach to realising the SDP-PIP pole-assignment control is proposed, where
an additional conceptual time-shift operator is introduced. This allows the SDP-
PIP, at each sampling time instance, to be considered as an equivalent linear
controller, while operating, in fact, in a nonlinear overall context. Additionally,
an attempt to realise SDP-PIP control, where the SDP model exhibits equivalent
linear system numerator zeros, is proposed.

Regarding the NMSS MPC, emphasis is on square, i.e. equal number of
inputs and outputs, multi-input multi-output (MIMO) modelled systems, which
exhibit system output cross-coupling effects. Moreover, the NMSS MPC in in-
cremental input form and making use of an integral-of-errors state variable, is
considered. A strategy is proposed, that allows decoupling of the system out-
puts by diagonalising the closed-loop system model via an input transformation.
A modification to the NMSS MPC in incremental input form is proposed such
that the transformed system input - system output pairs can be considered indi-
vidually, which allows the control and prediction horizons to be assigned to the
individual pairs separately. This modification allows imposed constraints to be
accommodated such that the cross-coupling effects do not re-emerge.

A practical example is presented, namely, a DC-DC boost converter
operating in discontinuous conduction mode (DCM), for which a SDP model
is developed. This model is based on measured input-output data rather than
on physical relationships. The model incorporates the output current so that
the requirements for the load, driven by the converter, is constrained to remain
within a predefined output current range. The proposed SDP model is compared
to an alternative nonlinear Hammerstein-bilinear structured (HBS) model. The
HBS model is, in a similar manner to the SDP model, also based on measured
input-output data. Moreover, the differences as well as the similarities of the
SDP and HBS model are elaborated. Furthermore, SDP-PIP pole-assignment
control, based on the developed SDP model, is applied to the converter and the
performance is compared to baseline linear PIP control schemes.
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Chapter 1

Introduction

1.1 Motivation

In the real world, most systems, whether man-made or natural, are nonlinear.

However, in some cases, the nonlinearities can be considered negligible, especially

when some systems are intended to operate about a fixed operating point. In such

cases, linearisation around this operating point is often sufficient in practice. As

a consequence, linear control techniques are still in high demand, due mainly to

their performance, yet practicability and ease of implementation.

In particular, the non-minimal state-space (NMSS) approach offers a

further simplification in terms of control design, since all the system states are

measurable, i.e. current and previous system output values as well as previous

system input values, which removes the need for a state observer/estimator (Hes-

keth 1982; Young et al. 1987).

Inspired by the above mentioned useful and practical properties, model-

based control strategies in the NMSS framework have been explored. Particularly,

NMSS model-based predictive control (MPC), where the NMSS MPC in incre-

mental input form (Wang and Young 2006) and making use of an integral-of-errors

1



Introduction

state variable (Exadaktylos et al. 2006), in order to ensure offset free set-point

tracking, is considered. This approach is attractive when multiple-input multiple-

output (MIMO) systems are considered, which exhibit output cross-coupling ef-

fects.

Although linear control methodologies are able to provide appropriate

solutions to a variety of control problems, there are limitations and often com-

promises are required to be made. Consequently, a step towards considering non-

linear control becomes a necessity. Nonlinear model-based control, that makes

use of state-dependent parameter (SDP) models (Young et al. 2001), allows the

use of linear control techniques in a nonlinear SDP framework. Particularly, the

focus is on SDP pole-assignment control (Taylor et al. 2009), which can be viewed

as an extension of the linear proportional-integral-plus (PIP) controller (Young

et al. 1987; Wang and Young 1988), i.e. SDP-PIP. The implications of applying

pole-assignment, i.e. a linear control technique, in a nonlinear domain has not

been explored/reported in detail and this is one of the issues addressed in this

Thesis, where further clarification is provided.

It may be argued that the best way of confirming the applicability and

usefulness of a theoretical control method is to apply it to a practical, real-

world system. In this regard, a SDP-PIP controller is applied to a purpose built

laboratory-based DC-DC boost converter, which is operated in discontinuous

conduction mode (DCM), and practical experiments are conducted. Addition-

ally, since SDP-PIP is model-based, an SDP model of the converter has been

developed. Although there are several approaches to modelling and control of a

DC-DC boost converter, to the authors knowledge, the SDP framework has not

been used on such an application before.

2



Introduction

1.2 Thesis outline

The methodological background concepts, upon which this Thesis is based, as well

as the methods/techniques, that are used in this Thesis, are introduced in Chapter

2. This comprises the concept of NMSS and SDP system representations as well

as respective system identification methods. The concept of MPC and algorithms

which allow the handling of imposed constraints, and finally, the concept of PIP

pole-assignment control is also introduced.

In the context of this Thesis, reviews of the relevant previous develop-

ments regarding the NMSS and SDP methodology, the corresponding MPC and

PIP control approaches as well as modelling and control strategies for DC-DC

converters are given in the introductory parts of the respective Chapters.

Chapter 3 is concerned with a decoupling NMSS MPC approach for lin-

ear MIMO systems such that system output cross-coupling effects are suppressed.

The NMSS MPC formulations in incremental input form (Wang and Young 2006),

as well as using an integral-of-errors state variable form (Exadaktylos et al. 2006),

are considered. The approach presented also extends to the handling of imposed

constraints.

In Chapter 4, discrete-time PIP pole-assignment control applied to non-

linear SDP system models is considered (Taylor et al. 2009). Emphasis is placed

on the linear pole-assignment technique in a nonlinear SDP context. Moreover,

SDP-PIP control of SDP modelled systems with equivalent system zeros is also

considered and the difficulties arising from system-model mismatch are high-

lighted.

Subsequently, in Chapter 5, a SDP model for a DC-DC boost converter

operating in DCM is developed and compared with an alternative Hammerstein-

bilinear structured (HBS) system modelling approach. Results are verified by
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making use of laboratory based experiments with the DC-DC converter.

Based upon the developed SDP model in Chapter 5, implementation

results of SDP-PIP control are presented in Chapter 6. The implementation

results obtained by making use of the SDP-PIP are compared with baseline linear

PIP control implementation results when tuned for operating about a particular

fixed point.

Finally, conclusions are presented and directions for further work are

suggested in Chapter 7.

1.3 Contributions

In this Section, the findings and contributions presented in this Thesis are sum-

marized, in the order as it appears in the Thesis:

• Decoupling MIMO NMSS MPC - Chapter 3. An approach is presented for

an analytic system output decoupling technique (Plummer and Vaughan

1997), applied to MPC based on square (equal number of inputs and out-

puts) MIMO models in a NMSS representation. This approach makes use

of a closed-loop system diagonalisation method such that cross-coupling

effects from the set-point command signals to the system outputs are sup-

pressed. Moreover, handling of imposed constraints is considered and the

effects on the MPC formulation in incremental input form (Wang and Young

2006) as well as using an integral-of-errors state variable (Exadaktylos et al.

2006) are explored. In particular, a further modification to the MPC in

incremental input form is presented, which allows the cross-coupling elim-

ination/suppression to be maintained when constraints are imposed. This

work has been partially published in:
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U. Hitzemann and K. J. Burnham. Decoupling model predictive control

in a non-minimal state space representation. In Proceedings of the 8th

European Workshop on Advanced Control and Diagnosis, ACD 2010,

Ferrara, Italy, 2010

• Developments in SDP-PIP pole-assignment control - Chapter 4. Since a

model-based control approach, i.e. SDP-PIP (Taylor et al. 2009), is con-

sidered, in this context, the SDP model itself is explored. Furthermore, a

framework is presented, where an additional conceptual time-shift operator

is introduced in order to take into account the evolution of the nonlinear

SDP-PIP controlled system, while the standard and commonly used time-

shift operator considers only the sampling time-step instantaneous linear

model, upon which the discrete-time controller gains are determined. This

provides further clarity of interpretation. Moreover, the SDP-PIP applied

to SDP represented systems, which exhibit equivalent system zeros is also

addressed.

• SDP modelling of a DC-DC boost converter operating in DCM - Chapter

5. The remainder of the Thesis is concerned with an example of a prac-

tical application; namely a purpose built laboratory based DC-DC boost

converter. A SDP modelling approach for a DC-DC boost converter, which

operates in DCM, is presented. This SDP model is compared to a HBS

modelling approach. This work has been partially published in:

T. Larkowski, U. Hitzemann and K. J. Burnham. Modelling and Iden-

tification of a DC-DC Boost Converter Operating in Discontinuous

Conduction Mode. In Proceedings of the IET Control and Automation

Conference, Birmingham, UK, 2013

U. Hitzemann and K. J. Burnham. State Dependent Parameter Modelling

of a DC-DC Boost Converter Operating in Discontinuous Conduction

Mode. In Proceedings of the 9th International Conference on Inform-
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atics in Control, Automation and Robotics, ICINCO 2012, pages 482–

487, Rome, Italy, 2012

• SDP-PIP control of a DC-DC boost converter operating in DCM - Chapter

6. Based upon the developed SDP model, a SDP-PIP controller is applied

and compared to two forms of linear PIP controllers, tuned for a fixed

operating point, which are based on a linearised model and an instantaneous

linear model. The operating point that these linear models are obtained for,

is chosen such that it lies centrally within the operating range. Regulation

of load steps, as well as output voltage set-point changes are considered.

This work has been partially published in:

U. Hitzemann and K. J. Burnham. State Dependent Parameter Modelling

and Control of a DC-DC Boost Converter in Discontinuous Conduction

Mode. In Proceedings of the 9th European Workshop on Advanced

Control and Diagnosis, ACD 2011, paper 56, Budapest, Hungary, 2011
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Chapter 2

Background Concepts

In this Chapter, the methodological background concepts, of which use is made

in this Thesis, are introduced. Generally, the conceptual approach is presented

in this Chapter only, since these concepts are taken from textbooks and other

publications so that detailed information can be found in the respective references

provided and further references therein.

The system models considered in this Thesis are in discrete-time domain

and mainly in a discrete-time difference equation form, hence the focus builds on

this structure. Based on this model structure and under the consideration of a

linear system model, in Section 2.1, the concept of a non-minimal state-space

(NMSS) system representation is depicted.

Extending this concept to a nonlinear framework, in Section 2.2, the

state-dependent parameter (SDP) system representation is introduced.

Subsequently, the system identification methods used in order to identify

the, essentially unknown, model parameters of the linear NMSS, as well as the

nonlinear SDP model are presented in Section 2.3.

Furthermore, in this Thesis, two model-based control strategies are con-

sidered. Section 2.4 is concerned with a model-based predictive control (MPC)
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approach, where the model on which the MPC is based, is in a NMSS form, hence

linear. Moreover, the handling of imposed constraints is also considered.

The second model-based control approach considered, is the proportional-

integral-plus (PIP) controller, which is introduced in Section 2.5. Here, the PIP

controller based on the linear NMSS and based on the nonlinear SDP model, is

considered.

2.1 Non-minimal state-space system representa-

tion

Consider the linear, discrete-time, single-input single-output (SISO) system model

in difference equation form

yk + a1 yk−1 + a2 yk−2 + . . .+ ana
yk−na

= b1 uk−1 + b2 uk−2 + . . .+ bnb
uk−nb

(2.1)

where the subscript k denotes the sampling time instance and ai, bi ∈ R denote

the model parameters, respectively. The system output and input are denoted by

y and u, respectively. Alternatively, (2.1) can formulated in a linear, discrete-time

transfer function of the form

yk =
B(z−1)

A(z−1)
uk (2.2)

with

A(z−1) = 1 + a1 z−1 + a2 z−2 + . . .+ ana
z−na (2.3a)

B(z−1) = b1 z−1 + b2 z−2 + . . .+ bnb
z−nb (2.3b)
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where z−1 denotes the backward time-shift operator, i.e. z−1 yk = yk−1. In gen-

eral, a time delay can be introduced by setting the respective leading parameters

in (2.3b) to zero.

The NMSS representation of the system can be directly deduced from

the discrete-time transfer function or from the difference equation (Young et al.

1987), i.e. (2.2) and (2.1), respectively. This follows from the definition of the

state vector of the NMSS model in which elements consists of the current and pre-

vious system output measurements and previous system inputs, see e.g. (Young

et al. 1987; Wang and Young 2006; Wang 2009), i.e.

xk = [yk yk−1 · · · yk−na+1 uk−1 uk−2 · · · uk−nb+1]
T ∈ R

(na+nb−1)×1 (2.4)

so that the NMSS system representation becomes

xk = G xk−1 +B uk−1

yk = C xk

(2.5a)

where the (na + nb − 1)× (na + nb − 1) state transition matrix is

G =




−a1 −a2 · · · −ana−1 −ana
b2 · · · bnb−1 bnb

1 0 · · · 0 0 0 · · · 0 0

0 1 · · · 0 0 0 · · · 0 0

...
...

. . .
...

...
...

...
...

...

0 0 · · · 1 0 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 0

0 0 · · · 0 0 1 · · · 0 0

...
...

...
...

...
...

. . .
...

...

0 0 · · · 0 0 0 · · · 1 0




(2.5b)
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and

B = [b1 0 0 · · · 0 1 0 · · · 0]T ∈ R
(na+nb−1)×1

C = [1 0 · · · 0] ∈ R
1×(na+nb−1)

(2.5c)

In the case of a multi-input multi-output (MIMO) system, the dimension of the

difference equation representation (2.1) increases accordingly and, consequently,

so do the matrices involved in the NMSS representation, see also Chapter 3.

2.2 State-dependent parameter system represent-

ation

Similar to the linear NMSS system model representation (2.5), the SDP model

can be represented in a NMSS formulation as well. While the model parameters

of the linear NMSS representation are constant quantities, the model parameters

of the SDP representation are dependent on the states of the NMSS state vector

(2.4), i.e. the current and previous system outputs as well as the previous system

inputs. Moreover, the SDP model parameters are not restricted to be dependent

on the states only, they also can be dependent on further variables (Young 2000,

2011).

In a similar manner as the linear NMSS system model representation

of (2.5), the SDP model in a NMSS formulation can also be deduced from a

discrete-time difference equation (Young 2000),

yk + a1(χk) yk−1 + a2(χk) yk−2 + . . .+ ana
(χk) yk−na

= b1(χk) uk−1 + b2(χk) uk−2 + . . .+ bnb
(χk) uk−nb

(2.6)

where the state dependency on the non-minimal states in the vector (2.4) is
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denoted by

χk = [xT
k ϑ

T
k ]

T (2.7)

and ϑk denotes a vector comprised of some variables the SDP model parameters

may also depend on.

Consequently, for the sake of brevity and simplicity, the parameters can

be viewed as time varying, so that (2.6) becomes

yk + a1,k yk−1 + a2,k yk−2 + . . .+ ana,k yk−na

= b1,k uk−1 + b2,k uk−2 + . . .+ bnb,k uk−nb

(2.8)

where the subscript k indicates the time varying nature of the model parameters

and subsequently, a non-minimal state-space formulation can be obtained, such

as (2.5), in which the parameters are state dependent.

2.3 System identification

In the previous sections of this chapter, the system representations have been

introduced. In this Section attention is given to system identification methods

in order to obtain the associated model parameters. The system identification

methods considered here, are those used in this Thesis or those which an under-

lying concept is adopted, in particular, in Chapter 5, where a SDP modelling

approach of a DC-DC boost converter is proposed.

2.3.1 Linear system identification methods

Consider the linear system model in discrete-time, difference equation form (2.1).

A straightforward method in order to obtain the parameters is the least-squares

(LS) algorithm (Hsia 1977) and its recursive version, i.e. recursive least-squares
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(RLS), which provides additional information on statistical properties (Hsia 1977;

Söderström and Stoica 1989; Wellstead and Zarrop 1991; Ljung 1999).

Since the LS algorithm identifies the unknown model parameters by

representing (2.1) in regression vector form, i.e.

yk = ϕ
T θ (2.9)

where ϕT = [−yk−1 − yk−2 · · · − yk−na
uk−1 · · · uk−nb

] denotes the regres-

sion vector and θ = [a1 a2 · · · ana
b1 · · · bnb

]T denotes the parameter vector,

also parameters of nonlinear functions can be identified if the function is linear

w.r.t. the parameters and can be expressed in the form (2.9), e.g. n − th order

polynomials, which is also used in Chapter 5.

2.3.2 SDP system identification methods

Identifying the parameters of a SDP system model is not as straightforward as

identifying the parameters of a linear model, although the SDP and linear model

considered here are both of identical structure, i.e. in a discrete-time difference

equation form (2.1) and (2.8), respectively. The main difficulty, however, lies in

the fact that the SDP model parameters are themselves unknown functions of

the non-minimal states which are required to be identified.

In order to identify these functions, several approaches have been made,

such as based on artificial neural networks (Akesson and Toivonen 2006). An effi-

cient method, which also provides an underlying concept that is used in Chapter

5, is the recursive fixed interval smoothing (FIS) method (Young et al. 2001). The

SDP model is initially viewed as a linear, time-varying parameter (TVP) model

and identified by making use of recursive linear system identification methods.

Subsequently, these parameters are ordered in a non-temporal manner, e.g. they

12
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are ordered in ascending magnitude of the previous system output yk−1 (or any

other variable in the vector χ) at which time instance the respective TVP was

identified, so that the parameter can be obtained as a function of this variable,

which yields consequently the SDP. Further details on the method of using FIS

and extensions to this method can be found in (Young 2011, Chap. 11) and

is readily implemented in a Matlab® toolbox, named CAPTAIN1 (Young and

Taylor 2012).

2.4 Constrained model-based predictive control

Model-based predictive control (MPC) is a wide and, over the past decades,

active research area. Comprehensive surveys of the developments in this field are

presented in, e.g. (Morari and Lee 1999; Bemporad and Morari 1999; Mayne et al.

2000). The success of the MPC approach, also beyond academia, is indicated by

the fact that it has found its way to various industrial applications and that MPC

controllers are commercially available nowadays (Qin and Badgwell 2003).

Although extensive research by various researchers has been undertaken,

the development of the generalised predictive controller (GPC) (Clarke et al.

1987a,b) can be considered a ‘milestone’ in transfer function based MPC. Since

this pioneering work, often system models in a state-space representation are used

(Kwon and Han 2005), which allow a relatively straightforward incorporation

of constraints into the MPC formulation, see e.g. (Maciejowski 2001). Hence

MPC based on linear models turns into a nonlinear optimization problem once

constraints are imposed.

The MPC considered here, is, in general, formulated as a cost function of

1see www.lancaster.ac.uk/staff/taylorcj/tdc/download.php

or http://captaintoolbox.co.uk [both accessed 09/2013]
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convex, quadratic form (Maciejowski 2001; Rossiter 2004; Camacho and Bordons

2007), e.g.

J =

Np∑

i=1

(yk+i|k − rk+i|k)
TQi(yk+i|k − rk+i|k) +

Nc−1∑

j=0

∆uT
k+j|kΛj∆uk+j|k (2.10)

which is required to be minimised and where yk = [y1,k y2,k . . . yny,k]
T , rk =

[r1,k r2,k . . . rny,k]
T denote vectors of ny system outputs and respective refer-

ence signals, uk = [u1,k u2,k . . . unu,k]
T denotes a vector of nu system inputs,

Qi ∈ R
ny×ny and Λj ∈ R

nu×nu denote positive definite and positive semidef-

inite weighting matrices, respectively, and ∆ = 1 − z−1 denotes the difference

operator. The subscript k + i|k denotes the i-th prediction based at the current

sampling time instance k. Consequently, the cost function contains Np system

output predictions, hence Np denotes the prediction horizon, and Nc − 1 system

input predictions, hence Nc denotes the control horizon.

Now, consider the issue of constraint handling. Minimising the cost

function (2.10) w.r.t. the system input prediction sequence {∆uk+i|k} i = 0, 1, . . . ,

Nc − 1, can be regarded as the unconstrained case, consequently, the constrained

case can be formulated as an optimisation problem

min.
∆uk|k,∆uk+1|k,...,∆uk+Nc−1|k

J

subject to : yk+i = f(yk+i−j,uk+i−l)

yk+i ∈ Y i = 1, 2, . . . , Np

uk+i ∈ U i = 0, 1, . . . , Nc − 1

(2.11)

where Y and U denote constraint sets on the system output and input, respect-

ively.

In the MPC approach, at every sampling time instance, a set of optimal,
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current and predicted system inputs are calculated by obtaining the solution of

the optimisation problem (2.11), i.e. {uk|k, uk+1|k, . . . , uk+Nc−1|k}, so that

Nc − 1 future system inputs are obtained. The current system input uk, i.e.

the first element of this sequence, however, is actually applied to the system and

the remaining, predicted inputs are discarded. This procedure is repeated at each

sampling instance. Therefore, the MPC method is also termed a receding horizon

control (RHC) (Kwon and Han 2005). Additionally, the system input beyond

the control horizon is assumed to be constant, i.e. uk+Nc+i|k = uk+Nc−1|k ∀i =

0, 1, 2, . . ..

However, in (Bemporad et al. 2000, 2002) a multiparametric quadratic

programming approach is proposed so that the optimisation problem (2.11) is not

required to be solved online. This, however, is beyond the scope of this Thesis.

Furthermore, note that Np > Nc. This becomes obvious when consid-

ering a linear system model (2.1) and the last element in the input prediction

sequence, i.e. uk+Nc−1|k, as well as the corresponding output prediction yk+Nc|k.

In the case of Nc > Np, the input sequence is optimised beyond the prediction

horizon and these additional predicted inputs do not affect the system output

predictions that appear in the cost function (2.10), hence the choice of Np > Nc.

Next, obtaining the solution of the optimisation problem (2.11) is of

interest. As mentioned above, the optimisation problem (2.11) is convex and of

a quadratic form, so that (2.11) can be cast as the following general quadratic

optimisation problem

min.
θ∈Rn×1

f(θ) = 1
2
θTHθ + cTθ

subject to : AEθ = bE

AIθ ≤ bI

(2.12)
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where AE ∈ R
n×mE , AI ∈ R

n×mI denote matrices and bE ∈ R
mE×1, bI ∈ R

mI×1

denote vectors that account for the equality and inequality constraints, respect-

ively, H ∈ R
n×n denotes a positive definite matrix and c ∈ R

n×1 a constant

vector. Due to the linear constraints and the positive definiteness of H , (2.12) is

a strictly convex, quadratic programming (QP) problem, for which a solution is

global and unique (Goodwin et al. 2005, Chap. 2). Moreover, the solution of the

problem (2.12), denoted θ∗, must satisfy the constraints as well as the (first-order

necessary) Karush-Kuhn-Tucker (KKT) conditions (Goodwin et al. 2005)

Hθ + c+AT
EλE +AT

I λI = 0

λI ≥ 0

λT
I (AIθ − bI) = 0

(2.13)

where λE ∈ R
mE×1 and λI ∈ R

mI×1 denote vectors of Lagrange multipliers.

The area of optimisation is a wide field, ranging from linear program-

ming (LP) methods (Hillier and Lieberman 2001) via QP methods (Fletcher 2000;

Goodwin et al. 2005; Boyd and Vandenberghe 2004; Nocedal and Wright 2006) to

semidefinite programming (SeDP) (Boyd et al. 1994) and numerous other meth-

ods. In particular, the SeDP method, developed by (Nemirovskii and Gahinet

1994; Gahinet and Nemirovski 1997), allows the efficient solution of linear mat-

rix inequalities, which are used in the development of robust, constrained MPC

methods (Kothare et al. 1996; Kouvaritakis et al. 2000, 2002). Also, this method

is readily implemented in the Matlab® Robust Control Toolbox. However, this

is beyond the scope of this Thesis and therefore, the focus here is on algorithms

in order to solve QP problems. The most common algorithms in order to solve

QP problems are the active set method and interior point methods (Maciejowski

2001). Matlab® provides the function quadprog in the Optimisation Toolbox,
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where these algorithms are implemented and, in this Thesis, use is made of this

function, in conjunction with the active set method, in order to obtain solutions

of QP problems. In the subsequent sections, the active set method and interior

point method implemented in the quadprog function are briefly described.

2.4.1 Active set method

In the active set method, as the name implies, the individual constraints in (2.12),

i.e. aiθ = bi ∀i ∈ E and aiθ ≤ bi ∀i ∈ I, are either considered active or

inactive, where E = {1, 2, . . . , mE}, I = {1, 2, . . . , mI} denote sets consisting of

indices corresponding to equality and inequality constraints, respectively, so that,

consequently, ai ∀i ∈ E denotes the rows of AE and ai ∀i ∈ I denotes the rows

of AI , respectively, whereby bi ∀i ∈ E ∪ I denote the respective elements of bE

and bI .

Suppose that the optimal, unconstrained solution of the QP problem

θ̃∗ violates the imposed constraints, i.e. θ̃∗ lies outside the polytope formed by

the constraints (Boyd and Vandenberghe 2004, Chap. 2) and is consequently not

feasible. The solution of the QP problem with imposed constraints, however, lies

as close as possible to the unconstrained solution, hence on the boundary of this

polytope. This boundary consists of the equality constraints, but, additionally

may also be formed by an inequality constraint, e.g. a1θ ≤ b1, which can be

viewed, as a consequence, as an equality constraint aiθ = bi, i = 1 ∈ I, hence as

an active constraint. Therefore, the active set, denoted A, contains the indices of

all equality constraints and of those inequality constraints, which can be regarded

as equality constraints, i.e. A = {i ∈ E ∩ I | aiθ = bi}.

Essentially, the active set method identifies the active constraints in an

iterative manner, discards the inactive ones and transforms the QP problem with
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inequality constraints into a QP problem with equality constraints only, i.e.

min.
θ∈Rn×1

f(θ)

subject to : aiθ = bi ∀i ∈ A

(2.14)

which can be easily solved by making use of the KKT condition (2.13), see e.g.

(Nocedal and Wright 2006, Chap. 16.1).

In order to identify the active constraints, an initial feasible point is

required, which is a problem in its own right and can be difficult to obtain,

especially in large scale QP problems. However, since the aim is to minimise

the cost function (2.12), a decreasing direction d ∈ R
n×1 is calculated at each

iteration such that f(θk+1) ≤ f(θk) with θk+1 = θk + αkdk where α ∈ (0, 1]

denotes the step-length. If αk = 1 and dk 6= 0 does not yield a feasible solution,

then a line search along dk is performed, i.e. reducing α appropriately. Moreover,

this also means that there exists a constraint in I along the direction dk, which

is not considered in the active set. Consequently, the corresponding constraint

index is obtained by finding the constraint index i /∈ A, that yields the smallest

step length αk, such that adding this constraint index to the active set, a feasible

solution is obtained. A constraint becomes inactive (and removed from the active

set), if it is a feasible point and the corresponding Lagrange multiplier in the KKT

condition is negative. In the case of more than one negative Lagrange multiplier,

the constraint index corresponding to the most negative one is removed from

the active set. The algorithm terminates if dk = 0, the Lagrange multipliers

are positive or zero, the solution is feasible and the KKT condition is satisfied.

Detailed explanations on the active set method can be found in, e.g. (Fletcher

2000; Nocedal and Wright 2006).
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2.4.2 Interior point method

Efficient interior point optimisation methods emerged initially for solving LP

problems (Karmarkar 1984) and were later adopted for solving convex QP prob-

lems (Nesterov and Nemirovskii 1994; Renegar 2001). Furthermore, interior point

methods are also used in order to solve optimisation problems where linear matrix

inequalities are involved (Boyd et al. 1994), however, the focus here is on convex,

QP problems.

Interior point methods start at an initial feasible point and iteratively

converge to the solution of the QP problem. Other than the active set method,

interior point methods search in the interior of the feasible region and not only

on the boundary for the solution. However, it is not always straightforward to

obtain an initial feasible point. This led to the development of infeasible interior

point methods, which do not require an initial feasible starting point (Wright

1997). A drawback of these algorithms is that they cannot be terminated before

convergence to the solution, since an intermediate point may be infeasible.

There is a wide variety of interior point algorithms, however, here an

interior point method using barrier functions is considered. The barrier func-

tion describes the boundary of the feasible region, precisely, the boundary of the

inequality constraints. Moreover, barrier functions are smooth, monotonically

decreasing functions and are often of a logarithmic form, e.g.

Φ(θ, µ) = −
1

µ

mI∑

i=1

log(bi − aiθ) i ∈ I (2.15)

so that the QP problem (2.12) can be formulated to be

min.
θ

f(θ) + Φ(θ, µ)

subject to : AE = bE

(2.16)

19



Background Concepts

which is a QP problem with equality constraints only, since the inequality con-

straints are now contained in the cost function, which is required to be minimised.

Moreover, in the case of inequality constraints only, the problem is transformed

into an, effectively, unconstrained QP problem. The parameter µ > 0 ∈ R is

increased in each iteration, i.e. µ → ∞, in order to avoid numerical issues, such

as ill-conditioned matrices, when solving the equality constrained QP problem

(2.16) at each iteration.

It is to be noted that the logarithmic barrier function method requires

an initial feasible point, however, due to the barrier function, the algorithm stays

within the feasible region and can be terminated before converging to the solu-

tion. Detailed information on this method can be found in, e.g. (Boyd and

Vandenberghe 2004, Chap. 11).

2.5 Proportional-integral-plus control

The Proportional-Integral-Plus (PIP) control was initially developed in 1987 by

(Young et al. 1987; Wang and Young 1988) as a pole-placement control approach.

Therefore, it is a model-based controller which is based on a linear, NMSS model.

The design of a pole-placement controller based on a NMSS model can also be

found in earlier work by (Hesketh 1982). Other than making use of minimal state

space models, the use of NMSS models makes the state observer obsolete since

the states are measurable, hence the NMSS states are all observable.

Furthermore, the PIP controller can be viewed as an extension to the

widely used proportional-integral-derivative (PID), in particular, the PI control-

ler, see e.g. (Young et al. 1987).

Moreover, beside pole-placement design, also linear quadratic (LQ) and

linear quadratic gaussian (LQG) optimal control designs have been developed,
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see e.g. (Taylor et al. 1996a, 2000). Additionally, the PIP can be implemented

based on the feedback and forward path structure, details on the differences can

be found in (Taylor et al. 1996b).

Since Chapter 4 is concerned with the PIP feedback controller structure,

this configuration is shown in Figure 2.1. The controller parameter polynomials

rk KI

∆

1

G(z−1)
uk

B(z−1)

A(z−1)
yk

F (z−1)

−−

Figure 2.1: Block diagram of the linear PIP feedback structure

are denoted by F (z−1) and G(z−1), respectively, which are defined to be

F (z−1) = f0 + f1z
−1 + . . .+ fnf

z−nf nf = na − 1

G(z−1) = 1 + g1z
−1 + . . .+ gng

z−ng ng = nb − 1

(2.17)

and KI denotes the integral gain, while ∆ = 1 − z−1 denotes the discrete-time

difference operator, i.e. ∆yk = yk − yk−1. From Figure 2.1, the control law is

obtained to be

uk = −F (z−1)yk − G̃(z−1)uk +
KI

∆
(rk − yk) (2.18)

with G̃(z−1) = G(z−1)− 1. Alternatively, in state-variable feedback form

uk = −c x̂T
k (2.19)

where c = [f0 · · · fnf
g1 · · · gng

−KI ] and x̂k = [xT
k ζk]

T denotes the augmented

NMSS vector by the integral-of-errors state ζk = rk−yk
∆

. Note that in the case of
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na = nb = 1, the integral gain KI and the gain f0 are present only, which can be

seen as a proportional gain so that, effectively, a PI controller is obtained. Also,

from Figure 2.1, the closed-loop transfer function is given by

yk
rk

=
B(z−1)KI

∆(A(z−1)G(z−1) +B(z−1)F (z−1)) +KIB(z−1)
(2.20)

The controller parameters are obtained by assigning the closed-loop poles, i.e.

D(z−1) = ∆
(
A(z−1)G(z−1) +B(z−1)F (z−1)

)
+KIB(z−1) (2.21)

where D(z−1) denotes a predefined polynomial, which represents the desired char-

acteristic equation of the closed-loop system, i.e. the denominator of (2.20), and

by comparing coefficients of like powers of z yields the controller parameters.

Alternatively, the state feedback gains are obtained by making use of optimal

control techniques, such as LQ and LQG design, however, this is not considered

in this Thesis. Further detailed information on the linear PIP can be found in

the references given above in this Section and the references therein.

An attempt of using linear PIP control for nonlinear systems can be

found in (McCabe et al. 2000) where feedback linearisation methods are used.

In the following developments, in order to deal with nonlinear systems, the PIP

is used in conjunction with SDP models to form the SDP-PIP, where at each

sampling instance the SDP model is considered ‘frozen’/instantaneous linear,

so that linear control techniques can be applied, see e.g. (Kontoroupis et al.

2003; Taylor et al. 2009). Hence, the nonlinear SDP model is considered to be

linear at each sampling instance, while, overall it is considered to be nonlinear.

Consequently, these different ‘levels’, i.e. linear and nonlinear, of consideration

are reflected in the formulation of the SDP-PIP controller in Chapter 4.
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2.6 Concluding remarks

In this Chapter, the conceptual approaches and methodologies, for which this

Thesis makes use, have been reviewed.

The linear, hence simplest, system representation in a NMSS form has

been first considered, followed by its nonlinear extension, namely, the SDP system

in NMSS representation.

Subsequently, system identification methods in order to identify the

parameters of the previously considered system models, have been introduced.

Both cases have been considered, the linear NMSS and nonlinear SDP system

representations. In particular, the identification of parameters of SDP models

using the method of FIS is emphasised since this method is adapted for the

developments in Chapter 5.

Furthermore, the concept of linear predictive control, which is used in

the developments of Chapter 3, has been introduced along with the handling of

imposed constraints, i.e. convex QP optimisation algorithms, namely, the active

set method and the interior point method based on logarithmic barrier functions.

Additionally, attention has been drawn to the PIP controller concept

upon which the developments in Chapters 4 and 6 are based.
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Chapter 3

Multivariable Decoupling NMSS

MPC Control

This Chapter is concerned with an input-output decoupling control strategy for

multivariable systems where the number of system outputs ny is equal to the

number of system inputs nu, i.e. ny = nu = n.

Furthermore, an approach for system output decoupling is proposed

making use of an input transformation term which diagonalises the closed-loop

system, hence compensates for the cross-coupling effects. This is adapted from

(Plummer and Vaughan 1997) and (Kubalcik and Bobal 2006) where pole as-

signment control is used. Here, however, model based predictive control is used

whereby the model is of the non-minimal state-space form. Moreover, the NMSS-

MPC controller in incremental input form (Wang and Young 2006) as well as that

of the integral-of-errors state variable form (Exadaktylos et al. 2006) is used, and,

in this context, their relative merits are evaluated. In particular, when imposing

constraints, it is desired that the output decoupling is not impaired. In order to

achieve this, a modification of the incremental input representation is proposed

so that it is straightforward to obtain decoupled control of the system outputs,
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despite the imposed constraints.

Existing output decoupling control methods are often either based on

optimisation procedures, see e.g. (Lees et al. 1995; Sourlas 2001; Gunnarsson et al.

2003; Exadaktylos and Taylor 2010), aiming for minimising the cross-coupling

effects, or by introducing compensation terms that ideally eliminate the cross-

coupling effects completely by diagonalisation of the resulting closed-loop system.

A decoupling NMSS MPC strategy based on optimisation procedures is

proposed in (Exadaktylos and Taylor 2010), which is based on a multi-objective

optimisation approach, similar to (Bemporad and de la Pena 2009), using the

goal attainment optimisation method, which is also used in (Lees et al. 1995)

in a decoupling pole-assignment context. Most recent decoupling NMSS PIP

developments in the continuous-time domain can be found in (Taylor et al. 2012).

However, the discrete-time domain is considered in this Chapter only.

The method of closed-loop system diagonalisation by making use of a

compensation term, in conjunction with pole-assignment control, can be found

in, e.g. (Lin and Hsieh 1991; Plummer and Vaughan 1997; Kubalcik and Bobal

2006; Wei et al. 2010).

3.1 Multivariable system representation

The system model considered throughout this Chapter is in a discrete-time, multi-

input multi-output (MIMO) transfer function form (Albertos and Sala 2004)

yk = G(z−1)uk (3.1)

where

yk = [y1,k y2,k . . . yn,k]
T and uk = [u1,k u2,k . . . un,k]

T (3.2)

25



Multivariable Decoupling NMSS MPC Control

denote the vectors containing the n system outputs and the n system inputs,

respectively. Also,

G(z−1) =




g11(z
−1) · · · g1n(z

−1)

...
...

...

gn1(z
−1) · · · gnn(z

−1)




(3.3)

denotes a square matrix containing individual transfer functions

gij(z
−1) =

b1ijz
−1 + b2ijz

−2 + . . .+ bnbij ijz
−nbij

1 + a1ijz−1 + a2ijz−2 + . . .+ anaij ijz
−naij

(3.4)

with i, j = 1, 2, . . . , n. Moreover, assume that the numerator and denominator

polynomials in (3.4) are coprime, (3.4) is controllable and that G(z−1) is of full

rank.

Remark 3.1.1. Without loss of generality, in order to incorporate time delays,

the corresponding leading numerator parameters in (3.4) are set to zero.

3.1.1 Left matrix fraction description (LMFD)

The transfer function matrix representing the MIMO system (3.3) can be formu-

lated in a left matrix fraction description (LMFD) (Kailath 1980)

G(z−1) = A−1(z−1)B(z−1) (3.5)

so that the system representation (3.1) becomes

A(z−1)yk = B(z−1)uk (3.6)
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with

A(z−1) = In +A1z
−1 +A2z

−2 + . . .+Ana
z−na

B(z−1) = B1z
−1 +B2z

−2 + . . .+Bnb
z−nb

(3.7)

where In denotes the n × n identity and Ai ∈ R
n×n denote diagonal matrices

containing the corresponding system model parameters. Similarly, Bj ∈ R
n×n

denote matrices of corresponding system model parameters.

3.1.2 System diagonalisation

Considering the system representation (3.6) – (3.7), it is observed that the cross-

coupling effects arise from the non-zero off-diagonal elements in B(z−1). In order

to obtain a diagonal matrix (Plummer and Vaughan 1997; Kubalcik and Bobal

2006) proposed to include a cross-coupling compensation matrix which diagonal-

ises the system by, effectively, transforming the system input

uk = E(z−1)vk (3.8)

with vk = [v1,k v2,k . . . vn,k]
T and E(z−1) being defined to be

E(z−1) = adj[B(z−1)]zκ (3.9)

the forward time shift zκ is chosen such that E(z−1) just remains causal, see e.g.

(Oppenheim et al. 1998), i.e. E(z−1) can be written as

E(z−1) = E0 +E1z
−1 +E2z

−2 + . . .+Ene
z−ne (3.10)
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where Ei ∈ R
n×n denote matrices of corresponding model parameters. When

substituting (3.8) into (3.6) yields

yk = A
−1(z−1)Bd(z

−1)vk (3.11)

with

Bd(z
−1) = B(z−1)E(z−1) = det[B(z−1)]zκIn

= Bd,1z
−1 +Bd,2z

−2 + . . .+Bd,nbd
z−nbd

(3.12)

being a diagonal matrix, and a diagonalised system representation (3.11) from

the transformed or artificial input vk to the output yk is obtained.

3.2 Decoupling non-minimal state space MPC

The general non-minimal state-space system model, upon which the MPC con-

trollers in their respective representations are based, can be straightforwardly

obtained from the diagonalised system in the LMFD representation (3.11), as

follows

xg,k = Ggxg,k−1 +Bgvk−1

yk = Cgxg,k

(3.13)
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with

Gg =




−A1 −A2 · · · −Ana−1 −Ana
Bd,2 · · · Bd,nbd−1 Bd,nbd

In 0n · · · 0n 0n 0n · · · 0n 0n

0n In · · · 0n 0n 0n · · · 0n 0n

...
...

. . .
...

...
...

...
...

...

0n 0n · · · In 0n 0n · · · 0n 0n

0n 0n · · · 0n 0n 0n · · · 0n 0n

0n 0n · · · 0n 0n In · · · 0n 0n

...
...

...
...

...
...

. . .
...

...

0n 0n · · · 0n 0n 0n · · · In 0n




(3.14)

and

Bg = [Bd,1 0n 0n · · · 0n In 0n · · · 0n]
T

Cg = [In 0n · · · 0n]

(3.15)

where 0n denotes a n× n matrix of zeros. The state vector is given by

xg,k = [yT
k y

T
k−1 . . . yT

k−na+1 v
T
k−1 . . . vTk−nbd+1]

T (3.16)

3.2.1 Incremental input form

As presented in (Wang and Young 2006; Wang 2009), the non-minimal state-space

system representation in incremental input form is given by

x∆,k = G∆x∆,k−1 +B∆∆vk−1

yk = C∆x∆,k

(3.17)
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with

G∆ =



Gg 0ng×n

CgGg In


 B∆ =



Bg

CgBg


 C∆ = [0n · · ·0nIn] (3.18)

and

xT
∆,k = [∆xT

g,k y
T
k ] (3.19)

A modification to the usual linear state-space MPC formulation, see

e.g. (Ikonen and Najim 2002; Kwon and Han 2005; Camacho and Bordons 2007;

Wang 2009), is proposed here, that allows to assign individual prediction and

control horizons, denoted Np and Nc, respectively, to the n input-output pairs

(∆vi, yi) i = 1, 2, . . . , n. The vectors of the predicted system outputs Y , future

input differences ∆V and the future reference trajectory R are defined to be

Yi = [yi,k+1|k yi,k+2|k · · · yi,k+Npi|k]
T

Y = [Y T
1 Y T

2 · · · Y T
n ]T

(3.20a)

∆Vi = [∆vi,k|k ∆vi,k+1|k · · · ∆vi,k+Nci−1|k]
T

∆V = [∆V T
1 ∆V T

2 · · · ∆V T
n ]T

(3.20b)

so that

Vi = [vi,k|k vi,k+1|k · · · vi,k+Nci−1|k]
T

V = [V T
1 V T

2 · · · V T
n ]T

(3.20c)

and

Ri = [ri,k+1|k ri,k+2|k · · · ri,k+Npi|k]
T

R = [RT
1 R

T
2 · · · RT

n ]
T

(3.20d)
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respectively. For completeness,

∆Ui = [∆ui,k|k ∆ui,k+1|k · · · ∆ui,k+Nci−1|k]
T

∆U = [∆UT
1 ∆UT

2 · · · ∆UT
n ]

T

(3.20e)

and

Ui = [ui,k|k ui,k+1|k · · · ui,k+Nci−1|k]
T

U = [UT
1 U

T
2 · · · UT

n ]
T

(3.20f)

denote the current and predicted incremental inputs as well as the current and

predicted inputs, respectively.

The cost function required to be minimised, however, is of the same

form as in (Wang and Young 2006)

J∆ = (Y −R)TQ(Y −R) +∆V T
Λ∆V (3.21)

where Q = diag(Q1Q2 . . .Qn) and Λ = diag(Λ1Λ2 . . .Λn) are positive definite

and positive semi-definite block diagonal weighting matrices, respectively, where

the individual matrix blocks Qi ∈ R
Npi×Npi and Λi ∈ R

Nci×Nci are themselves

diagonal matrices.

In order to minimise the cost function (3.21) w.r.t the decision variables

∆V , i.e. input differences, requires that the output predictions Y are expressed

in terms of ∆V . As an exemplary, yet representative case, the output predictions

31



Multivariable Decoupling NMSS MPC Control

of the ith output, by taking (3.17) into account, are given by

yi,k+1|k = C∆,ix∆,k+1|k = C∆,iG∆x∆,k|k +C∆,iB∆,i∆vi,k

yi,k+2|k = C∆,iG
2
∆x∆,k|k +C∆,iG∆B∆,i∆vi,k|k

+C∆,iB∆,i∆vi,k+1|k

yi,k+3|k = C∆,iG
3
∆x∆,k|k +C∆,iG

2
∆B∆,i∆vi,k|k

+C∆,iG∆B∆,i∆vi,k+1|k +C∆,iB∆,i∆vi,k+2|k

...

yi,k+Nci|k = C∆,iG
Nci
∆ x∆,k|k

+C∆,i

Nci−1∑

j=0

G
j
∆B∆,i∆vi,k+Nci−1−j|k

...

yi,k+Npi|k = C∆,iG
Npi
∆ x∆,k|k

+C∆,i

Npi−Nci∑

j=Npi−1

G
j
∆B∆,i∆vi,k+Npi−1−j|k

(3.22)

where C∆,i denotes the ith row of C∆ and B∆,i denotes the ith column of B∆,

respectively. Furthermore, (3.22) can be written in a more compact form

Yi = Fix∆,k +Φi∆Vi (3.23)
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with

Fi =




C∆,iG∆

C∆,iG
2
∆

...

C∆,iG
Nci
∆

C∆,iG
Nci+1
∆

...

C∆,iG
Npi
∆




(3.24)

and

Φi =




C∆,iB∆,i 0 · · · 0

C∆,iG∆B∆,i C∆,iB∆,i · · · 0

...
...

. . .
...

C∆,iG
Nci−1
∆ B∆,i C∆,iG

Nci−2
∆ B∆,i · · · C∆,iB∆,i

C∆,iG
Nci
∆ B∆,i C∆,iG

Nci−1
∆ B∆,i · · · C∆,iG∆B∆,i

...
...

...
...

C∆,iG
Npi−1
∆ B∆,i C∆,iG

Npi−2
∆ B∆,i · · · C∆,iG

Npi−Nci
∆ B∆,i




(3.25)

Subsequently, the predictions of the n outputs are obtained from

Y = Fx∆,k +Φ∆V (3.26)

with F = [F T
1 F T

2 · · ·F T
n ]T ∈ R

∑n
i=1 Npi×n(na+nbd) and Φ = diag(Φ1Φ2 · · ·Φn) ∈

R
∑n

i=1 Npi×
∑n

i=1 Nci being a block diagonal matrix.

Substituting (3.26) into the cost function (3.21) and solving the optim-

isation problem

min.
∆V

J∆ (3.27)
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the incremental artificial input predictions are obtained in the usual state variable

feedback form, cf. (Wang 2009)

∆V = −Kx∆
x∆,k +KR∆

R (3.28a)

where

Kx∆
= (ΦTQΦ+Λ)−1

Φ
TQF (3.28b)

KR∆
= (ΦTQΦ+Λ)−1

Φ
TQ (3.28c)

denote the
∑n

i=1Nci × n(na + nbd) and
∑n

i=1Nci ×
∑n

i=1Npi feedback gain

matrices, respectively.

System input recovery

Solving the optimisation problem (3.27) results in obtaining the transformed sys-

tem input (3.28a), however, the system input uk is required to be obtained since

this input is applied to the actual system.

Consider the input transformation (3.8) and associated transformation

matrix E(z−1) defined in (3.9) and (3.10), respectively, which can also be written

as

E(z−1) =




e11(z
−1) · · · e1n(z

−1)

...
...

...

en1(z
−1) · · · enn(z

−1)




(3.29)

where

ejl(z
−1) = ejl0 + ejl1z

−1 + ejl2z
−2 + . . .+ ejlne

z−ne (3.30)

∀j, l = 1, 2, . . . , n. Moreover, without loss of generality and for the sake of sim-

plicity, let the order of all the polynomials (3.30) identically be ne, which also

follows directly from (3.10). This may mean that some of the coefficients ejli are
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set to zero.

Remark 3.2.1. In the case of MIMO systems with multiple time delays, i.e.

the time delay of the individual transfer functions in (3.3) differ, some leading

coefficients in (3.30) are set zero anyway.

So, the ith input can be obtained as

ui,k =
n∑

l=1

eil(z
−1)vl,k (3.31)

and, subsequently, the predictions of the ith input are given by

ui,k+j =
n∑

l=1

eil(z
−1)vl,k+j ∀j = 1, 2, . . . , Nci − 1 (3.32)

and, as a consequence, the entire vector containing current and predicted input

values (3.20f) can be recovered by

U = ẼV + ÊV̂ (3.33)

where

Ẽ =




Ẽ11 · · · Ẽ1n

...
...

...

Ẽn1 · · · Ẽnn




with Ẽjl =




ejl0 0 · · · 0 0

ejl1 ejl0 · · · 0 0

...
...

. . .
...

...

0 0 · · · ejl0 0

0 0 · · · ejl1 ejl0




∈ R
Ncj×Ncl

(3.34)

and

Ê =

[
ÊT

1 ÊT
2 . . . ÊT

n

]T
(3.35a)
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with

Êj =




ej11 ej12 · · · ej1ne−1
ej1ne

ej21 ej22 · · · ej2ne−1
ej2ne

ej12 ej13 · · · ej1ne
0 ej22 ej23 · · · ej2ne

0

ej13 ej14 · · · 0 0 ej23 ej24 · · · 0 0

...
...

...
...

...
...

...
...

...
...

ej1ne
0 · · · 0 0 ej2ne

0 · · · 0 0

0 0 · · · 0 0 0 0 · · · 0 0

...
...

...
...

...
...

...
...

...
...

0 0 · · · 0 0 0 0 · · · 0 0

· · · ejn1
ejn2

· · · ejnne−1
ejnne

· · · ejn2
ejn3

· · · ejnne
0

· · · ejn3
ejn4

· · · 0 0

· · ·
...

... . .
. ...

...

· · · ejnne
0 · · · 0 0

· · · 0 0 · · · 0 0

· · ·
...

...
...

...
...

· · · 0 0 · · · 0 0




∈ R

∑n
i=1 Nci×nne (3.35b)

Essentially, (3.33) is the representation of (3.31) and (3.32) in a compact matrix

form. Also, note that (3.33) consists of a term corresponding to the current and

predicted inputs and a term corresponding to previous inputs only, since

V̂ = [v1,k−1 v1,k−2 . . . v1,k−ne
v2,k−1 v2,k−2 . . . v2,k−ne

. . . vn,k−1 vn,k−2 . . . vn,k−ne+1 vn,k−ne
]T (3.36)
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Handling constraints

When imposing constraints on the system, it is desired that these do not introduce

cross-couplings of the outputs. Consequently, if there is a change of the reference

signal affecting, e.g. Y1, then, the remaining outputs are not supposed to be

affected, despite imposed constraints on the input and/or output. The proposed

modification of the NMSS MPC formulation in incremental input form allows one

to consider the input-output pairs (∆Vi, Yi) individually. This, in turn, allows

the choice of which outputs are allowed to change and which are not by making

use of the reference governor approach, see e.g. (Bemporad and Mosca 1994;

Gilbert and Kolmanovsky 1995; Bemporad et al. 1997; Angeli and Mosca 1999;

Exadaktylos et al. 2008). Similar to the closed-loop paradigm (CLP) (Rossiter

2004), where a perturbation term is added to the optimal, i.e. unconstrained,

control law such that the constraints are fulfilled, the reference governor adapts

the reference signal in order to avoid constraint violation, i.e.

W = R + Γ (3.37)

where W ∈ R
∑n

i=1 Npi×1 denotes the adapted reference signal and

Γ = [ΓT
1 Γ

T
2 . . . Γ

T
n ]

T (3.38)

denotes the reference signal perturbation vector where

Γi = [γi,k+1|k γi,k+2|k . . . γi,k+Npi|k]
T (3.39)

denotes the reference signal perturbation corresponding to the ith system output

reference trajectory.
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Since Γ describes a deviation from the desired reference trajectory, the

values of its elements γi,k+j|k are ideally zero, which corresponds to the case

of inactive constraints. Moreover, in order to maintain offset-free steady-state

set-point tracking, the sequences {γi,k+1|k γi,k+2|k . . . γi,k+Npi|k} ∀i = 1, 2, . . . , n

are required to converge to zero, which is assumed here. However, to keep the

deviation as small as possible, the following quadratic optimisation problem can

be formulated

min.
Γ

Γ
T
Γ

s. t. MΓ ≤N
(3.40)

where the constraints are required to be fulfilled element wise. The matrices M

and N of dimension (4
∑n

i=1Nci + 2
∑n

i=1Npi) ×
∑n

i=1Npi and (4
∑n

i=1Nci +

2
∑n

i=1Npi)×1, respectively, formulate the constraints on the incremental system

input, system input as well as system output, i.e.

M =




M∆U

MU

MY




and N =




N∆U

NU

NY




(3.41)

respectively, and are subsequently derived.

At first, consider the case of imposing constraints on the incremental

inputs ∆U , i.e.

∆U ≤ ∆U ≤ ∆U (3.42)

where (·) and (·) denote the lower and upper boundaries, respectively. The op-

timal predicted control sequence (3.28), when considering the adapted reference

signal W , becomes

∆V = −Kxx∆,k +KR(R+ Γ) = ∆Vopt +KRΓ (3.43)
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where the subscript (·)opt denotes optimal, i.e. unconstrained, and is the solution

of (3.21), i.e. (3.28). Substituting (3.43) into (3.33) after multiplying throughout

with ∆, gives

∆U = Ẽ∆Vopt + Ê∆V̂ + ẼKRΓ = ∆Uopt + ẼKRΓ (3.44)

so that the matrices formulating the constraints associated with ∆U , are given

by

M∆U =



−ẼKR

ẼKR


 ; N∆U =



∆Uopt −∆U

∆U −∆Uopt


 (3.45)

which are of dimension 2
∑n

i=1Nci ×
∑n

i=1Npi and 2
∑n

i=1Nci × 1, respectively.

Next, consider constraints on the input magnitude of U , i.e.

U ≤ U ≤ U (3.46)

these can be directly derived from above by expressing ∆U in a compact matrix

form, i.e.

∆U = Υ1U −Υ2 uk−1 (3.47)
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where

Υ1 =




1 0 0 · · · 0

−1 1 0 · · · 0

0 −1 1 · · · 0

...
...

. . .
. . .

...

0 0 · · · −1 1




and Υ2 =




1 0 · · · 0

0 0 · · · 0

...
...

...
...





Nc1

0 1 · · · 0

0 0 · · · 0

...
...

...
...





Nc2

...

0 0 · · · 1

0 0 · · · 0

...
...

...
...

0 0 · · · 0





Ncn




(3.48)

denote matrices of dimension
∑n

i=1Nci×
∑n

i=1Nci and
∑n

i=1Nci×n, respectively.

So, the constraints can be formulated to be

MU =



−ẼKR

ẼKR


 ; NU =



∆Uopt −Υ1U +Υ2uk−1

Υ1U −∆Uopt −Υ2uk−1


 (3.49)

and these matrices are of dimension 2
∑n

i=1Nci ×
∑n

i=1Npi and 2
∑n

i=1Nci × 1,

respectively.

Finally, consider constraints on the outputs Y , i.e.

Y ≤ Y ≤ Y (3.50)

Substituting (3.43) into the output prediction equation (3.26), the constraints
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formulation is obtained as

MY =



−ΦKR

ΦKR


 ; NY =



Fx∆,k +Φ∆Vopt − Y

Y − Fx∆,k −Φ∆Vopt


 (3.51)

where the dimensions of MY and NY are given by 2
∑n

i=1Npi ×
∑n

i=1Npi and

2
∑n

i=1Npi × 1, respectively.

Regarding the optimisation problem (3.40) and the subsequent deriva-

tion of the constraints formulation, the following observations can be made:

• When constraints are not violated by (3.28), then Γ = 0, so that, from

(3.40), N ≥ 0. This, in turn, means that (3.40) is required to be solved

only if at least one element in the vector N is negative, i.e. [N ]j < 0 ∀j,

where [N ]j denotes the jth element of N .

• In order to avoid cross-coupling effects introduced by the constraints, cor-

responding reference trajectory deviations can be chosen, e.g. Γ = Γ1,

which are allowed to vary. This, effectively, forces the remaining reference

trajectory deviations to be zero. Also, the matrices M and N can be trun-

cated accordingly. This allows the dimension of the optimisation problem

(3.40) to be kept low.

3.2.2 Integral-of-errors state variable formulation

The NMSS model with an integral-of-errors state variable (Young et al. 1987;

Wang and Young 1988), based on the general NMSS representation (3.13)–(3.15)

of the diagonalised system, is given by

xk = Gxk−1 +Bvk−1 +Drk

yk = Cxk

(3.52)
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with

xk =



xg,k

ζk


 G =




Gg 0ng×n

−CgGg In


 B =




Bg

−CgBg


 (3.53)

where ζk = ζk−1 + rk − yk denotes the integral-of-errors state variable and

C = [In 0n . . .0n] D = [0n . . . 0n In]
T (3.54)

In the MPC formulation based on the NMSS model that uses an integral-

of-errors state variable, which ensures set-point tracking, instead of the system

outputs, the state vector is predicted (Exadaktylos 2007, Chap. 4). Consequently,

the cost function that is required to be minimized w.r.t V̄ , is given by

J =XT Q̄X + V̄ T
Λ̄V̄ (3.55)

where

X = [xT
k+1|k x

T
k+2|k . . . xT

k+Np|k]
T (3.56)

denotes the n(na + nbd)Np × 1 dimensional vector of predicted states and

V̄ = [vTk|k v
T
k+1|k . . . vTk+Nc−1|k]

T (3.57)

denotes the transformed input prediction vector of dimension nNc×1. Addition-

ally, Q̄ ∈ R
n(na+nbd)Np×n(na+nbd)Np and Λ̄ ∈ R

nNc×nNc denote positive definite and

positive semi-definite weighting matrices, respectively.

In a similar manner as in (3.22) and, subsequently, in (3.23) the pre-
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dicted states are obtained by

X = F̄ x(k) + Φ̄V̄ +HR̄ (3.58)

where

F̄ = [GT (G2)T . . . (GNp)T ]T (3.59a)

Φ̄ =




B 0 · · · 0 0

GB B · · · 0 0

...
...

. . .
...

...

GNc−2B GNc−1B · · · B 0

GNc−1B GNc−2B · · · GB B

GNcB GNc−1B · · · G2B GB +B

GNc+1B GNcB · · · G3B G2B +GB +B

...
...

...
...

...

GNp−1B GNp−2B · · · GNp−Nc+1B
∑Np−Nc

i=0 GiB




(3.59b)

H =




D 0 · · · 0

GD D · · · 0

...
...

. . .
...

GNp−1D GNp−2D · · · D




(3.59c)

and the vector of the future reference trajectories is defined to be

R̄ = [rTk+1 r
T
k+2 . . . rTk+Np

]T (3.60)

A detailed derivation and further information on the MPC based on NMSS models

with an integral-of-errors state variable can be found in (Exadaktylos 2007, Chap.

4).
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The (unconstrained/optimal) control law is obtained by solving the op-

timisation problem

min.
V̄

J (3.61)

for which the solution is given by, similar to (3.28),

V̄ = −K̄xxk + K̄RR̄ (3.62a)

with

K̄x = (Φ̄T Q̄Φ̄+ Λ̄)−1
Φ̄

T Q̄F̄ (3.62b)

K̄R = −(Φ̄T Q̄Φ̄+ Λ̄)−1
Φ̄

T Q̄H (3.62c)

Remark 3.2.2. The cost function of the NMSS MPC in the integral-of-errors

state variable representation (3.55) implicitly depends on the reference trajectories

via the integral-of-errors state variable ζk and its predictions, so that offset free

steady-state tracking is achieved (Exadaktylos 2007, Chap 4).

As a consequence, when making use of a cost function similar to (3.21),

i.e. J̄ = (Y −R)TQ(Y −R) + V T
ΛV , instead of (3.55) applied to the NMSS

MPC with integral-of-errors state variable via the relationship yk = Cxk from

(3.52) in order to obtain the required output predictions, results in nullifying the

integral-of-errors state variables so that the performance is impaired and, con-

sequently, offset free set-point tracking is not ensured.

At this juncture, certain observations can be made regarding the NMSS

MPC with integral-of-errors state variable compared to the NMSS MPC in incre-

mental input form:

• Due to the different cost functions used (3.21) and (3.55), respectively,

in particular that (3.21) depends explicitly on the system output predic-
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tions while (3.55) depends on the state vector predictions (and implicitly

on the system output predictions), it is straightforward to ‘separate’ the

input-output pairs (Yi,∆Vi) and assign individual control and prediction

horizons to each pair in the incremental input form, which can be used

as additional tuning parameters. Other than in the integral-of-errors state

variable form where the prediction horizon relates to the state vector and

not to the system outputs. Consequently, there is a single prediction and

control horizon only.

• Although both NMSS MPC representations are based on the same diagon-

alised system representation (3.13), which was achieved by a system input

transformation (3.8), the matrices involved in recovering of the system in-

put predictions (3.33), differ due to the definitions of the transformed input

prediction vectors (3.20b) and (3.57), respectively.

System input recovery

As mentioned above, the system input uk cannot be recovered using (3.33) –

(3.36), however, since (3.8) also applies to the NMSS MPC in integral-of-errors

state variable form, (3.8) written in matrix form, similar to (3.33), yields

Ū = ¯̃
EV̄ +

¯̂
E

¯̂
V (3.63)

where

Ū = [uT
k|k u

T
k+1|k . . . uT

k+Nc−1|k]
T (3.64)

45



Multivariable Decoupling NMSS MPC Control

denotes the nNc × 1 vector of the current and predicted system inputs. Taking

(3.10) into account and similar to (3.34), ¯̃
E ∈ R

nNc×nNc is given by

¯̃
E =




E0 0n · · · 0n 0n

E1 E0 · · · 0n 0n

...
...

. . .
...

...

0n 0n · · · E0 0n

0n 0n · · · E1 E0




(3.65)

and similar to (3.35),
¯̂
E ∈ R

nNc×nne is given by

¯̂
E =




E1 E2 · · · Ene−1 Ene

E2 E3 · · · Ene
0n

E3 E4 · · · 0n 0n

...
... . .

. ...
...

Ene
0n · · · 0n 0n

0n 0n · · · 0n 0n

...
...

...
...

...

0n 0n · · · 0n 0n




(3.66)

and

¯̂
V = [vTk−1 v

T
k−2 . . . vTk−ne+1 v

T
k−ne

]T (3.67)

Handling constraints

Since here, as mentioned above, the actual system outputs are not predicted but

rather the state vector, the method of constraint handling via reference traject-

ory adaptation is not straightforwardly applicable. Moreover, as discussed above,

since the performance of the system is greatly determined by the integral-of-errors
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state variable, which includes the reference signal, as a consequence, reference tra-

jectory adaptation impacts the performance significantly. Hence, the constraints

are handled by using the ‘conventional’ method as proposed in (Exadaktylos 2007,

Chap. 4), i.e. the quadratic optimisation problem

min.
V̄

J

s. t. M̄V̄ ≤ N̄

(3.68)

is required to be solved, where

M̄ =




− ¯̃
E

¯̃
E

−Ῡ1
¯̃
E

Ῡ1
¯̃
E

−C̄Φ̄

C̄Φ̄




N̄ =




−Ū +
¯̂
E

¯̂
V

Ū −
¯̂
E

¯̂
V

−∆Ū + Ῡ1
¯̂
E

¯̂
V − Ῡ2uk−1

∆Ū − Ῡ1
¯̂
E

¯̂
V + Ῡ2uk−1

−Ȳ + C̄F̄xk + C̄HR̄

Ȳ − C̄F̄ xk − C̄HR̄




(3.69a)

with

Ῡ1 =




In 0n 0n · · · 0n

−In In 0n · · · 0n

0n −In In · · · 0n

...
...

. . .
. . .

...

0n 0n · · · −In In




∈ R
nNc×nNc Ῡ2 =




In

0n

...

0n




∈ R
nNc×n (3.69b)

and C̄ = diag(C,C, . . . ,C) ∈ R
nNp×(na+nbd)Np denotes a block diagonal matrix.

Handling the constraints in this way, clearly impairs the output de-

coupling properties, see Section 3.3.1, and, other than in the NMSS MPC in

incremental input form that uses the reference trajectory adaptation method,
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constraint violations cannot be detected in such a straightforward way, hence the

optimisation problem (3.68) is required to be solved at every sampling instance.

3.3 Simulation example: Quadruple Tank Process

The quadruple tank process is a MIMO system comprising 2 inputs and 2 outputs,

i.e. n = 2, and is developed by (Johansson 2000). In Figure 3.1, the schematic

of the system is shown, from where the cross-coupling effects become apparent.

The aim is to control the water levels of the lower tanks, where system output y1

denotes the water level of tank 1 and system output y2 denotes the water level of

tank 2, respectively. The system inputs u1 and u2 denote the voltages applied to

the electrically driven water pumps, which feed the tanks. Further information

on the operational principle and its properties can be found in, e.g. (Johansson

and Nunes 1998; Johansson 2000, 2002).

Pump 1
u1

Pump 2
u2

Tank 1 y1 Tank 2

y2

Tank 3 Tank 4

Figure 3.1: Schematic of the quadruple tank process

The minimum-phase system model in the continuous-time domain is

adopted from (Johansson 2000) and discretized by making use of the Matlab®
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function c2d where the sampling time is chosen to be Ts = 5 s. The discrete-time

system model is obtained as

A1 =



−1.7271 0

0 −1.7924


 A2 =



0.7423 0

0 0.8007


 (3.70a)

and

B1 =



0.2014 0.0119

0.006 0.1513


 B2 =



−0.1621 0.0108

0.0056 −0.1281


 (3.70b)

Implementation results of the NMSS MPC in incremental input form

incorporating the proposed modification, according to Section 3.2.1, are presen-

ted in Figure 3.2. Here, both the NMSS MPC in incremental input form using

the diagonalised system model (solid line) according to Section 3.1.2, i.e. the de-

coupling technique, and using the non-diagonalised system model (3.70) directly

(dashed line), are shown.

The reference signal is a step from 12 units to 14 units at sampling in-

stance k = 200 for system output y1 and at sampling instance k = 700 for system

output y2. The prediction and control horizons are chosen to be Np1 = Np2 = 25

and Nc1 = Nc2 = 20, respectively, for both MPC controller formulations. The

weighting matrices are chosen to be identity matrices for the MPC based on the

diagonalised model and the diagonal elements of the MPC based on the non-

diagonalised model are chosen such that similar output responses are achieved.

It can be observed that, as expected, when the system model in di-

agonalised form is employed, the cross-coupling effects are eliminated (without

model-mismatch). This is in contrast to the case where the non-diagonalised sys-

tem model is used, where cross-coupling effects are clearly visible. Moreover, it is

observed that the transformed system inputs v1 and v2 respond to the reference
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signal changes corresponding to their system outputs only. This confirms the ex-

pectation that the input-output pairs, i.e. (v1, y1) and (v2, y2), can be considered

individually. On the other hand, the system inputs u1 and u2 respond to the

reference signal changes of both system outputs, which is to be expected in a

system exhibiting cross-coupling effects.
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Figure 3.2: Implementation results of the NMSS MPC in incremental input form
where the solid line corresponds to the proposed MPC formulation using the
diagonalised system model and the dashed line corresponds to the MPC using
the non-diagonalised system model. Upper: system outputs. Middle: system
inputs and lower: transformed system input.

Similar to the above, implementation results of the NMSS MPC using

an integral-of-errors state variable, as discussed in Section 3.2.2, are shown in

Figure 3.3. Again, implementation results of the MPC based on the diagonalised

(solid line) and non-diagonalised (dashed line) system model are presented. The

reference signal applied to those for the incremental input form, as well as the
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prediction and control horizon, are identical. Additionally, in the case of the

MPC based on the diagonalised system model, the weighting matrices Q̄ and

Λ̄ are chosen to be identity matrices except that the weighting elements in Q̄,

corresponding to the integral-of-errors state variable and respective predictions,

are chosen to be [3 1.5]. In the case of using the non-diagonalised model, the

weighting matrices are of a diagonal form and, again, tuned such that an (almost)

identical output response is achieved.

When comparing Figure 3.2 and Figure 3.3, it can be observed that

almost identical performance is achieved. Both NMSS MPC formulations, the

incremental input form and integral-of-errors state variable form, are able to

eliminate the cross-coupling effects, if the diagonalised model is used and no

model mismatch is present.

Remark 3.3.1. During various simulation examples of different systems, it could

be observed that in the case of dealing with multiple time-delays, which signific-

antly differ from each other, the performance of the NMSS MPC according to

Section 3.2.1 as well as Section 3.2.2 is noticeably impaired.

3.3.1 Imposing constraints

It is desired that, despite imposed constraints, the decoupling properties are pre-

served. As such, the NMSS MPC controllers based on the diagonalized system

are considered here only. Also, the simulation set-up, i.e. reference signal, weight-

ing matrices and horizons, is identical as used in the unconstrained scenarios as

shown in Figures 3.2 and 3.3, respectively.

At first, consider the NMSS MPC in incremental input form, as dis-

cussed in Section 3.2.1, where use is made of the reference trajectory adaptation

method (3.40) in order to handle constraints. The proposed modification of the
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Figure 3.3: Implementation results of the NMSS MPC in integral-of-errors state
variable form where the solid line corresponds to the MPC formulation using the
diagonalised system model and the dashed line corresponds to the MPC using the
non-diagonalised system model. Upper: system outputs. Middle: system inputs
and lower: transformed system input.

MPC formulation (3.20) makes it straightforward to suppress the cross-coupling

effects by allowing only the reference trajectory deviations, corresponding to the

desired reference set-point change, to be non-zero. Also, as already mentioned

in Section 3.2.1, the dimension of the optimisation problem (3.40) required to be

actually solved, can be reduced accordingly. This is demonstrated in the follow-

ing.

Consider constraints on the first incremental input, i.e. −0.01 ≤ ∆U1 ≤

0.01, so that ∆U1 = −0.01 and ∆U 1 = 0.01, respectively. Furthermore, two

scenarios, which correspond to the set-point change of the output y1 and the

output y2, respectively, are required to be considered. In the first scenario, Γ1 6= 0
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while Γ2 = 0, which accounts for a set-point change in y1 while y2 is supposed to

be constant, hence the optimisation problem (3.40) becomes

min.
Γ1

Γ
T
1Γ1

s. t. M
(1)
∆U1

Γ1 ≤ N∆U1

(3.71)

where

M
(1)
∆U1

=



−ẼU1

KR1

ẼU1
KR1


 ∈ R

2Nc1×Np1 N∆U1
=



∆U1,opt −∆U1

∆U 1 −∆U1,opt


 ∈ R

2Nc1×1

(3.72)

Considering (3.33) in conjunction with (3.34), it can be seen that the matrix Ẽ

can be partitioned into

Ẽ = [ẼT
U1
ẼT

U2
]T (3.73)

so that,

ẼU1
= [Ẽ11 Ẽ12]

ẼU2
= [Ẽ21 Ẽ22]

(3.74)

Similarly, KR can be partitioned into

KR = [KR1
KR2

] (3.75)

where KR1
∈ R

(Np1+Np2)×Np1 is associated with Γ1 and KR2
∈ R

(Np1+Np2)×Np2 is

associated with Γ2, respectively. This can be deduced from (3.43).

Now, in the second scenario, Γ2 6= 0 while Γ1 = 0, which accounts for a

set-point change in y2 while y1 is supposed to be constant, hence the optimisation
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problem (3.40) becomes

min.
Γ2

Γ
T
2Γ2

s. t. M
(2)
∆U1

Γ2 ≤ N∆U1

(3.76)

where

M
(2)
∆U1

=



−ẼU1

KR2

ẼU1
KR2


 ∈ R

2Nc1×Np2 N∆U1
=



∆U1,opt −∆U1

∆U 1 −∆U1,opt


 ∈ R

2Nc1×1

(3.77)

Remark 3.3.2. In the case of disturbances, which may cause constraint viola-

tions, it might be advisable to allow the entire reference trajectory perturbation

vector Γ to take on non-zero values in order to improve disturbance rejection.

Implementation results are shown in Figure 3.4. It can be observed that

cross-coupling effects in the outputs are non existent.

Next, the NMSS MPC using an integral-of-errors state variable, as dis-

cussed in Section 3.2.2, is considered. Again, constraints on the increments of the

first system input, as above, are imposed.

The constraints are handled by solving the optimisation problem (3.68),

accompanied by (3.69). However, since constraints on ∆U1 are imposed only,

the matrices (3.69a) are required to be adapted accordingly, i.e. the constraints

associated with ∆U1 are required to be considered only. The matrices in (3.69a)

are adapted to be

M̄∆U1
=



−ψῩ1

¯̃
E

ψῩ1
¯̃
E


 N̄∆U1

=



−∆U1 +ψῩ1

¯̂
E

¯̂
V −ψῩ2uk−1

∆U 1 −ψῩ1
¯̂
E

¯̂
V +ψῩ2uk−1


 (3.78)
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Figure 3.4: Implementation results of the NMSS MPC in incremental input form
with imposed constraints

where M̄∆U1
∈ R

2Nc×2Nc , N̄∆U1
∈ R

2Nc×1 and

ψ =




1 0 0 0 0 · · · 0 0

0 0 1 0 0 · · · 0 0

0 0 0 0 1 · · · 0 0

...
...

...
...

...
...

...
...

0 0 0 0 0 · · · 1 0




∈ R
Nc×2Nc (3.79)

such that

∆U1 = ψ∆Ū (3.80)

the incremental input predictions of the first system input are extracted from

the entire incremental input prediction vector. The optimisation problem (3.68),
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adapted and required to be solved here, is given by

min.
V̄

J

s. t. M̄∆U1
V̄ ≤ N̄∆U1

(3.81)

Implementation results are shown in Figure 3.5. It can be observed, and as

expected, cross-coupling effects are visible since the constraints involved in the

optimisation problem (3.81) do not prevent this, i.e. the optimisation problem

(3.81) allows the transformed input v1 to respond to a set-point change in y2

and vice versa. This becomes apparent when comparing Figures 3.4 and 3.5.

However, it might be possible to construct the constraints in such a way that the

cross-coupling effects are eliminated, similarly to (3.71) and (3.76), respectively,

without impairing the overall performance significantly. This, however, is left as

an open problem.
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Figure 3.5: Implementation results of the NMSS MPC in integral-of-errors state
variable form with imposed constraints

3.4 Sensitivity analysis

In Section 3.3, simulation results were presented where the system model is con-

sidered to be mismatch-free. Here, the impact of model mismatch on the perform-

ance is evaluated. Other than model mismatch, the simulation set-up is identical

to that used in Section 3.3.

Monte-Carlo (MC) simulations are performed, comprising of 1000 runs

each. Uniformly distributed random uncertainty terms are added to the nominal

system parameters in the range of ±10%.

The closed-loop poles of the system, in the complex plane, are shown

in Figure 3.6. Model parameter uncertainties of the elements in A1 and A2, are

considered, respectively. It can be observed that the poles do not lie outside

the unit circle. Furthermore, the closed-loop poles of the MPC controllers, in
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incremental input form and in integral-of-errors state variable form, respectively,

based on the diagonalised model exhibit a wider spread (upper plots) than the

closed-loop system poles obtained using the corresponding MPC controllers based

on the non-diagonalised model (lower plots). This indicates ‘tighter’ system out-

put responses of the MC runs. Moreover, the closed-loop poles obtained using

the MPC controllers in incremental input form (left-hand plots), based on diag-

onalised (upper plot) and non-diagonalised (lower plot) system model, are very

similar to the respective MPC controllers in integral-of-errors state variable form

(right-hand plots). Also, note that uncertainties in A1 and A2 only, do not affect

the output decoupling properties, i.e. the system diagonalisation, since this is

achieved by making use of B(z−1) (3.8)–(3.9), as discussed in Section 3.1.2.

Next, consider model parameter uncertainties in the elements of B1 and

B2, respectively. The corresponding closed-loop poles of the system, in the com-

plex plane, are shown in Figure 3.7. Although barely visible in these plots, some

of the poles obtained using the MPC controllers based on the diagonalised model

(upper plots), lie outside the unit circle, i.e. resulting in an unstable response.

The poles obtained using the MPC controllers based on the non-diagonalised

model, however, all lie inside the stable region, i.e. inside the unit circle.

Similar to the observations made concerning the results in Figure 3.6,

the closed-loop poles obtained by making use of the MPC controllers based on

the diagonalised model (upper plots), are almost identical, as well as the closed-

loop poles obtained by making use of the MPC controllers based on the non-

diagonalised model (lower plots).

Comparing Figures 3.6 and 3.7, it is observed that the closed-loop poles

are generally wider spread in Figure 3.6. However, there are isolated instances of

unstable closed-loop poles observable in Figure 3.7. Consequently, it can be said
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Figure 3.6: Closed-loop poles in the complex plane when model uncertainties
in A1 and A2 are considered, respectively. Upper left: Incremental input form,
diagonalised model. Upper right: Integral-of-errors state variable form, diagonal-
ised model. Lower left: Incremental input form, non-diagonalised model. Lower
right: Integral-of-errors state variable form, non-diagonalised model.

that:

• Uncertainties in the parameters A1 and A2 do have a greater impact on

the sensitivity.

• Uncertainties in the parameters B1 and B2 affect the stability more if the

MPC controllers based on the diagonalised model are used.

• Uncertainties in the parameters B1 and B2 impair the system output de-

coupling.

Remark 3.4.1. When making use of the integral-of-errors state variable form,

these integrators are required to be initialised and, consequently, significant initial
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Figure 3.7: Closed-loop poles in the complex plane when model uncertainties
in B1 and B2 are considered, respectively. Upper left: Incremental input form,
diagonalised model. Upper right: Integral-of-errors state variable form, diagonal-
ised model. Lower left: Incremental input form, non-diagonalised model. Lower
right: Integral-of-errors state variable form, non-diagonalised model.

system output signal distortion may occur. In this regard, care must be taken in

implementing this form of controller.

In order to further illustrate the observations made above, the MC sim-

ulation system output responses to model parameter uncertainties in A1 and A2,

respectively, in the range of ±5% are shown in Figure 3.8, where use is made

of the MPC in incremental input form based on the diagonalised model (upper

plots) and non-diagonalised model (lower plots). It can be observed that, as

mentioned above, the MPC based on the diagonalised model does not exhibit

cross-coupling effects, while output cross-coupling effects in the case of the MPC

based on the non-diagonalised model are clearly visible.
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Figure 3.8: MC simulation system output responses when model parameter un-
certainties in A1 and A2 are considered and MPC in incremental input form is
applied. Upper plots: MPC based on diagonalised model. Lower plots: MPC
based on non-diagonalised model.

MC simulation system output responses to model parameter uncertain-

ties in B1 and B2, respectively, in the range of ±5% are shown in Figure 3.9,

where, again, use is made of the MPC in incremental input form based on the

diagonalised model (upper plots) and non-diagonalised model (lower plots). Here,

it can be observed that cross-coupling effects re-emerge and that when considering

the case of using the non-diagonalised model, compared to Figure 3.8, a ‘tighter’

performance is achieved, which coincides with the observations made based on

the closed-loop pole locations shown in Figures 3.6 and 3.7, respectively.

Remark 3.4.2. In Figures 3.8 and 3.9, respectively, the MPC in incremental

input form is considered only due to the initial output distortion caused by ini-

tialising the integral-of-errors state variable. Moreover, model parameter uncer-
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Figure 3.9: MC simulation system output responses when model parameter un-
certainties in B1 and B2 are considered and MPC in incremental input form is
applied. Upper plots: MPC based on diagonalised model. Lower plots: MPC
based on non-diagonalised model.

tainties in the range of ±5%, instead of ±10%, are considered in order to avoid

unstable MC realisations. However, a representative system behaviour is still

provided.

3.5 Concluding remarks

In this chapter, a NMSS MPC approach, eliminating cross-coupling effects in the

outputs of square MIMO systems, has been presented. The cross-coupling elim-

ination is achieved by a system diagonalisation method, adopted from (Plummer

and Vaughan 1997; Kubalcik and Bobal 2006), where an input transformation

is performed, which compensates for the cross-coupling effects. This method is

applied to MPC controllers which are based on non-minimal state-space mod-
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els using an integral-of-errors state variable (Exadaktylos et al. 2006) and an

incremental input form (Wang and Young 2006).

Furthermore, when constraints are imposed, it is desired that the elim-

inated cross-coupling effects are preserved. For this reason, a modification to the

NMSS MPC in incremtal input form has been proposed, which allows this to be

achieved in a straightforward manner by enabling the input-output pairs of the

MIMO system, i.e. transformed input and output, to be considered individually.

Moreover, individual control and prediction horizons can be assigned to each of

these pairs, which can be viewed as additional tuning parameters.

Finally, for demonstration purposes, a simulation example has been

presented, followed by an evaluation of the impact of model parameter uncer-

tainties.
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Chapter 4

Generalised Discrete-time State

Dependent Parameter Proportional

- Integral - Plus Control

In this Chapter, the state dependent parameter proportional-integral-plus (SDP-

PIP) controller in closed-loop is analysed. Particular emphasis is placed on the

generalised SDP model structure. Equivalent to its linear counterpart, the SDP-

PIP is a pole-placement controller so that it is essential to be able to formulate the

closed-loop characteristic equation. It is apparent that linear systems theory (see

e.g. Gajic and Lelic 1996; Ogata 1997; Nise 2008), such as the notion and concept

of system poles and zeros, cannot necessarily be carried over, nor referred to, when

dealing with nonlinear systems and their respective nonlinear system models.

However, considering linearised system models at a series of distinct operating

points, the notion of equivalent system poles and zeros is often envisaged from an

engineering point of view. Such a notion is valid in a restricted region around the

considered operating point and it can be said, at least loosely, that the nonlinear

system exhibits equivalent poles and zeros, that may be operating point, and/or
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time dependent.

Other than control methodologies based on linear models which robustly

accommodate the system nonlinearities into the linear model by explicitly includ-

ing model uncertainties, see e.g. (Kothare et al. 1996; Mayne et al. 2000; Kouv-

aritakis et al. 2000; Cannon et al. 2003), or by adaptive control approaches, see

e.g. (Harris and Billings 1981), or by making use of optimisation based methods,

e.g. state dependent Riccati equations (SDRE) (Cloutier 1997; Cimen 2008), the

SDP-PIP pole-assignment controller achieves its goal by explicitly cancelling the

system nonlinearities and attempts to exactly replicate a desired, linear closed-

loop system (Taylor et al. 2009). In (Stables et al. 2006; Stables and Taylor

2006) the time delay is handled by making use of the Smith-predictor (Smith

1959), which, essentially, by predicting the system output based on the system

model, ‘removes’ the time delay from the control loop so that the controller is

not affected. While, in (Taylor et al. 2009), the time delay is incorporated into

the controller. The major limitation in either approaches lies in the issue that

the SDP-PIP is not able to handle numerator zeros of the equivalent linear, or

time-step ‘frozen’, system model. Hence the applicability of the SDP-PIP ap-

proach is restricted. However, despite the noted limitations, the SDP-PIP has

been successfully implemented in several practical applications, see e.g. (Taylor

et al. 2007b, and references therein).

4.1 Aspects on time shift operations

When considering linear PIP and time-invariant parameter system models, the

time shift operator is applied to the input/output signals. However, when dealing

with the SDP framework, the system model parameters are themselves functions

of these time-varying signals, i.e. functions of the non-minimal states. As a
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consequence, the time shift operator may be considered to be applied to the

parameters as well as the signals.

Throughout this Chapter, for simplicity, the following assumptions are

made (unless otherwise stated):

Assumption 1. There is no mismatch between the system and the model.

Assumption 2. The system (and model) is noise free.

Assumption 3.

• The system model polynomials (4.2) are coprime ∀k

• The system model (4.1) satisfies m ≤ na, i.e. proper.

The system model is obtained as a SDP model in difference equation

form

yk =
Bk(z

−1) z−τ

Ak(z−1)
uk =

Bk(z
−1)

Ak(z−1)
uk−τ (4.1)

where τ ∈ N denotes the sampled time delay and the system model polynomials

are given by

Ak(z
−1) = 1 + a1,kz

−1 + a2,kz
−2 + . . .+ ana,kz

−na

Bk(z
−1) = bτ,k + bτ+1,kz

−1 + bτ+2,kz
−2 + . . .+ bτ+m,kz

−m

(4.2)

The subscript k is used to denote the time-varying nature of the polynomials (4.2),

indicating the state dependency of the associated parameters. Also, na ∈ N0

denotes the order of the system model while m ∈ N0 denotes the order of the

numerator polynomial.

Regarding the SDP system model in the context of the SDP-PIP pole-

assignment control approach, it is, in the authors view, important to take certain

points into consideration at the outset:
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• Since the SDP-PIP is a model-based control methodology, the model is an

integral component of the controller. Consequently, the design of the SDP-

PIP control approach starts at the system identification stage, i.e. from the

definition of the SDP model.

• Since the SDP system model is nonlinear and assigning closed-loop poles can

only be performed on linear system models (as already mentioned above),

as a consequence, the SDP-PIP controller can only operate on the instant-

aneous linear (at the current time step ‘frozen’) system model.

Now, directing attention to the SDP system model (4.1) and, in partic-

ular, the role of the time shift operator. When time shifting the entire system

(4.1) by i ∈ Z sampling instances, the time shift applies to the signals as well

as to the system polynomials (cf. Ziemian 2002). This can be summarized as

follows:

Proposition 1. Let k denote the current sampling instance, then, for the sub-

sequent consecutive instances, yk+i =
Bk+i(z

−1)

Ak+i(z−1)
uk+i−τ ∀i ∈ Z holds.

Demonstration. Let k̂ = k+ i, i ∈ Z, denote some sampling instance. From (4.1)

it follows that if yk =
Bk(z

−1)

Ak(z−1)
uk−τ , then yk̂ =

Bk̂(z
−1)

Ak̂(z
−1)

uk̂−τ and substituting

k̂ = k + i yields yk+i =
Bk+i(z

−1)

Ak+i(z−1)
uk+i−τ .

In Proposition 1, it is shown that time shifting of the system model

affects both the signals and the parameters, indicated by the discrete time sub-

script on the signals and the system model polynomials, which include the model

parameters.

At this juncture it is interesting to explore different interpretations of

the time shift operator on the parameters contained in the polynomials (4.2) and
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the signals. Re-arranging (4.1) yields the general system representation

Ak(z
−1) yk = Bk(z

−1) uk−τ (4.3)

in which, regarding the time shift operator, two scenarios are of interest.

Scenarios of interest:

1. The parameters as well as the signals are time shifted, i.e. z−1 a1,k yk =

a1,k−1 yk−1, which is similar to the observations and interpretation with the

approach proposed in (Ziemian 2002).

2. The signals only are time shifted, i.e. a1,k z−1 yk = a1,k yk−1.

Following Scenario 1, and re-arranging (4.3), the system output becomes

yk = −a1,k−1 yk−1 − a2,k−2 yk−2 − . . .− ana,k−na
yk−na

+bτ,k uk−τ + bτ+1,k−1 uk−τ−1 + bτ+2,k−2 uk−τ−2

+ . . .+ bτ+m,k−m uk−τ−m

(4.4)

while, following Scenario 2, and re-arranging (4.3), the system output equation

becomes

yk =− a1,k yk−1 − a2,k yk−2 − . . .− ana,k yk−na

+ bτ,k uk−τ + bτ+1,k uk−τ−1 + bτ+2,k uk−τ−2 + . . .+ bτ+m,k uk−τ−m

(4.5)

Both Scenarios are in compliance with Proposition 1 since here, the shift mech-

anisms are contained inside the polynomials only. When making use of the in-

terpretations according to Scenarios 1 and 2, the system model output quantity

yk obtained from each Scenario, i.e. (4.4) and (4.5), must be identical if both

represent models of the same system. Since the state dependent parameters are
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functions of the states and these functions can be freely (within the general SDP

framework) chosen, effectively, allows usage of either Scenario 1 or Scenario 2 in

order to obtain an adequate SDP model of the system.

Consequently, using the time shift operator inside the polynomials ac-

cording to (4.4) or (4.5) has to be determined at the system identification stage,

hence the choice may depend on the system identification method used and, in

this regard, which structure is most advantageous.

Remark 4.1.1. Despite the difference in the notation used in (4.4) and (4.5), it

should be noted that, in fact, both are mathematically identical when substituting

the identified parameters being functions of the states. Since after all, bearing in

mind Assumption 1, the quantity yk, obtained from both (4.4) and (4.5), must be

identical to that of the system.

When expressing (4.5) in regression vector form, i.e. yk = ϕT
k θk =

[−yk−1 . . . − yk−na
uk−τ . . . uk−τ−m] [a1,k . . . ana,kbτ,k . . . bτ+m,k]

T , as it appears in

standard system identification methods involving the least-squares algorithm, it

can be seen that the parameters required to be identified in the parameter vec-

tor θk are related to the same time instance k, where the system output yk is

considered. In the majority of literature, the developed system identification

methods targeting SDP models, are formulated such that the time index of the

parameters is the instantaneous value of k, for which the system output is con-

sidered, hence they make use of the SDP model structure (4.5), cf. Sections 2.2

and 2.3. Consequently, in the remainder of this Thesis, the SDP model structure

according to (4.5) is adopted.

Returning to the system polynomials (4.2) and using the system equa-

tion in the form of (4.5) in the light of Proposition 1, consideration regarding the

interpretation of the time shift operator is now highlighted.
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The shift operators ‘inside’ the polynomials, affect the signals only while

shifting the whole system, with the shift operator ‘outside’ the polynomials, af-

fects both the system model polynomials (hence the parameters) and the signals.

Essentially, the different use and interpretation of the time shift operator arises

from the way the SDP model and, subsequently, the SDP model structure is

defined. In (4.5), the time instance of the current system output serves as a ref-

erence time instance to which the parameters are related, so that the time shift

operator affects the signals only and not the parameters. Proposition 1 states

that when shifting the whole system, the parameters are affected by a time shift,

as well.

So, for clarity, a novel, purely conceptual time shift operator for the

latter case is proposed. Whereby use of the ‘standard’ time shift operator z is

recognized for time shifting the signals only, the conceptual time shift operator is

used for both the signals and the parameters. The conceptual time shift operator

is introduced in the following definition.

Definition 4.1.1. Let aj,k be some arbitrary SDP as it appears in e.g. (4.3) and

restricting the time shift operator zi i ∈ Z to shift the signals only by i sampling

instances, e.g. aj,kz
2yk = aj,kyk+2. While, introducing the conceptual time shift

operator z
i i ∈ Z, which shifts the parameters and the signals by i sampling

instances, e.g. z
2aj,kyk = aj,k+2yk+2.

Remark 4.1.2. Since the time shift operator z according to Definition 4.1.1,

arises from the choice of the SDP model structure (4.5) and the subsequent way

the system identification is performed, different choices of the model structure and

system identification methodologies, respectively, may require different interpret-

ations of the shift operator.
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Remark 4.1.3. In the case of time invariant parameter models, it is not ne-

cessary to introduce an additional time shift operator, z
i, to be applied to the

parameters.

Regarding the two time shift operators, zi and z
i, certain observations

can be made:

• At every time instance, the SDP system model (4.1) can be seen as an in-

stantaneous linear model which is defined entirely w.r.t the time shift oper-

ator zi affecting the signals only. Hence the SDP-PIP controller is expected

to operate on this instantaneous linear model so that pole-assignment, w.r.t.

the closed-loop characteristic equation defined in the time shift operator zi,

can be performed.

• In order to proceed in time, from one sampling instance to the next, the

time shift operator zi is used, which shifts the entire system model according

to Proposition 1, i.e. the parameters as well as the signals are shifted.

• The conceptual time shift operator z
i can be interpreted as being associ-

ated with the ‘overall’ nonlinear system model, i.e. transferring the system

model between sampling instances, while zi is associated with the instant-

aneous linear system model at each sampling instance. As a consequence,

z
i includes zi but not vice versa, e.g. z

2aj,kyk = aj,k+2z
2yk = aj,k+2yk+2.

Note. When manipulating the SDP system model (4.1), care must be taken that

Proposition 1 is not violated.

This is best demonstrated by making use of an example.

Example 4.1. Solve (4.1) for the current system input uk, i.e. the system is

required to be shifted forward in time by τ sampling instances. So, one may
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attempt to operate on (4.1) with zτ resulting in, since z affects the signals only,

Ak(z
−1)yk+τ = Bk(z

−1)uk. This result clearly contradicts Proposition 1 where it

is shown that shifting the system in time affects the signals and the parameters.

Moreover, as depicted in the discussion above, the parameters are related to the

same time instance as the system model output, i.e. k + τ , which is, here, not

the case. Consequently, the system model (4.1) is required to be operated on by

z
τ instead of zτ , leading to Ak+τ (z

−1)yk+τ = Bk+τ (z
−1)uk which is in accordance

with Proposition 1.

4.2 Closed-loop SDP-PIP

Figure 4.1 shows the block diagram of the SDP-PIP configured in closed-loop

(Taylor et al. 2009). Here, the system is represented according to (4.1) and (4.2).

rk KI,k

∆

1

Gk(z−1)
uk z−τ

Bk(z
−1)

Ak(z−1)

open-loop system

yk

Fk(z
−1)

−−

Figure 4.1: Block diagram of the SDP-PIP structure

The controller polynomials are given by

Fk(z
−1) = f0,k + f1,kz

−1 + . . .+ fnf ,kz
−nf nf = na − 1

Gk(z
−1) = 1 + g1,kz

−1 + . . .+ gng,kz
−ng ng = m+ τ − 1

(4.6)

so that the control law, in polynomial form, is obtained as

uk = −Fk(z
−1)yk − G̃k(z

−1)uk +
KI,k

∆
(rk − yk) (4.7)
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with G̃k(z
−1) = Gk(z

−1)−1 and KI,k ∈ R denotes the integral gain. Alternatively,

the control law can be formulated in the usual state variable feedback form

uk = −cTkxk

ck = [f0,k f1,k . . . fnf ,k g1,k g2,k . . . gng,k −KI,k]
T

xk = [yk yk−1 . . . yk−na+1 uk−1 uk−2 . . . uk−m−τ+1 ζk]
T

ζk =
rk − yk

∆

(4.8)

The integral-of-errors state variable is denoted by ζk and the ∆-operator is defined

by ∆ = 1− z−1. Furthermore, it is straightforward to see that (4.7) and (4.8) are

identical.

For the sake of simplicity, the notation (z−1) indicating function of z−1

is dropped from the polynomials (4.2) and (4.6) in the following.

In order to obtain the closed-loop transfer function, the delay is ‘re-

moved’ from the system by shifting τ sampling instances forward in time, i.e.

operating throughout by z
τ , so that the control law (4.7) can be substituted into

the open-loop system equation (4.1) in order to ‘close the loop’, yielding

Ak+τz
τyk +Bk+τFkyk +Bk+τ G̃kuk +Bk+τKI,k

yk
∆

= Bk+τKI,k

rk
∆

(4.9)

To obtain the closed-loop transfer function from rk to yk+τ , hence the desire to

eliminate uk in (4.9), expanding the term G̃kuk =
∑m+τ−1

i=1 gi,kuk−i and substi-

tuting (4.1), solved for uk−i, i.e. uk−i =
Ak+τ−i

Bk+τ−i

z−iyk+τ (cf. Example 4.1), the
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closed-loop transfer function is then obtained as

yk+τ

rk
=

Bk+τKI,k

∆

(
Bk+τ

Bk+τ

Ak+τ +
m+τ−1∑

i=1

Bk+τ

Bk+τ−i

gi,k Ak+τ−i z
−i +Bk+τFkz

−τ

)
+KI,kBk+τz

−τ

(4.10)

Certain observations regarding the SDP-PIP closed-loop transfer function can be

stated:

• The characteristic equation, i.e. denominator of (4.10), contains transfer

functions itself. Hence, it is suspected that the solution of the closed-loop

pole-assignment problem does not necessarily yield unique instantaneous

controller parameters (if a solution exists).

• The characteristic equation is expressed in terms of the time shift operator

affecting the signals only, i.e. z, therefore, it can be anticipated that by

assigning desired, stable closed-loop poles (w.r.t z), stability of the instant-

aneous closed-loop transfer function is achieved by design, cf. (Taylor et al.

2009).

4.2.1 Comparison with linear PIP

It is expected that the SDP-PIP closed-loop transfer function is identical with

the closed-loop transfer function obtained for linear PIP since both, linear and

SDP-PIP, are of identical structure except that the parameters in the SDP-PIP

are time varying while in linear PIP these are time invariant. Consequently, the

SDP-PIP comprises the linear PIP as a special sub-class.

It is straightforward to show this relationship. Let the parameters be

74



Generalised Discrete-time SDP-PIP Control

time invariant, i.e. Bk+i = B(z−1) and Ak+i = A(z−1), it follows that

Bk+τ

Bk+τ

Ak+τ +

m+τ−1∑

i=1

Bk+τ

Bk+τ−i

gi,k Ak+τ−i z
−i = A(z−1) + A(z−1)

m+τ−1∑

i=1

giz
−i

= A(z−1)

(
1 +

m+τ−1∑

i=1

giz
−i

)
= A(z−1)G(z−1)

and substituting into (4.10), the linear PIP closed-loop transfer function (2.20)

is obtained. Hence linear PIP coexists within the wider SDP-PIP formulation.

4.2.2 Closed-loop SDP-PIP without system zeros

The SDP-PIP in closed-loop without system numerator zeros, i.e. m = 0 (or

equivalently Bk+i = bτ,k+i), as presented in (Taylor et al. 2009), is supposed to

be contained within the closed-loop transfer function (4.10) as well (since (4.10)

comprises the general case of m ≥ 0). Substituting Bk+i = bτ,k+i into (4.10) gives

yk+τ

rk
=

bτ,k+τKI,k

∆

(
Ak+τ +

τ−1∑

i=1

bτ,k+τ

bτ,k+τ−i

gi,k Ak+τ−i z
−i + bτ,k+τFkz

−τ

)
+KI,kbτ,k+τz

−τ

(4.11)

From the closed-loop characteristic equation in (4.11), the scaling factor associ-

ated with gi,k (4.12), as it appears in (Taylor et al. 2009), becomes apparent.

ḡi,k =
bτ,k+τ

bτ,k+τ−i

gi,k (4.12)

Also, it is straightforward to show that the solution of the pole-assignment prob-

lem, obtained by making use of the characteristic equation given in (4.11), is

identical to the solution presented in (Taylor et al. 2009).
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Consider the desired, instantaneous linear time-invariant characteristic

equation

D(z−1) = 1 +

na+τ∑

i=1

di z
−i (4.13)

and note that making use of the ∆-operator on the polynomials yields, e.g.

∆ Ak+j = Ak+j − Ak+jz
−1 = Āk+j j ∈ Z (4.14)

where

Āk+j = 1 +

na+1∑

i=1

āi,k+j z
−i

āi,k+j = ai,k+j − ai−1,k+j ana+1,k+j = 0

(4.15)

so that finally, the pole-assignment problem is formulated to be

D(z−1)− Āk+τ =

τ−1∑

i=1

ḡi,kĀk+τ−iz
−i + z−τ (bτ,k+τ − bτ,k+τz

−1)Fk

+KI,kbτ,k+τz
−τ

(4.16)

and can be solved by comparing coefficients of like powers of z. In order to solve

the pole-assignment problem (4.16) efficiently, it can be formulated in a compact

matrix form, see e.g. (Young et al. 1987; Wang and Young 1988; Taylor et al.

2009),

βββk = ΣΣΣkνννk (4.17)

where βββk ∈ R
(na+τ)×1 denotes a vector corresponding to the left side of (4.16)

βββk = [d1 − ā1,k+τ d2 − ā2,k+τ . . . dna+1 − āna+1,k+τ dna+2 . . . dna+τ ]
T (4.18)

and ΣΣΣk = [ΣΣΣḡ,kΣΣΣf,kΣΣΣKI ,k] ∈ R
(na+τ)×(na+τ) denotes a matrix consisting of the

three terms of the right side of (4.16) associated with the controller parameters
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gi,k, fi,k and KI,k, respectively. So, ΣΣΣḡ,k ∈ R
(na+τ)×(τ−1) and ΣΣΣf,k ∈ R

(na+τ)×na

yield

ΣΣΣḡ,k =




1 0 0 . . . 0

ā1,k+τ−1 1 0 . . . 0

ā2,k+τ−1 ā1,k+τ−2 1 . . . 0

...
...

...
. . .

...

āna+1,k+τ−1 āna,k+τ−2 āna−1,k+τ−3 . . . 0

0 āna+1,k+τ−2 āna,k+τ−3 . . . 0

0 0 āna+1,k+τ−3 . . . 0

...
...

...
. . .

...

0 0 0 . . . āna,k+1

0 0 0 . . . āna+1,k+1




(4.19)

ΣΣΣf,k =




0 0 . . . 0 0

...
...

...
...

...

0 0 . . . 0 0

bτ,k+τ 0 . . . 0 0

−bτ,k+τ bτ,k+τ . . . 0 0

0 −bτ,k+τ

. . . 0 0

0 0
. . . 0 0

...
...

...
...

...

0 0 . . . bτ,k+τ 0

0 0 . . . −bτ,k+τ bτ,k+τ

0 0 . . . 0 −bτ,k+τ




(4.20)
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where the first τ − 1 rows consist of zeros. Finally, with

ΣΣΣKI ,k = [0 . . . 0︸ ︷︷ ︸
τ − 1

bτ,k+τ 0 . . . 0]T ∈ R
(na+τ)×1 (4.21)

the instantaneous controller parameters contained in the vector

νννk = [ḡ1,k . . . ḡτ−1,k f0,k . . . fna−1,k KI,k]
T (4.22)

can be obtained by solving (4.17) for νννk, i.e.

νννk = ΣΣΣ−1
k βββk (4.23)

As expected, the pole-assignment solution (4.23), comprising (4.18)–(4.22), de-

rived from (4.11), is identical to that presented in (Taylor et al. 2009).

4.2.3 SDP-PIP incorporating system zeros

Having shown that, in the case of m = 0, the SDP-PIP controller parameters

can be derived from the closed-loop transfer function (4.10) and the respective

characteristic equation, now, the case of m > 0 is explored. Apart from those in

(4.11), the scaling factors of gi,k (4.12) are not scalars, instead, it is recognized,

these are now transfer functions (cf. (4.10)). In order to deal with this, a similar

procedure as that adopted in (4.9) is utilised. Substituting the control law (4.7)

into the open-loop system equation (4.1), re-arranged in the form Ak+τz
τyk =

bτ,k+τuk +
∑m

i=1 bτ+i,k+τuk−i, yields

Ak+τz
τyk = bτ,k+τ

(
−Fkyk − G̃kuk +KI,k

rk − yk
∆

)
+

m∑

i=1

bτ+i,k+τuk−i (4.24)
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Again, expanding the term G̃kuk and re-arranging, one obtains

Ak+τz
τyk + bτ,k+τFkyk + bτ,k+τ

KI,k

∆
yk = bτ,k+τ

KI,k

∆
rk

+ (bτ+1,k+τ − bτ,k+τg1,k)uk−1 + (bτ+2,k+τ − bτ,k+τg2,k)uk−2

+ . . .+ (bτ+m,k+τ − bτ,k+τgm,k)uk−m − gm+1,kbτ,k+τuk−m−1

− . . .− gm+τ−1,kbτ,k+τuk−m−τ+1

(4.25)

Note, however, that the closed-loop equation (4.25) still contains previous system

inputs. In order to eliminate them, from the open-loop system equation (4.1),

values of the past system inputs uk−1, uk−2, . . . , uk−τ+1, are obtained as

uk−1 =
1

bτ,k+τ−1
Ak+τ−1 zτ−1yk −

bτ+1,k+τ−1

bτ,k+τ−1
uk−2 −

bτ+2,k+τ−1

bτ,k+τ−1
uk−3

− . . . −
bτ+m,k+τ−1

bτ,k+τ−1
uk−m−1

uk−2 =
1

bτ,k+τ−2
Ak+τ−2 zτ−2yk −

bτ+1,k+τ−2

bτ,k+τ−2
uk−3 −

bτ+2,k+τ−2

bτ,k+τ−2
uk−4

− . . . −
bτ+m,k+τ−2

bτ,k+τ−2
uk−m−2

...

uk−τ+1 =
1

bτ,k+1

Ak+1 z yk −
bτ+1,k+1

bτ,k+1

uk−τ −
bτ+2,k+1

bτ,k+1

uk−τ−1

− . . . −
bτ+m,k+1

bτ,k+1

uk−m−τ+1

(4.26)

and substituting (4.26) into (4.25) gives

Ak+τz
τyk + bτ,k+τFkyk + bτ,k+τ

KI,k

∆
yk = bτ,k+τ

KI,k

∆
rk

+

τ−1∑

i=1

γi,kAk+τ−i z
τ−iyk +

m∑

j=1

βj,k uk−τ+1−j

(4.27)

where the parameters γi,k ∈ R and βj,k ∈ R arise from sequentially substituting

uk−1, uk−2, . . . , uk−τ+1 from (4.26) into (4.25), hence the computation is iterative
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(denoted by the superscripts), details see Appendix A.1.

γi,k =
c
(i−1)
i

bτ,k+τ−i

i = 1, 2, . . . , τ − 1 (4.28a)

βj,k = c
(τ−1)
τ+j−1 j = 1, 2, . . . , m (4.28b)

c
(j)
i =





c
(j−1)
i − c

(j−1)
j

bτ+i−j,k+τ−j

bτ,k+τ−j

if i ≤ m+ j

c
(0)
i else

(4.28c)

c
(0)
i = bτ+i,k+τ − bτ,k+τgi,k

where bτ+m+l,k+τ = 0 ∀ l = 1, 2, . . .

(4.28d)

So, the closed-loop characteristic equation can be obtained from (4.27) and by

nullifying βj,k, i.e. forcing βj,k such that

βj,k = 0 j = 1, 2, . . . , m (4.29)

the term associated with the remaining previous system inputs is eliminated

from the closed-loop equation (4.27), so that subsequently, the pole-assignment

problem is formulated to be

D(z−1)− Āk+τ =
τ−1∑

i=1

(−γi,k)Āk+τ−iz
−i + z−τ (bτ,k+τ − bτ,k+τz

−1)Fk

+KI,kbτ,k+τz
−τ

(4.30)

which is identical to that obtained for the case of m = 0 (4.16), except that here,

ḡi,k is replaced by (−γi,k). Therefore, (4.23) solves the pole-assignment problem

(4.30) as well, if νννk is defined to be

νννk = [−γ1,k . . . − γτ−1,k f0,k . . . fnf ,k KI,k]
T (4.31)
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It is apparent that the instantaneous controller parameters gi,k, i =

1, 2, . . . , τ + m − 1 cannot be obtained directly. Instead, from (4.28), it can

be concluded that γi,k contains the parameters gi,k, i = 1, . . . , τ −1 and therefore,

γi,k can be seen as the scaled parameters equivalent to (4.12). Effectively, γi,k is

a linear function w.r.t the gj,k, j = 1, 2, . . . , i and due to this linear relationship,

it is straightforward to recover the controller parameters gi,k, i = 1, 2, . . . , τ − 1

from the γi,k by making use of (4.28), see Appendix A.2.

Similarly, the remaining gi,k, i = τ, . . . , τ + m − 1 parameters are con-

tained in the βj,k, j = 1, 2, . . . , m which are, in the same manner as γi,k, linear

functions w.r.t gi,k, i = τ, . . . , τ +m− 1. Consequently, it is also straightforward

to recover the remaining controller parameters gi,k, i = τ, . . . , τ +m− 1 from the

βj,k, j = 1, 2, . . . , m by making use of (4.29) in conjunction with (4.28).

Remark 4.2.1. It is to be noted, that the parameters gi,k, i = 1, . . . , τ − 1 are

obtained from the γi,k, while the remaining parameters gi,k, i = τ, . . . , τ +m − 1

are obtained from the βj,k, j = i− τ + 1.

Moreover, regarding the role of the gi,k, i = 1, 2, . . . , τ+m−1 parameters,

the following observations can be made:

• The first gi,k, i = 1, 2, . . . , τ−1 parameters of G̃k are used for pole-assignment.

o This follows from (4.31) in conjunction with (4.28) and the discussion

above.

• The remaining gi,k, i = τ, τ + 1, . . . , τ + m − 1 parameters of G̃k are used

for compensating the residuals of the previous time instances.

o This follows from (4.29) in conjunction with (4.25) and Proposition 1,

where it can be seen that the uk−τ−i, ∀i = 0, 1, . . . affects past system

outputs only.
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• The polynomial Gk is used in order to compensate for the influence of the

system zeros.

o Considering the closed-loop equations (4.25) and (4.27) in conjunc-

tion with (4.29), it can be seen that the open-loop system polynomial

coefficients bτ+i,k+τ , i = 1, . . . , m are eliminated from the closed-loop

system numerator, i.e. the system zeros are eliminated.

The resulting closed-loop transfer function, when substituting the controller para-

meters obtained for the case of m = 0 in Section 4.2.2 (also, see Taylor et al. 2009)

and for the case of m > 0, is identical and of the linear form

yk+τ

rk
=

1 +
na+τ∑
i=1

di

1 + d1z−1 + d2z−2 + . . .+ dna+τz−(na+τ)
(4.32)

In summary, the controller parameters required for the control law (4.8) can be

computed in the following manner.

Algorithm 1 SDP-PIP with system numerator zeros

1: Choose desired characteristic closed-loop equation (4.13)
2: Compute βββk (4.18) and ΣΣΣk (4.19)–(4.21)
3: Solve (4.23) in order to obtain νννk (4.31)
4: Obtain gi,k, i = 1, . . . , τ−1 from γi,k using (4.28) and gi,k, i = τ, . . . , τ+m−1

from (4.29) using (4.28)

Example 4.2. Consider the following arbitrarily chosen SDP system where na =

2, m = 1 and τ = 2. Define a1,k = 0.2eyk−4 + 0.1u2
k−3, a2,k = −0.3y3k−3, b2,k =

−3yk−3 and b3,k = 0.5y1.5k−4 + 0.3uk−4. The na + τ desired closed-loop poles are

chosen to be located at p1,2 = 0.75± 0.3i and p3 = p4 = 0.5.

According to Algorithm 1, after having chosen the desired closed-loop

pole locations and subsequent computation of βββk (4.18) and ΣΣΣk (4.19)–(4.21), at
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every sampling instance k, the parameter values of γ1,k, f0,k, f1,k and KI,k are

obtained from (4.31) by solving (4.23). Now, the parameters gi,k, i = 1, . . . , τ − 1

are calculated from γi,k by making use of (4.28). Note, that here, i = τ−1 = 1, i.e.

g1,k and γ1,k are considered. From (4.28a), γ1,k =
c
(0)
1

b2,k+1
and substituting (4.28d),

i.e. c
(0)
1 = b3,k+2 − b2,k+2g1,k, yields g1,k =

b3,k+2 − γ1,kb2,k+1

b2,k+2
. Furthermore, the

remaining parameters gi,k, i = τ, . . . , τ +m − 1 are calculated. Again, note that

here, i = τ = τ −m + 1 = 2. Making use of (4.29) in conjunction with (4.28b)

and recall from Remark 4.2.1 that the parameter gi,k, i = τ = 2 is obtained from

βj,k, j = i − τ + 1 = 1, so that β1,k = 0 = c
(1)
2 , which is calculated iteratively.

So, using (4.28c), 0 = c
(1)
2 = c

(0)
2 − c

(0)
1

b3,k+1

b2,k+1
and, by taking (4.28d) into account,

substituting c
(0)
2 = −b2,k+2g2,k and c

(0)
1 = b3,k+2 − b2,k+2g1,k, re-arranging yields

g2,k =
b3,k+1

b2,k+1
g1,k −

b3,k+2b3,k+1

b2,k+2b2,k+1
.

The simulated system output compared to the desired closed-loop re-

sponse (4.32) and the corresponding system input is shown in Figure 4.2. It

can be observed that the system output accurately matches the desired response.

This is expected since no model mismatch is assumed.

The controller parameters g1,k and g2,k are shown in Figure 4.3, while

f0,k, f1,k and the integral gain KI,k are depicted in Figure 4.4.

Furthermore, of interest are the roots of Gk in relation to the instant-

aneous open-loop system zeros. In Figure 4.5, the open-loop system zero (since

m = 1) and one of the roots of the instantaneous Gk polynomial can be observed,

where the response to the first step, yet representative, of the reference signal is

shown.

It can be seen in Figure 4.5 (and as indicated above) that the polynomial

Gk compensates for the influence of the open-loop system zeros by cancelling

them. This may lead to instability in the case of systems exhibiting a non-

83



Generalised Discrete-time SDP-PIP Control

0 50 100 150 200 250 300 350 400
0.5

1

1.5

2

2.5

3

3.5

0 50 100 150 200 250 300 350 400
−1

0

1

2

O
u
tp

u
t

In
p
u
t

Samples

Figure 4.2: Upper: Desired closed-loop system response (black dashed line) and
system output (solid grey line). Lower: Corresponding system input.

minimum phase behaviour since the instantaneous system zeros are outside the

unit circle. Consequently attempting to cancel these will result in placing poles in

the unstable region of the complex plane. This will be especially the case, if there

is model mismatch, which is to be expected in a practical, real-world system.
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Figure 4.3: Controller parameters g1,k and g2,k
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Figure 4.4: The controller parameters f0,k, f1,k and KI,k.
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Figure 4.5: Instantaneous open-loop system zeros (circles ‘o’) and one root of the
controller polynomial Gk (cross ‘x’).

4.3 Sensitivity analysis

The assumptions of no model mismatch and a noise free system presents a rather

theoretical scenario and one that could be challenged in practice. Measurement

and system noise are always present as well as uncertainties in the model paramet-

ers. Especially, since models are by virtue mathematical approximations of real

systems, a mismatch free model cannot be obtained in practice. On this basis,

this Section considers the influence of noise and model parameter uncertainties

on the closed-loop performance.

The evaluation of the robustness to parameter uncertainties and noise

is performed by making use of Monte-Carlo (MC) simulation. Computational

power is available, nowadays, to perform computationally intensive simulations

efficiently; the results presented here are based on 1000 MC simulation runs.

Furthermore, the arbitrarily chosen SDP system in Example 4.2 is used

in order to evaluate the effect of parameter uncertainties and noise, whereby a
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unit step change in the reference signal, from 1 to 2, is considered (see first step

in Figure 4.2).

Other than linear system models, SDP models can be more complex and

diverse in their appearance, hence general statements cannot necessarily be made

so that every system is required to be considered individually. However, since the

SDP-PIP controller is of a certain structure, there can be structurally imposed

observations made which are most likely to affect the closed-loop performance.

The performance criteria of choice are the mean squared errors

MSE =
1

N

N∑

k=1

(yk − yd,k)
2 (4.33)

and the integral of absolute errors

IAE =
1

N

N∑

k=1

|yk − yd,k| (4.34)

where yd,k denotes the desired closed-loop system output.

4.3.1 Model parameter uncertainties

Firstly, uncertainties on the system parameters a1,k+i and a2,k+i i = 1, 2, that

are required for calculating uk, are considered. The uncertainties of these model

parameters are simulated to be uniformly distributed in the ranges of ±5%, ±1%

and ±0.36% of the nominal parameter values. The results obtained are shown

in Table 4.1. It can be observed that almost 90% of the MC runs result in an

unstable response when the uncertainty was ±5%. By trial and error, it is found

that stable results of all MC runs are obtained when the parameter uncertainties

remain in the range of ±0.36%. This means, that even slight uncertainties, e.g.

±1%, can lead to instability of the closed-loop system.
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uncertainty
range [%]

IAE × 103 of
stable MC runs

MSE × 103 of
stable MC runs

unstable MC
runs [%]

mean max mean max

±5 9.46 136.8 1.68 28.87 88.2
±1 8.28 225.42 1.6 91.53 39.6

±0.36 1.69 21.83 0.11 1.36 0

Table 4.1: Monte-Carlo simulation evaluation of model parameter uncertainties
in a1,k+i and a2,k+i i = 1, 2.

Now, uncertainties in the parameters b2,k+i and b3,k+i i = 1, 2 are con-

sidered only. Table 4.2 shows results of the MC simulation. Again, uniformly

distributed uncertainties in the ranges of ±5%, ±1% and ±0.71% of the nom-

inal parameter values are considered. Compared to the results obtained in Table

4.1, more stable MC runs are achieved. Moreover, at an uncertainty range of

±0.71% all MC runs were found to result in a stable response. This is almost

twice the uncertainty range as achieved in Table 4.1. However, it is still a very

small range and it may be questionable whether this would be achievable in a

practical application.

Remark 4.3.1. It is to be noted that the above observations apply only to the

specific simulation example considered here and therefore are not general (as men-

tioned earlier). Moreover, factors such as the chosen, desired closed-loop pole

locations, set-point sequences, the nature of the SDPs, etc., all contribute to the

robustness/sensitivity properties and by a careful choice of some of these factors,

further improvements might be achievable.

Nevertheless, for this particular system, uncertainties in Ak seem to

have a greater impact on stability than uncertainties in Bk. This is also reflected

in the performance criteria IAE and MSE where a wider spread of these values

can be observed in Table 4.2 than in Table 4.1, despite there being less unstable

MC runs obtained in Table 4.2. This result is not surprising as Ak is directly
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involved with the dynamical response of the system.

uncertainty
range [%]

IAE × 103 of
stable MC runs

MSE × 103 of
stable MC runs

unstable MC
runs [%]

mean max mean max

±5 25.44 294.53 7.43 140.71 70.9
±1 2.62 94.84 0.17 12.73 7.9

±0.71 1.71 49.3 0.091 4.61 0

Table 4.2: Monte-Carlo simulation evaluation of model parameter uncertainties
in b2,k+i and b3,k+i i = 1, 2.

4.3.2 Measurement noise

In a practical application, measurement noise is unavoidable, so, it is essential to

evaluate its influence. Here, normally distributed white measurement noise is as-

sumed. Since in a SDP system model, the parameters are state dependent, which

includes the system output, it can be seen as introducing additional, time varying

model parameter uncertainties. The model parameter uncertainties, considered

in Section 4.3.1 were constant since the parameters (or the coefficients within the

parameters) are identified beforehand and do not change subsequently (during

runtime). However, here, since the parameters are re-calculated at every time

instance based upon measurements that are corrupted by noise, the uncertainties

are time varying.

Table 4.3 shows the results of MC simulations, corresponding to different

noise variances denoted σ2. Stable responses of all MC runs are found to be at

a variance as low as σ2 = 16× 10−6. This low noise variance also questions

whether this would be achievable in practice. Certainly, a SDP system model

where the parameters are less dependent on measured signals may achieve better

performance, however, noise remains an issue of concern within a SDP system

model.

89



Generalised Discrete-time SDP-PIP Control

Remark 4.3.2. Again, in a similar manner as Remark 4.3.1, it is to be noted

that the specificity of the example system considered here, does not necessarily

allow the observations to be regarded as general.

measurement
noise variance σ2

IAE × 103 of
stable MC runs

MSE × 103 of
stable MC runs

unstable MC
runs [%]

mean max mean max

1× 10−3 – – – – 100
50× 10−6 266.42 271.15 133.85 138.72 99.7
35× 10−6 228.93 280.31 99.52 159.11 67.2
25× 10−6 183.33 231.44 63.08 209.17 12.1
16× 10−6 136.56 168.1 33.57 57.55 0

Table 4.3: Monte-Carlo simulation results obtained for different measurement
noise variances.

Furthermore, regarding the performance criteria IAE and MSE in

Tables 4.1, 4.2 and 4.3, it can be observed that in the case of measurement

noise (Table 4.3) these are the greatest. Recalling that noise can be viewed as

a source of time varying uncertainties, the integrator of the SDP-PIP controller

does not have sufficient time to drive the output to its desired value since the

disturbing uncertainties, i.e. the noise, changes at every sampling instance. This

differs from the case of constant uncertainties, where the integrator is able to

‘compensate’ for these in steady state. In Figure 4.6, the MC simulations are

shown where it can be observed that in the case of constant uncertainties of the

parameters, the output response decays to the steady-state value, while, in the

case of measurement noise, the system output response is steadily excited.
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Figure 4.6: Monte-Carlo simulations with measurement noise variance σ2 =
16× 10−6 (left) and uncertainties on b2,k+i and b3,k+i in the range of ±0.71%
(right).

4.3.3 Comparison with linear PIP

The analysis presented above is based on an arbitrarily chosen SDP modelled sys-

tem introduced in Example 4.2, which exhibits severe nonlinearities such that in

the presence of model mismatch, the proposed SDP-PIP control approach exper-

iences difficulties and linear PIP control is not able to achieve stable performance

(to the Authors experience), hence comparison with linear PIP is not possible

when making use of this system. For this reason and in order to account for the

fact that nonlinearities to this severe extent are not always present in a practical

system, consider the following system taken from (Shaban and Taylor 2006) and

slightly adapted as in the following example:

Example 4.3. Consider the following SDP system where na = 2, m = 1 and

τ = 1. The model parameters are given by a1 = −0.9, a2 = 0.08, b1 = 0.5 and

b2,k = −0.4uk−2. As in Example 4.2, the na + τ desired closed-loop poles are

chosen to be located at p1 = p2 = 0.75 ± 0.3i and p3 = 0.5. Note that this SDP

system model consists of almost only constant parameters, apart from b2,k, so that

the state variable feedback gains f0,k, f1,k and KI,k of the SDP-PIP, calculated

91



Generalised Discrete-time SDP-PIP Control

by making use of (4.23) in conjunction with (4.20) and (4.21), are also, in fact,

constant. The SDP-PIP controller parameter g1,k, however, obtained from (4.28)

in conjunction with (4.29), yields g1,k =
b2,k+1

b1
.

The constant SDP-PIP controller parameters are obtained as f0,k =

−0.3525, f1,k = 0.4925 and KI,k = 0.1525. In order to obtain the linear PIP

controller parameters, an operating point is required upon which they are based.

Since the reference set-point is chosen to be a step from zero of magnitude 0.3,

the corresponding steady-state input is obtained to be u = 0.1194 so that for

the linear PIP controller parameter calculation, b2 = −0.4 · 0.1194 is used. Con-

sequently, the linear PIP controller parameters yield f0 = −14.2087, f1 = 11.5914,

g1 = 6.9201 and KI = 0.1686.

Simulation results of the linear PIP (thin solid line) and SDP-PIP

(dashed line) are shown in Figure 4.7, where a mismatch free system model is

considered. It is observed that the SDP-PIP exactly tracks the desired output

response (thick grey solid line), as expected, while the linear PIP produces an

oscillatory response which eventually settles to achieve a stable response.

Next, MC simulation is performed and model parameter uncertainties

in both numerator and denominator, i.e. in b1 and b2,k as well as a1 and a2,

parameters are considered. MC simulation results obtained by making use of the

SDP-PIP and model parameter uncertainties in the range of ±19% of the nominal

parameter values is shown in Figure 4.8. When linear PIP is considered, unstable

MC simulation realisations occur at a model parameter uncertainty range of as

low as ±1.6%. The SDP-PIP, on the contrary, is able to handle parameter

uncertainties in a range of up to ±19%. These values are found by trial and

error.

This range of parameter uncertainty is likely to be achieved in a practical
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Figure 4.7: Upper: model mismatch free simulation results of the system output
of SDP-PIP (dashed line), linear PIP (thin solid line) and the desired response
(thick solid line). Lower: corresponding control actions, i.e. system inputs.

application so that the proposed SDP-PIP can be used in a real-world application

if the impact of the nonlinearities are moderate. However, it is demonstrated that

the linear PIP is clearly outperformed.
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Figure 4.8: MC simulation results for SDP-PIP when model parameter uncer-
tainties in the range of ±19% is considered.

4.4 The SDP-PIP in incremental input form

The usage of an integral-of-errors state inflicts certain practical implementation

issues such as integrator wind-up, overflow, etc. In order to overcome these

issues, (Taylor et al. 2009) proposes to express the control law in an incremental

input form so that the necessity of implementing an integral-of-errors state is

eliminated. The calculation of the controller parameters, however, is not altered.

Recall from (4.7) and (4.8), respectively, that the control law is given

by

uk = −G̃k uk − Fk yk +KI,k ζk (4.35)

where ζk denotes the integral-of-errors state. By taking the difference of the

current and previous input, the incremental input form is obtained. But note

that the input of the previous sampling time instance is required, hence operating
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on (4.35) with z
−1, as discussed in Section 4.1, yields

uk−1 = −G̃k−1 uk−1 − Fk−1 yk−1 +KI,k−1 ζk−1 (4.36)

and subtracting (4.36) from (4.35), gives

uk = uk−1 − G̃kuk + G̃k−1uk−1 − Fkyk + Fk−1yk−1 +KI,kζk −KI,k−1ζk−1 (4.37)

or, equivalently,

uk = uk−1 − G̃kuk + G̃k−1uk−1 − Fkyk + Fk−1yk−1 + (1− z
−1)KI,kζk︸ ︷︷ ︸

=∆̂KI,kζk

(4.38)

where it can be observed that both time varying quantities, the integral-of-errors

state and the associated integral gain, are affected by the difference operator,

defined to be ∆̂ = 1− z
−1. Moreover, note that the difference operator ∆̂ differs

from ∆ that is defined in ζk. While ∆̂ takes the difference of the whole system,

i.e. signals and parameters, between consecutive sampling instances, ∆ operates

on the instantaneous linear system only, i.e. on the signals.

Remark 4.4.1. Similarly as shown in Example 4.1, operating on (4.35) with ∆ is

misleading. Since then, the incremental input of the instantaneous linear system

is obtained, but, if the instantaneous linear system of the previous sampling time

instance differs from the current one, the incremental input of the overall system

is, as a consequence, different as well.

So, in order to eliminate ζk, the integral gain KI,k is required to be time

invariant. Then, the term KI,kζk−KI,k−1ζk−1 in (4.37) becomes KIζk−KIζk−1 =

KI(1−z−1)ζk = KI∆ζk = KI(rk−yk) since, from (4.8), ζk =
rk−yk

∆
. Consequently,

time invariant integral gains in (4.35) and (4.36) are required in order to obtain
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time invariant integral gains in (4.37).

From the solution of the pole assignment problem (4.23), as well as by

comparing (4.25) with (4.32), the integral gain KI,k is obtained by

KI,k =
1 +

∑nd

i=1 di
bτ,k+τ

(4.39)

where it can be seen that the time varying nature is introduced by the denomin-

ator term, i.e. bτ,k+τ . Hence, first multiplying (4.35) with bτ,k+τ and (4.36) with

bτ,k+τ−1 and then subtracting, yields

bτ,k+τuk = bτ,k+τ−1uk−1 − bτ,k+τG̃kuk + bτ,k+τ−1G̃k−1uk−1

− bτ,k+τFkyk + bτ,k+τ−1Fk−1yk−1 + K̄Iζk − K̄Iζk−1︸ ︷︷ ︸
=K̄I∆ζk=K̄I(rk−yk)

(4.40)

where K̄I = 1+
∑nd

i=1 di denotes the time invariant integral gain. Finally, dividing

(4.40) by bτ,k+τ and taking (4.39) into account, the control law in incremental

input form is obtained by

uk =
bτ,k+τ−1

bτ,k+τ

uk−1 − G̃k uk +
bτ,k+τ−1

bτ,k+τ

G̃k−1 uk−1

− Fk yk +
bτ,k+τ−1

bτ,k+τ

Fk−1 yk−1 +KI,k (rk − yk)

(4.41)

where the necessity of implementing the integral-of-errors state ζk in a practical

application is eliminated. Only the controller parameter values of the previous

time instance are required to be stored, along with the previous system outputs

and inputs.

Identical numerical simulation results are obtained when making use

of (4.41) applied to Examples 4.2 and 4.3. This is expected since the controller

parameters are also calculated according to Algorithm 1. Hence they are identical
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in both cases. Basic algebraic manipulations of the control law is performed after

obtaining the controller parameters so that, nevertheless, identical results are

obtained.

Finally, note that the control law in incremental input form (4.41) de-

rived here, coincides with that obtained in (Taylor et al. 2009).

4.5 Concluding remarks

This Chapter has been concerned with discrete-time state-dependent parameter

proportional-integral-plus pole-assignment control. A conceptual approach has

been proposed, which introduced an additional conceptual time shift operator to

the commonly used one in order to allow separate consideration of the instantan-

eous linear model, where pole-assignment has been applied to at each sampling

instance, and the overall nonlinear SDP model. It has been shown that when us-

ing this underlying concept, further clarification of the SDP-PIP pole-assignment

method has been achieved.

Furthermore, an extension to the SDP-PIP pole-assignment approach

has been proposed, which targets SDP system models that incorporate system

zeros. This approach is based on a cancellation method so that the effects of

the system zeros have been eliminated. However, this approach is limited to

systems of a minimum phase behaviour since the system zeros appearing in the

instantaneous linear model at each sampling instance are cancelled.

It has also been shown that this approach is sensitive to both system

model parameter uncertainties and the effect of measurement noise. The model

parameter uncertainty sensitivity is dependent on the extent of the system nonlin-

earities, but also on factors such as the chosen desired closed-loop pole locations,

set-point sequence and the nature of the SDPs. However, these factors have not
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been investigated in this Chapter and, therefore, remain as a potential direction

for further research. In the case of sufficiently moderate nonlinearities, however, it

has been demonstrated that the proposed SDP-PIP controller clearly outperforms

a linear PIP controller.
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Chapter 5

SDP Modelling of a DC-DC Boost

Converter Operating in DCM

This Chapter is concerned with modelling a practical, laboratory based applic-

ation example, namely, a DC-DC boost converter, operating in discontinuous

conduction mode (DCM). DC-DC boost converters are switched-mode power elec-

tronic devices, that step-up a DC input voltage to a higher DC output voltage.

The challenge in terms of modelling a DC-DC switched-mode converter arises

from its hybrid nature due to the switching process. Consequently, two condi-

tions are required to be considered, namely: when the switch is open and when

the switch is closed. In DCM operation, however, an additional condition is in-

troduced, namely, when the switch is open and the inductor is not conducting.

Details on the operational principles are given in Section 5.1.1.

The modelling approach proposed here, is to make use of the state-

dependent parameter (SDP) framework in order to obtain a model of the con-

verter. In the proposed approach, the SDP model is based on measured input-

output data only, rather than on physical relationships, e.g. circuit components.

Modelling of a system in the context considered here is for the purpose
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of model-based control, and the model developed here is subsequently used in

order to build the foundation of a model-based SDP-PIP control strategy. The

purpose of the strategy is to control the output voltage under various loading

scenarios, i.e. varying output current drawn from the converter.

Furthermore, due to the close relationship of a bilinear model with the

SDP model structure (Taylor et al. 2011), in Section 5.3, the proposed SDP

model is compared with a modelling approach based on a Hammerstein-Bilinear

structure (HBS) (Larkowski and Burnham 2011; Larkowski et al. 2013), which is

also based on measured input-output data.

As an alternative to modelling DC-DC converters based on measured

input-output signals, the pioneering work of (Middlebrook and Cuk 1976) pro-

posed the method of state-space averaging, which is based on physical relation-

ships. For each switch condition, a state-space model is derived separately and,

subsequently, these are averaged over the entire switching period. In DCM op-

eration, however, it is not a trivial task to determine the duration of the above

mentioned additional condition where the inductor is not conducting. But, this

condition is required for averaging. Further information regarding the modelling

of a DC-DC boost converter operating in DCM, via this approach, can be found

in, e.g. (Maksimovic and Cuk 1991; Sanders et al. 1991; Sun et al. 2001; Davoudi

et al. 2006).

An exact physical insight into the converter, however, is not necessarily

available due to the tolerances and inherent parasitic elements of the components

used. Some values of the parasitics are given in the respective datasheets, but,

often, these are of a nonlinear nature and, consequently, not straightforward to

take into account. Hence when using modelling approaches based on measured

input-output data, such information is already inherently contained in the meas-
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ured signals. State-space averaging models taking parasitic elements into account

can be found in, e.g. (Ivan et al. 2006; Davoudi and Jatskevich 2007; Xie et al.

2010) and an approach based on measured input-output data, making use of a

Hammerstein structure can be found in (Alonge et al. 2007). However, these

modelling approaches consider an invariant, resistive output load only, while, the

proposed SDP modelling approach considered here makes explicit use of output

current measurements, which allows coverage of a wider operating range of the

converter.

5.1 The DC-DC boost converter

As mentioned above, the DC-DC boost converter steps-up a DC voltage to a

higher DC output voltage, i.e. the purpose is comparable to a transformer in

AC. The simplified schematic, i.e. without parasitic elements etc., of a DC-DC

boost converter is shown in Figure 5.1, where L, C, and S denote the inductor,

capacitor and switch, respectively, which is driven by a pulse-width modulated

(PWM) voltage with duty-cycle, denoted d. The quantities Vi, Vo, vL, and vC

denote the input voltage, output voltage, voltage drop across the inductor and

voltage drop across the capacitor, respectively. The inductor current, capacitor

current and load, i.e. output current, are denoted by iL, iC and iR, respectively.

In Figure 5.1, the load is represented by a resistor, denoted R. In order

to perform the proposed system identification method and in order to consider

different load scenarios, the load R is realised as depicted in Figure 5.2, where

the inside of the dashed box symbolises the inside of the load resistor R, shown in

Figure 5.1. Essentially, the load R, as shown in Figure 5.2, is a voltage controlled

current sink, cf. (Horowitz and Hill 1989, Chap. 4). The operational amplifier

(OP-amp) adjusts the equivalent resistance of the transistor, by applying an
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Figure 5.1: Simplified schematic of the DC-DC boost converter

Ro

iRo

b

iB+
−

iR

Vref

Figure 5.2: Schematic of the load represented by R (dashed box)

adequate transistor base current iB, such that the voltage drop across the shunt

resistor Ro is equal to the load reference voltage denoted Vref . From Ohm’s

law, it follows that iRo
=

Vref

Ro
and since, by choosing an adequate transistor,

iRo
= iR + iB with iR ≫ iB, it can be said that iR = iRo

. Consequently, the

current drawn from the converter can be determined by the load reference voltage

Vref via the relationship iR =
Vref

Ro
. Hence realising the load in this way, provides

the opportunity for considering various load scenarios.
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5.1.1 Operational principle

Here, the operational principle of the DC-DC boost converter is briefly summar-

ized. Detailed information can be found in, e.g. (Mohan et al. 1995; Erickson

and Maksimovic 2001; Hitzemann 2009).

The DC-DC boost converter, essentially, consists of three components,

as shown in Figure 5.1, namely, the inductor, capacitor and the switch. Both the

inductor and capacitor are capable of storing energy. The switch, realised as a

N-channel MOSFET, is driven by a PWM voltage of period Ts and duty-cycle d,

defined as

d =
Ton

Ts

(5.1)

where Ton denotes the time interval within the period Ts when the PWM voltage

is high, which causes the switch to conduct. Consequently, Toff denotes the time

interval when the PWM voltage is low, which causes the switch not to conduct.

Hence the switching period is defined to be

Ts = Ton + Toff (5.2)

Now, consider the time interval of a PWM period Ts when the switch

is conducting, i.e. during Ton. This effectively means that the switch is short-

circuited so that the inductor only is charged by the input supply source and the

capacitor only supplies the load. The diode, however, ensures that the capacitor

is not short-circuited and the current iC is only able to flow to the load. This

basically separates the circuit in two parts as schematically shown in Figure 5.3.

The inductor current iL increases by

iL =
1

L

∫ Ton

0

vL dt (5.3)
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−
+

Vi

LiL

vL

C vC R

iR

Vo

iC

Figure 5.3: DC-DC boost converter schematic when the switch is conducting, i.e.
during Ton.

where, vL = Vi. The increasing current builds the magnetic field of the inductor,

where energy is stored (Griffiths 1999). Simultaneously, the output voltage de-

creases by

vC =
1

C

∫ Ton

0

−iR dt (5.4)

which is caused by drawing current from the capacitor. Note that when taking

Figure 5.3 into account, vC = Vo and iC = iR.

Next, consider the time interval of the PWM period Ts when the switch

is not conducting, i.e. during Toff . This effectively means that the switch is

‘removed’, so that the circuit in Figure 5.1 can be re-drawn as shown in Figure

5.4. The charged inductor transfers its stored energy to the capacitor and the

−
+

Vi

LiL

vL

C

iC

vC R

iR

Vo

Figure 5.4: DC-DC boost converter schematic when the switch is not conducting,
i.e. during Toff .
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load. Hence the inductor current decreases by

iL =
1

L

∫ Ton+Toff

Ton

vL dt (5.5)

where the voltage drop across the inductor can be approximated by vL ≈ Vi−Vo,

which is negative, since in a boost converter, Vo > Vi. Moreover, the current iL can

only flow through the diode in the direction towards the capacitor and load, which

means that, iL ≥ 0. Consequently, if the next period begins before the inductor

current iL reaches zero, i.e. iL > 0 ∀t, the inductor conducts continuously and

the converter is said to operate in continuous conduction mode (CCM). On the

contrary, if the inductor current settles to zero and, subsequently, remains there

until the end of the period, the converter is said to operate in DCM, which is

considered here. In Figure 5.5, the inductor current waveform for continuous and

discontinuous operation is illustrated, where Tz denotes the time interval of Toff

where the inductor current is zero. Since, during Toff , the capacitor is charged,

t

iL

0

CCM

Ton Toff

Ts

t

iL

0

DCM

Ton Toff
Tz

Ts

Figure 5.5: Idealised inductor current in continuous (CCM) and discontinuous
(DCM) conduction mode operation.

i.e. current flows into the capacitor, the voltage across the capacitor vC increases

by

vC =
1

C

∫ Ts

Ton

iC dt (5.6)

with vC ≅ Vo and taking (5.4) into account, an output voltage ripple is imposed.
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This ripple is largely determined by the size of the capacitor and here, the capa-

citor is chosen large enough so that the ripple may be neglected.

In summary, when considering the input voltage Vi to be constant, dur-

ing Ton the inductor is charged while the capacitor only supplies the load and,

subsequently, during Toff the charged inductor transfers its energy to the capa-

citor and the load, supported by the input source. Consequently, when adopting

the law of energy conservation, it can be concluded that the output voltage Vo

can be controlled by changing the duty-cycle d of the PWM voltage, i.e. adapting

Ton and Toff , respectively.

This means, when referring the boost converter as a system with a

system output y and a system input u, that, and in the remainder of this Thesis,

for the sake of simplicity, y =̂ Vo and u =̂ d.

5.1.2 Converter set-up

The set-up of the prototype converter used for laboratory experiments is as fol-

lows: Vi = 5V, L = 745 µH with inherent DC series resistance of DCR ≈ 1.3Ω

and C = 1000 µF. The N-channel MOSFET used, realising the switch S, is the

IRLB8748PbF, which on-resistance RDSon
≪ DCR, hence negligible.

For DCM operation, the switching period, which is also equivalent to

the sampling interval, is chosen to be Ts = 1ms. In order to generate the PWM

voltage signal, the load reference voltage Vref and to acquire the required meas-

urements, the dSPACE MicroAutobox DS1401 is used.

The maximal output voltage Vo is chosen to be Vo = 20V, hence the

output voltage is defined to be in the range

{Vo ∈ R | 5V ≤ Vo ≤ 20V} (5.7)
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The maximum current, which can be delivered by the power supply is

limited, hence the value iL = 2A cannot be exceeded. Consequently, the output

current is defined to be in the range

{iR ∈ R | 40mA ≤ iR ≤ 140mA} (5.8)

Furthermore, the duty-cycle of the PWM voltage signal can only vary

between 0% and 100%, hence d is defined to be in the per-unit range

{d ∈ R | 0 ≤ d ≤ 1} (5.9)

Regarding the realisation of the load, as shown in Figure 5.2, the shunt

resistor is chosen to be Ro = 10Ω, the Op-amp is the LM358N and the transistor

is a TIP110 with, according to the datasheet, a typical DC current gain of hFE =

1000, so that the requirement iB ≪ iR is fulfilled.

5.2 State-dependent parameter modelling

The proposed modelling approach is based on measured signals. As mentioned

in Section 5.1.1, the system input is given by the duty-cycle of the PWM voltage

signal while the system output is given by the output voltage. However, there

is an additional measurable signal, namely, the output current. Consequently,

modelling the system requires the input d, output Vo as well as the output current

iR to be taken into account.

Naturally, the system input is a signal applied to the system, hence

known, while the output is the measured response to that input and the model is

required to accurately replicate the system output based on this input. The out-
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put current, however, is dependent on the load applied, which may be unknown,

but, nevertheless, influences the system output response.

In order to deal with this issue, the output response of a staircase in-

put is obtained while the output current drawn is kept at a constant value,

which is possible due to the realisation of the load according to Figure 5.2.

This is repeated for various output current values in order to cover the en-

tire operating range of the system. Here, eleven equally spaced output cur-

rent levels, covering the defined output current range (5.8), are used, i.e. iR =

40mA, 50mA, 60mA, . . . , 140mA. The height of the steps comprising the

staircase input are chosen such that the output response increases by a value

between approx. 0.5V and 1V. An exemplary staircase response where the out-

put current value is kept constant at iR = 100mA throughout, is shown in Figure

5.6. In Figure 5.7, a single, yet representative, step response taken from Figure

5.6, is shown. Since the model is required to be able to explain the steady-state

and dynamic behaviour of the system appropriately and the fact that this inform-

ation is contained in the staircase responses, the modelling approach is based on

the data obtained in this way.

Remark 5.2.1. Since the output current is kept constant, the dynamics intro-

duced by rapidly changing output currents are not considered. It is assumed that

these are mainly ‘compensated’ by the associated change of operating point and

the remaining dynamics are negligible. However, this issue may require further

consideration and is left as an open problem.

5.2.1 Steady-state behaviour

Having acquired the staircase responses which covers the entire range of operation,

the steady-state behaviour is examined and, is subsequently modelled.
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Figure 5.6: Measured output voltage response (upper) to the staircase input
(lower) with constant output current value of iR = 100mA

The steady-state behaviour, directly obtained from the measurements,

i.e. the staircase responses for constant output current values iR = 40mA,

50mA, . . . , 140mA, are shown in Figure 5.8. Consequently, each trace corres-

ponds to a constant output current value in ascending order from left to right.

The steady-state behaviour for each output current value is considered individu-

ally and modelled by fitting polynomials of the form

yi,∞(u∞) =
4∑

j=1

βi,j u
4−j
∞ ∀i = 1, 2, . . . , 11 (5.10)

where the subscript ∞ indicates steady-state and βi,j ∈ R denote corresponding

coefficients.

For all the i output current values, polynomials comprising the four

coefficients βi,j ∈ R are identified. Since the i polynomials are all of the same
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Figure 5.7: Single step response of the staircase responses.

order, the coefficients can be plotted against the output current and, consequently,

being realised themselves as functions of the output current, which are, again,

chosen to be of a polynomial form

βi(iR) =

4∑

j=1

γi,j i
4−j
R with i = 1, 2, 3, 4 (5.11)

where γi,j ∈ R denote constant coefficients. The coefficients βi,j , obtained from

(5.10) (solid line) and βi(iR) being a function of the output current (5.11) (dashed

line), are shown in Figure 5.9.

Combining (5.10) with (5.11), the overall steady-state behaviour is char-

acterised by

y∞(iR, u∞) =
4∑

j=1

βj(iR) u
4−j
∞ (5.12)

The steady-state behaviour directly obtained from measurements and modelled

by fitting polynomials (5.10) (solid lines), compared to the steady-state charac-

teristic modelled by (5.12) (dashed line), are shown in Figure 5.10.

Remark 5.2.2. The order of the polynomials (5.10) and (5.11) are found by

evaluating the criteria chosen to be the mean integral of absolute errors. Essen-
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Figure 5.8: Measured steady-state behaviour considered at constant output cur-
rent values starting at iR = 40mA increasing in steps of 10mA up to iR = 140mA,
from left to right.

tially, the order, where the difference of the mean integral of errors to the next

higher order is sufficiently small, is selected. This means, that the improvement

to the next higher order is marginal.

5.2.2 Dynamic behaviour

Having obtained the steady-state behaviour, the dynamics of the system is con-

sidered now. The dynamic characteristics are identified by using the individual

steps, as shown in Figure 5.7, of the staircase responses, whereby, initially, the

staircase responses corresponding to the individual output current values are ex-

amined separately. Since the dynamics are of interest, the time-constants of the

staircase step responses are required to be obtained. For this reason, consider the

linear, discrete-time, first order system model representation

yk = −a1 yk−1 + b1 uk−1 (5.13)
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Figure 5.9: Parameters βi obtained as a function of the output current (dashed
line) and obtained directly from considering the individual steady-state beha-
viours (solid line).

where a1 ∈ R and b1 ∈ R denote model parameters, respectively. In particu-

lar, the parameter a1 is of interest since this parameter relates directly to the

equivalent system time-constant at the considered operating point.

In Figure 5.11, the identified model parameter a1, against the output

voltage is presented, where each trace corresponds to a fixed output current value

iR = 40mA, 50mA, . . . , 140mA, similar to Figure 5.8. Since the discrete-time

model parameter a1 relates to the time-constant by the mapping

τ =
−Ts

ln(−a1)
(5.14)

where τ ∈ R denotes the equivalent time-constant of the system at a certain
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Figure 5.10: Measured steady-state behaviour and fitted individual polynomials
corresponding to output current value (solid lines), as well as overall modelled
steady-state behaviour (dashed line).

operating point, a linear relationship of the time-constant against the output

voltage can be observed in Figure 5.13 (solid line). Consequently, the time-

constant can be approximated by first order polynomials of the form

τi = αi,1 yk + αi,2 i = 1, 2, . . . , 11 (5.15)

where each output current value is considered individually, analogously to (5.10).

Subsequently, in the same manner as in Section 5.2.1, the coefficients αi,1 and αi,2,

respectively, obtained from (5.15), are considered to be output current dependent

and, again, of polynomial form

αj(iR) =

4∑

l=1

ηj,l i
4−l
R j = 1, 2 (5.16)

where ηj,l ∈ R denote constant coefficients. In Figure 5.12 the coefficients αi,1
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Figure 5.11: Identified linear model parameter a1 values against output
voltage, where each trace corresponds to an output current value of iR =
40mA, 50mA, . . . , 140mA.

and αi,2 obtained from (5.15) (solid line) as well as αj(iR) according to (5.16)

(dashed line), are shown. Substituting (5.16) into (5.15), the overall dynamics,

represented by the equivalent time-constant, is approximated by

τ(yk−1, iR,k) = α1(iR,k) yk−1 + α2(iR,k) (5.17)

and shown in Figure 5.13 (dashed line).

When comparing Figures 5.11 and 5.13, it can be observed that in the

discrete-time domain, i.e. Figure 5.11, the differences of the traces seem to be

marginal, in particular with increasing output voltage. On the contrary, in Figure

5.13, i.e. when mapping in the continuous time-domain, it can be observed that

the spread of the traces, in fact increase with increasing output voltage so that

at the widest spread, the longest equivalent time-constant of the slowest mode is

approximately three times that of the fastest mode.
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Figure 5.12: Parameters αj obtained as a function of the output current (dashed
line) and directly obtained from considering the dynamic behaviours correspond-
ing to the different output current values.

Also, when drawing a lower output current from the converter, the equi-

valent time-constant is longer. This can be explained by (5.4), which implies that

the output voltage changes with the integral of the output current drawn.

5.2.3 Obtaining the SDP model

Finally, the system is sufficiently characterised by its steady-state (5.12) and

dynamic (5.17) behaviour so that the SDP model can be obtained.

From Figure 5.7, it can be deduced that a first order model is an ap-

propriate choice, hence

yk = −a1,k yk−1 + b1,k uk−1 (5.18)

where the parameters a1,k and b1,k are required to be obtained.
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Figure 5.13: Time constant obtained from steps of staircase responses directly
(solid line) and modelled (dashed line), against the output voltage. Each trace
corresponds to a fixed output current value of iR = 40mA, 50mA, . . . , 140mA,
from upper to lower.

Initially, consider the parameter a1,k. Analogously to (5.13), a1,k is used

in order to model the dynamic behaviour. Mapping (5.17) back into the discrete-

time domain, cf. (5.14), a1,k is given by

a1,k = −e

−Ts

τ(yk−1, iR,k) (5.19)

The model parameter b1,k, however, is used in order to satisfy the steady-

state behaviour (5.12). Considering (5.18) in steady-state and subsequently solv-

ing for b1,∞, yields

b1,∞ =
y∞(1 + a1,∞)

u∞
(5.20)

when u∞ = y−1
∞ , i.e. the steady-state input is equal to the inverse function of the
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steady-state output, b1,k can be approximated by

b1,k =
yk−1 (1 + a1,k)

y−1
∞ (yk−1, iR,k)

(5.21)

where, taking (5.12) into account, the inverse of a cubic polynomial is required,

which is obtained, by following (Nickalls 2006), to be

y−1
∞ (y∞, iR) = 2

√
−
w

3
cos

[
1

3
cos−1

(
3q

2w

√
−
3

w

)
−

2π

3

]
−

β2(iR)

3β1(iR)
(5.22a)

with

w =
3β1(iR)β3(iR)− β2

2(iR)

3β2
1(iR)

(5.22b)

and

q =
2β3

2(iR)− 9
∏3

i=1 βi(iR) + 27β2
1(iR) (β4(iR)− y∞)

27β3
1(iR)

(5.22c)

Now, having obtained the SDP model, some comments regarding the model can

be made:

• In the proposed modelling approach, use is made of polynomials describing

the steady-state and dynamic behaviour. This inflicts certain issues, such

as the fact that the defined operating range must not be exceeded since,

in particular, if higher order polynomials are used, the behaviour outside

the considered operating range may change significantly. Further details on

the drawbacks of using polynomials in system identification can be found in

(Nelles 2001, Chap. 18). On the other hand, the identification of the coef-

ficients is straightforward since polynomials are linear w.r.t the coefficients

and, consequently, well known system identification methods, such as the

least-squares algorithm, can be used.

• The steady-state behaviour (5.12), as used in (5.20) and (5.21), respectively,
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as well as the dynamic behaviour (5.17) are dependent on yk−1 instead of

yk.

◦ Considering (5.17), each step is chosen to be of a height, as mentioned

above, between 0.5V and 1V, so that the obtained time-constant of

each individual step applies to this output voltage range, hence if the

sampling interval is sufficiently short, the difference between yk and

yk−1 is within this range. Consequently, using yk, yk−1 or even yk+1
1

is, from this point of view, of minor relevance. However, in the light of

a subsequent application to a SDP-PIP controller, it may be advant-

ageous to make use of yk−1, as depicted in Chapter 6.

◦ Regarding the use of the steady-state behaviour in the model para-

meter b1,k, again, the actual measured data points are distinct and

based on the height of the steps in the staircase responses, where in-

terpolation is used in between so that, if the difference between yk and

yk−1 is sufficiently small, making use of yk−1 can be seen as an ap-

propriate approximation. Additionally, in steady-state, it can be said

that yk = yk−1.

Experimental model validation

In Figure 5.14, the response of the model and the measured response of the

converter (upper) is shown for an arbitrarily varying duty-cycle (lower) and an

arbitrarily varying output current (middle).

It can be observed that the model and measured output voltage response

is almost identical. A mismatch is visible at high output voltage, in particular, if

the output current is high as well. This becomes apparent when comparing the

1which is rather of a theoretical nature than of practical relevance
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peak between approximately t ≈ 12 s− 15 s where the output current is high and

the peak between approximately t ≈ 75 s − 77 s where the output current is in

the midrange. The mismatch in the latter peak is clearly less than in the first

considered peak. Furthermore, this observation is also reflected in Figure 5.10

where at high output voltage, a mismatch at high output current is observed.
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Figure 5.14: Upper: measured output voltage (solid line) and output voltage
response of the model (dashed line) to arbitrarily varying system input and output
current. Middle: arbitrarily varying output current drawn from the converter
(solid line) within the defined range (dashed lines). Lower: arbitrarily varying
system input.
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5.3 Comparison of SDP with HBS modelling ap-

proach

In this Section, the proposed state-dependent parameter model (5.18), in con-

junction with (5.19) and (5.21), respectively, is compared to a modelling approach

based on a Hammerstein-bilinear structured (HBS) model. The HBS model is

briefly introduced in the following, as presented in (Larkowski et al. 2013).

Generally, the HBS consists of a Hammerstein term, i.e. static nonlin-

earity, denoted f(·), followed by a bilinear dynamic subsystem, where the output

of the static nonlinearity, denoted vk, is the input to the bilinear subsystem, hence

the system input uk is transformed by f(·) in order to form the input to the bilin-

ear subsystem, as shown in Figure 5.15. Consequently, the steady-state behaviour

is modelled by the static nonlinearity, while the dynamics are modelled by the

bilinear subsystem. The HBS model can be described by the following nonlinear

uk f(·)
vk = f(uk)

︸ ︷︷ ︸
static nonlinearity

BS

︸ ︷︷ ︸
bilinear subsystem

yk

Figure 5.15: General Hammerstein-Bilinear Structure

discrete-time difference equation, in a general form, i.e.

vk = f(uk) (5.23a)

yk = −

na∑

i=1

ai yk−i +

nb∑

j=1

bj vk−j

+

na∑

i=1

nb∑

j=1

ηij yk−i vk−j + c

(5.23b)

where ai, bj , ηij and c ∈ R denote model parameters, respectively.
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5.3.1 Hammerstein-bilinear modelling approach

The HBS modelling approach is also based on measured input-output data. How-

ever, differently to the SDP modelling approach presented in Section 5.2, these

data are not obtained from staircase responses, but rather by applying an arbit-

rarily varying input signal, which causes excitation of the system throughout the

entire output voltage range, while the output current is kept at fixed constant

levels of iR = 40mA, 50mA, . . . , 140mA, hence eleven data sets are acquired. In

Figure 5.16, a representative data set where iR = 100mA, is presented. For each
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Figure 5.16: Measured output voltage response (upper) to an arbitrarily varying
input (lower), such that the entire output voltage range is covered where the
output current is kept constant throughout at iR = 100mA.

individual data set, a separate HBS model of the form (5.23) is obtained. The

static nonlinearity (5.23a) is chosen to be of polynomial form, i.e.

f(uk) = α0 + α1 uk + α2 u2
k + α3 u3

k + α4 u4
k (5.24)
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where αi ∈ R denote invariant coefficients. The HBS, given by (5.23) - (5.24),

is nonlinear w.r.t. the input-output, however, it is bilinear w.r.t. the para-

metrisation, so that, regarding the parameter estimation task, a so-called bilin-

ear parametrisation method can be used, see (Ljung 1999). It is an iterative

method, comprised of two alternating least-squares (LS) algorithms. The first LS

algorithm uses the most recent2 estimate of the set of parameters defining f(uk)

and estimates the parameters of the bilinear subsystem. Subsequently, the second

LS algorithm estimates the parameters of f(uk), by using the estimates defining

the bilinear subsystem obtained by the first LS algorithm. This procedure is re-

peated until either convergence is achieved or a predefined number of iterations

is exceeded.

Regarding the HBS system identification of the considered boost con-

verter, here the model order of the obtained eleven HBS ‘sub-models’, each of

which correspond to a distinct output current level, is given by na = nb = 1.

The accuracy of these sub-models are quantified by the criteria, namely,

the coefficient of determination (Young 2011) and mean integral of absolute errors,

respectively,

R2
T = 100

(
1−

‖y − ŷ‖22
‖y − E[y]‖22

)
(5.25a)

IAE =
1

N

N∑

i=1

|yi − ŷi| (5.25b)

where y ∈ R
N×1 and ŷ ∈ R

N×1 denote the vectors of measured and model

output values, respectively, E[y] denotes the expected value of y, N the number

of samples, whilst the notation ‖ · ‖2 denotes the Euclidean norm.

In Figure 5.17, the mean integral of absolute errors and the coefficients

of determination for all the identified sub-models are shown.

2or initial values in case of the first iteration
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Figure 5.17: Evaluation criteria IAE and R2
T of the individual identified HBS sub-

models for output current values iR = 40mA, 50mA, . . . , 140mA. The dashed
line denotes the respective average value.

Having obtained the sub-models, in the following, the overall HBS model

is now obtained. To create the overall model, the sub-models are required to be

combined. A smooth transition is achieved by making use of Gaussian blending,

where the means of each membership function is located at the considered, el-

even output current values. Consequently, interpolating between the individual

sub-models is based on the instantaneous, measured output current value. The

Gaussian membership functions, which are normalised such that the aggregated

weighting at each point is unity, are shown in Figure 5.18. Finally, the overall
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Figure 5.18: Normalised Gaussian membership functions

HBS model is given by

ŷk =−
na∑

i=1

γ(āi, iR,k) ŷk−i +

nb∑

j=1

γ(b̄j , iR,k) vk−j

+

na∑

i=1

nb∑

j=1

γ(η̄ij , iR,k) ŷk−ivk−j + γ(c̄, iR,k)

(5.26)

where āi, b̄j , , η̄ij and c̄ denote parameter sets, which consist of the corresponding

identified sub-model parameters. The Gaussian membership function is denoted

by γ(·) and given by, exemplary shown here for the ai - parameters,

γ(āi, iR,k) =

∑11
l=1 ai,l e

−(iR,k − iR,l)
2

2σ2

∑11
l=1 e

−(iR,k − iR,l)
2

2σ2

(5.27)

where iR,l denotes the l − th element of the output current set {40mA, 50mA,

. . . , 140mA} and, similarly, ai,l denotes the l−th element of the set of parameters

āi corresponding to the sub-model, identified at the l − th output current value.
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The constant variance of the Gaussian functions is chosen to be σ2 = 4, which

was a value found by trial and error.

5.3.2 Experimental results and discussion

In Figure 5.19, the measured output voltage response as well as the HBS and

SDP model response to an arbitrarily varying duty-cycle and output current are

shown. It can be observed that the fit of the SDP response slightly outperforms

the HBS model response. This observation is also confirmed by Table 5.1 where

the quantified performance criteria (5.25) are presented. However, from visual

inspection and supported by the assessment criteria results, the performance of

the HBS model is still considered satisfactory.

Criteria HBS SDP

IAE 0.14 0.08
R2

T 99.49 99.86

Table 5.1: Quantified performance assessment criteria comparing the SDP and
HBS model performance.

Regarding the HBS compared to the SDP modelling approach, some

observations can be made:

• The most apparent difference is that the HBS model is comprised of several

sub-models, which are blended by making use of a Gaussian membership

function. The SDP model, however, which is also based on data where dif-

ferent output current values are considered, but the ‘interpolation’ between

the distinct output currents is built inherently into the model parameters.

Identification of separate sub-models for each operating point is not neces-

sary. It is noted, however, that the experimental data, of the nature and

form used for identification of the HBS model, could also be used for iden-
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Figure 5.19: Upper: Comparative results of measured output voltage (thick grey
line), output voltage response of the HBS model (solid thin line) and SDP model
response (dashed line) covering the entire operating range, by using a validation
data set. Middle: Corresponding arbitrarily varying duty-cycle. Lower: Corres-
ponding arbitrarily varying output current drawn from the converter.

tification of the SDP model by making use of the ‘back-fitting’ approach,

see e.g. (Taylor et al. 2007a).

• The HBS modelling approach as well as the SDP modelling approach con-

sider the dynamics and steady-state behaviour separately. In the HBS

model, the static nonlinearity is dedicated in order to model the steady-

state behaviour, while the SDP model dedicates the b1,k parameter for this

task. Similarly, the bilinear subsystem of the HBS model takes care of the

system dynamics while in the SDP model, this is done by the parameter

a1,k. Moreover, both approaches make use of polynomials, which allow the
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estimation of the required coefficients by making use of the straightforward

LS algorithm so that, at this point, no additional burden is introduced.

• In the case of the HBS approach, the sub-models are identified for oper-

ating points based on certain output current levels. Consequently, these

sub-models can be considered as being optimal (at their corresponding op-

erating point and based on the performance criteria (5.25)) so that it can

be said that the achieved performance, as shown in Figure 5.17, is the best

achievable performance. Considering the membership functions, shown in

Figure 5.18, it can be observed that even if operating at the specific op-

erating points, i.e. when iR = 40mA, 50mA, . . . , 140mA, the overall, i.e.

blended, HBS model is not identical to the optimal sub-model, at this op-

erating point, since both neighbouring membership functions are not zero.

As a consequence, the parameters of the overall model differ from the op-

timal sub-model, hence the performance criteria values shown in Figure 5.17

can be viewed as a form of upper bound that the overall model is able to

achieve. This, in turn, allows conclusions to be drawn from Figure 5.17,

about the overall performance throughout the operating range. Regarding

the HBS model of the boost converter considered here, from Figure 5.17, it

is anticipated that the performance in the range of iR ≈ 100mA− 130mA

is superior. This is also reflected in Figure 5.19, when comparing the per-

formance of the HBS in the intervals t ≈ 2 s− 9 s where the output current

is in this range and t ≈ 30 s − 35 s where the output current is low and a

slightly greater mismatch is observed.
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5.4 Concluding remarks

In this Chapter, a practical application example has been presented. A model-

ling approach for a DC-DC boost converter operating in discontinuous conduc-

tion mode has been proposed. The modelling approach was based on the SDP

framework and makes use of measured input-output data rather than of phys-

ical relationships. Staircase system inputs are applied at different output current

levels, so that step responses throughout the entire operating range are obtained.

Based on this data, the dynamic and steady-state characteristics of the converter

were obtained, upon which the SDP model parameters have been identified.

This proposed SDP model has been compared with an alternative model,

based on a Hammerstein-bilinear structure. The steady-state characteristic has

been captured by the Hammerstein static nonlinearity and the dynamics by the

bilinear term. This modelling approach was also based on measured input-output

data. Several HBS sub-models, corresponding to certain levels of output currents,

have been identified and were subsequently blended by a Gaussian membership

function so that an overall model, which covers the entire operating range, was

obtained.

Furthermore, the similarities, as well as the differences of these mod-

elling approaches have been highlighted and comparative performance results,

based on laboratory based experiments, have been presented.
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Chapter 6

SDP-PIP Controller

Implementation Results

Based on the elaborated SDP model of the DC-DC boost converter presented in

Chapter 5, implementation results of the model based SDP-PIP controller are now

presented. In order to demonstrate the efficacy of the proposed SDP-PIP control

approach, implementation results are compared with linear PIP control, which is,

in the case of a first order model, structurally similar to the widely used non-model

based proportional integral (PI) controller, in fact, the linear PIP based on a first

order model also consists of a proportional and an integral gain, see e.g. (Taylor

et al. 2001). In this regard, these controllers can be seen to be equivalent, however,

making use of the linear PIP controller instead of the PI controller, provides a

comfortable way of tuning the controller by simply choosing the desired closed-

loop poles, to provide the calculation for the controller gains. Moreover, since

the SDP-PIP ‘replicates’ a linear closed-loop system behaviour with closed-loop

poles at desired locations, this allows a direct performance comparison.

The output voltage control objectives are twofold. Output voltage reg-

ulation when load steps, i.e. the case of output current steps are considered. This
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scenario is also mainly considered in the literature. The second objective is to

achieve a predefined transient behaviour when output voltage set-point changes

are applied. This predefined transient behaviour is determined by the choice of

the desired closed-loop pole locations.

Various model based control approaches for DC-DC boost converters can

be found in the literature. In (Beccuti et al. 2005, 2007, 2009) an approach can

be found, which makes use of a model based predictive control (MPC) strategy,

regulating the DC-DC boost converter, while (Geyer et al. 2008) applies the MPC

approach to a DC-DC step-down converter. Robust control approaches, which

explicitly take model uncertainties into account and represent the possible load

variations in the uncertainty formulation, can be found in, e.g. (Cortes et al. 2005;

Fadil and Giri 2007; Olalla et al. 2009, 2010, 2011; Sira-Ramirez et al. 2011).

Regarding the DC-DC boost converter particularly operating in DCM,

control approaches can be found in, e.g. (Tse and Adams 1990; Qiao and Zhang

2005). These control strategies, are all based on an averaged state-space model

and not based on grey-box models as is the SDP model derived in Chapter 5.

6.1 Limitations regarding the output voltage con-

trol

As it is mentioned in Section 5.1.1, that the output voltage rate of change is

affected by the amount of current drawn from and supplied to the capacitor.

The amount drawn from the capacitor is mainly determined by the load and

the amount supplied to the capacitor is mainly determined by the duty-cycle.

Since the duty-cycle is naturally constrained (5.9), as a consequence, there are

limitations on the rate of change of the output voltage, i.e. the maximal slope is
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limited. In particular, the maximal achievable output voltage slope is determined

by the capacitance, output current, etc. (Wens and Steyaert 2011, Chap. 2), so

that when choosing the desired closed-loop pole locations, this is required to be

taken into account, cf. (Cunha and Pagano 2002).

Consequently, regarding the SDP-PIP controller implementation, one

way to overcome this issue is to place sufficiently ‘slow’ desired closed-loop poles,

such that the duty-cycle does not run into constraints.

6.2 Experimental set-up

The converter set-up used in this Chapter is identical to that of the previous

Chapter, as described in Section 5.1.2. Since the load is realised as shown in

Figure 5.2, a load scenario is required in order to be able to obtain controller

implementation results. Hence the output current iR, which is drawn from the

converter is given by the following first order continuous-time transfer function

iR,k =
8

0.1s+ 1
Vo,k (6.1)

where s denotes the Laplace variable and iR is obtained in mA while Vo is given

in V. This means that the measured output voltage is ‘filtered’ by the transfer

function and the resulting output current is drawn from the converter by apply-

ing the corresponding load reference voltage Vref , provided by the DAC of the

dSPACE Microautobox. In this manner, a load is replicated such that the output

current stays within its defined operating range (5.8).

Additionally, in order to avoid that the input power supply unit runs

into its built-in current limiter during the experiment, the duty-cycle is further

limited to the range {0.05 ≤ d ≤ 0.9}.
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6.3 SDP-PIP controller design

Based on the SDP model obtained in Section 5.2.3, the SDP-PIP controller gains

are calculated. Since this model (5.18) is of first order and of unit sampling

delay, i.e. na = nb = τ = 1, the controller gains f0,k and KI,k are required only.

Following Section 4.2.2, these gains are given by

f0,k = −
a1,k+1 + d2

b1,k+1
(6.2a)

and

KI,k =
1 + d1 + d2

b1,k+1

(6.2b)

Note here that the model parameters a1,k+1 and b1,k+1 are dependent on the

sampling instance k + 1, hence recall the dependency on yk−1 used in (5.19) and

(5.21), respectively, as discussed in Section 5.2.3. This allows one to conveniently

make use of the current output measurement yk instead of using the predicted

value yk+1.

Furthermore, due to the issue mentioned in Section 6.1, it might well

be possible that the input runs into constraints, hence, when making use of the

integral-of-errors state, integrator windup may occur. Consequently, in order to

avoid this, use is made of the SDP-PIP in incremental input form according to

Section 4.4.

Moreover, placing the desired closed-loop poles at reasonably slow loca-

tions in order to avoid system input saturation as discussed in Section 6.1, leads

to pole locations close to the border of the unit circle in the complex plane. Im-

plementation results, where the SDP-PIP controller sampling interval is equal to

the switching period, i.e. Ts = 1ms, and the desired closed-loop poles, denoted p1

and p2, respectively, are both placed at p1 = p2 = 0.70, 0.80, 0.90, 0.95, are shown
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in Figure 6.1. The dashed line shows the desired response while the solid line

shows the measured output voltage response to a step set-point change from 7V

to 17V. Additionally, the corresponding system inputs are shown in Figure 6.2.

In both Figures 6.1 and 6.2, the effect of the input saturation is observable. When

choosing desired closed-loop poles at locations as slow, i.e. close to the border

of the unit circle, as p1 = p2 = 0.95, the converter is physically able to meet the

desired response and, in addition, the SDP-PIP controller is able to accurately

track this desired response. Considering Figure 6.2, when fast closed-loop poles

are chosen, i.e. p1 = p2 = 0.70, apparently, the control action is more sensitive

to measurement noise, hence more active, than when choosing slow closed-loop

poles. The corresponding output voltage, however, does not seem to be more

affected by the noise than those where slower closed-loop poles are chosen. This

is not surprising when considering, in relation to the switching frequency, the

slow equivalent open-loop system time constants, see Section 5.2.2.

6.3.1 SDP-PIP controller sampling interval

In order to increase the range of possible, desired closed-loop pole locations

such that the input does not saturate, the controller sampling interval, i.e. the

sampling interval upon which the model is based, is required to be increased due

to the fact that the pole location in the discrete-time domain depends on this

sampling interval (5.19), (5.21).

At this juncture, it is pointed out that changing the discrete-time pole

locations via altering the sampling interval, the equivalent continuous-time pole

location, i.e. time-constant, remains unchanged. Also, the physical performance

constraints discussed in Section 6.1 cannot be affected. The range of numerical

values of desired discrete-time closed-loop pole locations, which are physically
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Figure 6.1: Desired output voltage response (dashed line) and measured output
voltage (solid line) to a step set-point change from 7V to 17V for various desired
closed-loop pole locations and a SDP-PIP controller sampling interval of 1ms.

achievable, can only be increased so that these pole locations are more wide

spread and not only concentrated close to the boundary of the unit circle.

The SDP model obtained in Section 5.2 is determined by the steady-

state and dynamic behaviour of the system. Since the equivalent time constants

are identified in the continuous-time domain and subsequently mapped into the

discrete-time domain, it is straightforward to change the controller sampling in-

terval. Consequently, (5.19) becomes

a1,k = −e

−Tc

τ(yk−1, iR,k) (6.3)

where Tc denotes the controller sampling interval. Choosing Tc = 5ms, while

the switching period remains at Ts = 1ms, the controller ‘executes’ every fifth
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Figure 6.2: Corresponding system input to the output responses shown in Figure
6.1.

switching period, hence the duty-cycle may also change every fifth switching

period and is kept constant in between.

The model parameter b1,k remains the same as in (5.21) except that

(6.3) is used instead of (5.19) so that the steady-state behaviour (5.20) is still

satisfied.

The measured (solid line) and desired (dashed line) output voltage re-

sponses are shown in Figure 6.3, whilst the corresponding control actions are

shown in Figure 6.4. It is observed that at desired closed-loop pole locations of

as slow as p1 = p2 = 0.80, input saturation is just not visible. Hence the range

of physically achievable closed-loop pole locations is increased by increasing the

controller sampling interval, however, it is to be noted that the maximal achiev-

able slope of the output voltage cannot be affected since this is dependent on

physical quantities determined by the circuit used, as discussed in Section 6.1.
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Moreover, considering the control action for p1 = p2 = 90 shown in the

lower left plot in Figure 6.4, a significant change in the behaviour is observable

whilst the corresponding output voltage, lower left plot in Figure 6.3, accur-

ately tracks the desired reference response, i.e. replicating the desired, linear

closed-loop system output response. This observation might indicate the nonlin-

ear behaviour of the system and that the SDP-PIP is able to handle the system

nonlinearities satisfactorily.
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Figure 6.3: Desired output voltage response (dashed line) and measured output
voltage response (solid line) to a step set-point change from 7V to 17V for various
desired closed-loop pole locations and a SDP-PIP controller sampling interval of
5ms.

Recall from the discussion in Section 5.2.3, that the model parameters

a1,k and b1,k, i.e. (6.3) and (5.21), respectively, are based on the previous output

voltage measurement yk−1. This is justified by the fact that the output voltage

difference from one to the next sampling instance is sufficiently small. Increasing
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Figure 6.4: Corresponding system input to the output responses shown in Figure
6.3.

the controller sampling interval, however, may also increase the difference of the

output voltage between consecutive sampling instances. Consequently, the con-

troller performance may be impaired. By redefining the SDP model parameters

(6.3) and (5.21) to be

ã1,k = −e

−Tc

τ(yd,k, iR,k) (6.4a)

and

b̃1,k =
yd,k (1 + ã1,k)

y−1
∞ (yd,k, iR,k)

(6.4b)

the desired system output response, denoted yd,k, which is given by

yd,k = −d1 yd,k−1 − d2 yd,k−2 + (1 + d1 + d2) rk−1 (6.5)

is incorporated into the SDP model parameters. Since the coefficients of the
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desired characteristic equation d1 and d2 are determined by the a priori chosen

closed-loop poles p1 and p2, hence known quantities, as well as the reference

signal rk ∀k, predictions of yd,k are available and can be used within the model

parameters (6.4) and subsequently in the calculation of the SDP-PIP controller

parameters (6.2).

Remark 6.3.1. The use of yd,k in (6.4) is based on the assumption that the actual

system output yk is very close, if not identical, to the desired system output, i.e.

yk ≅ yd,k ∀k.

Quantified results, assessing the performance of the SDP-PIP controller

when using the model parameters based on the measured system output, i.e.

(6.3) and (5.21), respectively, as well as based on the desired system output (6.4),

are presented in Tables 6.1 and 6.2, respectively. Additionally, the influence of

the controller sampling interval Tc on the performance is evaluated for different

desired closed-loop pole locations. The assessment criteria chosen are the mean

of squared errors, denoted MSE, and similar to (5.25b), the mean integral of

absolute errors, denoted IAE, which are given by

MSE =
‖y − yd‖

2
2

N
(6.6a)

and

IAE =
|y − yd|

N
(6.6b)

where y ∈ R
N×1 and yd ∈ R

N×1 denote vectors of measured and desired system

outputs, respectively.

Remark 6.3.2. The main difference between the MSE and the IAE is the way

they penalise the deviation of the measured output from the desired output. The

IAE penalises this distance proportionally, while the MSE penalises this distance
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quadratically, which means that the greater the distance is the ‘heavier’ it is pen-

alised compared to the IAE. On the other hand, for small deviations, the MSE

does not penalise as ‘heavy’ as the IAE criterion.

Considering the case when the controller sampling interval is Tc = 1ms

and p1 = p2 = 0.70, 0.80, 0.90 as well as when Tc = 5ms and p1 = p2 = 0.70,

the system input saturates at its upper boundary, see Figures 6.2 and 6.4, the

corresponding performance criteria quantities presented in Tables 6.1 and 6.2,

both indicate that using the measured output in the model parameters, i.e. (6.3)

and (5.21), is superior to using the desired output in the model parameters,

i.e. (6.4), for calculating the controller parameters (6.2). This is as expected

since, when the input is in saturation, the desired output is substantially different

to the measured output, see also Figures 6.1 and 6.3, which results in model

parameters being obtained, that do not correspond to the actual operating point

of the system.

Now, consider the case when p1 = p2 = 0.95 and the system input does

not saturate, i.e. the last row in Tables 6.1 and 6.2. Initially, focussing attention

to the IAE criterion, i.e. Table 6.2, it can be observed that for Tc = 1ms the

values are almost identical when the measured and desired output is used. The

performance discrepancy between using the measured and desired output, how-

ever, increases with increasing controller sampling interval Tc, whereby, using the

desired output is superior. In Table 6.1, on the contrary, the greatest discrepancy

is observable for Tc = 10ms, which is in accordance with the IAE criterion, while

in the case of Tc = 5ms, almost identical MSE values for using the measured

and desired output are obtained. This seems contradictory to the IAE results,

however, it rather indicates that the discrepancies between the measured and de-

sired system output are so small that they are almost not penalised by the MSE
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but are more penalised by the IAE. Similarly in the case of Tc = 1ms, where

the MSE values show a slightly greater discrepancy between using the measured

and desired output than the IAE, where the values are almost identical.

Nevertheless, from the results, it can be said that when using a suffi-

ciently small controller sampling interval, the performance of using the measured

or desired, i.e. the one-step ahead predicted, system output value in the model

parameters and subsequently for calculating the controller parameters, is very

similar, whereby slight superiority on the side of using the desired system out-

put is observable, which increases with increasing controller sampling interval.

However, when the system input saturates, superiority is on the side of using the

measured system output value.

In addition, note that the equivalent continuous-time pole locations dif-

fer from the discrete-time pole locations when different sampling intervals Tc

are considered, although the numerical value of the discrete-time pole remains

identical. However, since the performance criteria (6.6) evaluate the difference

between the desired and respective measured closed-loop response, this accounts

for the different transient behaviours at different sampling intervals Tc and nu-

merical identical discrete-time closed-loop pole locations. Moreover, in Tables

6.1 and 6.2, the focus mainly lies on the performance evaluation when making

use of the predicted, i.e. desired, system output value in the calculation of the

controller parameters (6.2), i.e. by using (6.4), and making use of the measured

system output for calculating the controller parameters (6.2), i.e. by using (6.3)

and (5.21), when different controller sampling intervals are considered.
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p1 = p2
Tc = 1ms Tc = 5ms Tc = 10ms

measured desired measured desired measured desired

0.70 2.213 2.246 0.1667 0.2145 0.1544 0.0685
0.80 1.7303 1.755 0.0458 0.0143 0.0691 0.0262
0.90 0.7164 0.7804 0.0275 0.0274 0.0423 0.0386
0.95 0.0075 0.0039 0.0115 0.012 0.0411 0.0142

Table 6.1: Mean squared errors obtained for different desired closed-loop pole
locations and different controller sampling intervals when the measured output
voltage and the desired output voltage is used.

p1 = p2
Tc = 1ms Tc = 5ms Tc = 10ms

measured desired measured desired measured desired

0.70 0.3955 0.3982 0.0934 0.0767 0.0886 0.0727
0.80 0.3505 0.353 0.0498 0.0138 0.0739 0.0571
0.90 0.2295 0.2418 0.0541 0.031 0.0795 0.0922
0.95 0.0223 0.0222 0.0501 0.0273 0.1152 0.0674

Table 6.2: Mean integral of absolute errors obtained for different desired closed-
loop pole locations and different controller sampling intervals when the measured
output voltage and the desired output voltage is used.

6.3.2 Load step regulation

Beside the dynamic behaviour of the output voltage for reference set-point changes,

the behaviour of sudden load changes, i.e. output current changes, is considered

next. This means that the output current drawn from the converter is a step

from iR = 40mA to iR = 140mA and back, while the output voltage reference is

kept at a constant value of 10V.

SDP-PIP implementation results when using measured output voltage

values in the model parameters and a controller sampling interval of Tc = 5ms

are shown in Figures 6.5 and 6.6. Making use of the reference, i.e. desired,

output voltage in the model parameters, yields very similar results, as presented

in Table 6.3. The fact that very slight differences between using the measured

and the desired output voltage are observable is not surprising since the output
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Figure 6.5: Output voltage responses to a output current step from iR = 40mA
to 140mA and back to 40mA while the reference output voltage is kept constant
at 10V

voltage distortion, see Figure 6.5, caused by the load step, is sufficiently small, i.e.

within ±0.5V, such that the impact on the model parameters and consequently

on the controller gains is negligible. Moreover, identical results are not obtained

due to the presence of measurement noise, which may also explain that the results

obtained when using the, noise free, desired instead of the noisy, measured output

voltage in the parameters are marginally superior.

Although the effect of the output voltage distortions on the control

action can be viewed negligible, the system inputs are substantially different when

the output current is at levels of iR = 40mA and iR = 140mA, respectively,

as it can be observed in Figure 6.6. This can be traced back to the model

parameters (6.3), (5.21) and (6.4), which are also dependent on the output current

and, consequently, determine the controller gains (6.2). On the contrary, it is
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Figure 6.6: Corresponding system inputs to Figure 6.5

expected that a linear PIP is outperformed by the SDP-PIP due to the fixed

controller gains, which do not allow this adaptation so that, consequently, mainly

the integral action is required to drive the input to the respective levels. The

integrator, however, integrates the error between the set-point and the measured

output voltage, hence the output voltage distortion is necessary since the output

current does not ‘assist’ as in the case of the SDP-PIP.

p1 = p2
MSE ×103 IAE ×103

measured desired measured desired

0.70 0.9 0.1 7.4 4.1
0.80 1.3 1.1 9.9 9.3
0.90 1.6 1.6 15.6 14.3
0.95 4.5 5.1 35.5 38.7

Table 6.3: Quantified SDP-PIP implementation results when measured and de-
sired output voltage is used in model parameters for load step at constant output
reference voltage.
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6.4 Comparison with the linear PIP controller

In this Section, the SDP-PIP implementation results are compared with the im-

plementation results obtained by using linear PIP control. The controller gains

of the linear PIP are fixed and calculated based on a linear model of the sys-

tem obtained at a specific operating point. This linear model can be obtained

by linearising the nonlinear SDP model at an appropriate operating point or,

alternatively, using the ‘frozen’/instantaneous linear model, which the SDP-PIP

is using at the sampling instance corresponding to this specific operating point,

cf. (Stables and Taylor 2006).

Initially, consider obtaining the linearised model. For this reason, how-

ever, an appropriate operating point of the system is required to be found at which

the linearised model is based. This is chosen to be an operating point located in

the centre, or close to it, of the operating range in order to keep the deviations

from the chosen operating point throughout operation as small as possible.

The time constant of the linearised system is obtained from the equi-

valent time constants used in the SDP model shown in Figure 5.13. In order

to obtain an appropriate value for the linearised model, the mean value of each

trace shown in Figure 5.13 is calculated, yielding eleven values. From these mean

values, again, the mean value is calculated, which is obtained to be τm = 0.0964 s.

Recall that each trace in Figure 5.13 corresponds to a fixed output cur-

rent value while covering the entire output voltage range, hence by obtaining the

mean value of each trace, the mean value of the output voltage range correspond-

ing to a certain output current is obtained. Moreover, since all the traces are,

effectively, stepping through the output current operating range, the mean value

of the mean values obtained for each individual trace can be considered as the

mean value, i.e. aggregate, of the entire system operating range.
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Mapping this time constant, i.e. τm, in discrete-time domain, the model

parameter a1 of the linearised model is given by

a1 = −e

−Tc

τm (6.7)

The steady-state gain of the linearised model, in the following referred

to as the process gain, is equal to the slope of the steady-state gain of the system

(Stables and Taylor 2006).

The steady-state characteristic of the system is shown in Figure 5.10,

where, also, each trace corresponds to a certain output current level. These

individual steady-state characteristics are modelled by (5.10), which allows the

associated process gains to be obtained by taking the derivatives of (5.10) w.r.t

u∞, i.e. { ∂
∂u∞

y∞(u∞)}i i = 1, 2, . . . , 11, which denotes the sequence of process

gains corresponding to the i output current levels. This is straightforward since

(5.10) are cubic polynomials. Subsequently, in the same manner as above, the

mean value of the mean values, i.e. aggregate, of the derivatives of each trace is

obtained. Consequently, by taking (5.20) into account, the process gain of the

linearised system model is given by

1

N

N∑

i=1

E

[{
∂y∞
∂u∞

}

i

]
= 27.421 =

b1
1 + a1

with N = 11 (6.8)

where E [ · ] denotes the expected value, i.e. mean value, and subsequently the

model parameter b1 is obtained as

b1 = 27.421(1 + a1) (6.9)

Both the instantaneous linear model and linearised model share the model para-
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meter a1 (6.7). These models differ, however, in the remaining model parameter

b1. The parameter b1 of the instantaneous linear model, in the following denoted

b̂1, is associated with the steady-state gain of the SDP model and obtained by,

initially, calculating the mean value of the mean values of the steady-state gains

corresponding to each trace shown in Figure 5.10 and, subsequently, by taking

(5.20) into account, similar to (6.8),

1

N

N∑

i=1

E

[{
y∞
u∞

}

i

]
= 46.997 =

b̂1
1 + a1

with N = 11 (6.10)

consequently, the parameter b̂1 of the instantaneous linear model is obtained as

b̂1 = 46.997(1 + a1) (6.11)

It is to be noted that the steady-state gain cannot be obtained directly from

Figure 5.10 since the steady-state gain is given by the fraction y∞
u∞

, hence the

traces observable in Figure 5.10, which show the steady-state output as a function

of the steady-state input (5.10), are required to be divided by their respective

steady-state input, cf. (6.10), in order to obtain the steady-state gain.

Remark 6.4.1. The use of the aggregated median values in (6.7), (6.9) and

(6.11), respectively, instead of the mean values, could equally be justified.

Implementation results of the linear PIP controller based on the linear-

ised model, i.e. (6.7) and (6.9), as well as the linear PIP based on the instantan-

eous linear model, i.e. (6.7) and (6.11), compared with the SDP-PIP controller,

is shown in Figures 6.7 and 6.8, respectively. The controller sampling interval is

chosen to be Tc = 5ms so that, effectively, the SDP-PIP controller implementa-

tion, as shown in Figures 6.3 and 6.4, respectively, is compared with the linear

PIP controllers. Quantified performance results of the linear PIP controller per-
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formances are presented in Table 6.4, whereby the performance of the SDP-PIP

can be obtained from Tables 6.1 and 6.2, respectively.

In Figure 6.7, it can be observed that both linear PIP controllers achieve

very similar performance results as the SDP-PIP when a reasonably fast closed-

loop poles location is chosen, e.g. p1 = p2 = 0.80. The slower these closed-loop

poles are chosen, i.e. p1 = p2 = 0.90, 0.95, the less accurate the linear PIP

controllers are tracking the desired response. The SDP-PIP controller, on the

contrary, demonstrates its accuracy throughout a wider range of operation.

Moreover, from the quantified results presented in Table 6.4, it can be

said that the linear PIP controller based on the linearised model outperforms the

linear PIP based on the instantaneous linear model, upon which the SDP-PIP

makes use, as long as the input does not saturate. Input saturation can be ob-

served in Figure 6.8 for p1 = p2 = 0.70. Although the linearised model achieves

a superior performance throughout the operating range than the instantaneous

linear model, both are not able to outperform the SDP-PIP, which, interestingly

has more in common with the instantaneous linear model based PIP than with

PIP based on the linearised model. The PIP based on the instantaneous linear

model, however, is able to achieve satisfactory performance at a certain ‘operat-

ing point’, see Figure 6.7 when p1 = p2 = 0.80. This may explain the superiority

of the SDP-PIP, where controller gains are calculated based on the instantaneous

linear model at each sampling instance. On the other hand, since the perform-

ance of the PIP based on the instantaneous linear model rapidly decreases when

deviating from this ‘operating point’, this then also applies to the SDP-PIP in

the presence of model parameter uncertainties and, as a consequence, may result

in increased sensitivity to model parameter uncertainties, as observed in Section

4.3.
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Figure 6.7: Desired output voltage response (thick dashed line) and measured
output voltages using the SDP-PIP controller (thick solid line), linear PIP con-
troller based on the linearised model (thin solid line) and linear PIP controller
based on the instantaneous linear model (thin dashed line).

6.4.1 Comparison load step regulation

The load step, i.e. output current step, distortion regulation of the SDP-PIP, as

shown in Figures 6.5 and 6.6, respectively, is compared against the linear PIP

controllers introduced above.

Implementation results of the linear PIP controllers compared with the

SDP-PIP controller are shown in Figures 6.9 and 6.10, respectively. It can be

observed that the SDP-PIP controller clearly outperforms the linear PIP control-

lers, which is as expected in the discussion in Section 6.3.2. This observation is

also confirmed when comparing the quantified performance results of the linear

PIP controllers, presented in Table 6.5, with those of the SDP-PIP controller,

presented in Table 6.3.
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Figure 6.8: System inputs, i.e. control actions, corresponding to the output
responses shown in Figure 6.7

Furthermore, the output voltage responses shown in Figure 6.7 indicate

a slower response of the linear PIP controllers compared to the SDP-PIP con-

troller. Hence it is not surprising that the linear PIP controllers also regulate

the output voltage distortion slower than the SDP-PIP controller. Considering

the case of p1 = p2 = 0.80, in Figure 6.7, very similar performance of the lin-

ear PIP controllers and SDP-PIP controller is observable, while the SDP-PIP

controller clearly outperforms the linear PIP controllers in the case of load step

regulation, see upper right plot in Figure 6.9 (also c.f. Figure 6.5). This confirms

the anticipation that the adaptation of the SDP-PIP controller gains, caused by

the output current dependency, significantly improves the performance of the

SDP-PIP controller compared to the linear PIP controller.
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p1 = p2
Linearised model Instantaneous linear model

MSE IAE MSE IAE

0.70 0.248 0.1356 0.0434 0.0352
0.80 0.0154 0.0559 0.0394 0.0705
0.90 0.0623 0.1583 0.2563 0.2831
0.95 0.3375 0.4617 1.6087 1.0053

Table 6.4: Quantified linear PIP implementation results for comparison with
SDP-PIP as shown in Figures 6.7 and 6.8

p1 = p2
Linearised model Instantaneous linear model

MSE ×103 IAE ×103 MSE ×103 IAE ×103

0.70 4.5 15.7 11 23.2
0.80 13.1 29.6 33.6 48.9
0.90 98.5 111.1 245.2 191
0.95 800.4 441.7 1883 782.3

Table 6.5: Quantified linear PIP implementation results of load step regulation
for comparison with the SDP-PIP as shown in Figure 6.5
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Figure 6.9: Measured output voltage responses using the SDP-PIP controller
(thick solid line), linear PIP controller based on the linearised model (thin solid
line) and linear PIP controller based on the instantaneous linear model (thin
dashed line) to an output current step from iR = 40mA to 140mA and back to
40mA
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Figure 6.10: System inputs, i.e. control actions, corresponding to the output
responses shown in Figure 6.9
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6.5 Concluding remarks

Based on the SDP model for the DC-DC boost converter elaborated in the pre-

vious Chapter, in this Chapter, a model-based output voltage control strategy

has been proposed making use of the SDP-PIP controller structure. The output

voltage dynamic behaviour for voltage reference set-point changes and, caused

by sudden output current, i.e. load changes, output voltage distortion regulation

have been considered.

Also, the performance of the SDP-PIP control approach has been com-

pared with the performance of linear PIP controllers. The gains of these linear

controllers are obtained based on a linearised model and on an instantaneous

linear model, which can be obtained from the SDP model directly.

The steady-state gain of the linearised model is based on the slope of the

system steady-state gain while the instantaneous linear model uses the steady-

state gain of the system at the chosen operating point directly.

The operating point at which these linear models are based is chosen

such that a centrally located operating point in the operating range is obtained.

Furthermore, the superiority and efficacy of the SDP-PIP control ap-

proach over the linear PIP controllers is experimentally demonstrated.
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Chapter 7

Conclusions and Further Work

Conclusions of the work carried out and documented in this Thesis are given in

Section 7.1. In summary, this concerns the proposed methodological approach

to model-based state dependent parameter (SDP) control, in particular SDP

proportional-integral-plus (PIP) pole-assignment control, the proposed decoup-

ling strategy using linear model-based predictive control (MPC) based on MIMO

non-minimal state-space (NMSS) models, a SDP modelling approach for a DC-

DC boost converter operating in discontinuous conduction mode (DCM), which

is compared to a Hammerstein-bilinear structured (HBS) modelling approach and

finally, the experimental demonstration of SDP-PIP pole-assignment control to

the DC-DC boost converter based on the developed SDP model.

Since research is an ongoing, if not a never ending process, the research

carried out in this Thesis has taken steps further but, nevertheless, as with all

research never completed to the final extent, hence in the authors view, potentially

fruitful directions for further research are suggested in Section 7.2.
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7.1 Conclusions

This Section provides a comprehensive summary of the key achievements that

have arisen in this Thesis in the order of their importance.

7.1.1 SDP discrete-time pole-assignment control

In Chapter 4 of this Thesis, further developments in nonlinear model based con-

trol have been achieved, where the focus has been on a class of discrete-time

SDP system models in conjunction with the SDP-PIP control methodology using

pole-assignment (Taylor et al. 2009). Since pole-assignment, being a linear control

technique, applied to nonlinear SDP modelled systems is considered, it is para-

doxically clear that this technique may only be applied to a linear model, hence

to the time-step instantaneous linear, i.e. ‘frozen’ in time, system model. This

means, that the nonlinear model is to be considered linear at every sampling in-

stance, while nonlinear overall, i.e. in its evolution. This issue has been addressed

in this Thesis. An approach has been proposed where an additional conceptual

time shift operator is introduced accounting for shifting the entire nonlinear sys-

tem in time while, at each sampling instance, the ‘standard’ time shift operator

only affects the instantaneous linear model. This approach provides clarity for

the paradoxical issue of applying linear pole-assignment to a nonlinear system

model. It has been shown that by making use of this conceptual time shift op-

erator, the relationship between linear and SDP-PIP can be explained, as well

as the derivation of the SDP-PIP control law, also using the incremental input

formulation. Additionally, the results obtained also coincide with the results in

(Taylor et al. 2009), hence the proposed approach can be viewed as an extension

which adds clarity to the body of work on this topic, e.g. as presented in (Taylor

et al. 2009).
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Furthermore, the clarity of interpretation afforded by the conceptual

time shift operator, led to the development of a strategy for generalising discrete-

time SDP-PIP pole-assignment control, where the SDP model exhibits equivalent

system zeros, i.e. the instantaneous linear model contains system zeros. The

approach uses cancellation of the closed-loop system zeros of the instantaneous

linear system model at each sampling instance. However, it has been shown that

in the case of model parameter uncertainties, i.e. mismatch, the performance is

significantly impaired, as observed for one of the simulation examples studied in

this Thesis. In addition, it has been pointed out that the robustness also depends

on a number of other factors, including the desired closed-loop poles, set-point

sequence and the nature of the SDPs.

7.1.2 MIMO decoupling NMSS MPC control

In Chapter 3 of this Thesis, a MPC decoupling control strategy for linear, square

MIMO systems has been proposed, where the system model on which the MPC

is based, is of a NMSS form. Moreover, the NMSS MPC in incremental input

form (Wang and Young 2006) and the form of using an integral-of-errors state

variable (Exadaktylos et al. 2006) has been considered. Apart from NMSS MPC

system output decoupling approaches based on weighting matrix optimisation

(Exadaktylos and Taylor 2010), in this Thesis, an analytic decoupling method,

which achieves its goal by closed-loop system model diagonalisation via an input

transformation, adopted from (Plummer and Vaughan 1997; Kubalcik and Bobal

2006), has been transferred into the NMSS MPC framework.

Furthermore, a modification to the formulation of the NMSS MPC in

incremental input form has been proposed, which allows one to consider indi-

vidually the transformed system input - system output pairs so that individual
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control and prediction horizons can be assigned to these pairs. These horizons can

be viewed as additional tuning parameters, hence provides a greater flexibility.

However, when applied to the integral-of-errors state variable form, due to the

implicit consideration of the future set-point trajectory in the respective MPC

cost function, this modification cannot be straightforwardly applied.

Additionally, it has been shown that the ability of considering the input-

output pairs individually, allows imposed constraints to be handled without indu-

cing cross-coupling effects in the system outputs. It has been proposed to make

use of the reference trajectory adaptation method (Bemporad and Mosca 1994),

which, in combination with the modified NMSS MPC in incremental input form,

effectively provides freedom to choose which system output is allowed to account

for the imposed constraints. The integral-of-errors state variable formulation,

however, is not able to provide this flexibility.

Finally, by making use of a simulation example, the impact of model

parameter uncertainties has been evaluated, where it could be shown that the

integral-of-errors state variable form and incremental input form achieve very

similar performance. However, due to the analytic decoupling method, model

parameter uncertainties may cause cross-coupling effects to re-emerge.

7.1.3 SDP modelling and control of a DC-DC boost con-

verter operating in DCM

As an application example, a SDP modelling approach for a DC-DC boost con-

verter operating in DCM has been developed in Chapter 5, upon which SDP-

PIP control has subsequently been implemented in Chapter 6. This modelling

approach is based on measured input-output data rather than being deduced

from physical relationships. The required data for modelling were acquired from
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laboratory based experiments, as well as for the model verification. The proposed

SDP parameter identification procedure is based on acquired data while stepping

through the entire pre-defined operating range and extracting the steady-state as

well as dynamic behaviour of the converter. Additionally, there exists not only

a relationship between the system input and system output, i.e. duty-cycle and

output voltage, respectively, but also the converter behaviour is influenced by

the output current drawn, which has been taken into account by considering the

input-output relation at different output current levels throughout the output

current range and subsequent interpolation by making use of polynomials.

The proposed SDP model has been compared with a HBS modelling

approach, which accounts for the steady-state behaviour in the Hammerstein

static nonlinear term and the dynamics in the bilinear term, which is conceptually

similar to the SDP approach. In order to account for the influence of the output

current, a sequence of HBS sub-models has been identified at different output

current levels and these sub-models are subsequently blended by making use of

Gaussian membership functions so that an ‘overall’ HBS model is obtained.

Although these modelling approaches are similar, it has been shown

that the proposed SDP modelling approach achieves slightly superior perform-

ance results. Moreover, due to the Gaussian blending of the sub-models, the

SDP model could be viewed as structurally more beneficial regarding subsequent

model-based control since the ‘interpolation’ is handled inherently in the SDP

model parameters and not comprised of several sub-models.

Furthermore, the developed SDP model has been used as a basis for

subsequent SDP-PIP pole-assignment control implementation and the efficacy

has been experimentally demonstrated. In addition, the SDP-PIP performance

has been compared to the performance obtained by making use of linear PIP
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pole-assignment control. A linear PIP controller based on the instantaneous

linear model, i.e. the time-step ‘frozen’ model upon which the SDP-PIP is based

at each sampling instance, as well as a linear PIP controller based on a linearised

model, have been used. The operating point assumed for the instantaneous linear

and linearised model is chosen such that it lies centrally inside the operating

range. Moreover, it has been demonstrated, not surprisingly, that the SDP-PIP

clearly outperforms both linear PIP controllers when the entire operating range is

considered. This observation applies to regulation of load steps as well as output

voltage set-point changes.

Additionally, it has been observed that the PIP controller based on the

linearised model is slightly superior to that based on the instantaneous linear

model and, finally, the physical performance constraints of the converter have

been highlighted.

7.2 Further work

In this Section, some directions for further research are suggested.

7.2.1 SDP model based control

The SDP model based control approaches, e.g. SDP-PIP, SDRE, etc. utilise

linear control techniques performed at each sampling instance, hence the focus is

on the instantaneous linear model. Consequently, attention to the SDP system

behaviour between the consecutive sampling instances may be required in order

to explore and explain the evolution of the, in fact, nonlinear system. Hence the

interaction between these levels of consideration, i.e. the instantaneous linear

and overall nonlinear level, constitutes an open research question.
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Furthermore, regarding the SDP-PIP, the issue of dealing with equival-

ent system numerator zeros is not solved to the last extent. There is still a lack

of robustness concerning model parameter uncertainties as well as dealing with

SDP modelled systems that exhibit non-minimum phase behaviour.

Although developments regarding the SDP MPC have been proposed,

e.g. (Exadaktylos 2007, Chap. 8), research on this topic is still at an early stage.

7.2.2 Decoupling NMSS MPC

It has been pointed out that the constraints imposed on the NMSS-MPC form

using an integral-of-errors state variable induce system output cross-coupling ef-

fects, hence further research on the constraints formulation such that these cross-

coupling effects are suppressed might be useful. Moreover, the investigation of

the effects of disturbances and their impact on the decoupling strategy has been

left as an open question.

In addition, explicit model parameter uncertainty formulations could

be incorporated into the decoupling strategy such that the impact of parameter

uncertainties is reduced.

Also, so far, linear NMSS MPC has been considered so that research on

transferring this approach into a nonlinear framework, i.e. SDP MPC, might be

interesting.

7.2.3 SDP model based control of a DC-DC boost con-

verter

Regarding the SDP-PIP control of a DC-DC boost converter operating in DCM,

further considerations and consequently incorporation of constraints into the con-

trol strategy might lead to further improvements. Also, considering the dynamics,
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introduced by the output current, in the SDP model is a potential improvement.

Furthermore, the SDP modelling and control approach can be extended

to the continuous conduction operation mode (CCM). The boost converter op-

erating in CCM, however, exhibits a non-minimum phase behaviour which is, at

the current stage of research, an obstacle concerning SDP-PIP pole-assignment

control, which is required to be overcome first. However, investigations on the

applicability of alternative SDP control methods such as the SDRE approach may

be of interest.

Finally, an investigation of applying SDP modelling and control methods

to different DC-DC switched mode converter topologies, e.g. Buck, Buck-Boost,

SEPIC etc., remains an open research question.
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A.1 Computation of SDP-PIP closed loop para-

meters γ and β

In the following, the computation of the parameters γi,k and βj,k in the closed-loop

equation (4.27), as presented in (4.28), is shown.

Recall from (4.25) that the closed loop system is given by

Ak+τz
τyk + bτ,k+τFkyk + bτ,k+τ

KI,k

∆
yk = bτ,k+τ

KI,k

∆
rk

+ (bτ+1,k+τ − bτ,k+τg1,k)uk−1 + (bτ+2,k+τ − bτ,k+τg2,k)uk−2

+ . . .+ (bτ+m,k+τ − bτ,k+τgm,k)uk−m − gm+1,kbτ,k+τuk−m−1

− . . .− gm+τ−1,kbτ,k+τuk−m−τ+1

(A.1)

Also, recall from (4.28) that the computation is an iterative procedure, i.e. (A.1)

is iteration zero. So, (A.1) can be reformulated to be

Ak+τz
τyk + bτ,k+τFkyk + bτ,k+τ

KI,k

∆
yk − bτ,k+τ

KI,k

∆
rk

= c
(0)
1 uk−1 + c

(0)
2 uk−2 + . . .+ c

(0)
m+τ−1uk−m−τ+1

(A.2)

with c
(0)
i = bτ+i,k+τ−bτ,k+τgi,k i = 1, 2, . . . , m+τ−1 and bτ+i,k+τ = 0 ∀i > m. The
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superscript (·) denotes the iteration. Now, sequentially substituting the previous

system inputs uk−i i = 1, 2, . . . , τ−1 obtained from the open-loop system equation

(4.1) and under consideration of Example 4.1, given by

uk−1 =
1

bτ,k+τ−1

Ak+τ−1 zτ−1yk −
bτ+1,k+τ−1

bτ,k+τ−1

uk−2 −
bτ+2,k+τ−1

bτ,k+τ−1

uk−3

− . . . −
bτ+m,k+τ−1

bτ,k+τ−1
uk−m−1

uk−2 =
1

bτ,k+τ−2
Ak+τ−2 zτ−2yk −

bτ+1,k+τ−2

bτ,k+τ−2
uk−3 −

bτ+2,k+τ−2

bτ,k+τ−2
uk−4

− . . . −
bτ+m,k+τ−2

bτ,k+τ−2
uk−m−2

...

uk−τ+1 =
1

bτ,k+1
Ak+1 z yk −

bτ+1,k+1

bτ,k+1
uk−τ −

bτ+2,k+1

bτ,k+1
uk−τ−1

− . . . −
bτ+m,k+1

bτ,k+1

uk−m−τ+1

(A.3)

so that substituting uk−1 from (A.3) into (A.2) and re-arranging, yields

. . . =
c
(0)
1

bτ,k+τ−1
Ak+τ−1z

τ−1yk +

(
c
(0)
2 − c

(0)
1

bτ+1,k+τ−1

bτ,k+τ−1

)
uk−2

+

(
c
(0)
3 − c

(0)
1

bτ+2,k+τ−1

bτ,k+τ−1

)
uk−3 + . . .+

(
c
(0)
m+1 − c

(0)
1

bτ+m,k+τ−1

bτ,k+τ−1

)
uk−m−1

+ c
(0)
m+2uk−m−2 + . . .+ c

(0)
m+τ−1uk−m−τ+1

(A.4)

where, here, and in the following, for the sake of brevity, the left-hand side of

(A.2) is dropped, which, however, remains unchanged. Since (A.4) can be seen

as the first iteration, similarly to (A.2), it can be reformulated as

. . . = γ1,kAk+τ−1z
τ−1yk + c

(1)
2 uk−2 + . . .+ c

(1)
m+τ−1uk−m−τ+1 (A.5)

where c
(1)
i = c

(0)
i − c

(0)
1

bτ+i−1,k+τ−1

bτ,k+τ−1

∀i = 2, 3, . . . , m+ 1 and since bτ+m+j,k+τ−1 =
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0 ∀j > 0, note that c
(1)
m+i = c

(0)
m+i ∀i = 2, 3, . . . , τ − 1. Also, the closed-loop

parameter γ1,k is given by γ1,k =
c
(0)
1

bτ,k+τ−1
.

Then, in the next iteration, substituting uk−2 from (A.3) into (A.5) and

re-arranging, gives

. . . =γ1,kAk+τ−1z
τ−1yk +

c
(1)
2

bτ,k+τ−2

Ak+τ−2z
τ−2yk +

(
c
(1)
3 − c

(1)
2

bτ+1,k+τ−2

bτ,k+τ−2

)
uk−3

+

(
c
(1)
4 − c

(1)
2

bτ+2,k+τ−2

bτ,k+τ−2

)
uk−4 + . . .+

(
c
(1)
m+2 − c

(1)
2

bτ+m,k+τ−2

bτ,k+τ−2

)
uk−m−2

+ c
(1)
m+3uk−m−3 + . . .+ c

(1)
m+τ−1uk−m−τ+1

(A.6)

which becomes, similarly to (A.5),

. . . = γ1,kAk+τ−1z
τ−1yk + γ2,kAk+τ−2z

τ−2yk

+ c
(2)
3 uk−3 + c

(2)
4 uk−4 + . . .+ c

(2)
m+τ−1uk−m−τ+1

(A.7)

where γ2,k =
c
(1)
2

bτ,k+τ−2
, c

(2)
i = c

(1)
i − c

(1)
2

bτ+i−2,k+τ−2

bτ,k+τ−2
∀i = 3, 4, . . . , m + 2 and

c
(2)
m+i = c

(1)
m+i = c

(0)
m+i ∀i = 3, 4, . . . , τ − 1.

Proceeding in this manner, finally, at iteration τ − 1, i.e. substituting

uk−τ+1, yields

. . . =γ1,kAk+τ−1z
τ−1yk + γ2,kAk+τ−2z

τ−2yk + . . .+ γτ−2,kAk+2z
2yk

+
c
(τ−2)
τ−1

bτ,k+1
Ak+1z

1yk +

(
c(τ−2)
τ − c

(τ−2)
τ−1

bτ+1,k+1

bτ,k+1

)
uk−τ

+

(
c
(τ−2)
τ+1 − c

(τ−2)
τ−1

bτ+2,k+1

bτ,k+1

)
uk−τ−1 + . . .

+

(
c
(τ−2)
τ+m−1 − c

(τ−2)
τ−1

bτ+m,k+1

bτ,k+1

)
uk−τ−m+1

(A.8)
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which, as well, can be written as

. . . =
τ−1∑

i=1

γi,kAk+τ−iz
τ−iyk +

τ+m−1∑

i=τ

c
(τ−1)
i uk−i (A.9)

where γτ−1,k =
c
(τ−2)
τ−1

bτ,k+1
and c

(τ−1)
i = c

(τ−2)
i − c

(τ−2)
τ−1

bτ+i−(τ−1),k+τ−(τ−1)

bτ,k+τ−(τ−1)
∀i = τ, τ +

1, . . . , τ +m− 1.

Summarizing the above, where it has been shown that by sequentially

substituting the delayed inputs (A.3), the coefficients c
(j)
i are obtained as

c
(0)
i = bτ+i,k+τ − bτ,k+τgi,k

∀i = 1, 2, . . . , m+ τ − 1 where bτ+m+j = 0 ∀j = 1, 2, . . .

(A.10)

and

c
(j)
i =





c
(j−1)
i − c

(j−1)
j

bτ+i−j,k+τ−j

bτ,k+τ−j

if i ≤ m+ j

c
(0)
i else

(A.11)

The parameters γi,k are given by

γi,k =
c
(i−1)
i

bτ,k+τ−i

∀i = 1, 2, . . . , τ − 1 (A.12)

Comparing (A.9) and (4.27), the parameters βi,k are obtained by

βi,k = c
(τ−1)
τ+i−1 ∀i = 1, 2, . . . , m (A.13)

A.2 Calculation of the parameters g

Solving the SDP-PIP pole-assignment problem (4.23), the controller parameters

gi,k are not obtained directly, instead, the solution (4.31) provides γi,k, in which
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the controller parameters gi,k are contained. Consequently, gi,k is required to be

recovered from γi,k. In the following, it is shown that gj,k, j = 1, 2, . . . , i, are

linear in γi,k, i = 1, 2, . . . , τ − 1, so that it is straightforward to perform this task

and no additional burden is introduced. Similarly, the same applies to βi,k.

When considering (A.12) and (A.13), it is sufficient to show that c
(j)
i

(A.11) are, indeed, linear functions w.r.t the parameters gl,k ∀l = 1, 2, . . . , i, if

i > j. The latter follows from the fact that in (A.12) the superscript is j = i− 1

and in (A.13) the subscript is i = τ −1+n, n = 1, 2, . . . , m, while the superscript

is j = τ − 1. Hence, in both cases, i > j.

So, as an exemplary case, consider c
(i−1)
i from (A.12) and taking (A.11)

into account, gives

c
(i−1)
i = c

(i−2)
i − c

(i−2)
i−1

bτ+1,k+τ−i+1

bτ,k+τ−i+1

= c
(i−3)
i − c

(i−3)
i−1

bτ+1,k+τ−i+1

bτ,k+τ−i+1

+ c
(i−3)
i−2

(
bτ+1,k+τ−i+1bτ+1,k+τ−i+2

bτ,k+τ−i+1bτ,k+τ−i+2

−
bτ+2,k+τ−i+2

bτ,k+τ−i+2

)

= c
(i−4)
i − c

(i−4)
i−1

bτ+1,k+τ−i+1

bτ,k+τ−i+1

+ c
(i−4)
i−2

(
bτ+1,k+τ−i+1bτ+1,k+τ−i+2

bτ,k+τ−i+1bτ,k+τ−i+2
−

bτ+2,k+τ−i+2

bτ,k+τ−i+2

)

− c
(i−4)
i−3

(∏3
l=1 bτ+1,k+τ−i+l∏3
l=1 bτ,k+τ−i+l

−
bτ+2,k+τ−i+2bτ+1,k+τ−i+3

bτ,k+τ−i+2bτ,k+τ−i+3

−
bτ+2,k+τ−i+3bτ+1,k+τ−i+1

bτ,k+τ−i+3bτ,k+τ−i+1

)

= . . .

(A.14)

where it can be seen that when proceeding until the superscript (0) is reached,

c
(i−1)
i is a linear function w.r.t c

(0)
i , c

(0)
i−1, c

(0)
i−2, . . . , c

(0)
1 . Moreover, since c

(0)
l is a

linear function w.r.t gl,k (A.10), it follows that, as a consequence, c
(i−1)
i (and
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hence γi,k) is a linear function w.r.t gj,k, j = 1, 2, . . . , i, as well.

Similarly, when considering (A.13) in conjunction with (A.11) and, sub-

sequently, the observations drawn from (A.14), it can be said that βi,k is a linear

function w.r.t the parameters gj,k, j = 1, 2, . . . , τ − 1 + i.

Remark A.2.1. It is essential that, regarding (A.12) and (A.13), i > j in (A.11)

is given. Otherwise, since in each iteration the running indices, i and j, are

decremented by unity (as demonstrated in (A.14)) the index i becomes zero or

negative when j = 0 is reached. But, since the index i is associated with the index

of the parameter gi,k in (A.10), i must take a value of i = 1, 2, . . . , ng.
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B.1 The DC-DC boost converter

The purpose built laboratory based DC-DC boost converter, which is used for

experiments, is shown on the right in Figure B.1. Additionally, the realisation of

the load, as described in Section 5.1 and schematically shown in Figure 5.2, can

be observed on the left in Figure B.1. Moreover, since the input voltage range of

the ADC of the dSPACE MicroAutobox ranges between 0V and 5V, the output

voltage of the converter is required to be scaled by a factor of 1
4
. This is realised

by the circuit shown in the front in Figure B.1.

The Simulink® block diagram, which is used for acquiring the data that

are subsequently used for obtaining the converter model, is shown in Figure B.2.

The block diagrams used for PIP control of the converter are shown

in Figures B.3 and B.4. In Figure B.3, the load is considered to be of a first

order transfer function form (6.1), while load steps are considered in Figure B.4.

The linear PIP controllers, as well as the SDP-PIP controller are implemented

as an ‘Embedded MATLAB Function’, hence only this function is required to be

changed accordingly in order to switch between the respective controllers.

Finally, the Simulink® subsystem ‘measure voltage’ is shown in Figure

B.5.
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Figure B.1: DC-DC boost converter (right), realisation of the load (left) and
output voltage scaling circuit (front).

(a) Simulink block diagram for acquiring open-
loop data

(b) Simulink subsystem ‘Output current’

Figure B.2: Simulink block diagram used for acquiring system identification data
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Figure B.3: Simulink block diagram when the load is realised as a transfer func-
tion.
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Figure B.4: Simulink block diagram when load steps are considered.

Figure B.5: Realisation of the Simulink subsystem ‘measure voltage’
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