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Abstract
Purpose: To investigate changes in 24-h energy expenditure (EE), substrate 
oxidation, and body composition following resistance exercise (RE) and a high 
protein diet via whey protein supplementation (alone and combined) in healthy 
older men.
Methods: In a pooled groups analysis, 33 healthy older men [(mean ± SE) age: 
67 ± 1 years; BMI: 25.4 ± 0.4 kg/m2] were randomized to either RE (2×/week; 
n = 17) or non-exercise (n = 16) and either a high protein diet via whey pro-
tein supplementation (PRO, 2 × 25 g whey protein isolate/d; n = 17) or control 
(CON, 2 × 23.75 g maltodextrin/d; n = 16). An exploratory sub-analysis was also 
conducted between RE+CON (n  =  8) and RE+PRO (n  =  9). At baseline and 
12 weeks, participants resided in respiration chambers for measurement of 24-h 
EE and substrate oxidation and wore an accelerometer for 7 days for estimation 
of free-living EE.
Results: Resistance exercise resulted in greater increases in fat-free mass 
(1.0  ±  0.3  kg), resting metabolic rate [(RMR) 36  ±  14  kcal/d], sedentary EE 
(60 ± 33 kcal/d), and sleeping metabolic rate [(SMR) 45 ± 7 kcal/d] compared 
to non-exercise (p < 0.05); however, RE decreased activity energy expenditure 
in free-living (−90 ± 25 kcal/d; p = 0.049) and non-exercise activity inside the 
respiration chamber (−1.9  ±  1.1%; p  =  0.049). PRO decreased fat mass [(FM) 
−0.5 ± 0.3 kg], increased overnight protein oxidation (30 ± 6 g/d), and decreased 
24-h protein balance (−20 ± 4 g/d) greater than CON (p < 0.05). RE+PRO de-
creased FM (−1.0 ± 0.5 kg) greater than RE+CON (p = 0.04).
Conclusion: Resistance exercise significantly increased RMR, SMR, and seden-
tary EE in healthy older men, but not total EE. PRO alone and combined with RE 
decreased FM and aided body weight maintenance. This study was registered at 
clinicaltrials.gov as NCT03299972.
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1   |   INTRODUCTION

Increased fat mass (FM) and declines in fat-free mass 
(FFM) characterize age-related changes in body compo-
sition (St-Onge, 2005). Skeletal muscle, which accounts 
for ~45% of FFM (Geisler & Müller, 2017), decreases by 
~0.5–1% per annum after ~45 years of age (Janssen, 2010). 
When accompanied by concomitant reductions in muscle 
strength and physical function, this gives rise to a disease 
known as sarcopenia (Cruz-Jentoft et al., 2019). Contrary 
to skeletal muscle mass (SMM), FM has been shown to in-
crease by ~0.2% per annum from 20 years of age (Imboden 
et al., 2017; Westerterp, 2018a). The coexistence of sarco-
penia and adiposity, termed sarcopenic obesity, is of great 
concern as they act synergistically, increasing the risk of 
metabolic and cardiovascular disease (CVD), and ulti-
mately mortality (Wannamethee & Atkins, 2015).

Body composition changes with age are ascribed to al-
terations in energy balance (St-Onge & Gallagher, 2010). 
Regarding the energy expenditure (EE) component of the 
energy balance equation (rate of energy storage = rate of 
energy intake (EI) − rate of EE), aging is associated with 
declines in all three major constituents: resting metabolic 
rate (RMR), which accounts for 60–80%; activity energy 
expenditure (AEE), which comprises ~20–50%; and diet-
induced thermogenesis (DIT), which uses 5–10% (Hall 
et al., 2012; Manini, 2010). The decline in RMR occurs at 
a rate of ~1–2% per decade from the age of 30 (Elia et al., 
2000). Fat-free mass accounts for 50–70% of the variance, 
of which SMM accounts for ~25% (Bosy-Westphal et al., 
2003; Gallagher et al., 1998; Geisler et al., 2016a). Hence, 
interventions that target skeletal muscle and curb sarco-
penia may mitigate age-related declines in components of 
EE, improve energy balance, and attenuate adiposity in 
older adults.

Resistance exercise (RE) is a potent stimulus to increase 
skeletal muscle and FFM and is considered the primary 
intervention to mitigate sarcopenia (Phillips & Martinson, 
2019). Alongside beneficial effects on FFM, increases in 
total EE (TEE) (Hunter et al., 2000), RMR (Hunter et al., 
2004) and 24-h fat oxidation (Treuth et al., 1995), and 
decreases in the energetic cost of walking (Valenti et al., 
2016) and FM (Westcott, 2012) have been observed in 
older adults following RE training. Increased EE follow-
ing RE is often attributed to the energetic cost of increased 
skeletal muscle and FFM (Hunter et al., 2004), which 
have specific metabolic rates of 12.6 and 24  kcal/kg/d, 
respectively (Hall, 2006; Wang et al., 2010). Although, 

it is important to note that acute factors also contribute, 
namely excess post-exercise oxygen consumption (EPOC), 
which includes, but is not limited to, glycogen, adenosine 
triphosphate (ATP) and creatine phosphate resynthesiz-
ing, protein turnover, ion redistribution, blood and mus-
cle oxygen replenishment, and residual hormone effects 
(Børsheim & Bahr, 2003).

While RE has repeatedly been shown to increase as-
pects of 24-h EE, a potential caveat in older individuals 
is the frequently reported compensatory reduction in 
AEE, particularly spontaneous physical activity (SPA) 
(Westerterp, 2018a, b). This has been postulated to occur 
due to training-related fatigue (Hunter et al., 2018) and/or 
energy compensation to maintain energy balance (Careau 
et al., 2021; Hall et al., 2012). Previous work in older adults 
has shown that this effect may be eliminated, without 
any dampened effects on SMM or strength, by perform-
ing load-matched RE twice as opposed to three times per 
week (Hunter et al., 2013). However, participants in this 
study also participated in aerobic exercise (AE), highlight-
ing the need for further research to determine whether 
performing RE twice as opposed to thrice weekly without 
AE eliminates energy compensation in older adults.

In addition to RE, a high protein diet may also assist 
in attenuating sarcopenia (Phillips & Martinson, 2019). 
At present, protein recommendations for adults aged 
≥19 years are set according to the recommended dietary 
allowance (RDA) of 0.8  g/kg/d (Institute of Medicine, 
2005). However, working groups reason that the RDA is 
insufficient for older individuals to curb sarcopenia and 
intakes of ~1.2  g/kg/d (Bauer et al., 2013; Deutz et al., 
2014) and even up to 2× the RDA of 1.6 g/kg/d (Phillips 
et al., 2016) should be consumed. Indeed, intakes of di-
etary protein towards the higher end of these recommen-
dations (~1.4–1.6  g/kg/d) have been shown to increase 
FFM in older adults (Bauer et al., 2015; Bell et al., 2017; 
Mitchell et al., 2017; Norton et al., 2016; Park et al., 2018). 
Normative data in older adults, however, report protein in-
takes of ~1 g/kg/d (Farsijani et al., 2017), highlighting the 
need for increased intake to mitigate sarcopenia (Phillips 
& Martinson, 2019).

A high protein diet (25–30% of EI) may also mitigate 
age-related reductions in EE and aid body-weight manage-
ment (Drummen et al., 2018). For example, increases in 
TEE, RMR, sleeping metabolic rate (SMR), and DIT (Bray 
et al., 2015; Drummen et al., 2020; Martens et al., 2015; 
Oliveira et al., 2021; Sutton et al., 2016), improved meta-
bolic efficiency of physical activity (Apolzan et al. 2014; 
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Martens et al., 2015), decreased 24-h respiratory quotient 
(RQ) and fat balance (Drummen et al., 2020; Lejeune 
et al., 2006; Martens et al., 2015; Oliveira et al., 2021; 
Smeets et al., 2013), and an adaptive thermogenic increase 
in TEE and SMR when dietary protein intake is returned 
to baseline levels (Bray et al., 2015) have been reported fol-
lowing a high protein diet. Protein-induced increase in EE 
may be explained by the ATP required for metabolism, in-
cluding protein breakdown, synthesis and storage, and ox-
idation, including urea synthesis (Drummen et al., 2018). 
Gluconeogenesis due to a surplus of dietary protein also 
contributes to the increased EE (Veldhorst et al., 2009), 
as does protein-induced increases in skeletal muscle and 
FFM (Drummen et al., 2018).

Despite the fact aforementioned studies report ben-
eficial effects on EE following a high protein diet, the 
majority of studies [excluding Drummen et al. (2020)] 
were conducted on young adults, and some longitudinal 
studies in older adults have reported conflicting findings 
(Luger et al., 2013; Negro et al., 2019). These null find-
ings were, however, likely due to an insufficient increase 
in dietary protein intake during the intervention period 
(≤0.1  g/kg/d). Nonetheless, although Drummen et al. 
(2020) reported protein-induced effects on EE (specifi-
cally, increased RMR) in older adults (~65 years) follow-
ing ~34  months of a high protein weight maintenance 
diet, EE was only assessed following but not prior to the 
intervention. Consequently, further research on the pre-
post longitudinal energetic effects of a high protein diet in 
older adults is needed.

Meta-analyses indicate that increased dietary protein 
intake combined with RE may synergistically decrease 
both absolute and %FM (Liao et al., 2017) and aid muscle 
hypertrophy (Cermak et al., 2012; Finger et al., 2015; Liao 
et al., 2017; Morton et al., 2018). However, the majority 
of intervention studies in older adults have been unable 
to replicate supplemental increases in skeletal muscle or 
FFM (Arnarson et al., 2013; Candow et al., 2006; Chalé 
et al., 2013; Dulac et al., 2021; Englund et al., 2017; Gryson 
et al., 2014; Holm et al., 2008; Holwerda et al., 2018; 
Kukuljan et al., 2009; Leenders et al., 2013; Maltais et al., 
2016; Ottestad et al., 2017; Shahar et al., 2013; Thomson 
et al., 2016; Verdijk et al., 2009; Verreijen et al., 2017). 
Similarly, studies investigating the combined effects on 
components of EE have also observed no synergistic ef-
fects (Amamou et al., 2017; Campbell et al., 1994; Maltais 
et al., 2016; Weinheimer et al., 2012). Null findings may be 
attributed to an inadequate sample size and lack of statis-
tical power (Campbell et al., 1994), an adequate habitual 
protein intake of participants (Weinheimer et al., 2012), 
and an insufficient increase in dietary protein intake from 
baseline (<0.4 g/kg/d) and a total dietary protein intake 
of <1.6 g/kg/d during the intervention period (Amamou 

et al., 2017; Maltais et al., 2016). The latter of these, as sug-
gested by others (Morton et al., 2018; Park et al., 2018), 
might be the breakpoints required to maximally augment 
increases in skeletal muscle and FFM and consequent in-
creases in components of EE.

A limitation of the above-cited studies investigating 
the synergistic effects of RE and increased dietary pro-
tein intake was the sole measurement of EE in the rest-
ing state (i.e., RMR). Twenty-four-hour EE is not constant 
and is regulated by numerous factors such as time of day 
and food intake (Schoffelen & Plasqui, 2018); therefore, 
analysis of only RMR does not provide a comprehensive 
analysis of the synergistic effects on 24-h energy metab-
olism. Consequently, analysis of the synergistic effects on 
multiple components of 24-h EE (i.e., RMR, SMR, AEE, 
DIT, and TEE) is warranted.

The primary aim of this study was to examine changes 
in 24-h EE, substrate oxidation, and body composition in 
healthy older men following 12 weeks of RE and a high 
protein diet via whey protein supplementation [which 
aimed to increase dietary protein intake by ≥0.4 g/kg/d to 
~1.6 g/kg/d (~25% of EI)]. A secondary aim was to con-
duct an exploratory sub-analysis to determine whether RE 
combined with a high protein diet via whey protein sup-
plementation synergistically increases EE and improves 
body composition. We hypothesized that RE and a high 
protein diet individually would increase components of 
EE, substrate oxidation and improve body weight main-
tenance and composition. We also postulated that there 
would be a synergistic effect when interventions were 
combined.

2   |   MATERIALS AND METHODS

2.1  |  Participants

Thirty-three healthy, community-dwelling older men 
[(mean ± SE) age: 67 ± 1 years] participated in this study. 
Full details of the eligibility criteria have been previ-
ously described (Griffen et al., 2022). Briefly, participants 
were eligible if they: were (i) aged 60–80 years; (ii) a non-
smoker; (iii) weight stable (± <3 kg change in the previ-
ous 6 months); had (iv) a BMI between 18.5 and 30 kg/
m2; (v) not participated in RE in the previous 6 months; 
(vi) no past or existing history of cancer, diabetes mellitus, 
or cardiovascular, thyroid, or renal disease; and (vii) were 
not taking statins, non-steroidal anti-inflammatory drugs, 
or medication that affects metabolism. The study was ap-
proved by Coventry University Ethics Committee (project 
code: P59723) and was registered at clinicaltrials.gov as 
NCT03299972. All participants provided written informed 
consent prior to enrollment.
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2.2  |  Design

The present study is a pooled analysis of a 12-week rand-
omized, controlled, double-blind, 4-arm (control, a high 
protein diet via whey protein supplementation, RE + con-
trol, RE + a high protein diet) parallel group trial which 
took place between October 2017 and May 2019 (Griffen 
et al., 2022). In the present study, RE (n = 17) and non-
exercise (n = 16) groups were pooled and compared to one 
another, as were high protein (PRO; n = 17) and control 
(CON; n = 16) groups. Additionally, an exploratory sub-
analysis was conducted between RE + control (RE+CON; 
n = 8) and RE + a high protein diet via whey protein sup-
plementation (RE+PRO; n = 9) groups to determine syn-
ergistic effects. The experimental design and pooling of 
groups for analysis are shown diagrammatically in Figure 
S1. Measurements were taken at baseline and following 
the intervention.

2.3  |  Exercise training

Supervised whole-body RE was performed twice weekly 
at Coventry University. Sessions occurred at least 48  h 
apart and the final session occurred >72 h prior to post-
intervention metabolic testing. Each session consisted 
of a 5-min warm-up on a cycle ergometer followed by 
three sets of leg press, lateral row, hamstring curl, chest 
press, leg extension, and shoulder press (in that order) 
on fixed RE machines (Life Fitness, Rosemont, Illinois, 
USA). During the first 4 weeks of training, exercise inten-
sity began at 60% one-repetition maximum [(1RM) 10–12 
repetitions per set] and was gradually increased by ~5–7% 
per week to 80% 1RM (8 repetitions per set), where it re-
mained until the end of the intervention. The final set of 
each exercise was performed to volitional failure, which 
was defined as the inability to perform an additional rep-
etition with the correct form. Completion of repetitions 
was monitored during each session. Resting periods of 
60 s and 3 min were allocated between sets and exercises, 
respectively. The intensity was adjusted according to 1RM 
tests performed every 4 weeks and when participants were 
able to complete >12 repetitions on the final set of each 
exercise. Sessions concluded with a 5-min cool-down on 
a cycle ergometer. Compliance was monitored using a 
training log.

2.4  |  Dietary intervention

Participants in the PRO group ingested 25  g whey pro-
tein isolate (including ~3 g leucine) (Instantized BiPRO; 
Agropur, Quebec, Canada), whereas participants in the 

CON group consumed an energy-matched control (23.75 g 
maltodextrin; Myprotein, Northwich, UK) twice daily. 
Supplements were consumed directly after breakfast and 
lunch. The whey protein dosing regimen employed was 
chosen based on previous studies that have demonstrated 
that older adults typically consume insufficient amounts of 
dietary protein at breakfast and lunch to maximally stim-
ulate rates of muscle protein synthesis (MPS) (~0.2 and 
~0.3 g/kg, respectively) (Farsijani et al., 2017; Smeuninx 
et al., 2020; Tieland et al., 2012a). In addition, it was hy-
pothesized that the whey protein dosing regimen would 
increase daily dietary protein intake from ~1.0 (~15–17% 
of EI) to ~1.6 g/kg/d (~25% of EI), the upper intake rec-
ommended to curb sarcopenia (Phillips & Martinson, 
2019). Consumption of the final supplement occurred the 
day before (~32  h prior to) post-intervention metabolic 
testing. The nutritional composition of the experimental 
supplements can be seen in Table S1. Supplements were 
unflavored, similar in powder weight, and were provided 
in opaque sachets in a double-blinded manner (Flexible 
Packaging Services Ltd, Wirral, UK). Participants pre-
pared their supplement beverages at home by dissolving 
the contents with ~200  ml of water combined with un-
sweetened cordial to taste. Compliance was calculated 
from returned wrappers and unused sachets. The effec-
tiveness of participant blinding was assessed by a ques-
tionnaire at the end of the study.

2.5  |  Dietary intake

Participants were instructed to not alter their habitual diet 
for the duration of the study. Participants completed 3-day 
food records (2  weekdays and 1  weekend day) at base-
line (prior to commencing the intervention) and during 
weeks 6 and 12. Dietary records were analyzed using di-
etary analysis software (Nutritics Version 5.097; Nutritics, 
Dublin, Ireland). Participants replicated their dietary in-
take on the day of pre-  and post-intervention metabolic 
testing.

2.6  |  Body composition

Body composition was measured in the morning by bio-
electrical impedance analysis (BIA) (BC-418 MA; Tanita 
Corporation, Tokyo, Japan). Measurement occurred at 
the same time of day (± 1 h) and participants were asked 
to consume the same breakfast prior to pre-  and post-
intervention measurements. Participants voided their 
bladder prior to measurement and wore minimal cloth-
ing. Skeletal muscle mass was estimated using the equa-
tion of Janssen et al. (2000).
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2.7  |  Respiration chamber

Participants resided in respiration chambers for meas-
urement of 24-h EE and substrate oxidation. Briefly, the 
respiration chamber is an airtight and thermally insu-
lated living space (floor dimensions: 2.9 m × 2.1 m) con-
taining a bed, desk, chair, computer, and freezer toilet 
(Schoffelen et al., 1997). Environmental conditions were 
continuously controlled (relative humidity: 57  ±  5%; 
temperature: 24 ± 0.5 °C). Prior to baseline testing, par-
ticipants attended a familiarization session to be accus-
tomed to the chamber environment. On experimental 
testing days, participants entered the respiration cham-
ber at ~1930 h and left at 2000 h the following evening. 
The protocol for the 24-h measurement period (2000–
2000 h) is shown diagrammatically in Figure 1. Whilst 
residing inside the respiration chamber, participants 
were fed a study diet designed to achieve energy bal-
ance (see Table S2 for example). The diet consisted of 
~45% of energy from carbohydrate, ~20% of energy from 
protein, and ~35% of energy from fat. The macronutri-
ent distribution of the diet was identical for pre-  and 
post-intervention visits to determine the effects of the 
interventions on FFM and subsequent effects on ener-
getics in the absence of acute protein-induced effects on 
EE. Energy requirements for each participant were cal-
culated prior to entering the respiration chamber using 
the Katch-McArdle basal metabolic rate (BMR) formula 
(McArdle et al., 1991) multiplied by an activity factor 
of 1.47. Requirements were adjusted based on measured 

RMR within the respiration chamber the next morn-
ing (detailed later) using the equation of Weir (1949). 
Alcohol and caffeinated drinks were prohibited dur-
ing the 24-h measurement period, but water and non-
caffeinated herbal teas were available ad libitum.

Whilst residing in the respiration chamber, partic-
ipants completed three bouts of 30  min step exercise 
(Reebok Aerobic Step - height 150 mm; Reebok, Boston, 
Massachusetts, USA) at a step rate of 75  steps/min. 
Step exercise was performed at 0830  h (EX-1), 1445  h 
(EX-2), and 1915 h (EX-3). The first step exercise bout 
(EX-1) was performed fasted. Step rate was paced using 
a metronome and participants were visually moni-
tored throughout. Step exercise (which incorporated 
~6,750 steps; 75 steps/min × 90 min) was chosen to rep-
licate the step count previously reported in free-living 
older men (age: 70–74  years; 6,798  steps/d) (Lohne-
Seiler et al., 2014). Physical activity within the chamber 
(Activitychamber) was continuously measured by a radar 
transceiver working on the Doppler principle, and is ex-
pressed as the percent of time the participant was active 
(Ravussin et al., 1986).

2.8  |  EE and substrate oxidation via 
respiration chamber

Energy Expenditure and rates of carbohydrate and fat 
oxidation were calculated from continuous measure-
ment of oxygen consumption (V̇O2) and carbon dioxide 

F I G U R E  1   Schematic of the 24-h respiration chamber protocol. Energy expenditure (y-axis) is plotted against time (x-axis bottom) for 
one participant (ID: 008_baseline; age: 72 years). The protocol is noted on top of the x-axis. Components of 24-h EE calculated inside the 
respiration chamber are illustrated with blue dashed lines. AEEchamber, activity energy expenditure; DIT, diet-induced thermogenesis; EE, 
energy expenditure; EX-1, step exercise bout 1 (fasted); EX-2, step exercise bout 2; EX-3, step exercise bout 3; SMR, sleeping metabolic rate; 
SPA, spontaneous physical activity
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production (V̇CO2) by indirect calorimetry corrected for 
protein oxidation, using the equation of Brouwer (1957). 
Protein oxidation was determined from urinary nitro-
gen excretion measured over 12-h periods (overnight: 
2000–0800  h; daytime: 0800–2000  h) (Bingham et al., 
1988; Brouwer, 1957). The RQ, which is an expression 
of relative fuel utilization, was calculated by dividing 
V̇CO2 by V̇O2. Carbohydrate, fat, and protein balances 
were determined as the difference between intake and 
oxidation.

Twenty-four-hour EE was partitioned into the follow-
ing components. Total EE (TEEchamber) represented the EE 
between 2000 and 2000 h; SMR was determined as the low-
est EE over a continuous 3 h period between 0000-0600 h 
(Schoffelen & Westerterp, 2008); RMR was measured be-
tween 0700-0800 h following awakening at 06:50 h with 
the participant supine, but awake. The first 20 and last 
10 min were discarded, and RMR was calculated during 
the least restless consecutive 20 min period between 0720-
0750 h (Adriaens et al., 2003). The energy cost of step ex-
ercise was determined as the mean EE whilst participants 
were in steady-state (McClave et al., 2003; Reeves et al., 
2004). Other components of EE, including sedentary EE, 
AEEchamber, SPA, and DIT were calculated using the inter-
cept method (see Figure S2) (Hall et al., 2016; Ravussin 
et al., 1986; Westerterp et al., 1999). Physical activity level 
(PALchamber) was determined by dividing TEEchamber by 
RMR. Components of EE and substrate oxidation are 
expressed as raw values and adjusted for body mass and 
composition (FFM and FM) using linear regression equa-
tions derived from the baseline chamber visit (Hall et al., 
2016).

2.9  |  EE and physical activity via 
accelerometry

At baseline and week 12, participants wore a tri-axial accel-
erometer (Actigraph GT9X; Actigraph, Pensacola, Florida, 
USA) continuously on the dominant wrist for 7  days in 
free-living. At least 5 days of ≥10 h wear time was required 
for data to be included in the final analysis (Schrack et al., 
2016). The accelerometer was sampled at 80 Hz and was an-
alyzed in 60-s epochs for total activity (Activityaccelerometry; 
counts/d) using ActiLife (Version 6.13.4; Actigraph, 
Pensacola, Florida, USA). Activityaccelerometry was used to 
estimate AEE (AEEaccelerometry) and PAL (PALaccelerometry) 
using the equations of Ekelund et al. (2004). Total EE 
(TEEaccelerometry) was estimated by multiplying RMR meas-
ured inside the respiration chamber by PALaccelerometry. 
TEEaccelerometry and AEEaccelerometry are expressed as raw 
values and adjusted for body mass and composition using 
methods previously described.

2.10  |  Statistical analysis

Sample size was based on change (pre-  vs. post-
intervention) and difference (between interventions 
post-intervention) in RMR from previous respiration 
chamber studies in older adults (the former in older 
women) investigating the longitudinal effects of RE 
(Treuth et al., 1995) and a high protein diet (Drummen 
et al., 2020), respectively. Using G*Power (Version 
3.1.9.2; Dusseldorf, Germany), a minimum of 34 partici-
pants (17/group) were required to observe a group-by-
time interaction between RE and non-exercise groups 
and PRO and CON groups for a mixed-model ANCOVA 
with two covariates [α  =  0.05; β  =  0.8; effect size 
(Cohen's f) = 0.5].

Statistical analysis was performed using JASP Version 
0.15 (https://jasp-stats.org/). Data are presented as 
means ± SE. All data were checked for normality using 
the Shapiro-Wilk test. Outliers (± >3SD from the group 
mean) were identified and removed. Non-normally dis-
tributed data were transformed using appropriate trans-
formation (i.e., log, square root, or reciprocal). Where 
transformation was unsuccessful, non-parametric tests 
were utilized. Baseline characteristics were analyzed by 
independent samples t-tests. A mixed-model ANCOVA 
with time as the within-subjects factor, group as the 
between-subjects factor, and respective baseline val-
ues and dietary intervention group (PRO or CON, for 
RE vs. non-exercise analyses) or RE participation (RE 
or non-exercise, for PRO vs. CON analyses) included 
as covariates were performed on outcome variables. 
For exploratory sub-analyses comparing the RE+CON 
and RE+PRO groups, outcomes were analyzed by a 
mixed-model ANCOVA with baseline value included 
as a covariate only. Non-normally distributed data were 
analyzed using the Scheirer-Ray-Hare two-way ANOVA 
of ranks test. Longitudinal changes within groups were 
analyzed by 2-tailed paired samples t-tests. Correlations 
were analyzed using Pearson's partial correlation con-
trolled for the intervention group. Significance was set 
at p < 0.05.

3   |   RESULTS

3.1  |  Participants

Thirty-nine older men were randomized: Thirty three 
completed the study and 6 withdrew (see Figure S1 for par-
ticipant flow). Baseline characteristics of the CON, PRO, 
non-exercise, and RE groups are shown in Table 1 and 
characteristics of the RE+CON and RE+PRO groups are 
shown in Table S3.

https://jasp-stats.org/
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3.2  |  Exercise and 
supplement compliance

The mean attendance to the RE sessions was 98  ±  1% 
and did not differ between the RE+CON and RE+PRO 
groups (p  =  0.98). All participants completed their pre-
scribed repetitions for sets 1–2 of each exercise. During 
the final set (to volitional failure), the mean number of 
completed repetitions was 9.1 ± 0.2 and did not differ be-
tween the RE+CON and RE+PRO groups (p = 0.94). The 
mean compliance with the experimental supplements 
was 96 ± 1% and did not differ between CON and PRO 
groups (p = 0.27) or the RE+CON and RE+PRO groups 
(p = 0.97). Treatment allocation was unable to be judged 
by 81% of participants.

3.3  |  Dietary intake

Protein intake (g/d, g/kg/d, and % energy) increased in the 
PRO group greater than the CON group at weeks 6 and 12 

(p < 0.001; Table 2). Similarly, protein intake (g/d, g/kg/d, 
and % energy) increased in the RE+PRO group greater 
than the RE+CON group at weeks 6 and 12 (p < 0.001; 
Table S4). Carbohydrate intake increased in the CON 
group greater than the PRO group at weeks 6 (g/d and % 
energy; p  <  0.001) and 12 (g/d only; p  <  0.001). In the 
RE+CON group, carbohydrate intake (g/d and % energy) 
increased greater than the RE+PRO group at weeks 6 and 
12 (p < 0.001). Fat intake (g/d and % energy) and habit-
ual total EI decreased in the PRO group greater than the 
CON group at week 12 (p < 0.05). No differences in any 
dietary marker occurred between the RE and non-exercise 
groups.

3.4  |  Body composition

Fat-free mass significantly increased in the RE group 
greater than the non-exercise group (p = 0.04; Figure 2a), 
but no differences occurred for any other body composi-
tion marker between these groups. Body mass (p = 0.04; 

T A B L E  1   Baseline characteristics of participantsa

CON PRO p valueb Non-exercise RE p valueb

n 16 17 — 16 17 —

Age, years 67 ± 1 67 ± 1 0.74 66 ± 1 67 ± 1 0.48

Height, m 1.77 ± 0.01 1.76 ± 0.08 0.54 1.78 ± 0.01 1.75 ± 0.02 0.31

Body mass, kg 78.3 ± 2.5 80.3 ± 2.5 0.57 80.1 ± 2.2 78.6 ± 2.8 0.68

BMI, kg/m2 24.9 ± 0.6 25.9 ± 0.5 0.25 25.3 ± 0.6 25.5 ± 0.6 0.81

FFM, kg 59.0 ± 1.6 60.7 ± 1.7 0.47 60.6 ± 1.1 59.2 ± 2.0 0.55

SMM, kg 26.2 ± 0.7 27.2 ± 0.7 0.34 27.1 ± 0.5 26.3 ± 0.9 0.37

FM, kg 19.3 ± 1.4 19.6 ± 1.2 0.85 19.5 ± 1.5 19.4 ± 1.1 0.95

FM, % 24.3 ± 1.3 24.2 ± 1.0 0.96 23.9 ± 1.3 24.5 ± 1.0 0.75

TEEchamber, kcal/d 2439 ± 64 2490 ± 56 0.55 2473 ± 62 2457 ± 59 0.85

TEEaccelerometry, kcal/d 2616 ± 81 2643 ± 74 0.81 2640 ± 81 2620 ± 75 0.86

RMR, kcal/day 1617 ± 50 1633 ± 46 0.81 1632 ± 50 1619 ± 46 0.86

PALchamber 1.51 ± 0.02 1.53 ± 0.02 0.62 1.52 ± 0.02 1.53 ± 0.02 0.95

PALaccelerometry 1.56 ± 0.02 1.58 ± 0.02 0.60 1.56 ± 0.01 1.58 ± 0.02 0.26

Fasting plasma glucose, mmol/L 5.8 ± 0.2 5.9 ± 0.2 0.70 5.8 ± 0.2 5.8 ± 0.2 0.95

HOMA-IR 2.5 ± 0.3 2.5 ± 0.3 0.98 2.7 ± 0.3 2.3 ± 0.3 0.39

Step count, steps/d 11,505 ± 666 11,840 ± 798 0.75 11,618 ± 775 11,733 ± 709 0.91

Activitychamber, % 16.9 ± 0.8 17.3 ± 1.1 0.81 16.9 ± 1.2 17.3 ± 0.7 0.74

Activityaccelerometry, counts/day 276,039 ± 43,841 307,065 ± 39,979 0.61 257,482 ± 40,750 324,530 ± 41,496 0.26

Abbreviations: BMI, body mass index; FFM, fat-free mass; FM, fat mass; HOMA-IR, homeostatic model assessment of insulin resistance; PALaccelerometry, 
estimated physical activity level in free-living by accelerometry; PALchamber, physical activity level calculated inside the respiration chamber; RMR, resting 
metabolic rate; SMM, skeletal muscle mass; TEEaccelerometry, estimated total energy expenditure in free-living by accelerometry; TEEchamber, total energy 
expenditure calculated inside the respiration chamber.
aValues are means ± SE.
bp value refers to differences between groups analyzed by independent samples t-test.
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Figure 2b) and BMI (p  =  0.04; Figure 2c) significantly 
increased over time in the CON compared to the PRO 
group, and both absolute (p = 0.03; Figure 2d) and %FM 
(p = 0.04) decreased greater in the PRO group compared 
to CON group. No differences in skeletal muscle or FFM 
occurred between the PRO and CON groups (p ≥  0.52). 
In the RE+CON group, body mass (p  =  0.02) and BMI 
(p = 0.04) increased greater than the RE+PRO group. In 
contrast, absolute FM decreased greater in the RE+PRO 
group compared to the RE+CON group (p = 0.04; Figure 
2e). No differences in skeletal muscle or FFM occurred be-
tween the RE+CON and RE+PRO groups (p ≥ 0.80).

3.5  |  EE and substrate oxidation

3.5.1  |  TEE and energy balance

TEEaccelerometry significantly decreased over time in the 
non-exercise group greater than the RE group (p = 0.03; 
Figure 3 and Table 3), which remained significant when 

adjusted for body mass and composition (p  <  0.05). No 
differences in TEEaccelerometry occurred over time between 
the CON and PRO groups (p  =  0.55) or the RE+CON 
and RE+PRO groups (p = 0.80; Table S5). No between-
group differences occurred for unadjusted or adjusted 
TEEchamber.

Across the whole sample, energy balance inside 
the respiration chamber (EBchamber) was 20  ±  33 and 
50 ± 25 kcal/d at baseline and 12 weeks, respectively (Table 
3). No between-group differences occurred (p  ≥  0.27). 
EBchamber at baseline and 12 weeks was checked by com-
paring obtained energy balance by a fictive energy balance 
of zero. No groups’ EBchamber significantly differed from 
zero at either baseline or 12 weeks. Energy balance in free-
living (EBfree-living) was –631 ± 49 and –465 ± 50 kcal/d at 
baseline and 12 weeks, respectively, across the whole sam-
ple. No between-group differences occurred (p  ≥  0.13). 
Negative EBfree-living in all groups was confirmed using 
the methodology previously described. As participants in 
the CON and RE+CON groups gained body mass and no 
changes were observed in the PRO or RE+PRO groups, 

F I G U R E  2   Changes in (a) FFM (kg) between RE (n = 17) and non-exercise (n = 16) groups; (b) body mass (kg), (c) BMI (kg/m2), and 
(d) FM (kg) between PRO (n = 17) and CON (n = 16) groups; and (e) FM (kg) between RE+CON (n = 8) and RE+PRO (n = 9) groups over 
the intervention period (means ± SE). Circles represent individual data points. Data were analyzed using a mixed-model ANCOVA with 
baseline value and dietary intervention (PRO or CON) included as covariates (panel a), baseline value and RE/non-exercise included as 
covariates (panels b, c and d) and baseline value only included as a covariate (panel e). BMI, body mass index; FFM, fat-free mass; FM, fat 
mass. †p < 0.05 between groups
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underreporting of self-report EI (~20%) largely was as-
sumed to explain the observed negative EBfree-living.

3.5.2  |  24-h substrate oxidation and balance

Twenty-four-hour protein oxidation increased over time 
in the PRO group greater than the CON group (p < 0.001; 
Table 3), which remained significant when adjusted for 
body mass and composition (p  <  0.001). Similarly, 24-h 
protein oxidation significantly increased over time in 
the RE+PRO group greater than the RE+CON group 
(p  <  0.001; Table S5). The increase in 24-h protein oxi-
dation following the high protein diet was driven by a 
rise in overnight protein oxidation, which increased by 
30 ± 6 g/d (p < 0.001) (Figure 4). No differences in 24-h 
(p  =  0.99) or overnight protein oxidation (p  =  0.94) oc-
curred between the RE and non-exercise groups and no 
between-group differences occurred for daytime pro-
tein oxidation (p ≥ 0.19; see Figure 4 for PRO vs. CON). 
Protein balance was positive in all groups at baseline but 
decreased in the PRO group compared to the CON group 
when protein intake was returned to the chamber diet at 
week 12 (p  <  0.001). Likewise, protein balance signifi-
cantly decreased over time in the RE+PRO compared to 
the RE+CON group (p  =  0.01). Protein balance did not 
differ over time between the RE and non-exercise groups 
(p = 0.38). No between-group differences in 24-h oxidation 

or balance of carbohydrate or fat, or RQ, were observed 
over the course of the study.

3.5.3  |  Resting, sedentary, and sleeping 
EE and substrate oxidation

Resting metabolic rate (p = 0.03), sedentary EE (p = 0.049), 
and SMR (p  <  0.001) significantly increased in the RE 
group greater than the non-exercise group (Table 3 and 
Figure 5). When adjusted for measured changes in body 
composition, RMR (p = 0.007) and SMR (p = 0.008) re-
mained significantly increased, but sedentary EE did not 
(p = 0.35). No differences in RMR, sedentary EE or SMR 
occurred between the PRO and CON groups (p ≥ 0.28) or 
the RE+CON and RE+PRO groups (p ≥ 0.55; Table S5). 
Two participants’ SMR data [n = 1 participant from both 
the CON and RE groups (the latter of which n = 1 par-
ticipant from the RE+CON group)] were removed from 
analysis due to poor sleep quality at baseline, which led 
to elevated baseline SMR and the resulting ΔSMR being 
clear outliers (>3SD from group mean).

Resting fat oxidation significantly decreased in the 
PRO group compared to the CON group (p = 0.01; Figure 
6a), which remained significant when adjusted for body 
mass (p  =  0.008) and composition (p  =  0.01). In the 
RE+CON group, resting fat oxidation significantly in-
creased compared to the RE+PRO group (p = 0.01; Figure 
6b) and remained significant when adjusted for body 
mass (p = 0.004) and composition (p = 0.01). No between-
differences occurred for resting or sleeping carbohydrate 
oxidation, RQ, or sleeping fat oxidation.

3.5.4  |  Activity EE

Activityaccelerometry (p  =  0.046; Figure 7a) and 
AEEaccelerometry (p  =  0.049; Figure 7b) significantly de-
creased in the RE group compared to non-exercise group, 
the latter of which remained significant when adjusted for 
body mass (p = 0.048) and composition (p = 0.046). No 
differences occurred between the PRO and CON groups 
(p ≥ 0.82; Table 3) or the RE+CON and RE+PRO groups 
(p ≥  0.10). AEEchamber did not differ over time between 
groups (p ≥ 0.11); however, significant within-group de-
creases were observed in the RE (p = 0.001) and RE+PRO 
groups (p = 0.03; Table S5), which remained significant 
when adjusted for body mass and composition (p < 0.05). 
The decrease in AEEaccelerometry and AEEchamber following 
RE led to a greater decrease in PALaccelerometry (p = 0.049; 
Figure 7c) and PALchamber (p = 0.06; Figure 7d) compared 
to the non-exercise group. The decrease in AEEchamber fol-
lowing RE was driven by a decrease in SPA (p < 0.001), 

F I G U R E  3   Change in unadjusted TEEaccelerometry (kcal/d) 
between RE (n = 17) and non-exercise (n = 16) groups 
(means ± SE). Circles represent individual data points. Data were 
analyzed using a mixed-model ANCOVA with baseline value 
and dietary intervention (PRO or CON) included as covariates. 
†p < 0.05 between groups. TEEaccelerometry, total energy expenditure 
estimated by accelerometry
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which tended to decrease greater than the non-exercise 
group (p  =  0.09). Decreased activitychamber (p  =  0.049, 
Figure 7e) as opposed to SPA per % of activity (p = 0.35) 
caused the decrease in SPA in the RE compared to the 
non-exercise group. The Δactivitychamber significantly 
inversely correlated with ΔRMR (r  =  −0.45, p  =  0.009; 
Figure 7f). No differences occurred between the RE+CON 
and RE+PRO groups.

3.5.5  |  Step exercise EE and 
substrate oxidation

At baseline and 12 weeks, across the whole sample, fat ox-
idation was significantly greater and carbohydrate oxida-
tion was significantly less during the fasted step exercise 
bout (EX-1) than during both EX-2 (p < 0.001) and EX-3 
(p  <  0.001; Figure 8). Energy expenditure did not differ 
between step exercise bouts at baseline (p ≥ 0.10). In con-
trast, at 12 weeks, EE during EX-1 (4.7 ± 0.1 kcal/min) was 
significantly less than during both EX-2 (4.9 ± 0.1 kcal/
min; p < 0.001) and EX-3 (4.8 ± 0.1 kcal/min; p < 0.001). 
Following the intervention, no significant between-group 
differences in unadjusted or adjusted EE or substrate oxi-
dation occurred overtime for any step exercise bout (see 
Table 4 and Table S6 for unadjusted data).

F I G U R E  4   Changes in unadjusted overnight and daytime 
protein oxidation (g/d) between PRO (n = 17) and CON (n = 16) 
groups over the intervention period (means ± SE). Circles represent 
individual data points. Data were analyzed using a mixed-model 
ANCOVA with baseline value and RE/non-exercise included as 
covariates. ††p < 0.01 between groups
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F I G U R E  5   Changes in unadjusted resting metabolic rate (RMR), sedentary EE and sleeping metabolic rate (SMR) (kcal/d) between RE 
(n = 17 for RMR and sedentary EE; n = 16 for SMR) and non-exercise (n = 16 for RMR and sedentary EE; n = 15 for SMR) groups over the 
intervention period (means ± SE). Two participants SMR data (n = 1 participant from the RE and non-exercise groups) were removed from 
analysis as described in the main text. Circles represent individual data points. Data were analyzed using a mixed-model ANCOVA with 
baseline value and dietary intervention (PRO or CON) included as covariates. EE, energy expenditure. †p < 0.05 between groups. ††p < 0.01 
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3.5.6  |  Diet-induced thermogenesis

Diet-induced thermogenesis was similar between groups 
at baseline (p ≥ 0.31; Table 3 and Table S5). A high inter-
individual variability was observed (range −3.1–12.5%). 
At 12  weeks when protein intake was returned to the 
baseline chamber diet, no within- or between-group dif-
ferences occurred.

4   |   DISCUSSION

The present study is the first to examine changes in 24-h 
EE, substrate oxidation, and body composition in older 
adults (60–75  years) following RE and a high protein 
diet via whey protein supplementation [which aimed to 
increase dietary protein intake by ≥0.4  g/kg/d to 1.6  g/
kg/d (~25% of EI)]. The main findings were: (i) RE signifi-
cantly increased FFM, RMR, SMR and sedentary EE and 
mitigated a decline in free-living TEE compared to non-
exercise; however, decreased AEE and PAL; (ii) a high 
protein diet (~1.6 g/kg/day and ~25% of EI) via whey pro-
tein supplementation improved body weight maintenance 
and reduced FM compared to control, but reduced resting 
fat oxidation and increased overnight protein oxidation, 
which subsequently decreased 24-h protein balance; and 
(iii) a high protein diet via whey protein supplementation 
combined with RE synergistically improved body weight 

maintenance and reduced FM compared to RE and a car-
bohydrate control, but did not significantly augment in-
creases in FFM or EE components.

Twelve weeks of RE resulted in increased RMR, seden-
tary EE, and SMR. These increases were likely largely a re-
sult of the energetic cost of increased FFM (Hunter et al., 
2004). The rise in SMR observed in the present study is 
in line with those reported in older women (67 ± 1 years) 
(Treuth et al., 1995); however, the increase in RMR is 
considerably less than studies that reported increases of 
~7–9% (Campbell et al., 1994; Hunter et al., 2000; Pratley 
et al., 1994; Treuth et al., 1995 ). Fat-free mass increased by 
a similar or greater magnitude in the present study than 
that reported by the majority of these studies (Campbell 
et al., 1994; Pratley et al., 1994; Treuth et al., 1995); there-
fore, inconsistencies may be due to alternative factors, in-
cluding participant training status, sex, changes in rates 
of MPS and sympathetic nervous system activity, and 
differences in the timing of post-intervention RMR mea-
surement relative to termination of the final RE session 
(Geisler et al., 2016b; Geisler & Müller, 2017; Schutz, 2011; 
Speakman & Selman, 2003).

The present study reports that a high protein diet 
(~1.6 g/kg/d and ~25% of EI) via whey protein supple-
mentation aided maintenance of body mass and reduc-
tions in both absolute and %FM compared to an isocaloric 
carbohydrate control. Similarly, a high protein diet com-
bined with RE also aided body weight maintenance and 

F I G U R E  6   Change in unadjusted resting fat oxidation (g/d) between (a) PRO (n = 17) and CON (n = 16) groups and (b) RE+CON 
(n = 8) and RE+PRO (n = 9) groups over the intervention period (means ± SE). Circles represent individual data points. Data were analyzed 
using a mixed-model ANCOVA with baseline value and RE/non-exercise included as covariates (panel A) and baseline value only included 
as a covariate (panel B). †p < 0.05 between groups
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reduced FM compared to RE combined with control. 
These findings coincide with studies that demonstrated 
that a high protein diet effectively maintains energy bal-
ance and body mass and decreases FM (Clifton et al., 
2014; Drummen et al., 2018; Kim et al., 2016; Martens 
et al., 2015), and augments RE-induced FM reduction 
(Bell et al., 2017; Liao et al., 2017). As no effect of a high 
protein diet on EE components was observed, compen-
satory reductions in habitual fat and EI might partially 
explain the present findings. Though, in agreement 
with many previous studies as reviewed by Ravelli and 
Schoeller (2020), it must be emphasized that significant 
underreporting (~20%) of self-report EI was observed in 
this study compared to that of estimated free-living TEE 
by accelerometry. Consequently, self-report dietary in-
take data in this study should be interpreted cautiously.

In the present study, we anticipated that EE compo-
nents would increase following a high protein diet, mainly 
due to the energetic cost of increased FFM (Drummen 
et al., 2018). However, no individual or augmented in-
creases in EE were observed, which contradicts studies 
in younger adults that demonstrated protein-induced in-
creases in SMR (Bray et al., 2015; Martens et al., 2015), 
RMR (Bray et al., 2012), and TEE (Bray et al., 2012, 
2015). The findings of this study also contradict those of 
Drummen et al. (2020), who reported an increase in RMR 
following ~34 months of a high compared to a moderate 
protein diet in older adults. Though, it must be noted that 
Drummen et al. (2020) only measured EE components 
post-intervention, so the pre-post energetic effects of the 
intervention used in this study are unknown. Contrary 
to these studies, however, the findings of the present 
study are in agreement with studies that demonstrated no 

F I G U R E  7   Changes in (a) Activityaccelerometry (counts/d); (b) unadjusted AEEaccelerometry (kcal/d); (c) PALaccelerometry; (d) PALchamber; and 
(e) Activitychamber (%) between RE (n = 17) and non-exercise (n = 16) groups (means ± SE). Circles represent individual data points. Panel F 
shows the correlation between ΔRMR (kcal/d) and Δactivitychamber (%). Circles and triangle symbols in panel (f) represent individual data 
points in the non-exercise and RE groups, respectively. Data were analyzed using a mixed-model ANCOVA with baseline value and dietary 
intervention (PRO or CON) included as covariates (panels a to e) and by Pearson's partial correlation (controlled for intervention group; 
panel f). Activityaccelerometry, physical activity measured by accelerometry; Activitychamber, physical activity measured inside the respiration 
chamber; AEEaccelerometry, activity energy expenditure estimated in free-living by accelerometry; PALaccelerometry, estimated physical activity 
level by accelerometry; PALchamber, physical activity level calculated inside the respiration chamber; RMR, resting metabolic rate; †p < 0.05 
between groups. #p < 0.05 from baseline
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synergistic effects of combined RE and increased dietary 
protein intake on RMR (Amamou et al., 2017; Campbell 
et al., 1994; Maltais et al., 2016; Weinheimer et al., 2012) 
and no effect of increased dietary protein intake alone on 
either resting (Luger et al., 2013; Negro et al., 2019) or 
SMR in older adults (Drummen et al., 2020).

The most likely explanation for the present and above-
cited null findings is due to a lack of protein-induced in-
crease in FFM (Amamou et al., 2017; Campbell et al., 1994; 
Maltais et al., 2016; Weinheimer et al., 2012). These find-
ings are consistent with others that observed no individual 
(Björkman et al., 2020; Kim et al., 2012; Kirk et al., 2020; 
Verreijen et al., 2017; Zhu et al., 2015) or synergistic effects 
(Arnarson et al., 2013; Candow et al., 2006; Dulac et al., 
2021; Holm et al., 2008; Holwerda et al., 2018; Kirk et al., 
2020; Kukuljan et al., 2009; Leenders et al., 2013; Thomson 
et al., 2016; Verdijk et al., 2009) of increased dietary pro-
tein intake on FFM in healthy older adults habitually 
consuming ample amounts of dietary protein (~1.0–1.2 g/
kg/d). In contrast, studies conducted in older adults who 
were either sarcopenic/frail or reported lower habitual 
intakes of dietary protein (<1.0  g/kg/d) have observed 
both individual (Bauer et al., 2015; Bo et al., 2019; Kang 
et al., 2020; Park et al., 2018; ten Haaf et al., 2019) and aug-
mented increases in FFM (Kang et al., 2019; Rondanelli 
et al., 2016, 2018; Tieland et al., 2012b; Yamada et al., 2019; 
Zdzieblik et al., 2015). The relatively good health status of 
participants who habitually consumed adequate amounts 
of dietary protein in this study may have masked any ef-
fects of increased intake via supplementation.

It must also be noted that in the present study, par-
ticipants in the high protein diet groups were not fed the 

same diet whilst residing in the respiration chamber post-
intervention, which contrasts with previous respiration 
chamber studies that demonstrated longitudinal protein-
induced increases in components of EE (Bray et al., 2015; 
Martens et al., 2015). As the acute energetic effects of a 
high protein diet are well-known (Drummen et al., 2018), 
these methodological differences may also explain the 
contrasting findings between the present and previous 
studies. However, as previously detailed in the methods, 
we opted for this methodology to determine the effects on 
FFM and subsequent effects on energetics in the absence 
of acute protein-induced effects on EE. Nevertheless, the 
present study still observed increases in overnight protein 
oxidation and we have previously reported a 73% increase 
in awakening cortisol concentration following the high 
protein diet in this cohort (Griffen et al., 2022), suggesting 
an increase in gluconeogenesis. These increases did not 
translate into increased EE however as per previous stud-
ies (Drummen et al., 2018; Veldhorst et al., 2009), largely 
due to the increase in protein oxidation being spared for 
reduced fat oxidation. This finding is consistent with a 
previous study on younger adults (Bray et al., 2015).

While RE increased several EE components, TEE, 
measured both inside the respiration chamber and esti-
mated in free-living by accelerometry, did not increase. 
Although, it should be noted that RE did mitigate a de-
crease in free-living TEE compared to non-exercise. The 
lack of increase in TEE in free-living and whilst residing in 
the respiration chamber following RE was caused by a de-
crease in PAL and AEE, an observation frequently seen in 
older adults following exercise interventions (Westerterp, 
2018c). The decrease in AEE was due to a decrease in SPA. 
In fact, inside the respiration chamber, non-exercise activ-
ity decreased by 1.9 ± 1.1% following RE, which equated 
to a 27 min (1440 min × 0.019) reduction. These findings 
are consistent with others (Hunter et al., 2018; Melanson, 
2017) and have been suggested to occur due to increased 
training frequency-induced fatigue (Hunter et al., 2018) 
and/or energy compensation to maintain energy balance 
(Careau et al., 2021; Hall et al., 2012). In support of the 
latter, we report an inverse correlation between change in 
RMR and change in non-exercise physical activity whilst 
participants resided in the respiration chamber. As prior 
work has shown that increasing AEE may be an effective 
strategy in the defense against adiposity (Kotz et al., 2017), 
these findings somewhat question the use of RE in older 
adults to increase habitual physical activity and offset 
sarcopenic obesity. However, as the present study was of 
relatively short duration, it may be that older individuals 
require a longer duration than 12 weeks to adapt to fre-
quent RE training. Therefore, future work should investi-
gate AEE following a longer period of RE training in this 
population.

F I G U R E  8   Carbohydrate, fat and protein oxidation (g/d; 
unadjusted) during the three step exercise bouts performed at 
75 steps/min at baseline and 12 weeks (n = 33; means ± SE). 
EX-1, step exercise bout 1 (0830 h in the fasted state); EX-2, step 
exercise bout 2 (1445 h); EX-3, step exercise bout 3 (1915 h). 
Baseline and week 12 data were analyzed by repeated measures 
ANOVA. *Significant main effect of exercise bout for fat oxidation. 
†Significant main effect of exercise bout for carbohydrate oxidation. 
+p < 0.001 compared to EX-2. $p < 0.001 compared to EX-3
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The increase in 24-h protein oxidation following 
12  weeks of a high protein diet via whey protein sup-
plementation concurs with studies in both young (Bray 
et al., 2015; Martens et al., 2015; Pannemans et al., 1995a; 
Robinson et al., 1990) and older adults (Drummen et al., 
2020; Pannemans et al., 1995b, 1998). In the present study, 
raised overnight as opposed to daytime protein oxidation 
stimulated the 24-h increase, consistent with prior work 
(Price et al., 1994). Furthermore, the present study also 
established when dietary protein intake was returned to 
that of the chamber diet, 24-h protein balance was sig-
nificantly reduced. This outcome is in agreement with 
others that established a lower net protein balance in 
older men following habituation to a high protein diet 
(Højfeldt et al., 2020) and a reduced nitrogen balance fol-
lowing termination of a high protein diet until nitrogen 
output matched the new level of intake (Waterlow, 1999). 
Previously in this cohort, as formerly mentioned, we ob-
served an increase in awakening salivary cortisol in addi-
tion to increased fasting plasma myostatin concentration 
following termination of the high protein diet used in this 
study (Griffen et al., 2022). Together with the increase in 
overnight protein oxidation observed, this indicates a de-
crease in protein breakdown whilst fasting. These findings 
indicate a potential drawback of older adults habitually 
consuming high intakes (~1.6 g/kg/d) of dietary protein 
and suggest that older individuals should refrain from 
drastically reducing protein intake once commenced on a 
high protein diet to minimize transient periods of reduced 
protein balance.

During the step exercise bouts, greater rates of fat oxi-
dation were observed in the fasted step exercise bout com-
pared to step exercise performed postprandially at 1445 
and 1915 h at both baseline and 12 weeks. These findings 
are similar to that of Edinburgh et al. (2020), who observed 
higher rates of fat oxidation following an acute bout of 
fasted exercise compared to exercise performed following 
consumption of breakfast. Edinburgh et al. (2020) also ob-
served a greater sustained increase in fat oxidation when 
exercise was performed in the fasted state for 6  weeks 
alongside improvements in insulin sensitivity. Based on 
these data, research quantifying the longitudinal meta-
bolic response of fasted exercise in the elderly, of whom 
are at greater risk of metabolic dysfunction (Hunter et al., 
2019), is warranted to determine the safety and effective-
ness of mitigating age-related metabolic disease.

To date, only a few studies of ≥4  weeks in duration 
have assessed the effects of either a dietary or exercise in-
tervention on multiple components of EE and substrate 
oxidation using respiration chambers in older adults 
(Bush et al., 2018; Drummen et al., 2020; Morio et al., 
1998; Treuth et al., 1995). The investigation of both the 
individual and combined effects of a dietary and exercise 

intervention over 12 weeks on these outcomes measured 
inside a respiration chamber, which was supplemented 
with an estimation of EE in free-living by accelerome-
try, are key strengths and novel aspects of this study. A 
limitation of this study is the use of pooled data for the 
main analysis, which may have impacted the individual 
effects of RE and a high protein diet via whey protein sup-
plementation. A second limitation is the relatively small 
number of participants in our exploratory sub-analysis 
investigating the synergistic effects of RE and a high pro-
tein diet. The sample sizes of these groups where, how-
ever, congruent with previous respiration chamber studies 
(Apolzan et al. 2014; Bray et al., 2015; Melanson et al., 
2007; Westerterp-Plantenga et al., 2009). Other limitations 
include the failure to check protein intake during the in-
tervention period by measured urinary nitrogen, omission 
of hydration status assessment prior to BIA measure-
ment, and inclusion of only men who were healthy and 
had a normal-to-overweight BMI. Women were excluded 
based on age-related sex differences in the decline in RMR 
(Geisler et al., 2016b). Individuals with obesity were ex-
cluded due to differences in metabolic profile (Perna et al., 
2017) and due to the preventative nature of this study. 
Investigation of these groups and older adults with insuf-
ficient habitual protein intakes (<1 g/kg/d) should form 
future work.

In conclusion, 12 weeks of RE significantly increased 
FFM, RMR, SMR, and sedentary EE compared to non-
exercise. Conversely, RE decreased AEE and PAL. A high 
protein diet (~1.6 g/kg/d and ~25% of EI) via whey pro-
tein supplementation aided body weight maintenance 
and reduced FM compared to control. However, decreased 
resting fat oxidation and increased overnight protein oxi-
dation, which subsequently reduced 24-h protein balance. 
Resistance exercise combined with a high protein diet via 
whey protein supplementation synergistically improved 
body weight maintenance and reduced FM compared 
to RE and control but did not significantly augment in-
creases in FFM or EE components.
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