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Chapter 1

Introduction

1.1 Motivation

In the real world, most systems, whether man-made or natural, are nonlinear.

However, in some cases, the nonlinearities can be considered negligible, especially

when some systems are intended to operate about a �xed operating point. In such

cases, linearisation around this operating point is often su�cient in practice. As

a consequence, linear control techniques are still in high demand, due mainly to

their performance, yet practicability and ease of implementation.

In particular, the non-minimal state-space (NMSS) approach o�ers a

further simpli�cation in terms of control design, since allthe system states are

measurable, i.e. current and previous system output valuesas well as previous

system input values, which removes the need for a state observer/estimator (Hes-

keth 1982; Young et al. 1987).

Inspired by the above mentioned useful and practical properties, model-

based control strategies in the NMSS framework have been explored. Particularly,

NMSS model-based predictive control (MPC), where the NMSS MPC in incre-

mental input form (Wang and Young 2006) and making use of an integral-of-errors

1













Chapter 2

Background Concepts

In this Chapter, the methodological background concepts, of which use is made

in this Thesis, are introduced. Generally, the conceptual approach is presented

in this Chapter only, since these concepts are taken from textbooks and other

publications so that detailed information can be found in the respective references

provided and further references therein.

The system models considered in this Thesis are in discrete-time domain

and mainly in a discrete-time di�erence equation form, hence the focus builds on

this structure. Based on this model structure and under the consideration of a

linear system model, in Section 2.1, the concept of a non-minimal state-space

(NMSS) system representation is depicted.

Extending this concept to a nonlinear framework, in Section2.2, the

state-dependent parameter (SDP) system representation isintroduced.

Subsequently, the system identi�cation methods used in order to identify

the, essentially unknown, model parameters of the linear NMSS, as well as the

nonlinear SDP model are presented in Section 2.3.

Furthermore, in this Thesis, two model-based control strategies are con-

sidered. Section 2.4 is concerned with a model-based predictive control (MPC)
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approach, where the model on which the MPC is based, is in a NMSS form, hence

linear. Moreover, the handling of imposed constraints is also considered.

The second model-based control approach considered, is theproportional-

integral-plus (PIP) controller, which is introduced in Section 2.5. Here, the PIP

controller based on the linear NMSS and based on the nonlinear SDP model, is

considered.

2.1 Non-minimal state-space system representa-

tion

Consider the linear, discrete-time, single-input single-output (SISO) system model

in di�erence equation form

yk + a1 yk� 1 + a2 yk� 2 + : : : + ana yk� na

= b1 uk� 1 + b2 uk� 2 + : : : + bnb uk� nb

(2.1)

where the subscriptk denotes the sampling time instance andai , bi 2 R denote

the model parameters, respectively. The system output and input are denoted by

y and u, respectively. Alternatively, (2.1) can formulated in a linear, discrete-time

transfer function of the form

yk =
B(z� 1)
A(z� 1)

uk (2.2)

with

A(z� 1) = 1 + a1 z� 1 + a2 z� 2 + : : : + ana z� na (2.3a)

B(z� 1) = b1 z� 1 + b2 z� 2 + : : : + bnb z� nb (2.3b)

8
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wherez� 1 denotes the backward time-shift operator, i.e.z� 1 yk = yk� 1. In gen-

eral, a time delay can be introduced by setting the respective leading parameters

in (2.3b) to zero.

The NMSS representation of the system can be directly deduced from

the discrete-time transfer function or from the di�erence equation (Young et al.

1987), i.e. (2.2) and (2.1), respectively. This follows from the de�nition of the

state vector of the NMSS model in which elements consists of the current and pre-

vious system output measurements and previous system inputs, see e.g. (Young

et al. 1987; Wang and Young 2006; Wang 2009), i.e.

x k = [ yk yk� 1 � � � yk� na +1 uk� 1 uk� 2 � � � uk� nb+1 ]T 2 R(na + nb� 1)� 1 (2.4)

so that the NMSS system representation becomes

x k = G x k� 1 + B uk� 1

yk = C x k

(2.5a)

where the(na + nb � 1) � (na + nb � 1) state transition matrix is

G =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� a1 � a2 � � � � ana � 1 � ana b2 � � � bnb� 1 bnb

1 0 � � � 0 0 0 � � � 0 0

0 1 � � � 0 0 0 � � � 0 0
:::

:::
: : :

:::
:::

:::
:::

:::
:::

0 0 � � � 1 0 0 � � � 0 0

0 0 � � � 0 0 0 � � � 0 0

0 0 � � � 0 0 1 � � � 0 0
:::

:::
:::

:::
:::

:::
: : :

:::
:::

0 0 � � � 0 0 0 � � � 1 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(2.5b)
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and

B = [ b1 0 0 � � � 0 1 0 � � � 0]T 2 R(na + nb� 1)� 1

C = [1 0 � � � 0] 2 R1� (na + nb� 1)
(2.5c)

In the case of a multi-input multi-output (MIMO) system, the dimension of the

di�erence equation representation (2.1) increases accordingly and, consequently,

so do the matrices involved in the NMSS representation, see also Chapter 3.

2.2 State-dependent parameter system represent-

ation

Similar to the linear NMSS system model representation (2.5), the SDP model

can be represented in a NMSS formulation as well. While the model parameters

of the linear NMSS representation are constant quantities,the model parameters

of the SDP representation are dependent on the states of the NMSS state vector

(2.4), i.e. the current and previous system outputs as well as the previous system

inputs. Moreover, the SDP model parameters are not restricted to be dependent

on the states only, they also can be dependent on further variables (Young 2000,

2011).

In a similar manner as the linear NMSS system model representation

of (2.5), the SDP model in a NMSS formulation can also be deduced from a

discrete-time di�erence equation (Young 2000),

yk + a1(� k) yk� 1 + a2(� k) yk� 2 + : : : + ana (� k) yk� na

= b1(� k) uk� 1 + b2(� k) uk� 2 + : : : + bnb(� k) uk� nb

(2.6)

where the state dependency on the non-minimal states in the vector (2.4) is

10
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denoted by

� k = [ x T
k # T

k ]T (2.7)

and # k denotes a vector comprised of some variables the SDP model parameters

may also depend on.

Consequently, for the sake of brevity and simplicity, the parameters can

be viewed as time varying, so that (2.6) becomes

yk + a1;k yk� 1 + a2;k yk� 2 + : : : + ana ;k yk� na

= b1;k uk� 1 + b2;k uk� 2 + : : : + bnb;k uk� nb

(2.8)

where the subscriptk indicates the time varying nature of the model parameters

and subsequently, a non-minimal state-space formulation can be obtained, such

as (2.5), in which the parameters are state dependent.

2.3 System identi�cation

In the previous sections of this chapter, the system representations have been

introduced. In this Section attention is given to system identi�cation methods

in order to obtain the associated model parameters. The system identi�cation

methods considered here, are those used in this Thesis or those which an under-

lying concept is adopted, in particular, in Chapter 5, wherea SDP modelling

approach of a DC-DC boost converter is proposed.

2.3.1 Linear system identi�cation methods

Consider the linear system model in discrete-time, di�erence equation form (2.1).

A straightforward method in order to obtain the parameters is the least-squares

(LS) algorithm (Hsia 1977) and its recursive version, i.e. recursive least-squares

11
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(RLS), which provides additional information on statistical properties (Hsia 1977;

Söderström and Stoica 1989; Wellstead and Zarrop 1991; Ljung 1999).

Since the LS algorithm identi�es the unknown model parameters by

representing (2.1) in regression vector form, i.e.

yk = ' T � (2.9)

where ' T = [ � yk� 1 � yk� 2 � � � � yk� na uk� 1 � � � uk� nb] denotes the regres-

sion vector and� = [ a1 a2 � � � ana b1 � � � bnb]
T denotes the parameter vector,

also parameters of nonlinear functions can be identi�ed if the function is linear

w.r.t. the parameters and can be expressed in the form (2.9),e.g. n � th order

polynomials, which is also used in Chapter 5.

2.3.2 SDP system identi�cation methods

Identifying the parameters of a SDP system model is not as straightforward as

identifying the parameters of a linear model, although the SDP and linear model

considered here are both of identical structure, i.e. in a discrete-time di�erence

equation form (2.1) and (2.8), respectively. The main di�culty, however, lies in

the fact that the SDP model parameters are themselves unknown functions of

the non-minimal states which are required to be identi�ed.

In order to identify these functions, several approaches have been made,

such as based on arti�cial neural networks (Akesson and Toivonen 2006). An e�-

cient method, which also provides an underlying concept that is used in Chapter

5, is the recursive �xed interval smoothing (FIS) method (Young et al. 2001). The

SDP model is initially viewed as a linear, time-varying parameter (TVP) model

and identi�ed by making use of recursive linear system identi�cation methods.

Subsequently, these parameters are ordered in a non-temporal manner, e.g. they

12
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convex, quadratic form (Maciejowski 2001; Rossiter 2004; Camacho and Bordons

2007), e.g.

J =
NpX

i =1

(yk+ i jk � r k+ i jk)T Q i (yk+ i jk � r k+ i jk) +
N c � 1X

j =0

� u T
k+ j jk � j � u k+ j jk (2.10)

which is required to be minimised and whereyk = [ y1;k y2;k : : : yny ;k ]T , r k =

[r1;k r2;k : : : rny ;k ]T denote vectors ofny system outputs and respective refer-

ence signals,u k = [ u1;k u2;k : : : unu ;k ]T denotes a vector ofnu system inputs,

Q i 2 Rny � ny and � j 2 Rnu � nu denote positive de�nite and positive semidef-

inite weighting matrices, respectively, and� = 1 � z� 1 denotes the di�erence

operator. The subscriptk + i jk denotes thei -th prediction based at the current

sampling time instancek. Consequently, the cost function containsNp system

output predictions, henceNp denotes the prediction horizon, andNc � 1 system

input predictions, henceNc denotes the control horizon.

Now, consider the issue of constraint handling. Minimisingthe cost

function (2.10) w.r.t. the system input prediction sequencef � u k+ i jkg i = 0; 1; : : : ;

Nc � 1, can be regarded as the unconstrained case, consequently, the constrained

case can be formulated as an optimisation problem

min:
� u k j k ;� u k +1 j k ;:::; � u k + N c� 1j k

J

subject to : yk+ i = f (yk+ i � j ; u k+ i � l )

yk+ i 2 Y i = 1; 2; : : : ; Np

u k+ i 2 U i = 0; 1; : : : ; Nc � 1

(2.11)

whereY and U denote constraint sets on the system output and input, respect-

ively.

In the MPC approach, at every sampling time instance, a set ofoptimal,

14
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current and predicted system inputs are calculated by obtaining the solution of

the optimisation problem (2.11), i.e. f u kjk; u k+1 jk ; : : : ; u k+ N c � 1jkg, so that

Nc � 1 future system inputs are obtained. The current system inputu k , i.e.

the �rst element of this sequence, however, is actually applied to the system and

the remaining, predicted inputs are discarded. This procedure is repeated at each

sampling instance. Therefore, the MPC method is also termeda receding horizon

control (RHC) (Kwon and Han 2005). Additionally, the systeminput beyond

the control horizon is assumed to be constant, i.e.u k+ N c+ i jk = u k+ N c � 1jk 8i =

0; 1; 2; : : :.

However, in (Bemporad et al. 2000, 2002) a multiparametric quadratic

programming approach is proposed so that the optimisation problem (2.11) is not

required to be solved online. This, however, is beyond the scope of this Thesis.

Furthermore, note that Np > N c. This becomes obvious when consid-

ering a linear system model (2.1) and the last element in the input prediction

sequence, i.e.uk+ N c � 1jk , as well as the corresponding output predictionyk+ N c jk .

In the case ofNc > N p, the input sequence is optimised beyond the prediction

horizon and these additional predicted inputs do not a�ect the system output

predictions that appear in the cost function (2.10), hence the choice ofNp > N c.

Next, obtaining the solution of the optimisation problem (2.11) is of

interest. As mentioned above, the optimisation problem (2.11) is convex and of

a quadratic form, so that (2.11) can be cast as the following general quadratic

optimisation problem

min:
� 2 Rn � 1

f (� ) = 1
2 � T H� + cT �

subject to : A E � = bE

A I � � bI

(2.12)

15
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whereA E 2 Rn� mE , A I 2 Rn� m I denote matrices andbE 2 RmE � 1, bI 2 Rm I � 1

denote vectors that account for the equality and inequalityconstraints, respect-

ively, H 2 Rn� n denotes a positive de�nite matrix and c 2 Rn� 1 a constant

vector. Due to the linear constraints and the positive de�niteness ofH , (2.12) is

a strictly convex, quadratic programming (QP) problem, forwhich a solution is

global and unique (Goodwin et al. 2005, Chap. 2). Moreover, the solution of the

problem (2.12), denoted� � , must satisfy the constraints as well as the (�rst-order

necessary) Karush-Kuhn-Tucker (KKT) conditions (Goodwinet al. 2005)

H� + c + A T
E � E + A T

I � I = 0

� I � 0

� T
I (A I � � bI ) = 0

(2.13)

where � E 2 RmE � 1 and � I 2 Rm I � 1 denote vectors of Lagrange multipliers.

The area of optimisation is a wide �eld, ranging from linear program-

ming (LP) methods (Hillier and Lieberman 2001) via QP methods (Fletcher 2000;

Goodwin et al. 2005; Boyd and Vandenberghe 2004; Nocedal andWright 2006) to

semide�nite programming (SeDP) (Boyd et al. 1994) and numerous other meth-

ods. In particular, the SeDP method, developed by (Nemirovskii and Gahinet

1994; Gahinet and Nemirovski 1997), allows the e�cient solution of linear mat-

rix inequalities, which are used in the development of robust, constrained MPC

methods (Kothare et al. 1996; Kouvaritakis et al. 2000, 2002). Also, this method

is readily implemented in the Matlab® Robust Control Toolbox. However, this

is beyond the scope of this Thesis and therefore, the focus here is on algorithms

in order to solve QP problems. The most common algorithms in order to solve

QP problems are the active set method and interior point methods (Maciejowski

2001). Matlab® provides the function quadprog in the Optimisation Toolbox,

16
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inequality constraints into a QP problem with equality constraints only, i.e.

min:
� 2 Rn � 1

f (� )

subject to : a i � = bi 8i 2 A
(2.14)

which can be easily solved by making use of the KKT condition (2.13), see e.g.

(Nocedal and Wright 2006, Chap. 16.1).

In order to identify the active constraints, an initial feasible point is

required, which is a problem in its own right and can be di�cult to obtain,

especially in large scale QP problems. However, since the aim is to minimise

the cost function (2.12), a decreasing directiond 2 Rn� 1 is calculated at each

iteration such that f (� k+1 ) � f (� k) with � k+1 = � k + � kdk where � 2 (0; 1]

denotes the step-length. If� k = 1 and dk 6= 0 does not yield a feasible solution,

then a line search alongdk is performed, i.e. reducing� appropriately. Moreover,

this also means that there exists a constraint inI along the directiondk , which

is not considered in the active set. Consequently, the corresponding constraint

index is obtained by �nding the constraint index i =2 A , that yields the smallest

step length� k , such that adding this constraint index to the active set, a feasible

solution is obtained. A constraint becomes inactive (and removed from the active

set), if it is a feasible point and the corresponding Lagrange multiplier in the KKT

condition is negative. In the case of more than one negative Lagrange multiplier,

the constraint index corresponding to the most negative oneis removed from

the active set. The algorithm terminates ifdk = 0, the Lagrange multipliers

are positive or zero, the solution is feasible and the KKT condition is satis�ed.

Detailed explanations on the active set method can be found in, e.g. (Fletcher

2000; Nocedal and Wright 2006).
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2.4.2 Interior point method

E�cient interior point optimisation methods emerged initi ally for solving LP

problems (Karmarkar 1984) and were later adopted for solving convex QP prob-

lems (Nesterov and Nemirovskii 1994; Renegar 2001). Furthermore, interior point

methods are also used in order to solve optimisation problems where linear matrix

inequalities are involved (Boyd et al. 1994), however, the focus here is on convex,

QP problems.

Interior point methods start at an initial feasible point and iteratively

converge to the solution of the QP problem. Other than the active set method,

interior point methods search in the interior of the feasible region and not only

on the boundary for the solution. However, it is not always straightforward to

obtain an initial feasible point. This led to the development of infeasible interior

point methods, which do not require an initial feasible starting point (Wright

1997). A drawback of these algorithms is that they cannot be terminated before

convergence to the solution, since an intermediate point may be infeasible.

There is a wide variety of interior point algorithms, however, here an

interior point method using barrier functions is considered. The barrier func-

tion describes the boundary of the feasible region, precisely, the boundary of the

inequality constraints. Moreover, barrier functions are smooth, monotonically

decreasing functions and are often of a logarithmic form, e.g.

�( � ; � ) = �
1
�

m IX

i =1

log(bi � a i � ) i 2 I (2.15)

so that the QP problem (2.12) can be formulated to be

min:
�

f (� ) + �( � ; � )

subject to : A E = bE

(2.16)
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see e.g. (Taylor et al. 1996a, 2000). Additionally, the PIP can be implemented

based on the feedback and forward path structure, details onthe di�erences can

be found in (Taylor et al. 1996b).

Since Chapter 4 is concerned with the PIP feedback controller structure,

this con�guration is shown in Figure 2.1. The controller parameter polynomials

r k K I

�

1
G(z� 1)

uk B(z� 1)
A(z� 1)

yk

F (z� 1)

��

Figure 2.1: Block diagram of the linear PIP feedback structure

are denoted byF (z� 1) and G(z� 1), respectively, which are de�ned to be

F (z� 1) = f 0 + f 1z� 1 + : : : + f n f z� n f nf = na � 1

G(z� 1) = 1 + g1z� 1 + : : : + gng z� ng ng = nb � 1
(2.17)

and K I denotes the integral gain, while� = 1 � z� 1 denotes the discrete-time

di�erence operator, i.e. � yk = yk � yk� 1. From Figure 2.1, the control law is

obtained to be

uk = � F (z� 1)yk � ~G(z� 1)uk +
K I

�
(r k � yk) (2.18)

with ~G(z� 1) = G(z� 1) � 1. Alternatively, in state-variable feedback form

uk = � c x̂ T
k (2.19)

wherec = [ f 0 � � � f n f g1 � � � gng � K I ] and x̂ k = [ x T
k � k ]T denotes the augmented

NMSS vector by the integral-of-errors state� k = r k � yk
� . Note that in the case of
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na = nb = 1, the integral gain K I and the gainf 0 are present only, which can be

seen as a proportional gain so that, e�ectively, a PI controller is obtained. Also,

from Figure 2.1, the closed-loop transfer function is givenby

yk

r k
=

B(z� 1)K I

� ( A(z� 1)G(z� 1) + B(z� 1)F (z� 1)) + K I B(z� 1)
(2.20)

The controller parameters are obtained by assigning the closed-loop poles, i.e.

D(z� 1) = �
�
A(z� 1)G(z� 1) + B(z� 1)F (z� 1)

�
+ K I B(z� 1) (2.21)

whereD(z� 1) denotes a prede�ned polynomial, which represents the desired char-

acteristic equation of the closed-loop system, i.e. the denominator of (2.20), and

by comparing coe�cients of like powers ofz yields the controller parameters.

Alternatively, the state feedback gains are obtained by making use of optimal

control techniques, such as LQ and LQG design, however, thisis not considered

in this Thesis. Further detailed information on the linear PIP can be found in

the references given above in this Section and the references therein.

An attempt of using linear PIP control for nonlinear systemscan be

found in (McCabe et al. 2000) where feedback linearisation methods are used.

In the following developments, in order to deal with nonlinear systems, the PIP

is used in conjunction with SDP models to form the SDP-PIP, where at each

sampling instance the SDP model is considered `frozen'/instantaneous linear,

so that linear control techniques can be applied, see e.g. (Kontoroupis et al.

2003; Taylor et al. 2009). Hence, the nonlinear SDP model is considered to be

linear at each sampling instance, while, overall it is considered to be nonlinear.

Consequently, these di�erent `levels', i.e. linear and nonlinear, of consideration

are re�ected in the formulation of the SDP-PIP controller inChapter 4.
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Chapter 3

Multivariable Decoupling NMSS

MPC Control

This Chapter is concerned with an input-output decoupling control strategy for

multivariable systems where the number of system outputsny is equal to the

number of system inputsnu, i.e. ny = nu = n.

Furthermore, an approach for system output decoupling is proposed

making use of an input transformation term which diagonalises the closed-loop

system, hence compensates for the cross-coupling e�ects. This is adapted from

(Plummer and Vaughan 1997) and (Kubalcik and Bobal 2006) where pole as-

signment control is used. Here, however, model based predictive control is used

whereby the model is of the non-minimal state-space form. Moreover, the NMSS-

MPC controller in incremental input form (Wang and Young 2006) as well as that

of the integral-of-errors state variable form (Exadaktylos et al. 2006) is used, and,

in this context, their relative merits are evaluated. In particular, when imposing

constraints, it is desired that the output decoupling is notimpaired. In order to

achieve this, a modi�cation of the incremental input representation is proposed

so that it is straightforward to obtain decoupled control ofthe system outputs,
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despite the imposed constraints.

Existing output decoupling control methods are often either based on

optimisation procedures, see e.g. (Lees et al. 1995; Sourlas 2001; Gunnarsson et al.

2003; Exadaktylos and Taylor 2010), aiming for minimising the cross-coupling

e�ects, or by introducing compensation terms that ideally eliminate the cross-

coupling e�ects completely by diagonalisation of the resulting closed-loop system.

A decoupling NMSS MPC strategy based on optimisation procedures is

proposed in (Exadaktylos and Taylor 2010), which is based ona multi-objective

optimisation approach, similar to (Bemporad and de la Pena 2009), using the

goal attainment optimisation method, which is also used in (Lees et al. 1995)

in a decoupling pole-assignment context. Most recent decoupling NMSS PIP

developments in the continuous-time domain can be found in (Taylor et al. 2012).

However, the discrete-time domain is considered in this Chapter only.

The method of closed-loop system diagonalisation by makinguse of a

compensation term, in conjunction with pole-assignment control, can be found

in, e.g. (Lin and Hsieh 1991; Plummer and Vaughan 1997; Kubalcik and Bobal

2006; Wei et al. 2010).

3.1 Multivariable system representation

The system model considered throughout this Chapter is in a discrete-time, multi-

input multi-output (MIMO) transfer function form (Alberto s and Sala 2004)

yk = G(z� 1)u k (3.1)

where

yk = [ y1;k y2;k : : : yn;k ]T and u k = [ u1;k u2;k : : : un;k ]T (3.2)
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denote the vectors containing then system outputs and then system inputs,

respectively. Also,

G(z� 1) =

2

6
6
6
6
4

g11(z� 1) � � � g1n (z� 1)
:::

:::
:::

gn1(z� 1) � � � gnn (z� 1)

3

7
7
7
7
5

(3.3)

denotes a square matrix containing individual transfer functions

gij (z� 1) =
b1ij z� 1 + b2ij z� 2 + : : : + bnbij ij z� nbij

1 + a1ij z� 1 + a2ij z� 2 + : : : + anaij ij z� naij
(3.4)

with i; j = 1; 2; : : : ; n. Moreover, assume that the numerator and denominator

polynomials in (3.4) are coprime, (3.4) is controllable andthat G(z� 1) is of full

rank.

Remark 3.1.1. Without loss of generality, in order to incorporate time delays,

the corresponding leading numerator parameters in(3.4) are set to zero.

3.1.1 Left matrix fraction description (LMFD)

The transfer function matrix representing the MIMO system (3.3) can be formu-

lated in a left matrix fraction description (LMFD) (Kailath 1980)

G(z� 1) = A � 1(z� 1)B (z� 1) (3.5)

so that the system representation (3.1) becomes

A (z� 1)yk = B (z� 1)u k (3.6)
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with

A (z� 1) = I n + A 1z� 1 + A 2z� 2 + : : : + A na z� na

B (z� 1) = B 1z� 1 + B 2z� 2 + : : : + B nbz
� nb

(3.7)

where I n denotes then � n identity and A i 2 Rn� n denote diagonal matrices

containing the corresponding system model parameters. Similarly, B j 2 Rn� n

denote matrices of corresponding system model parameters.

3.1.2 System diagonalisation

Considering the system representation (3.6) � (3.7), it is observed that the cross-

coupling e�ects arise from the non-zero o�-diagonal elements in B (z� 1). In order

to obtain a diagonal matrix (Plummer and Vaughan 1997; Kubalcik and Bobal

2006) proposed to include a cross-coupling compensation matrix which diagonal-

ises the system by, e�ectively, transforming the system input

u k = E (z� 1)vk (3.8)

with vk = [ v1;k v2;k : : : vn;k ]T and E (z� 1) being de�ned to be

E (z� 1) = adj [B (z� 1)]z� (3.9)

the forward time shift z� is chosen such thatE (z� 1) just remains causal, see e.g.

(Oppenheim et al. 1998), i.e.E (z� 1) can be written as

E (z� 1) = E 0 + E 1z� 1 + E 2z� 2 + : : : + E nez
� ne (3.10)
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where E i 2 Rn� n denote matrices of corresponding model parameters. When

substituting (3.8) into (3.6) yields

yk = A � 1(z� 1)B d(z� 1)vk (3.11)

with

B d(z� 1) = B (z� 1)E (z� 1) = det[B (z� 1)]z� I n

= B d;1z� 1 + B d;2z� 2 + : : : + B d;nbd z� nbd

(3.12)

being a diagonal matrix, and a diagonalised system representation (3.11) from

the transformed or arti�cial input vk to the output yk is obtained.

3.2 Decoupling non-minimal state space MPC

The general non-minimal state-space system model, upon which the MPC con-

trollers in their respective representations are based, can be straightforwardly

obtained from the diagonalised system in the LMFD representation (3.11), as

follows

x g;k = Ggx g;k� 1 + B gvk� 1

yk = Cgx g;k

(3.13)
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with

Gg =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� A 1 � A 2 � � � � A na � 1 � A na B d;2 � � � B d;nbd � 1 B d;nbd

I n 0n � � � 0n 0n 0n � � � 0n 0n

0n I n � � � 0n 0n 0n � � � 0n 0n

:::
:::

: : :
:::

:::
:::

:::
:::

:::

0n 0n � � � I n 0n 0n � � � 0n 0n

0n 0n � � � 0n 0n 0n � � � 0n 0n

0n 0n � � � 0n 0n I n � � � 0n 0n

:::
:::

:::
:::

:::
:::

: : :
:::

:::

0n 0n � � � 0n 0n 0n � � � I n 0n

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.14)

and

B g = [ B d;1 0n 0n � � � 0n I n 0n � � � 0n ]T

Cg = [ I n 0n � � � 0n ]
(3.15)

where0n denotes an � n matrix of zeros. The state vector is given by

x g;k = [ y T
k y T

k� 1 : : : y T
k� na +1 vT

k� 1 : : : vT
k� nbd+1 ]T (3.16)

3.2.1 Incremental input form

As presented in (Wang and Young 2006; Wang 2009), the non-minimal state-space

system representation in incremental input form is given by

x � ;k = G � x � ;k � 1 + B � � vk� 1

yk = C � x � ;k

(3.17)

29



Multivariable Decoupling NMSS MPC Control

with

G � =

2

6
4

Gg 0ng � n

CgGg I n

3

7
5 B � =

2

6
4

B g

CgB g

3

7
5 C � = [ 0n � � � 0n I n ] (3.18)

and

x T
� ;k = [� x T

g;k y T
k ] (3.19)

A modi�cation to the usual linear state-space MPC formulation, see

e.g. (Ikonen and Najim 2002; Kwon and Han 2005; Camacho and Bordons 2007;

Wang 2009), is proposed here, that allows to assign individual prediction and

control horizons, denotedNp and Nc, respectively, to then input-output pairs

(� vi ; yi ) i = 1; 2; : : : ; n. The vectors of the predicted system outputsY , future

input di�erences � V and the future reference trajectoryR are de�ned to be

Yi = [ yi;k +1 jk yi;k +2 jk � � � yi;k + Np i jk ]T

Y = [ Y T
1 Y T

2 � � � Y T
n ]T

(3.20a)

� Vi = [� vi;k jk � vi;k +1 jk � � � � vi;k + Nc i � 1jk ]T

� V = [ � V T
1 � V T

2 � � � � V T
n ]T

(3.20b)

so that

Vi = [ vi;k jk vi;k +1 jk � � � vi;k + Nc i � 1jk ]T

V = [ V T
1 V T

2 � � � V T
n ]T

(3.20c)

and

R i = [ r i;k +1 jk r i;k +2 jk � � � r i;k + Np i jk ]T

R = [ R T
1 R T

2 � � � R T
n ]T

(3.20d)
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respectively. For completeness,

� U i = [� ui;k jk � ui;k +1 jk � � � � ui;k + Nc i � 1jk ]T

� U = [ � U T
1 � U T

2 � � � � U T
n ]T

(3.20e)

and

U i = [ ui;k jk ui;k +1 jk � � � ui;k + Nc i � 1jk ]T

U = [ U T
1 U T

2 � � � U T
n ]T

(3.20f)

denote the current and predicted incremental inputs as wellas the current and

predicted inputs, respectively.

The cost function required to be minimised, however, is of the same

form as in (Wang and Young 2006)

J� = ( Y � R )T Q(Y � R ) + � V T �� V (3.21)

where Q = diag(Q1Q2 : : : Qn) and � = diag(� 1� 2 : : : � n ) are positive de�nite

and positive semi-de�nite block diagonal weighting matrices, respectively, where

the individual matrix blocks Q i 2 RNp i � Np i and � i 2 RNc i � Nc i are themselves

diagonal matrices.

In order to minimise the cost function (3.21) w.r.t the decision variables

� V , i.e. input di�erences, requires that the output predictions Y are expressed

in terms of � V . As an exemplary, yet representative case, the output predictions
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of the ith output, by taking (3.17) into account, are given by

yi;k +1 jk = C � ;i x � ;k+1 jk = C � ;i G � x � ;k jk + C � ;i B � ;i � vi;k

yi;k +2 jk = C � ;i G2
� x � ;k jk + C � ;i G � B � ;i � vi;k jk

+ C � ;i B � ;i � vi;k +1 jk

yi;k +3 jk = C � ;i G3
� x � ;k jk + C � ;i G2

� B � ;i � vi;k jk

+ C � ;i G � B � ;i � vi;k +1 jk + C � ;i B � ;i � vi;k +2 jk

:::

yi;k + Nc i jk = C � ;i G
Nc i
� x � ;k jk

+ C � ;i

Nc i � 1X

j =0

G j
� B � ;i � vi;k + Nc i � 1� j jk

:::

yi;k + Np i jk = C � ;i G
Np i
� x � ;k jk

+ C � ;i

Np i � Nc iX

j = Np i � 1

G j
� B � ;i � vi;k + Np i � 1� j jk

(3.22)

where C � ;i denotes theith row of C � and B � ;i denotes theith column of B � ,

respectively. Furthermore, (3.22) can be written in a more compact form

Yi = F i x � ;k + � i � Vi (3.23)
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with

F i =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

C � ;i G �

C � ;i G2
�

:::

C � ;i G
Nc i
�

C � ;i G
Nc i +1
�

:::

C � ;i G
Np i
�

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.24)

and

� i =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

C � ;i B � ;i 0 � � � 0

C � ;i G � B � ;i C � ;i B � ;i � � � 0
:::

:::
: : :

:::

C � ;i G
Nc i � 1
� B � ;i C � ;i G

Nc i � 2
� B � ;i � � � C � ;i B � ;i

C � ;i G
Nc i
� B � ;i C � ;i G

Nc i � 1
� B � ;i � � � C � ;i G � B � ;i

:::
:::

:::
:::

C � ;i G
Np i � 1
� B � ;i C � ;i G

Np i � 2
� B � ;i � � � C � ;i G

Np i � Nc i
� B � ;i

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.25)

Subsequently, the predictions of then outputs are obtained from

Y = F x � ;k + �� V (3.26)

with F = [ F T
1 F T

2 � � � F T
n ]T 2 R

P n
i =1 Np i � n(na + nbd ) and � = diag(� 1� 2 � � � � n ) 2

R
P n

i =1 Np i �
P n

i =1 Nc i being a block diagonal matrix.

Substituting (3.26) into the cost function (3.21) and solving the optim-

isation problem

min:
� V

J� (3.27)
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the incremental arti�cial input predictions are obtained in the usual state variable

feedback form, cf. (Wang 2009)

� V = � K x � x � ;k + K R � R (3.28a)

where

K x � = ( � T Q� + � )� 1� T QF (3.28b)

K R � = ( � T Q� + � )� 1� T Q (3.28c)

denote the
P n

i =1 Nci � n(na + nbd) and
P n

i =1 Nci �
P n

i =1 Npi feedback gain

matrices, respectively.

System input recovery

Solving the optimisation problem (3.27) results in obtaining the transformed sys-

tem input (3.28a), however, the system inputu k is required to be obtained since

this input is applied to the actual system.

Consider the input transformation (3.8) and associated transformation

matrix E (z� 1) de�ned in (3.9) and (3.10), respectively, which can also be written

as

E (z� 1) =

2

6
6
6
6
4

e11(z� 1) � � � e1n (z� 1)
:::

:::
:::

en1(z� 1) � � � enn (z� 1)

3

7
7
7
7
5

(3.29)

where

ej l (z� 1) = ej l 0 + ej l 1z
� 1 + ej l 2 z� 2 + : : : + ej l n e

z� ne (3.30)

8j; l = 1; 2; : : : ; n. Moreover, without loss of generality and for the sake of sim-

plicity, let the order of all the polynomials (3.30) identically be ne, which also

follows directly from (3.10). This may mean that some of the coe�cients ej l i are
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set to zero.

Remark 3.2.1. In the case of MIMO systems with multiple time delays, i.e.

the time delay of the individual transfer functions in(3.3) di�er, some leading

coe�cients in (3.30) are set zero anyway.

So, theith input can be obtained as

ui;k =
nX

l=1

eil (z� 1)vl;k (3.31)

and, subsequently, the predictions of theith input are given by

ui;k + j =
nX

l=1

eil (z� 1)vl;k + j 8j = 1; 2; : : : ; Nci � 1 (3.32)

and, as a consequence, the entire vector containing currentand predicted input

values (3.20f) can be recovered by

U = ~EV + Ê V̂ (3.33)

where

~E =

2

6
6
6
6
4

~E 11 � � � ~E 1n

:::
:::

:::

~E n1 � � � ~E nn

3

7
7
7
7
5

with ~E j l =

2

6
6
6
6
6
6
6
6
6
6
6
4

ej l 0 0 � � � 0 0

ej l 1 ej l 0 � � � 0 0
:::

:::
: : :

:::
:::

0 0 � � � ej l 0 0

0 0 � � � ej l 1 ej l 0

3

7
7
7
7
7
7
7
7
7
7
7
5

2 RNc j � Nc l

(3.34)

and

Ê =
�

Ê T
1 Ê T

2 : : : Ê T
n

� T

(3.35a)
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with

Ê j =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

ej 11 ej 12 � � � ej 1n e � 1 ej 1n e
ej 21 ej 22 � � � ej 2n e� 1 ej 2n e

ej 12 ej 13 � � � ej 1n e
0 ej 22 ej 23 � � � ej 2n e

0

ej 13 ej 14 � � � 0 0 ej 23 ej 24 � � � 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::

ej 1n e
0 � � � 0 0 ej 2n e

0 � � � 0 0

0 0 � � � 0 0 0 0 � � � 0 0
:::

:::
:::

:::
:::

:::
:::

:::
:::

:::

0 0 � � � 0 0 0 0 � � � 0 0

� � � ejn 1 ejn 2 � � � ejn n e� 1 ejn n e

� � � ejn 2 ejn 3 � � � ejn n e
0

� � � ejn 3 ejn 4 � � � 0 0

� � �
:::

::: : :
: :::

:::

� � � ejn n e
0 � � � 0 0

� � � 0 0 � � � 0 0

� � �
:::

:::
:::

:::
:::

� � � 0 0 � � � 0 0

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

2 R
P n

i =1 Nc i � nn e (3.35b)

Essentially, (3.33) is the representation of (3.31) and (3.32) in a compact matrix

form. Also, note that (3.33) consists of a term corresponding to the current and

predicted inputs and a term corresponding to previous inputs only, since

V̂ = [ v1;k� 1 v1;k� 2 : : : v1;k� ne v2;k� 1 v2;k� 2 : : : v2;k� ne

: : : vn;k � 1 vn;k � 2 : : : vn;k � ne+1 vn;k � ne ]
T (3.36)
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Handling constraints

When imposing constraints on the system, it is desired that these do not introduce

cross-couplings of the outputs. Consequently, if there is achange of the reference

signal a�ecting, e.g. Y1, then, the remaining outputs are not supposed to be

a�ected, despite imposed constraints on the input and/or output. The proposed

modi�cation of the NMSS MPC formulation in incremental input form allows one

to consider the input-output pairs (� Vi , Yi ) individually. This, in turn, allows

the choice of which outputs are allowed to change and which are not by making

use of the reference governor approach, see e.g. (Bemporad and Mosca 1994;

Gilbert and Kolmanovsky 1995; Bemporad et al. 1997; Angeli and Mosca 1999;

Exadaktylos et al. 2008). Similar to the closed-loop paradigm (CLP) (Rossiter

2004), where a perturbation term is added to the optimal, i.e. unconstrained,

control law such that the constraints are ful�lled, the reference governor adapts

the reference signal in order to avoid constraint violation, i.e.

W = R + � (3.37)

whereW 2 R
P n

i =1 Np i � 1 denotes the adapted reference signal and

� = [ � T
1 � T

2 : : : � T
n ]T (3.38)

denotes the reference signal perturbation vector where

� i = [ 
 i;k +1 jk 
 i;k +2 jk : : : 
 i;k + Np i jk ]T (3.39)

denotes the reference signal perturbation corresponding to the ith system output

reference trajectory.
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Since� describes a deviation from the desired reference trajectory, the

values of its elements
 i;k + j jk are ideally zero, which corresponds to the case

of inactive constraints. Moreover, in order to maintain o�set-free steady-state

set-point tracking, the sequencesf 
 i;k +1 jk 
 i;k +2 jk : : : 
 i;k + Np i jkg 8i = 1; 2; : : : ; n

are required to converge to zero, which is assumed here. However, to keep the

deviation as small as possible, the following quadratic optimisation problem can

be formulated

min:
�

� T �

s: t: M � � N
(3.40)

where the constraints are required to be ful�lled element wise. The matricesM

and N of dimension(4
P n

i =1 Nci + 2
P n

i =1 Npi ) �
P n

i =1 Npi and (4
P n

i =1 Nci +

2
P n

i =1 Npi ) � 1, respectively, formulate the constraints on the incremental system

input, system input as well as system output, i.e.

M =

2

6
6
6
6
4

M � U

M U

M Y

3

7
7
7
7
5

and N =

2

6
6
6
6
4

N � U

N U

N Y

3

7
7
7
7
5

(3.41)

respectively, and are subsequently derived.

At �rst, consider the case of imposing constraints on the incremental

inputs � U , i.e.

� U � � U � � U (3.42)

where (�) and (�) denote the lower and upper boundaries, respectively. The op-

timal predicted control sequence (3.28), when consideringthe adapted reference

signal W , becomes

� V = � K xx � ;k + K R(R + � ) = � Vopt + K R � (3.43)
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where the subscript(�)opt denotes optimal, i.e. unconstrained, and is the solution

of (3.21), i.e. (3.28). Substituting (3.43) into (3.33) after multiplying throughout

with � , gives

� U = ~E � Vopt + Ê � V̂ + ~EK R � = � Uopt + ~EK R � (3.44)

so that the matrices formulating the constraints associated with � U , are given

by

M � U =

2

6
4

� ~EK R

~EK R

3

7
5 ; N � U =

2

6
4

� Uopt � � U

� U � � Uopt

3

7
5 (3.45)

which are of dimension2
P n

i =1 Nci �
P n

i =1 Npi and 2
P n

i =1 Nci � 1, respectively.

Next, consider constraints on the input magnitude ofU , i.e.

U � U � U (3.46)

these can be directly derived from above by expressing� U in a compact matrix

form, i.e.

� U = � 1U � � 2 u k� 1 (3.47)
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where

� 1 =

2

6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 � � � 0

� 1 1 0 � � � 0

0 � 1 1 � � � 0
:::

:::
: : :

: : :
:::

0 0 � � � � 1 1

3

7
7
7
7
7
7
7
7
7
7
7
5

and � 2 =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 � � � 0

0 0 � � � 0
:::

:::
:::

:::

9
>>>>=

>>>>;

Nc1

0 1 � � � 0

0 0 � � � 0
:::

:::
:::

:::

9
>>>>=

>>>>;

Nc2

:::

0 0 � � � 1

0 0 � � � 0
:::

:::
:::

:::

0 0 � � � 0

9
>>>>>>>=

>>>>>>>;

Ncn

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.48)

denote matrices of dimension
P n

i =1 Nci �
P n

i =1 Nci and
P n

i =1 Nci � n, respectively.

So, the constraints can be formulated to be

M U =

2

6
4

� ~EK R

~EK R

3

7
5 ; N U =

2

6
4

� Uopt � � 1U + � 2u k� 1

� 1U � � Uopt � � 2u k� 1

3

7
5 (3.49)

and these matrices are of dimension2
P n

i =1 Nci �
P n

i =1 Npi and 2
P n

i =1 Nci � 1,

respectively.

Finally, consider constraints on the outputsY , i.e.

Y � Y � Y (3.50)

Substituting (3.43) into the output prediction equation (3.26), the constraints
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formulation is obtained as

M Y =

2

6
4

� � K R

� K R

3

7
5 ; N Y =

2

6
4

F x � ;k + �� Vopt � Y

Y � F x � ;k � �� Vopt

3

7
5 (3.51)

where the dimensions ofM Y and N Y are given by2
P n

i =1 Npi �
P n

i =1 Npi and

2
P n

i =1 Npi � 1, respectively.

Regarding the optimisation problem (3.40) and the subsequent deriva-

tion of the constraints formulation, the following observations can be made:

ˆ When constraints are not violated by (3.28), then� = 0, so that, from

(3.40), N � 0. This, in turn, means that (3.40) is required to be solved

only if at least one element in the vectorN is negative, i.e. [N ]j < 0 8j ,

where[N ]j denotes thejth element ofN .

ˆ In order to avoid cross-coupling e�ects introduced by the constraints, cor-

responding reference trajectory deviations can be chosen,e.g. � = � 1,

which are allowed to vary. This, e�ectively, forces the remaining reference

trajectory deviations to be zero. Also, the matricesM and N can be trun-

cated accordingly. This allows the dimension of the optimisation problem

(3.40) to be kept low.

3.2.2 Integral-of-errors state variable formulation

The NMSS model with an integral-of-errors state variable (Young et al. 1987;

Wang and Young 1988), based on the general NMSS representation (3.13)�(3.15)

of the diagonalised system, is given by

x k = Gx k� 1 + Bv k� 1 + Dr k

yk = Cx k

(3.52)
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with

x k =

2

6
4

x g;k

� k

3

7
5 G =

2

6
4

Gg 0ng � n

� CgGg I n

3

7
5 B =

2

6
4

B g

� CgB g

3

7
5 (3.53)

where � k = � k� 1 + r k � yk denotes the integral-of-errors state variable and

C = [ I n 0n : : : 0n ] D = [ 0n : : : 0n I n ]T (3.54)

In the MPC formulation based on the NMSS model that uses an integral-

of-errors state variable, which ensures set-point tracking, instead of the system

outputs, the state vector is predicted (Exadaktylos 2007, Chap. 4). Consequently,

the cost function that is required to be minimized w.r.t �V , is given by

J = X T �QX + �V T �� �V (3.55)

where

X = [ x T
k+1 jk x T

k+2 jk : : : x T
k+ Np jk ]T (3.56)

denotes then(na + nbd)Np � 1 dimensional vector of predicted states and

�V = [ vT
kjk vT

k+1 jk : : : vT
k+ N c � 1jk ]T (3.57)

denotes the transformed input prediction vector of dimension nNc � 1. Addition-

ally, �Q 2 Rn(na + nbd )Np � n(na + nbd )Np and �� 2 RnN c � nN c denote positive de�nite and

positive semi-de�nite weighting matrices, respectively.

In a similar manner as in (3.22) and, subsequently, in (3.23)the pre-
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dicted states are obtained by

X = �F x (k) + �� �V + H �R (3.58)

where

�F = [ GT (G2)T : : : (GNp )T ]T (3.59a)

�� =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

B 0 � � � 0 0

GB B � � � 0 0
:::

:::
: : :

:::
:::

GN c � 2B G N c � 1B � � � B 0

GN c � 1B G N c � 2B � � � GB B

GN c B G N c � 1B � � � G2B GB + B

GN c +1 B G N c B � � � G3B G 2B + GB + B
:::

:::
:::

:::
:::

GNp � 1B G Np � 2B � � � GNp � N c+1 B
P Np � N c

i =0 G i B

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.59b)

H =

2

6
6
6
6
6
6
6
4

D 0 � � � 0

GD D � � � 0
:::

:::
: : :

:::

GNp � 1D G Np � 2D � � � D

3

7
7
7
7
7
7
7
5

(3.59c)

and the vector of the future reference trajectories is de�ned to be

�R = [ r T
k+1 r T

k+2 : : : r T
k+ Np

]T (3.60)

A detailed derivation and further information on the MPC based on NMSS models

with an integral-of-errors state variable can be found in (Exadaktylos 2007, Chap.

4).
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The (unconstrained/optimal) control law is obtained by solving the op-

timisation problem

min:
�V

J (3.61)

for which the solution is given by, similar to (3.28),

�V = � �K x x k + �K R
�R (3.62a)

with

�K x = ( �� T �Q �� + �� )� 1 �� T �Q �F (3.62b)

�K R = � ( �� T �Q �� + �� )� 1 �� T �QH (3.62c)

Remark 3.2.2. The cost function of the NMSS MPC in the integral-of-errors

state variable representation(3.55) implicitly depends on the reference trajectories

via the integral-of-errors state variable� k and its predictions, so that o�set free

steady-state tracking is achieved (Exadaktylos 2007, Chap4).

As a consequence, when making use of a cost function similar to (3.21),

i.e. �J = ( Y � R )T Q(Y � R ) + V T � V , instead of (3.55) applied to the NMSS

MPC with integral-of-errors state variable via the relationship yk = Cx k from

(3.52) in order to obtain the required output predictions, resultsin nullifying the

integral-of-errors state variables so that the performance is impaired and, con-

sequently, o�set free set-point tracking is not ensured.

At this juncture, certain observations can be made regarding the NMSS

MPC with integral-of-errors state variable compared to theNMSS MPC in incre-

mental input form:

ˆ Due to the di�erent cost functions used (3.21) and (3.55), respectively,

in particular that (3.21) depends explicitly on the system output predic-
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tions while (3.55) depends on the state vector predictions (and implicitly

on the system output predictions), it is straightforward to `separate' the

input-output pairs (Yi ; � Vi ) and assign individual control and prediction

horizons to each pair in the incremental input form, which can be used

as additional tuning parameters. Other than in the integral-of-errors state

variable form where the prediction horizon relates to the state vector and

not to the system outputs. Consequently, there is a single prediction and

control horizon only.

ˆ Although both NMSS MPC representations are based on the same diagon-

alised system representation (3.13), which was achieved bya system input

transformation (3.8), the matrices involved in recoveringof the system in-

put predictions (3.33), di�er due to the de�nitions of the tr ansformed input

prediction vectors (3.20b) and (3.57), respectively.

System input recovery

As mentioned above, the system inputu k cannot be recovered using (3.33) �

(3.36), however, since (3.8) also applies to the NMSS MPC in integral-of-errors

state variable form, (3.8) written in matrix form, similar t o (3.33), yields

�U = �~E �V + �̂E �̂V (3.63)

where

�U = [ u T
kjk u T

k+1 jk : : : u T
k+ N c � 1jk ]T (3.64)
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denotes thenNc � 1 vector of the current and predicted system inputs. Taking

(3.10) into account and similar to (3.34), �~E 2 RnN c � nN c is given by

�~E =

2

6
6
6
6
6
6
6
6
6
6
6
4

E 0 0n � � � 0n 0n

E 1 E 0 � � � 0n 0n

:::
:::

: : :
:::

:::

0n 0n � � � E 0 0n

0n 0n � � � E 1 E 0

3

7
7
7
7
7
7
7
7
7
7
7
5

(3.65)

and similar to (3.35), �̂E 2 RnN c � nn e is given by

�̂E =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

E 1 E 2 � � � E ne � 1 E ne

E 2 E 3 � � � E ne 0n

E 3 E 4 � � � 0n 0n

:::
::: : :

: :::
:::

E ne 0n � � � 0n 0n

0n 0n � � � 0n 0n

:::
:::

:::
:::

:::

0n 0n � � � 0n 0n

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.66)

and

�̂V = [ vT
k� 1 vT

k� 2 : : : vT
k� ne+1 vT

k� ne
]T (3.67)

Handling constraints

Since here, as mentioned above, the actual system outputs are not predicted but

rather the state vector, the method of constraint handling via reference traject-

ory adaptation is not straightforwardly applicable. Moreover, as discussed above,

since the performance of the system is greatly determined bythe integral-of-errors
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state variable, which includes the reference signal, as a consequence, reference tra-

jectory adaptation impacts the performance signi�cantly.Hence, the constraints

are handled by using the `conventional' method as proposed in (Exadaktylos 2007,

Chap. 4), i.e. the quadratic optimisation problem

min:
�V

J

s: t: �M �V � �N
(3.68)

is required to be solved, where

�M =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� �~E

�~E

� �� 1
�~E

�� 1
�~E

� �C ��

�C ��

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

�N =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

� �U + �̂E �̂V

�U � �̂E �̂V

� � �U + �� 1
�̂E �̂V � �� 2u k� 1

� �U � �� 1
�̂E �̂V + �� 2u k� 1

� �Y + �C �F x k + �CH �R

�Y � �C �F x k � �CH �R

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(3.69a)

with

�� 1 =

2

6
6
6
6
6
6
6
6
6
6
6
4

I n 0n 0n � � � 0n

� I n I n 0n � � � 0n

0n � I n I n � � � 0n

:::
:::

: : :
: : :

:::

0n 0n � � � � I n I n

3

7
7
7
7
7
7
7
7
7
7
7
5

2 RnN c � nN c �� 2 =

2

6
6
6
6
6
6
6
4

I n

0n

:::

0n

3

7
7
7
7
7
7
7
5

2 RnN c � n (3.69b)

and �C = diag(C ; C ; : : : ;C ) 2 RnN p � (na + nbd )Np denotes a block diagonal matrix.

Handling the constraints in this way, clearly impairs the output de-

coupling properties, see Section 3.3.1, and, other than in the NMSS MPC in

incremental input form that uses the reference trajectory adaptation method,
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function c2d where the sampling time is chosen to beTs = 5 s. The discrete-time

system model is obtained as

A 1 =

2

6
4

� 1:7271 0

0 � 1:7924

3

7
5 A 2 =

2

6
4

0:7423 0

0 0:8007

3

7
5 (3.70a)

and

B 1 =

2

6
4

0:2014 0:0119

0:006 0:1513

3

7
5 B 2 =

2

6
4

� 0:1621 0:0108

0:0056 � 0:1281

3

7
5 (3.70b)

Implementation results of the NMSS MPC in incremental inputform

incorporating the proposed modi�cation, according to Section 3.2.1, are presen-

ted in Figure 3.2. Here, both the NMSS MPC in incremental input form using

the diagonalised system model (solid line) according to Section 3.1.2, i.e. the de-

coupling technique, and using the non-diagonalised systemmodel (3.70) directly

(dashed line), are shown.

The reference signal is a step from12 units to 14 units at sampling in-

stancek = 200 for system output y1 and at sampling instancek = 700 for system

output y2. The prediction and control horizons are chosen to beNp1 = Np2 = 25

and Nc1 = Nc2 = 20, respectively, for both MPC controller formulations. The

weighting matrices are chosen to be identity matrices for the MPC based on the

diagonalised model and the diagonal elements of the MPC based on the non-

diagonalised model are chosen such that similar output responses are achieved.

It can be observed that, as expected, when the system model indi-

agonalised form is employed, the cross-coupling e�ects areeliminated (without

model-mismatch). This is in contrast to the case where the non-diagonalised sys-

tem model is used, where cross-coupling e�ects are clearly visible. Moreover, it is

observed that the transformed system inputsv1 and v2 respond to the reference
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while � 2 = 0, which accounts for a set-point change iny1 while y2 is supposed to

be constant, hence the optimisation problem (3.40) becomes

min:
� 1

� T
1 � 1

s: t: M (1)
� U1

� 1 � N � U1

(3.71)

where

M (1)
� U1

=

2

6
4

� ~E U1K R1

~E U1 K R1

3

7
5 2 R2Nc1 � Np1 N � U1 =

2

6
4

� U1;opt � � U1

� U 1 � � U1;opt

3

7
5 2 R2Nc1 � 1

(3.72)

Considering (3.33) in conjunction with (3.34), it can be seen that the matrix ~E

can be partitioned into

~E = [ ~E T
U1

~E T
U2

]T (3.73)

so that,
~E U1 = [ ~E 11

~E 12]

~E U2 = [ ~E 21
~E 22]

(3.74)

Similarly, K R can be partitioned into

K R = [ K R1 K R2 ] (3.75)

whereK R1 2 R(Np1+ Np2)� Np1 is associated with� 1 and K R2 2 R(Np1+ Np2)� Np2 is

associated with� 2, respectively. This can be deduced from (3.43).

Now, in the second scenario,� 2 6= 0 while � 1 = 0, which accounts for a

set-point change iny2 while y1 is supposed to be constant, hence the optimisation
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problem (3.40) becomes

min:
� 2

� T
2 � 2

s: t: M (2)
� U1

� 2 � N � U1

(3.76)

where

M (2)
� U1

=

2

6
4

� ~E U1K R2

~E U1 K R2

3

7
5 2 R2Nc1 � Np2 N � U1 =

2

6
4

� U1;opt � � U1

� U 1 � � U1;opt

3

7
5 2 R2Nc1 � 1

(3.77)

Remark 3.3.2. In the case of disturbances, which may cause constraint viola-

tions, it might be advisable to allow the entire reference trajectory perturbation

vector � to take on non-zero values in order to improve disturbance rejection.

Implementation results are shown in Figure 3.4. It can be observed that

cross-coupling e�ects in the outputs are non existent.

Next, the NMSS MPC using an integral-of-errors state variable, as dis-

cussed in Section 3.2.2, is considered. Again, constraintson the increments of the

�rst system input, as above, are imposed.

The constraints are handled by solving the optimisation problem (3.68),

accompanied by (3.69). However, since constraints on� U1 are imposed only,

the matrices (3.69a) are required to be adapted accordingly, i.e. the constraints

associated with� U1 are required to be considered only. The matrices in (3.69a)

are adapted to be

�M � U1 =

2

6
4

�  �� 1
�~E

 �� 1
�~E

3

7
5 �N � U1 =

2

6
4

� � U1 +  �� 1
�̂E �̂V �  �� 2u k� 1

� U 1 �  �� 1
�̂E �̂V +  �� 2u k� 1

3

7
5 (3.78)
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Figure 3.4: Implementation results of the NMSS MPC in incremental input form
with imposed constraints

where �M � U1 2 R2N c � 2N c , �N � U1 2 R2N c � 1 and
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6
6
6
4

1 0 0 0 0 � � � 0 0

0 0 1 0 0 � � � 0 0

0 0 0 0 1 � � � 0 0
:::

:::
:::

:::
:::

:::
:::

:::

0 0 0 0 0 � � � 1 0

3

7
7
7
7
7
7
7
7
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7
7
5

2 RN c � 2N c (3.79)

such that

� U1 =  � �U (3.80)

the incremental input predictions of the �rst system input are extracted from

the entire incremental input prediction vector. The optimisation problem (3.68),
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adapted and required to be solved here, is given by

min:
�V

J

s: t: �M � U1
�V � �N � U1

(3.81)

Implementation results are shown in Figure 3.5. It can be observed, and as

expected, cross-coupling e�ects are visible since the constraints involved in the

optimisation problem (3.81) do not prevent this, i.e. the optimisation problem

(3.81) allows the transformed inputv1 to respond to a set-point change iny2

and vice versa. This becomes apparent when comparing Figures 3.4 and 3.5.

However, it might be possible to construct the constraints in such a way that the

cross-coupling e�ects are eliminated, similarly to (3.71)and (3.76), respectively,

without impairing the overall performance signi�cantly. This, however, is left as

an open problem.
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Chapter 4

Generalised Discrete-time State

Dependent Parameter Proportional

- Integral - Plus Control

In this Chapter, the state dependent parameter proportional-integral-plus (SDP-

PIP) controller in closed-loop is analysed. Particular emphasis is placed on the

generalised SDP model structure. Equivalent to its linear counterpart, the SDP-

PIP is a pole-placement controller so that it is essential tobe able to formulate the

closed-loop characteristic equation. It is apparent that linear systems theory (see

e.g. Gajic and Lelic 1996; Ogata 1997; Nise 2008), such as thenotion and concept

of system poles and zeros, cannot necessarily be carried over, nor referred to, when

dealing with nonlinear systems and their respective nonlinear system models.

However, considering linearised system models at a series of distinct operating

points, the notion of equivalent system poles and zeros is often envisaged from an

engineering point of view. Such a notion is valid in a restricted region around the

considered operating point and it can be said, at least loosely, that the nonlinear

system exhibits equivalent poles and zeros, that may be operating point, and/or
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consequence, the time shift operator may be considered to beapplied to the

parameters as well as the signals.

Throughout this Chapter, for simplicity, the following assumptions are

made (unless otherwise stated):

Assumption 1. There is no mismatch between the system and the model.

Assumption 2. The system (and model) is noise free.

Assumption 3.

ˆ The system model polynomials(4.2) are coprime8k

ˆ The system model(4.1) satis�es m � na, i.e. proper.

The system model is obtained as a SDP model in di�erence equation

form

yk =
Bk(z� 1) z� �

Ak(z� 1)
uk =

Bk(z� 1)
Ak(z� 1)

uk� � (4.1)

where � 2 N denotes the sampled time delay and the system model polynomials

are given by

Ak(z� 1) = 1 + a1;kz� 1 + a2;kz� 2 + : : : + ana ;kz� na

Bk(z� 1) = b�;k + b� +1 ;kz� 1 + b� +2 ;kz� 2 + : : : + b� + m;k z� m
(4.2)

The subscriptk is used to denote the time-varying nature of the polynomials(4.2),

indicating the state dependency of the associated parameters. Also, na 2 N0

denotes the order of the system model whilem 2 N0 denotes the order of the

numerator polynomial.

Regarding the SDP system model in the context of the SDP-PIP pole-

assignment control approach, it is, in the authors view, important to take certain

points into consideration at the outset:
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the signals. Re-arranging (4.1) yields the general system representation

Ak(z� 1) yk = Bk(z� 1) uk� � (4.3)

in which, regarding the time shift operator, two scenarios are of interest.

Scenarios of interest:

1. The parameters as well as the signals are time shifted, i.e. z� 1 a1;k yk =

a1;k� 1 yk� 1, which is similar to the observations and interpretation with the

approach proposed in (Ziemian 2002).

2. The signals only are time shifted, i.e.a1;k z� 1 yk = a1;k yk� 1.

Following Scenario 1, and re-arranging (4.3), the system output becomes

yk = � a1;k� 1 yk� 1 � a2;k� 2 yk� 2 � : : : � ana ;k � na yk� na

+ b�;k uk� � + b� +1 ;k � 1 uk� � � 1 + b� +2 ;k � 2 uk� � � 2

+ : : : + b� + m;k � m uk� � � m

(4.4)

while, following Scenario 2, and re-arranging (4.3), the system output equation

becomes

yk = � a1;k yk� 1 � a2;k yk� 2 � : : : � ana ;k yk� na

+ b�;k uk� � + b� +1 ;k uk� � � 1 + b� +2 ;k uk� � � 2 + : : : + b� + m;k uk� � � m

(4.5)

Both Scenarios are in compliance with Proposition 1 since here, the shift mech-

anisms are contained inside the polynomials only. When making use of the in-

terpretations according to Scenarios 1 and 2, the system model output quantity

yk obtained from each Scenario, i.e. (4.4) and (4.5), must be identical if both

represent models of the same system. Since the state dependent parameters are
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The shift operators `inside' the polynomials, a�ect the signals only while

shifting the whole system, with the shift operator `outside' the polynomials, af-

fects both the system model polynomials (hence the parameters) and the signals.

Essentially, the di�erent use and interpretation of the time shift operator arises

from the way the SDP model and, subsequently, the SDP model structure is

de�ned. In (4.5), the time instance of the current system output serves as a ref-

erence time instance to which the parameters are related, sothat the time shift

operator a�ects the signals only and not the parameters. Proposition 1 states

that when shifting the whole system, the parameters are a�ected by a time shift,

as well.

So, for clarity, a novel, purely conceptual time shift operator for the

latter case is proposed. Whereby use of the `standard' time shift operator z is

recognized for time shifting the signals only, the conceptual time shift operator is

used for both the signals and the parameters. The conceptualtime shift operator

is introduced in the following de�nition.

De�nition 4.1.1. Let aj;k be some arbitrary SDP as it appears in e.g.(4.3) and

restricting the time shift operatorzi i 2 Z to shift the signals only byi sampling

instances, e.g.aj;k z2yk = aj;k yk+2 . While, introducing the conceptual time shift

operator zi i 2 Z, which shifts the parameters and the signals byi sampling

instances, e.g.z2aj;k yk = aj;k +2 yk+2 .

Remark 4.1.2. Since the time shift operatorz according to De�nition 4.1.1,

arises from the choice of the SDP model structure(4.5) and the subsequent way

the system identi�cation is performed, di�erent choices ofthe model structure and

system identi�cation methodologies, respectively, may require di�erent interpret-

ations of the shift operator.
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attempt to operate on (4.1) with z� resulting in, sincez a�ects the signals only,

Ak(z� 1)yk+ � = Bk(z� 1)uk . This result clearly contradicts Proposition 1 where it

is shown that shifting the system in time a�ects the signals and the parameters.

Moreover, as depicted in the discussion above, the parameters are related to the

same time instance as the system model output, i.e.k + � , which is, here, not

the case. Consequently, the system model (4.1) is required to be operated on by

z� instead ofz� , leading to Ak+ � (z� 1)yk+ � = Bk+ � (z� 1)uk which is in accordance

with Proposition 1.

4.2 Closed-loop SDP-PIP

Figure 4.1 shows the block diagram of the SDP-PIP con�gured in closed-loop

(Taylor et al. 2009). Here, the system is represented according to (4.1) and (4.2).

r k K I;k

�

1
Gk(z� 1)

uk z� �
Bk(z� 1)
Ak (z� 1)

open-loop system

yk

Fk(z� 1)

��

Figure 4.1: Block diagram of the SDP-PIP structure

The controller polynomials are given by

Fk(z� 1) = f 0;k + f 1;kz� 1 + : : : + f n f ;kz� n f nf = na � 1

Gk(z� 1) = 1 + g1;kz� 1 + : : : + gng ;kz� ng ng = m + � � 1
(4.6)

so that the control law, in polynomial form, is obtained as

uk = � Fk(z� 1)yk � ~Gk(z� 1)uk +
K I;k

�
(r k � yk) (4.7)
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with ~Gk(z� 1) = Gk(z� 1)� 1 andK I;k 2 R denotes the integral gain. Alternatively,

the control law can be formulated in the usual state variablefeedback form

uk = � cT
k x k

ck = [ f 0;k f 1;k : : : f n f ;k g1;k g2;k : : : gng ;k � K I;k ]T

x k = [ yk yk� 1 : : : yk� na +1 uk� 1 uk� 2 : : : uk� m� � +1 � k ]T

� k =
r k � yk

�

(4.8)

The integral-of-errors state variable is denoted by� k and the � -operator is de�ned

by � = 1 � z� 1. Furthermore, it is straightforward to see that (4.7) and (4.8) are

identical.

For the sake of simplicity, the notation(z� 1) indicating function of z� 1

is dropped from the polynomials (4.2) and (4.6) in the following.

In order to obtain the closed-loop transfer function, the delay is `re-

moved' from the system by shifting� sampling instances forward in time, i.e.

operating throughout by z� , so that the control law (4.7) can be substituted into

the open-loop system equation (4.1) in order to `close the loop', yielding

Ak+ � z� yk + Bk+ � Fkyk + Bk+ �
~Gkuk + Bk+ � K I;k

yk

�
= Bk+ � K I;k

r k

�
(4.9)

To obtain the closed-loop transfer function fromr k to yk+ � , hence the desire to

eliminate uk in (4.9), expanding the term ~Gkuk =
P m+ � � 1

i =1 gi;k uk� i and substi-

tuting (4.1), solved for uk� i , i.e. uk� i =
Ak+ � � i

Bk+ � � i
z� i yk+ � (cf. Example 4.1), the

73



Generalised Discrete-time SDP-PIP Control

closed-loop transfer function is then obtained as

yk+ �

r k
=

Bk+ � K I;k

�
�

Bk+ �

Bk+ �
Ak+ � +

m+ � � 1X

i =1

Bk+ �

Bk+ � � i
gi;k Ak+ � � i z� i + Bk+ � Fkz� �

�
+ K I;k Bk+ � z� �

(4.10)

Certain observations regarding the SDP-PIP closed-loop transfer function can be

stated:

ˆ The characteristic equation, i.e. denominator of (4.10),contains transfer

functions itself. Hence, it is suspected that the solution of the closed-loop

pole-assignment problem does not necessarily yield uniqueinstantaneous

controller parameters (if a solution exists).

ˆ The characteristic equation is expressed in terms of the time shift operator

a�ecting the signals only, i.e. z, therefore, it can be anticipated that by

assigning desired, stable closed-loop poles (w.r.tz), stability of the instant-

aneous closed-loop transfer function is achieved by design, cf. (Taylor et al.

2009).

4.2.1 Comparison with linear PIP

It is expected that the SDP-PIP closed-loop transfer function is identical with

the closed-loop transfer function obtained for linear PIP since both, linear and

SDP-PIP, are of identical structure except that the parameters in the SDP-PIP

are time varying while in linear PIP these are time invariant. Consequently, the

SDP-PIP comprises the linear PIP as a special sub-class.

It is straightforward to show this relationship. Let the parameters be
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time invariant, i.e. Bk+ i = B(z� 1) and Ak+ i = A(z� 1), it follows that

Bk+ �

Bk+ �
Ak+ � +

m+ � � 1X

i =1

Bk+ �

Bk+ � � i
gi;k Ak+ � � i z� i = A(z� 1) + A(z� 1)

m+ � � 1X

i =1

gi z� i

= A(z� 1)

 

1 +
m+ � � 1X

i =1

gi z� i

!

= A(z� 1)G(z� 1)

and substituting into (4.10), the linear PIP closed-loop transfer function (2.20)

is obtained. Hence linear PIP coexists within the wider SDP-PIP formulation.

4.2.2 Closed-loop SDP-PIP without system zeros

The SDP-PIP in closed-loop without system numerator zeros,i.e. m = 0 (or

equivalently Bk+ i = b�;k + i ), as presented in (Taylor et al. 2009), is supposed to

be contained within the closed-loop transfer function (4.10) as well (since (4.10)

comprises the general case ofm � 0). Substituting Bk+ i = b�;k + i into (4.10) gives

yk+ �

r k
=

b�;k + � K I;k

�
�

Ak+ � +
� � 1X

i =1

b�;k + �

b�;k + � � i
gi;k Ak+ � � i z� i + b�;k + � Fkz� �

�
+ K I;k b�;k + � z� �

(4.11)

From the closed-loop characteristic equation in (4.11), the scaling factor associ-

ated with gi;k (4.12), as it appears in (Taylor et al. 2009), becomes apparent.

�gi;k =
b�;k + �

b�;k + � � i
gi;k (4.12)

Also, it is straightforward to show that the solution of the pole-assignment prob-

lem, obtained by making use of the characteristic equation given in (4.11), is

identical to the solution presented in (Taylor et al. 2009).
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Consider the desired, instantaneous linear time-invariant characteristic

equation

D(z� 1) = 1 +
na + �X

i =1

di z� i (4.13)

and note that making use of the� -operator on the polynomials yields, e.g.

� Ak+ j = Ak+ j � Ak+ j z� 1 = �Ak+ j j 2 Z (4.14)

where

�Ak+ j = 1 +
na +1X

i =1

�ai;k + j z� i

�ai;k + j = ai;k + j � ai � 1;k+ j ana +1 ;k+ j = 0

(4.15)

so that �nally, the pole-assignment problem is formulated to be

D(z� 1) � �Ak+ � =
� � 1X

i =1

�gi;k
�Ak+ � � i z� i + z� � (b�;k + � � b�;k + � z� 1)Fk

+ K I;k b�;k + � z� �

(4.16)

and can be solved by comparing coe�cients of like powers ofz. In order to solve

the pole-assignment problem (4.16) e�ciently, it can be formulated in a compact

matrix form, see e.g. (Young et al. 1987; Wang and Young 1988;Taylor et al.

2009),

��� k = ��� k��� k (4.17)

where��� k 2 R(na + � )� 1 denotes a vector corresponding to the left side of (4.16)

��� k = [ d1 � �a1;k+ � d2 � �a2;k+ � : : : dna +1 � �ana +1 ;k+ � dna +2 : : : dna + � ]T (4.18)

and ��� k = [��� �g;k��� f;k ��� K I ;k ] 2 R(na + � )� (na + � ) denotes a matrix consisting of the

three terms of the right side of (4.16) associated with the controller parameters
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gi;k , f i;k and K I;k , respectively. So,��� �g;k 2 R(na + � )� (� � 1) and ��� f;k 2 R(na + � )� na

yield

��� �g;k =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

1 0 0 : : : 0

�a1;k+ � � 1 1 0 : : : 0

�a2;k+ � � 1 �a1;k+ � � 2 1 : : : 0
:::

:::
:::

: : :
:::

�ana +1 ;k+ � � 1 �ana ;k+ � � 2 �ana � 1;k+ � � 3 : : : 0

0 �ana +1 ;k+ � � 2 �ana ;k+ � � 3 : : : 0

0 0 �ana +1 ;k+ � � 3 : : : 0
:::

:::
:::

: : :
:::

0 0 0 : : : �ana ;k+1

0 0 0 : : : �ana +1 ;k+1

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(4.19)

��� f;k =

2

6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
4

0 0 : : : 0 0
:::

:::
:::

:::
:::

0 0 : : : 0 0

b�;k + � 0 : : : 0 0

� b�;k + � b�;k + � : : : 0 0

0 � b�;k + �
: : : 0 0

0 0
: : : 0 0

:::
:::

:::
:::

:::

0 0 : : : b�;k + � 0

0 0 : : : � b�;k + � b�;k + �

0 0 : : : 0 � b�;k + �

3

7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
5

(4.20)
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where the �rst � � 1 rows consist of zeros. Finally, with

��� K I ;k = [0 : : : 0| {z }
� � 1

b�;k + � 0: : : 0]T 2 R(na + � )� 1 (4.21)

the instantaneous controller parameters contained in the vector

��� k = [�g1;k : : : �g� � 1;k f 0;k : : : f na � 1;k K I;k ]T (4.22)

can be obtained by solving (4.17) for��� k , i.e.

��� k = ��� � 1
k ��� k (4.23)

As expected, the pole-assignment solution (4.23), comprising (4.18)�(4.22), de-

rived from (4.11), is identical to that presented in (Tayloret al. 2009).

4.2.3 SDP-PIP incorporating system zeros

Having shown that, in the case ofm = 0, the SDP-PIP controller parameters

can be derived from the closed-loop transfer function (4.10) and the respective

characteristic equation, now, the case ofm > 0 is explored. Apart from those in

(4.11), the scaling factors ofgi;k (4.12) are not scalars, instead, it is recognized,

these are now transfer functions (cf. (4.10)). In order to deal with this, a similar

procedure as that adopted in (4.9) is utilised. Substituting the control law (4.7)

into the open-loop system equation (4.1), re-arranged in the form Ak+ � z� yk =

b�;k + � uk +
P m

i =1 b� + i;k + � uk� i , yields

Ak+ � z� yk = b�;k + �

�
� Fkyk � ~Gkuk + K I;k

r k � yk

�

�
+

mX

i =1

b� + i;k + � uk� i (4.24)
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Again, expanding the term ~Gkuk and re-arranging, one obtains

Ak+ � z� yk + b�;k + � Fkyk + b�;k + �
K I;k

�
yk = b�;k + �

K I;k

�
r k

+ ( b� +1 ;k+ � � b�;k + � g1;k)uk� 1 + ( b� +2 ;k+ � � b�;k + � g2;k)uk� 2

+ : : : + ( b� + m;k + � � b�;k + � gm;k )uk� m � gm+1 ;kb�;k + � uk� m� 1

� : : : � gm+ � � 1;kb�;k + � uk� m� � +1

(4.25)

Note, however, that the closed-loop equation (4.25) still contains previous system

inputs. In order to eliminate them, from the open-loop system equation (4.1),

values of the past system inputsuk� 1; uk� 2; : : : ; uk� � +1 , are obtained as

uk� 1 =
1

b�;k + � � 1
Ak+ � � 1 z� � 1yk �

b� +1 ;k+ � � 1

b�;k + � � 1
uk� 2 �

b� +2 ;k+ � � 1

b�;k + � � 1
uk� 3

� : : : �
b� + m;k + � � 1

b�;k + � � 1
uk� m� 1

uk� 2 =
1

b�;k + � � 2
Ak+ � � 2 z� � 2yk �

b� +1 ;k+ � � 2

b�;k + � � 2
uk� 3 �

b� +2 ;k+ � � 2

b�;k + � � 2
uk� 4

� : : : �
b� + m;k + � � 2

b�;k + � � 2
uk� m� 2

:::

uk� � +1 =
1

b�;k +1
Ak+1 z yk �

b� +1 ;k+1

b�;k +1
uk� � �

b� +2 ;k+1

b�;k +1
uk� � � 1

� : : : �
b� + m;k +1

b�;k +1
uk� m� � +1

(4.26)

and substituting (4.26) into (4.25) gives

Ak+ � z� yk + b�;k + � Fkyk + b�;k + �
K I;k

�
yk = b�;k + �

K I;k

�
r k

+
� � 1X

i =1


 i;k Ak+ � � i z� � i yk +
mX

j =1

� j;k uk� � +1 � j

(4.27)

where the parameters
 i;k 2 R and � j;k 2 R arise from sequentially substituting

uk� 1; uk� 2; : : : ; uk� � +1 from (4.26) into (4.25), hence the computation is iterative
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(denoted by the superscripts), details see Appendix A.1.


 i;k =
c(i � 1)

i

b�;k + � � i
i = 1; 2; : : : ; � � 1 (4.28a)

� j;k = c(� � 1)
� + j � 1 j = 1; 2; : : : ; m (4.28b)

c(j )
i =

8
>><

>>:

c(j � 1)
i � c(j � 1)

j
b� + i � j;k + � � j

b�;k + � � j
if i � m + j

c(0)
i else

(4.28c)

c(0)
i = b� + i;k + � � b�;k + � gi;k

where b� + m+ l;k + � = 0 8 l = 1; 2; : : :
(4.28d)

So, the closed-loop characteristic equation can be obtained from (4.27) and by

nullifying � j;k , i.e. forcing � j;k such that

� j;k = 0 j = 1; 2; : : : ; m (4.29)

the term associated with the remaining previous system inputs is eliminated

from the closed-loop equation (4.27), so that subsequently, the pole-assignment

problem is formulated to be

D(z� 1) � �Ak+ � =
� � 1X

i =1

(� 
 i;k ) �Ak+ � � i z� i + z� � (b�;k + � � b�;k + � z� 1)Fk

+ K I;k b�;k + � z� �

(4.30)

which is identical to that obtained for the case ofm = 0 (4.16), except that here,

�gi;k is replaced by(� 
 i;k ). Therefore, (4.23) solves the pole-assignment problem

(4.30) as well, if��� k is de�ned to be

��� k = [ � 
 1;k : : : � 
 � � 1;k f 0;k : : : f n f ;k K I;k ]T (4.31)
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ˆ The polynomial Gk is used in order to compensate for the in�uence of the

system zeros.

o Considering the closed-loop equations (4.25) and (4.27) in conjunc-

tion with (4.29), it can be seen that the open-loop system polynomial

coe�cients b� + i;k + � ; i = 1; : : : ; m are eliminated from the closed-loop

system numerator, i.e. the system zeros are eliminated.

The resulting closed-loop transfer function, when substituting the controller para-

meters obtained for the case ofm = 0 in Section 4.2.2 (also, see Taylor et al. 2009)

and for the case ofm > 0, is identical and of the linear form

yk+ �

r k
=

1 +
na + �P

i =1
di

1 + d1z� 1 + d2z� 2 + : : : + dna + � z� (na + � )
(4.32)

In summary, the controller parameters required for the control law (4.8) can be

computed in the following manner.

Algorithm 1 SDP-PIP with system numerator zeros

1: Choose desired characteristic closed-loop equation (4.13)
2: Compute ��� k (4.18) and��� k (4.19)�(4.21)
3: Solve (4.23) in order to obtain��� k (4.31)
4: Obtain gi;k ; i = 1; : : : ; � � 1 from 
 i;k using (4.28) andgi;k ; i = �; : : : ; � + m� 1

from (4.29) using (4.28)

Example 4.2. Consider the following arbitrarily chosen SDP system wherena =

2, m = 1 and � = 2. De�ne a1;k = 0:2eyk � 4 + 0:1u2
k� 3, a2;k = � 0:3y3

k� 3, b2;k =

� 3yk� 3 and b3;k = 0:5y1:5
k� 4 + 0:3uk� 4. The na + � desired closed-loop poles are

chosen to be located atp1;2 = 0:75� 0:3i and p3 = p4 = 0:5.

According to Algorithm 1, after having chosen the desired closed-loop

pole locations and subsequent computation of��� k (4.18) and��� k (4.19)�(4.21), at
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unit step change in the reference signal, from 1 to 2, is considered (see �rst step

in Figure 4.2).

Other than linear system models, SDP models can be more complex and

diverse in their appearance, hence general statements cannot necessarily be made

so that every system is required to be considered individually. However, since the

SDP-PIP controller is of a certain structure, there can be structurally imposed

observations made which are most likely to a�ect the closed-loop performance.

The performance criteria of choice are the mean squared errors

MSE =
1
N

NX

k=1

(yk � yd;k)2 (4.33)

and the integral of absolute errors

IAE =
1
N

NX

k=1

jyk � yd;k j (4.34)

whereyd;k denotes the desired closed-loop system output.

4.3.1 Model parameter uncertainties

Firstly, uncertainties on the system parametersa1;k+ i and a2;k+ i i = 1; 2, that

are required for calculatinguk , are considered. The uncertainties of these model

parameters are simulated to be uniformly distributed in theranges of� 5 %, � 1 %

and � 0:36 % of the nominal parameter values. The results obtained are shown

in Table 4.1. It can be observed that almost90 % of the MC runs result in an

unstable response when the uncertainty was� 5 %. By trial and error, it is found

that stable results of all MC runs are obtained when the parameter uncertainties

remain in the range of� 0:36 %. This means, that even slight uncertainties, e.g.

� 1 %, can lead to instability of the closed-loop system.
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Figure 4.8: MC simulation results for SDP-PIP when model parameter uncer-
tainties in the range of� 19 %is considered.

4.4 The SDP-PIP in incremental input form

The usage of an integral-of-errors state in�icts certain practical implementation

issues such as integrator wind-up, over�ow, etc. In order toovercome these

issues, (Taylor et al. 2009) proposes to express the controllaw in an incremental

input form so that the necessity of implementing an integral-of-errors state is

eliminated. The calculation of the controller parameters,however, is not altered.

Recall from (4.7) and (4.8), respectively, that the controllaw is given

by

uk = � ~Gk uk � Fk yk + K I;k � k (4.35)

where � k denotes the integral-of-errors state. By taking the di�erence of the

current and previous input, the incremental input form is obtained. But note

that the input of the previous sampling time instance is required, hence operating
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on (4.35) with z� 1, as discussed in Section 4.1, yields

uk� 1 = � ~Gk� 1 uk� 1 � Fk� 1 yk� 1 + K I;k � 1 � k� 1 (4.36)

and subtracting (4.36) from (4.35), gives

uk = uk� 1 � ~Gkuk + ~Gk� 1uk� 1 � Fkyk + Fk� 1yk� 1 + K I;k � k � K I;k � 1� k� 1 (4.37)

or, equivalently,

uk = uk� 1 � ~Gkuk + ~Gk� 1uk� 1 � Fkyk + Fk� 1yk� 1 + (1 � z� 1)K I;k � k| {z }
= �̂ K I;k � k

(4.38)

where it can be observed that both time varying quantities, the integral-of-errors

state and the associated integral gain, are a�ected by the di�erence operator,

de�ned to be �̂ = 1 � z� 1. Moreover, note that the di�erence operator�̂ di�ers

from � that is de�ned in � k . While �̂ takes the di�erence of the whole system,

i.e. signals and parameters, between consecutive samplinginstances,� operates

on the instantaneous linear system only, i.e. on the signals.

Remark 4.4.1. Similarly as shown in Example 4.1, operating on(4.35) with � is

misleading. Since then, the incremental input of the instantaneous linear system

is obtained, but, if the instantaneous linear system of the previous sampling time

instance di�ers from the current one, the incremental inputof the overall system

is, as a consequence, di�erent as well.

So, in order to eliminate� k , the integral gainK I;k is required to be time

invariant. Then, the term K I;k � k � K I;k � 1� k� 1 in (4.37) becomesK I � k � K I � k� 1 =

K I (1� z� 1)� k = K I � � k = K I (r k � yk) since, from (4.8),� k = r k � yk
� . Consequently,

time invariant integral gains in (4.35) and (4.36) are required in order to obtain
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time invariant integral gains in (4.37).

From the solution of the pole assignment problem (4.23), as well as by

comparing (4.25) with (4.32), the integral gainK I;k is obtained by

K I;k =
1 +

P nd
i =1 di

b�;k + �
(4.39)

where it can be seen that the time varying nature is introduced by the denomin-

ator term, i.e. b�;k + � . Hence, �rst multiplying (4.35) with b�;k + � and (4.36) with

b�;k + � � 1 and then subtracting, yields

b�;k + � uk = b�;k + � � 1uk� 1 � b�;k + �
~Gkuk + b�;k + � � 1

~Gk� 1uk� 1

� b�;k + � Fkyk + b�;k + � � 1Fk� 1yk� 1 + �K I � k � �K I � k� 1| {z }
= �K I � � k = �K I (r k � yk )

(4.40)

where �K I = 1+
P nd

i =1 di denotes the time invariant integral gain. Finally, dividing

(4.40) by b�;k + � and taking (4.39) into account, the control law in incremental

input form is obtained by

uk =
b�;k + � � 1

b�;k + �
uk� 1 � ~Gk uk +

b�;k + � � 1

b�;k + �

~Gk� 1 uk� 1

� Fk yk +
b�;k + � � 1

b�;k + �
Fk� 1 yk� 1 + K I;k (r k � yk)

(4.41)

where the necessity of implementing the integral-of-errors state � k in a practical

application is eliminated. Only the controller parameter values of the previous

time instance are required to be stored, along with the previous system outputs

and inputs.

Identical numerical simulation results are obtained when making use

of (4.41) applied to Examples 4.2 and 4.3. This is expected since the controller

parameters are also calculated according to Algorithm 1. Hence they are identical
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Chapter 5

SDP Modelling of a DC-DC Boost

Converter Operating in DCM

This Chapter is concerned with modelling a practical, laboratory based applic-

ation example, namely, a DC-DC boost converter, operating in discontinuous

conduction mode (DCM). DC-DC boost converters are switched-mode power elec-

tronic devices, that step-up a DC input voltage to a higher DCoutput voltage.

The challenge in terms of modelling a DC-DC switched-mode converter arises

from its hybrid nature due to the switching process. Consequently, two condi-

tions are required to be considered, namely: when the switchis open and when

the switch is closed. In DCM operation, however, an additional condition is in-

troduced, namely, when the switch is open and the inductor isnot conducting.

Details on the operational principles are given in Section 5.1.1.

The modelling approach proposed here, is to make use of the state-

dependent parameter (SDP) framework in order to obtain a model of the con-

verter. In the proposed approach, the SDP model is based on measured input-

output data only, rather than on physical relationships, e.g. circuit components.

Modelling of a system in the context considered here is for the purpose
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5.1.1 Operational principle

Here, the operational principle of the DC-DC boost converter is brie�y summar-

ized. Detailed information can be found in, e.g. (Mohan et al. 1995; Erickson

and Maksimovic 2001; Hitzemann 2009).

The DC-DC boost converter, essentially, consists of three components,

as shown in Figure 5.1, namely, the inductor, capacitor and the switch. Both the

inductor and capacitor are capable of storing energy. The switch, realised as a

N-channel MOSFET, is driven by a PWM voltage of periodTs and duty-cycled,

de�ned as

d =
Ton

Ts
(5.1)

whereTon denotes the time interval within the periodTs when the PWM voltage

is high, which causes the switch to conduct. Consequently,Tof f denotes the time

interval when the PWM voltage is low, which causes the switchnot to conduct.

Hence the switching period is de�ned to be

Ts = Ton + Tof f (5.2)

Now, consider the time interval of a PWM periodTs when the switch

is conducting, i.e. duringTon. This e�ectively means that the switch is short-

circuited so that the inductor only is charged by the input supply source and the

capacitor only supplies the load. The diode, however, ensures that the capacitor

is not short-circuited and the current iC is only able to �ow to the load. This

basically separates the circuit in two parts as schematically shown in Figure 5.3.

The inductor current iL increases by

iL =
1
L

Z Ton

0
vL dt (5.3)
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�
+

Vi

LiL

vL

C vC R

iR

Vo

iC

Figure 5.3: DC-DC boost converter schematic when the switchis conducting, i.e.
during Ton.

where,vL = Vi . The increasing current builds the magnetic �eld of the inductor,

where energy is stored (Gri�ths 1999). Simultaneously, theoutput voltage de-

creases by

vC =
1
C

Z Ton

0
� iR dt (5.4)

which is caused by drawing current from the capacitor. Note that when taking

Figure 5.3 into account,vC = Vo and iC = iR .

Next, consider the time interval of the PWM periodTs when the switch

is not conducting, i.e. during Tof f . This e�ectively means that the switch is

`removed', so that the circuit in Figure 5.1 can be re-drawn as shown in Figure

5.4. The charged inductor transfers its stored energy to thecapacitor and the

�
+

Vi

LiL

vL

C

iC

vC R

iR

Vo

Figure 5.4: DC-DC boost converter schematic when the switchis not conducting,
i.e. during Tof f .
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load. Hence the inductor current decreases by

iL =
1
L

Z Ton + Tof f

Ton

vL dt (5.5)

where the voltage drop across the inductor can be approximated by vL � Vi � Vo,

which is negative, since in a boost converter,Vo > V i . Moreover, the currentiL can

only �ow through the diode in the direction towards the capacitor and load, which

means that, iL � 0. Consequently, if the next period begins before the inductor

current iL reaches zero, i.e.iL > 0 8t, the inductor conducts continuously and

the converter is said to operate in continuous conduction mode (CCM). On the

contrary, if the inductor current settles to zero and, subsequently, remains there

until the end of the period, the converter is said to operate in DCM, which is

considered here. In Figure 5.5, the inductor current waveform for continuous and

discontinuous operation is illustrated, whereTz denotes the time interval ofTof f

where the inductor current is zero. Since, duringTof f , the capacitor is charged,

t

iL

0

CCM

Ton Tof f

Ts

t

iL

0

DCM

Ton Tof f
Tz

Ts

Figure 5.5: Idealised inductor current in continuous (CCM)and discontinuous
(DCM) conduction mode operation.

i.e. current �ows into the capacitor, the voltage across thecapacitor vC increases

by

vC =
1
C

Z Ts

Ton

iC dt (5.6)

with vC u Vo and taking (5.4) into account, an output voltage ripple is imposed.
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This ripple is largely determined by the size of the capacitor and here, the capa-

citor is chosen large enough so that the ripple may be neglected.

In summary, when considering the input voltageVi to be constant, dur-

ing Ton the inductor is charged while the capacitor only supplies the load and,

subsequently, duringTof f the charged inductor transfers its energy to the capa-

citor and the load, supported by the input source. Consequently, when adopting

the law of energy conservation, it can be concluded that the output voltage Vo

can be controlled by changing the duty-cycled of the PWM voltage, i.e. adapting

Ton and Tof f , respectively.

This means, when referring the boost converter as a system with a

system output y and a system inputu, that, and in the remainder of this Thesis,

for the sake of simplicity,y b= Vo and u b= d.

5.1.2 Converter set-up

The set-up of the prototype converter used for laboratory experiments is as fol-

lows: Vi = 5 V , L = 745 µH with inherent DC series resistance ofDCR � 1:3 


and C = 1000µF. The N-channel MOSFET used, realising the switchS, is the

IRLB8748PbF, which on-resistanceRDS on � DCR, hence negligible.

For DCM operation, the switching period, which is also equivalent to

the sampling interval, is chosen to beTs = 1 ms. In order to generate the PWM

voltage signal, the load reference voltageVref and to acquire the required meas-

urements, the dSPACE MicroAutobox DS1401 is used.

The maximal output voltage Vo is chosen to beVo = 20 V, hence the

output voltage is de�ned to be in the range

f Vo 2 R j 5 V � Vo � 20 Vg (5.7)
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The maximum current, which can be delivered by the power supply is

limited, hence the valueiL = 2 A cannot be exceeded. Consequently, the output

current is de�ned to be in the range

f iR 2 R j 40 mA � iR � 140 mAg (5.8)

Furthermore, the duty-cycle of the PWM voltage signal can only vary

between0 % and 100 %, henced is de�ned to be in the per-unit range

f d 2 R j 0 � d � 1g (5.9)

Regarding the realisation of the load, as shown in Figure 5.2, the shunt

resistor is chosen to beRo = 10 
 , the Op-amp is the LM358N and the transistor

is a TIP110 with, according to the datasheet, a typical DC current gain of hF E =

1000, so that the requirementiB � iR is ful�lled.

5.2 State-dependent parameter modelling

The proposed modelling approach is based on measured signals. As mentioned

in Section 5.1.1, the system input is given by the duty-cycleof the PWM voltage

signal while the system output is given by the output voltage. However, there

is an additional measurable signal, namely, the output current. Consequently,

modelling the system requires the inputd, output Vo as well as the output current

iR to be taken into account.

Naturally, the system input is a signal applied to the system, hence

known, while the output is the measured response to that input and the model is

required to accurately replicate the system output based onthis input. The out-
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Figure 5.6: Measured output voltage response (upper) to thestaircase input
(lower) with constant output current value of iR = 100 mA

The steady-state behaviour, directly obtained from the measurements,

i.e. the staircase responses for constant output current values iR = 40 mA;

50 mA; : : : ; 140 mA, are shown in Figure 5.8. Consequently, each trace corres-

ponds to a constant output current value in ascending order from left to right.

The steady-state behaviour for each output current value isconsidered individu-

ally and modelled by �tting polynomials of the form

yi; 1 (u1 ) =
4X

j =1

� i;j u4� j
1 8i = 1; 2; : : : ; 11 (5.10)

where the subscript1 indicates steady-state and� i;j 2 R denote corresponding

coe�cients.

For all the i output current values, polynomials comprising the four

coe�cients � i;j 2 R are identi�ed. Since the i polynomials are all of the same
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Figure 5.7: Single step response of the staircase responses.

order, the coe�cients can be plotted against the output current and, consequently,

being realised themselves as functions of the output current, which are, again,

chosen to be of a polynomial form

� i (iR) =
4X

j =1


 i;j i4� j
R with i = 1; 2; 3; 4 (5.11)

where 
 i;j 2 R denote constant coe�cients. The coe�cients � i;j , obtained from

(5.10) (solid line) and� i (iR ) being a function of the output current (5.11) (dashed

line), are shown in Figure 5.9.

Combining (5.10) with (5.11), the overall steady-state behaviour is char-

acterised by

y1 (iR ; u1 ) =
4X

j =1

� j (iR ) u4� j
1 (5.12)

The steady-state behaviour directly obtained from measurements and modelled

by �tting polynomials (5.10) (solid lines), compared to thesteady-state charac-

teristic modelled by (5.12) (dashed line), are shown in Figure 5.10.

Remark 5.2.2. The order of the polynomials(5.10) and (5.11) are found by

evaluating the criteria chosen to be the mean integral of absolute errors. Essen-
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Figure 5.8: Measured steady-state behaviour considered atconstant output cur-
rent values starting atiR = 40 mA increasing in steps of10 mA up to iR = 140 mA,
from left to right.

tially, the order, where the di�erence of the mean integral of errors to the next

higher order is su�ciently small, is selected. This means, that the improvement

to the next higher order is marginal.

5.2.2 Dynamic behaviour

Having obtained the steady-state behaviour, the dynamics of the system is con-

sidered now. The dynamic characteristics are identi�ed by using the individual

steps, as shown in Figure 5.7, of the staircase responses, whereby, initially, the

staircase responses corresponding to the individual output current values are ex-

amined separately. Since the dynamics are of interest, the time-constants of the

staircase step responses are required to be obtained. For this reason, consider the

linear, discrete-time, �rst order system model representation

yk = � a1 yk� 1 + b1 uk� 1 (5.13)
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Figure 5.9: Parameters� i obtained as a function of the output current (dashed
line) and obtained directly from considering the individual steady-state beha-
viours (solid line).

where a1 2 R and b1 2 R denote model parameters, respectively. In particu-

lar, the parameter a1 is of interest since this parameter relates directly to the

equivalent system time-constant at the considered operating point.

In Figure 5.11, the identi�ed model parametera1, against the output

voltage is presented, where each trace corresponds to a �xedoutput current value

iR = 40 mA; 50 mA; : : : ; 140 mA, similar to Figure 5.8. Since the discrete-time

model parametera1 relates to the time-constant by the mapping

� =
� Ts

ln(� a1)
(5.14)

where � 2 R denotes the equivalent time-constant of the system at a certain
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Chapter 6

SDP-PIP Controller

Implementation Results

Based on the elaborated SDP model of the DC-DC boost converter presented in

Chapter 5, implementation results of the model based SDP-PIP controller are now

presented. In order to demonstrate the e�cacy of the proposed SDP-PIP control

approach, implementation results are compared with linearPIP control, which is,

in the case of a �rst order model, structurally similar to thewidely used non-model

based proportional integral (PI) controller, in fact, the linear PIP based on a �rst

order model also consists of a proportional and an integral gain, see e.g. (Taylor

et al. 2001). In this regard, these controllers can be seen tobe equivalent, however,

making use of the linear PIP controller instead of the PI controller, provides a

comfortable way of tuning the controller by simply choosingthe desired closed-

loop poles, to provide the calculation for the controller gains. Moreover, since

the SDP-PIP `replicates' a linear closed-loop system behaviour with closed-loop

poles at desired locations, this allows a direct performance comparison.

The output voltage control objectives are twofold. Output voltage reg-

ulation when load steps, i.e. the case of output current steps are considered. This
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Chapter 7

Conclusions and Further Work

Conclusions of the work carried out and documented in this Thesis are given in

Section 7.1. In summary, this concerns the proposed methodological approach

to model-based state dependent parameter (SDP) control, inparticular SDP

proportional-integral-plus (PIP) pole-assignment control, the proposed decoup-

ling strategy using linear model-based predictive control(MPC) based on MIMO

non-minimal state-space (NMSS) models, a SDP modelling approach for a DC-

DC boost converter operating in discontinuous conduction mode (DCM), which

is compared to a Hammerstein-bilinear structured (HBS) modelling approach and

�nally, the experimental demonstration of SDP-PIP pole-assignment control to

the DC-DC boost converter based on the developed SDP model.

Since research is an ongoing, if not a never ending process, the research

carried out in this Thesis has taken steps further but, nevertheless, as with all

research never completed to the �nal extent, hence in the authors view, potentially

fruitful directions for further research are suggested in Section 7.2.
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Appendix A

A.1 Computation of SDP-PIP closed loop para-

meters g and b

In the following, the computation of the parameters
 i;k and � j;k in the closed-loop

equation (4.27), as presented in (4.28), is shown.

Recall from (4.25) that the closed loop system is given by

Ak+ � z� yk + b�;k + � Fkyk + b�;k + �
K I;k

�
yk = b�;k + �

K I;k

�
r k

+ ( b� +1 ;k+ � � b�;k + � g1;k )uk� 1 + ( b� +2 ;k+ � � b�;k + � g2;k)uk� 2

+ : : : + ( b� + m;k + � � b�;k + � gm;k )uk� m � gm+1 ;kb�;k + � uk� m� 1

� : : : � gm+ � � 1;kb�;k + � uk� m� � +1

(A.1)

Also, recall from (4.28) that the computation is an iterative procedure, i.e. (A.1)

is iteration zero. So, (A.1) can be reformulated to be

Ak+ � z� yk + b�;k + � Fkyk + b�;k + �
K I;k

�
yk � b�;k + �

K I;k

�
r k

= c(0)
1 uk� 1 + c(0)

2 uk� 2 + : : : + c(0)
m+ � � 1uk� m� � +1

(A.2)

with c(0)
i = b� + i;k + � � b�;k + � gi;k i = 1; 2; : : : ; m+ � � 1 and b� + i;k + � = 0 8i > m . The
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Appendix B

B.1 The DC-DC boost converter

The purpose built laboratory based DC-DC boost converter, which is used for

experiments, is shown on the right in Figure B.1. Additionally, the realisation of

the load, as described in Section 5.1 and schematically shown in Figure 5.2, can

be observed on the left in Figure B.1. Moreover, since the input voltage range of

the ADC of the dSPACE MicroAutobox ranges between0 V and 5 V, the output

voltage of the converter is required to be scaled by a factor of 1
4. This is realised

by the circuit shown in the front in Figure B.1.

The Simulink® block diagram, which is used for acquiring the data that

are subsequently used for obtaining the converter model, isshown in Figure B.2.

The block diagrams used for PIP control of the converter are shown

in Figures B.3 and B.4. In Figure B.3, the load is considered to be of a �rst

order transfer function form (6.1), while load steps are considered in Figure B.4.

The linear PIP controllers, as well as the SDP-PIP controller are implemented

as an `Embedded MATLAB Function', hence only this function is required to be

changed accordingly in order to switch between the respective controllers.

Finally, the Simulink® subsystem `measure voltage' is shown in Figure

B.5.
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