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Abstract
Purpose: To	 investigate	 changes	 in	 24-	h	 energy	 expenditure	 (EE),	 substrate	
oxidation,	and	body	composition	following	resistance	exercise	(RE)	and	a	high	
protein	diet	via	whey	protein	supplementation	(alone	and	combined)	in	healthy	
older	men.
Methods: In	a	pooled	groups	analysis,	33 healthy	older	men	[(mean ± SE)	age:	
67 ± 1 years;	BMI:	25.4 ± 0.4 kg/m2]	were	randomized	to	either	RE	(2×/week;	
n = 17)	or	non-	exercise	 (n = 16)	and	either	a	high	protein	diet	via	whey	pro-
tein	supplementation	(PRO,	2 × 25 g	whey	protein	isolate/d;	n = 17)	or	control	
(CON,	2 × 23.75 g	maltodextrin/d;	n = 16).	An	exploratory	sub-	analysis	was	also	
conducted	 between	 RE+CON	 (n  =  8)	 and	 RE+PRO	 (n  =  9).	 At	 baseline	 and	
12 weeks,	participants	resided	in	respiration	chambers	for	measurement	of	24-	h	
EE	and	substrate	oxidation	and	wore	an	accelerometer	for	7 days	for	estimation	
of	free-	living	EE.
Results: Resistance	 exercise	 resulted	 in	 greater	 increases	 in	 fat-	free	 mass	
(1.0  ±  0.3  kg),	 resting	 metabolic	 rate	 [(RMR)	 36  ±  14  kcal/d],	 sedentary	 EE	
(60 ± 33 kcal/d),	and	sleeping	metabolic	rate	[(SMR)	45 ± 7 kcal/d]	compared	
to	non-	exercise	 (p < 0.05);	however,	RE	decreased	activity	energy	expenditure	
in	free-	living	(−90 ± 25 kcal/d;	p = 0.049)	and	non-	exercise	activity	inside	the	
respiration	 chamber	 (−1.9  ±  1.1%;	 p  =  0.049).	 PRO	 decreased	 fat	 mass	 [(FM)	
−0.5 ± 0.3 kg],	increased	overnight	protein	oxidation	(30 ± 6 g/d),	and	decreased	
24-	h	protein	balance	(−20 ± 4 g/d)	greater	than	CON	(p < 0.05).	RE+PRO	de-
creased	FM	(−1.0 ± 0.5 kg)	greater	than	RE+CON	(p = 0.04).
Conclusion: Resistance	exercise	significantly	increased	RMR,	SMR,	and	seden-
tary	EE	in	healthy	older	men,	but	not	total	EE.	PRO	alone	and	combined	with	RE	
decreased	FM	and	aided	body	weight	maintenance.	This	study	was	registered	at	
clinicaltrials.gov	as	NCT03299972.
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1 	 | 	 INTRODUCTION

Increased	 fat	 mass	 (FM)	 and	 declines	 in	 fat-	free	 mass	
(FFM)	 characterize	 age-	related	 changes	 in	 body	 compo-
sition	 (St-	Onge,	 2005).	 Skeletal	 muscle,	 which	 accounts	
for	~45%	of	FFM	(Geisler	&	Müller,	 2017),	decreases	by	
~0.5–	1%	per	annum	after	~45 years	of	age	(Janssen,	2010).	
When	accompanied	by	concomitant	reductions	in	muscle	
strength	and	physical	function,	this	gives	rise	to	a	disease	
known	as	sarcopenia	(Cruz-	Jentoft	et	al.,	2019).	Contrary	
to	skeletal	muscle	mass	(SMM),	FM	has	been	shown	to	in-
crease	by	~0.2%	per	annum	from	20 years	of	age	(Imboden	
et	al.,	2017;	Westerterp,	2018a).	The	coexistence	of	sarco-
penia	and	adiposity,	termed	sarcopenic	obesity,	is	of	great	
concern	as	they	act	synergistically,	increasing	the	risk	of	
metabolic	 and	 cardiovascular	 disease	 (CVD),	 and	 ulti-
mately	mortality	(Wannamethee	&	Atkins,	2015).

Body	composition	changes	with	age	are	ascribed	to	al-
terations	in	energy	balance	(St-	Onge	&	Gallagher,	2010).	
Regarding	the	energy	expenditure	(EE)	component	of	the	
energy	balance	equation	(rate	of	energy	storage = rate	of	
energy	intake	(EI) − rate	of	EE),	aging	is	associated	with	
declines	in	all	three	major	constituents:	resting	metabolic	
rate	 (RMR),	 which	 accounts	 for	 60–	80%;	 activity	 energy	
expenditure	(AEE),	which	comprises	~20–	50%;	and	diet-	
induced	 thermogenesis	 (DIT),	 which	 uses	 5–	10%	 (Hall	
et	al.,	2012;	Manini,	2010).	The	decline	in	RMR	occurs	at	
a	rate	of	~1–	2%	per	decade	from	the	age	of	30	(Elia	et	al.,	
2000).	Fat-	free	mass	accounts	for	50–	70%	of	the	variance,	
of	which	SMM	accounts	 for	~25%	(Bosy-	Westphal	et	al.,	
2003;	Gallagher	et	al.,	1998;	Geisler	et	al.,	2016a).	Hence,	
interventions	that	target	skeletal	muscle	and	curb	sarco-
penia	may	mitigate	age-	related	declines	in	components	of	
EE,	 improve	 energy	 balance,	 and	 attenuate	 adiposity	 in	
older	adults.

Resistance	exercise	(RE)	is	a	potent	stimulus	to	increase	
skeletal	muscle	and	FFM	and	 is	 considered	 the	primary	
intervention	to	mitigate	sarcopenia	(Phillips	&	Martinson,	
2019).	 Alongside	 beneficial	 effects	 on	 FFM,	 increases	 in	
total	EE	(TEE)	(Hunter	et	al.,	2000),	RMR	(Hunter	et	al.,	
2004)	 and	 24-	h	 fat	 oxidation	 (Treuth	 et	 al.,	 1995),	 and	
decreases	in	the	energetic	cost	of	walking	(Valenti	et	al.,	
2016)	 and	 FM	 (Westcott,	 2012)	 have	 been	 observed	 in	
older	adults	 following	RE	training.	 Increased	EE	follow-
ing	RE	is	often	attributed	to	the	energetic	cost	of	increased	
skeletal	 muscle	 and	 FFM	 (Hunter	 et	 al.,	 2004),	 which	
have	 specific	 metabolic	 rates	 of	 12.6	 and	 24  kcal/kg/d,	
respectively	 (Hall,	 2006;	 Wang	 et	 al.,	 2010).	 Although,	

it	 is	 important	to	note	that	acute	factors	also	contribute,	
namely	excess	post-	exercise	oxygen	consumption	(EPOC),	
which	includes,	but	is	not	limited	to,	glycogen,	adenosine	
triphosphate	 (ATP)	 and	 creatine	 phosphate	 resynthesiz-
ing,	protein	turnover,	ion	redistribution,	blood	and	mus-
cle	 oxygen	 replenishment,	 and	 residual	 hormone	 effects	
(Børsheim	&	Bahr,	2003).

While	 RE	 has	 repeatedly	 been	 shown	 to	 increase	 as-
pects	 of	 24-	h	 EE,	 a	 potential	 caveat	 in	 older	 individuals	
is	 the	 frequently	 reported	 compensatory	 reduction	 in	
AEE,	 particularly	 spontaneous	 physical	 activity	 (SPA)	
(Westerterp,	2018a,	b).	This	has	been	postulated	to	occur	
due	to	training-	related	fatigue	(Hunter	et	al.,	2018)	and/or	
energy	compensation	to	maintain	energy	balance	(Careau	
et	al.,	2021;	Hall	et	al.,	2012).	Previous	work	in	older	adults	
has	 shown	 that	 this	 effect	 may	 be	 eliminated,	 without	
any	 dampened	 effects	 on	 SMM	 or	 strength,	 by	 perform-
ing	load-	matched	RE	twice	as	opposed	to	three	times	per	
week	(Hunter	et	al.,	2013).	However,	participants	in	this	
study	also	participated	in	aerobic	exercise	(AE),	highlight-
ing	 the	 need	 for	 further	 research	 to	 determine	 whether	
performing	RE	twice	as	opposed	to	thrice	weekly	without	
AE	eliminates	energy	compensation	in	older	adults.

In	addition	to	RE,	a	high	protein	diet	may	also	assist	
in	 attenuating	 sarcopenia	 (Phillips	 &	 Martinson,	 2019).	
At	 present,	 protein	 recommendations	 for	 adults	 aged	
≥19 years	are	set	according	to	 the	recommended	dietary	
allowance	 (RDA)	 of	 0.8  g/kg/d	 (Institute	 of	 Medicine,	
2005).	However,	working	groups	reason	 that	 the	RDA	is	
insufficient	 for	 older	 individuals	 to	 curb	 sarcopenia	 and	
intakes	 of	 ~1.2  g/kg/d	 (Bauer	 et	 al.,	 2013;	 Deutz	 et	 al.,	
2014)	and	even	up	to	2×	the	RDA	of	1.6 g/kg/d	(Phillips	
et	 al.,	 2016)	 should	 be	 consumed.	 Indeed,	 intakes	 of	 di-
etary	protein	towards	the	higher	end	of	these	recommen-
dations	 (~1.4–	1.6  g/kg/d)	 have	 been	 shown	 to	 increase	
FFM	in	older	adults	(Bauer	et	al.,	2015;	Bell	et	al.,	2017;	
Mitchell	et	al.,	2017;	Norton	et	al.,	2016;	Park	et	al.,	2018).	
Normative	data	in	older	adults,	however,	report	protein	in-
takes	of	~1 g/kg/d	(Farsijani	et	al.,	2017),	highlighting	the	
need	for	increased	intake	to	mitigate	sarcopenia	(Phillips	
&	Martinson,	2019).

A	high	protein	diet	 (25–	30%	of	EI)	may	also	mitigate	
age-	related	reductions	in	EE	and	aid	body-	weight	manage-
ment	 (Drummen	et	al.,	2018).	For	example,	 increases	 in	
TEE,	RMR,	sleeping	metabolic	rate	(SMR),	and	DIT	(Bray	
et	al.,	 2015;	Drummen	et	al.,	 2020;	Martens	et	al.,	 2015;	
Oliveira	et	al.,	2021;	Sutton	et	al.,	2016),	improved	meta-
bolic	efficiency	of	physical	activity	 (Apolzan	et	al.	 2014;	
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Martens	et	al.,	2015),	decreased	24-	h	respiratory	quotient	
(RQ)	 and	 fat	 balance	 (Drummen	 et	 al.,	 2020;	 Lejeune	
et	 al.,	 2006;	 Martens	 et	 al.,	 2015;	 Oliveira	 et	 al.,	 2021;	
Smeets	et	al.,	2013),	and	an	adaptive	thermogenic	increase	
in	TEE	and	SMR	when	dietary	protein	intake	is	returned	
to	baseline	levels	(Bray	et	al.,	2015)	have	been	reported	fol-
lowing	a	high	protein	diet.	Protein-	induced	increase	in	EE	
may	be	explained	by	the	ATP	required	for	metabolism,	in-
cluding	protein	breakdown,	synthesis	and	storage,	and	ox-
idation,	including	urea	synthesis	(Drummen	et	al.,	2018).	
Gluconeogenesis	due	to	a	surplus	of	dietary	protein	also	
contributes	 to	 the	 increased	 EE	 (Veldhorst	 et	 al.,	 2009),	
as	does	protein-	induced	increases	in	skeletal	muscle	and	
FFM	(Drummen	et	al.,	2018).

Despite	 the	 fact	 aforementioned	 studies	 report	 ben-
eficial	 effects	 on	 EE	 following	 a	 high	 protein	 diet,	 the	
majority	 of	 studies	 [excluding	 Drummen	 et	 al.	 (2020)]	
were	conducted	on	young	adults,	and	some	longitudinal	
studies	in	older	adults	have	reported	conflicting	findings	
(Luger	 et	 al.,	 2013;	 Negro	 et	 al.,	 2019).	 These	 null	 find-
ings	were,	however,	likely	due	to	an	insufficient	increase	
in	 dietary	 protein	 intake	 during	 the	 intervention	 period	
(≤0.1  g/kg/d).	 Nonetheless,	 although	 Drummen	 et	 al.	
(2020)	 reported	 protein-	induced	 effects	 on	 EE	 (specifi-
cally,	increased	RMR)	in	older	adults	(~65 years)	follow-
ing	 ~34  months	 of	 a	 high	 protein	 weight	 maintenance	
diet,	EE	was	only	assessed	following	but	not	prior	to	the	
intervention.	Consequently,	 further	 research	on	 the	pre-	
post	longitudinal	energetic	effects	of	a	high	protein	diet	in	
older	adults	is	needed.

Meta-	analyses	 indicate	 that	 increased	 dietary	 protein	
intake	 combined	 with	 RE	 may	 synergistically	 decrease	
both	absolute	and	%FM	(Liao	et	al.,	2017)	and	aid	muscle	
hypertrophy	(Cermak	et	al.,	2012;	Finger	et	al.,	2015;	Liao	
et	 al.,	 2017;	 Morton	 et	 al.,	 2018).	 However,	 the	 majority	
of	 intervention	studies	 in	older	adults	have	been	unable	
to	replicate	supplemental	increases	in	skeletal	muscle	or	
FFM	 (Arnarson	 et	 al.,	 2013;	 Candow	 et	 al.,	 2006;	 Chalé	
et	al.,	2013;	Dulac	et	al.,	2021;	Englund	et	al.,	2017;	Gryson	
et	 al.,	 2014;	 Holm	 et	 al.,	 2008;	 Holwerda	 et	 al.,	 2018;	
Kukuljan	et	al.,	2009;	Leenders	et	al.,	2013;	Maltais	et	al.,	
2016;	Ottestad	et	al.,	2017;	Shahar	et	al.,	2013;	Thomson	
et	 al.,	 2016;	 Verdijk	 et	 al.,	 2009;	 Verreijen	 et	 al.,	 2017).	
Similarly,	 studies	 investigating	 the	 combined	 effects	 on	
components	 of	 EE	 have	 also	 observed	 no	 synergistic	 ef-
fects	(Amamou	et	al.,	2017;	Campbell	et	al.,	1994;	Maltais	
et	al.,	2016;	Weinheimer	et	al.,	2012).	Null	findings	may	be	
attributed	to	an	inadequate	sample	size	and	lack	of	statis-
tical	power	(Campbell	et	al.,	1994),	an	adequate	habitual	
protein	 intake	 of	 participants	 (Weinheimer	 et	 al.,	 2012),	
and	an	insufficient	increase	in	dietary	protein	intake	from	
baseline	 (<0.4 g/kg/d)	and	a	 total	dietary	protein	 intake	
of	<1.6 g/kg/d	during	the	intervention	period	(Amamou	

et	al.,	2017;	Maltais	et	al.,	2016).	The	latter	of	these,	as	sug-
gested	 by	 others	 (Morton	 et	 al.,	 2018;	 Park	 et	 al.,	 2018),	
might	be	the	breakpoints	required	to	maximally	augment	
increases	in	skeletal	muscle	and	FFM	and	consequent	in-
creases	in	components	of	EE.

A	 limitation	 of	 the	 above-	cited	 studies	 investigating	
the	 synergistic	 effects	 of	 RE	 and	 increased	 dietary	 pro-
tein	 intake	was	 the	sole	measurement	of	EE	 in	 the	rest-
ing	state	(i.e.,	RMR).	Twenty-	four-	hour	EE	is	not	constant	
and	is	regulated	by	numerous	factors	such	as	time	of	day	
and	 food	 intake	 (Schoffelen	 &	 Plasqui,	 2018);	 therefore,	
analysis	of	only	RMR	does	not	provide	a	comprehensive	
analysis	of	 the	synergistic	effects	on	24-	h	energy	metab-
olism.	Consequently,	analysis	of	the	synergistic	effects	on	
multiple	components	of	24-	h	EE	(i.e.,	RMR,	SMR,	AEE,	
DIT,	and	TEE)	is	warranted.

The	primary	aim	of	this	study	was	to	examine	changes	
in	24-	h	EE,	substrate	oxidation,	and	body	composition	in	
healthy	older	men	following	12 weeks	of	RE	and	a	high	
protein	 diet	 via	 whey	 protein	 supplementation	 [which	
aimed	to	increase	dietary	protein	intake	by	≥0.4 g/kg/d	to	
~1.6 g/kg/d	(~25%	of	EI)].	A	secondary	aim	was	 to	con-
duct	an	exploratory	sub-	analysis	to	determine	whether	RE	
combined	with	a	high	protein	diet	via	whey	protein	sup-
plementation	 synergistically	 increases	 EE	 and	 improves	
body	 composition.	We	 hypothesized	 that	 RE	 and	 a	 high	
protein	 diet	 individually	 would	 increase	 components	 of	
EE,	 substrate	oxidation	and	 improve	body	weight	main-
tenance	 and	 composition.	 We	 also	 postulated	 that	 there	
would	 be	 a	 synergistic	 effect	 when	 interventions	 were	
combined.

2 	 | 	 MATERIALS AND METHODS

2.1	 |	 Participants

Thirty-	three	 healthy,	 community-	dwelling	 older	 men	
[(mean ± SE)	age:	67 ± 1 years]	participated	in	this	study.	
Full	 details	 of	 the	 eligibility	 criteria	 have	 been	 previ-
ously	described	(Griffen	et	al.,	2022).	Briefly,	participants	
were	eligible	if	they:	were	(i)	aged	60–	80 years;	(ii)	a	non-	
smoker;	(iii)	weight	stable	(± <3 kg	change	in	the	previ-
ous	6 months);	had	(iv)	a	BMI	between	18.5	and	30 kg/
m2;	(v)	not	participated	in	RE	in	the	previous	6 months;	
(vi)	no	past	or	existing	history	of	cancer,	diabetes	mellitus,	
or	cardiovascular,	thyroid,	or	renal	disease;	and	(vii)	were	
not	taking	statins,	non-	steroidal	anti-	inflammatory	drugs,	
or	medication	that	affects	metabolism.	The	study	was	ap-
proved	by	Coventry	University	Ethics	Committee	(project	
code:	 P59723)	 and	 was	 registered	 at	 clinicaltrials.gov	 as	
NCT03299972.	All	participants	provided	written	informed	
consent	prior	to	enrollment.
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2.2	 |	 Design

The	present	study	is	a	pooled	analysis	of	a	12-	week	rand-
omized,	 controlled,	 double-	blind,	 4-	arm	 (control,	 a	 high	
protein	diet	via	whey	protein	supplementation,	RE	+	con-
trol,	RE	+	a	high	protein	diet)	parallel	group	trial	which	
took	place	between	October	2017	and	May	2019	(Griffen	
et	al.,	2022).	In	the	present	study,	RE	(n = 17)	and	non-	
exercise	(n = 16)	groups	were	pooled	and	compared	to	one	
another,	as	were	high	protein	(PRO;	n = 17)	and	control	
(CON;	n = 16)	groups.	Additionally,	an	exploratory	sub-	
analysis	was	conducted	between	RE + control	(RE+CON;	
n = 8)	and	RE + a	high	protein	diet	via	whey	protein	sup-
plementation	(RE+PRO;	n = 9)	groups	to	determine	syn-
ergistic	 effects.	 The	 experimental	 design	 and	 pooling	 of	
groups	for	analysis	are	shown	diagrammatically	in	Figure	
S1.	 Measurements	 were	 taken	 at	 baseline	 and	 following	
the	intervention.

2.3	 |	 Exercise training

Supervised	whole-	body	RE	was	performed	 twice	weekly	
at	 Coventry	 University.	 Sessions	 occurred	 at	 least	 48  h	
apart	and	the	final	session	occurred	>72 h	prior	to	post-	
intervention	 metabolic	 testing.	 Each	 session	 consisted	
of	 a	 5-	min	 warm-	up	 on	 a	 cycle	 ergometer	 followed	 by	
three	sets	of	 leg	press,	 lateral	row,	hamstring	curl,	chest	
press,	 leg	 extension,	 and	 shoulder	 press	 (in	 that	 order)	
on	 fixed	 RE	 machines	 (Life	 Fitness,	 Rosemont,	 Illinois,	
USA).	During	the	first	4 weeks	of	training,	exercise	inten-
sity	began	at	60%	one-	repetition	maximum	[(1RM)	10–	12	
repetitions	per	set]	and	was	gradually	increased	by	~5–	7%	
per	week	to	80%	1RM	(8	repetitions	per	set),	where	it	re-
mained	until	the	end	of	the	intervention.	The	final	set	of	
each	exercise	was	performed	to	volitional	 failure,	which	
was	defined	as	the	inability	to	perform	an	additional	rep-
etition	 with	 the	 correct	 form.	 Completion	 of	 repetitions	
was	 monitored	 during	 each	 session.	 Resting	 periods	 of	
60 s	and	3 min	were	allocated	between	sets	and	exercises,	
respectively.	The	intensity	was	adjusted	according	to	1RM	
tests	performed	every	4 weeks	and	when	participants	were	
able	to	complete	>12	repetitions	on	the	final	set	of	each	
exercise.	Sessions	concluded	with	a	5-min	cool-	down	on	
a	 cycle	 ergometer.	 Compliance	 was	 monitored	 using	 a	
training	log.

2.4	 |	 Dietary intervention

Participants	 in	 the	 PRO	 group	 ingested	 25  g	 whey	 pro-
tein	isolate	(including	~3 g	 leucine)	(Instantized	BiPRO;	
Agropur,	 Quebec,	 Canada),	 whereas	 participants	 in	 the	

CON	group	consumed	an	energy-	matched	control	(23.75 g	
maltodextrin;	 Myprotein,	 Northwich,	 UK)	 twice	 daily.	
Supplements	were	consumed	directly	after	breakfast	and	
lunch.	 The	 whey	 protein	 dosing	 regimen	 employed	 was	
chosen	based	on	previous	studies	that	have	demonstrated	
that	older	adults	typically	consume	insufficient	amounts	of	
dietary	protein	at	breakfast	and	lunch	to	maximally	stim-
ulate	 rates	 of	 muscle	 protein	 synthesis	 (MPS)	 (~0.2	 and	
~0.3 g/kg,	respectively)	(Farsijani	et	al.,	2017;	Smeuninx	
et	al.,	2020;	Tieland	et	al.,	2012a).	In	addition,	it	was	hy-
pothesized	 that	 the	whey	protein	dosing	regimen	would	
increase	daily	dietary	protein	intake	from	~1.0	(~15–	17%	
of	EI)	to	~1.6 g/kg/d	(~25%	of	EI),	 the	upper	intake	rec-
ommended	 to	 curb	 sarcopenia	 (Phillips	 &	 Martinson,	
2019).	Consumption	of	the	final	supplement	occurred	the	
day	 before	 (~32  h	 prior	 to)	 post-	intervention	 metabolic	
testing.	The	nutritional	composition	of	 the	experimental	
supplements	can	be	seen	in	Table	S1.	Supplements	were	
unflavored,	similar	in	powder	weight,	and	were	provided	
in	opaque	 sachets	 in	a	double-	blinded	manner	 (Flexible	
Packaging	 Services	 Ltd,	 Wirral,	 UK).	 Participants	 pre-
pared	their	supplement	beverages	at	home	by	dissolving	
the	 contents	 with	 ~200  ml	 of	 water	 combined	 with	 un-
sweetened	 cordial	 to	 taste.	 Compliance	 was	 calculated	
from	 returned	 wrappers	 and	 unused	 sachets.	 The	 effec-
tiveness	 of	 participant	 blinding	 was	 assessed	 by	 a	 ques-
tionnaire	at	the	end	of	the	study.

2.5	 |	 Dietary intake

Participants	were	instructed	to	not	alter	their	habitual	diet	
for	the	duration	of	the	study.	Participants	completed	3-	day	
food	 records	 (2  weekdays	 and	 1  weekend	 day)	 at	 base-
line	 (prior	 to	 commencing	 the	 intervention)	 and	 during	
weeks	6	and	12.	Dietary	records	were	analyzed	using	di-
etary	analysis	software	(Nutritics	Version	5.097;	Nutritics,	
Dublin,	Ireland).	Participants	replicated	their	dietary	 in-
take	 on	 the	 day	 of	 pre-		 and	 post-	intervention	 metabolic	
testing.

2.6	 |	 Body composition

Body	composition	was	measured	in	the	morning	by	bio-
electrical	 impedance	analysis	(BIA)	(BC-	418 MA;	Tanita	
Corporation,	 Tokyo,	 Japan).	 Measurement	 occurred	 at	
the	same	time	of	day	(± 1 h)	and	participants	were	asked	
to	 consume	 the	 same	 breakfast	 prior	 to	 pre-		 and	 post-	
intervention	 measurements.	 Participants	 voided	 their	
bladder	 prior	 to	 measurement	 and	 wore	 minimal	 cloth-
ing.	Skeletal	muscle	mass	was	estimated	using	the	equa-
tion	of	Janssen	et	al.	(2000).
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2.7	 |	 Respiration chamber

Participants	 resided	 in	 respiration	 chambers	 for	 meas-
urement	of	24-	h	EE	and	substrate	oxidation.	Briefly,	the	
respiration	 chamber	 is	 an	 airtight	 and	 thermally	 insu-
lated	living	space	(floor	dimensions:	2.9 m × 2.1 m)	con-
taining	a	bed,	desk,	chair,	computer,	and	freezer	 toilet	
(Schoffelen	et	al.,	1997).	Environmental	conditions	were	
continuously	 controlled	 (relative	 humidity:	 57  ±  5%;	
temperature:	24 ± 0.5 °C).	Prior	to	baseline	testing,	par-
ticipants	attended	a	familiarization	session	to	be	accus-
tomed	 to	 the	 chamber	 environment.	 On	 experimental	
testing	days,	participants	entered	the	respiration	cham-
ber	at	~1930 h	and	left	at	2000 h	the	following	evening.	
The	 protocol	 for	 the	 24-	h	 measurement	 period	 (2000–	
2000 h)	 is	shown	diagrammatically	 in	Figure	1.	Whilst	
residing	 inside	 the	 respiration	 chamber,	 participants	
were	 fed	 a	 study	 diet	 designed	 to	 achieve	 energy	 bal-
ance	 (see	 Table	 S2	 for	 example).	 The	 diet	 consisted	 of	
~45%	of	energy	from	carbohydrate,	~20%	of	energy	from	
protein,	and	~35%	of	energy	from	fat.	The	macronutri-
ent	 distribution	 of	 the	 diet	 was	 identical	 for	 pre-		 and	
post-	intervention	 visits	 to	 determine	 the	 effects	 of	 the	
interventions	on	FFM	and	subsequent	effects	on	ener-
getics	in	the	absence	of	acute	protein-	induced	effects	on	
EE.	Energy	requirements	for	each	participant	were	cal-
culated	prior	to	entering	the	respiration	chamber	using	
the	Katch-	McArdle	basal	metabolic	rate	(BMR)	formula	
(McArdle	 et	 al.,	 1991)	 multiplied	 by	 an	 activity	 factor	
of	1.47.	Requirements	were	adjusted	based	on	measured	

RMR	 within	 the	 respiration	 chamber	 the	 next	 morn-
ing	 (detailed	 later)	 using	 the	 equation	 of	 Weir	 (1949).	
Alcohol	 and	 caffeinated	 drinks	 were	 prohibited	 dur-
ing	 the	 24-	h	 measurement	 period,	 but	 water	 and	 non-	
caffeinated	herbal	teas	were	available	ad libitum.

Whilst	 residing	 in	 the	 respiration	 chamber,	 partic-
ipants	 completed	 three	 bouts	 of	 30  min	 step	 exercise	
(Reebok	Aerobic	Step	-		height	150 mm;	Reebok,	Boston,	
Massachusetts,	 USA)	 at	 a	 step	 rate	 of	 75  steps/min.	
Step	 exercise	 was	 performed	 at	 0830  h	 (EX-	1),	 1445  h	
(EX-	2),	and	1915 h	 (EX-	3).	The	 first	 step	exercise	bout	
(EX-	1)	was	performed	fasted.	Step	rate	was	paced	using	
a	 metronome	 and	 participants	 were	 visually	 moni-
tored	 throughout.	 Step	 exercise	 (which	 incorporated	
~6,750 steps;	75 steps/min ×	90 min)	was	chosen	to	rep-
licate	 the	 step	 count	 previously	 reported	 in	 free-	living	
older	 men	 (age:	 70–	74  years;	 6,798  steps/d)	 (Lohne-	
Seiler	et	al.,	2014).	Physical	activity	within	the	chamber	
(Activitychamber)	was	continuously	measured	by	a	radar	
transceiver	working	on	the	Doppler	principle,	and	is	ex-
pressed	as	the	percent	of	time	the	participant	was	active	
(Ravussin	et	al.,	1986).

2.8	 |	 EE and substrate oxidation via 
respiration chamber

Energy	 Expenditure	 and	 rates	 of	 carbohydrate	 and	 fat	
oxidation	 were	 calculated	 from	 continuous	 measure-
ment	of	oxygen	consumption	(V̇O2)	and	carbon	dioxide	

F I G U R E  1  Schematic	of	the	24-	h	respiration	chamber	protocol.	Energy	expenditure	(y-	axis)	is	plotted	against	time	(x-	axis	bottom)	for	
one	participant	(ID:	008_baseline;	age:	72 years).	The	protocol	is	noted	on	top	of	the	x-	axis.	Components	of	24-	h	EE	calculated	inside	the	
respiration	chamber	are	illustrated	with	blue	dashed	lines.	AEEchamber,	activity	energy	expenditure;	DIT,	diet-	induced	thermogenesis;	EE,	
energy	expenditure;	EX-	1,	step	exercise	bout	1	(fasted);	EX-	2,	step	exercise	bout	2;	EX-	3,	step	exercise	bout	3;	SMR,	sleeping	metabolic	rate;	
SPA,	spontaneous	physical	activity
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production	(V̇CO2)	by	indirect	calorimetry	corrected	for	
protein	oxidation,	using	the	equation	of	Brouwer	(1957).	
Protein	 oxidation	 was	 determined	 from	 urinary	 nitro-
gen	 excretion	 measured	 over	 12-	h	 periods	 (overnight:	
2000–	0800  h;	 daytime:	 0800–	2000  h)	 (Bingham	 et	 al.,	
1988;	Brouwer,	1957).	The	RQ,	which	 is	an	expression	
of	 relative	 fuel	 utilization,	 was	 calculated	 by	 dividing	
V̇CO2	by	V̇O2.	Carbohydrate,	 fat,	and	protein	balances	
were	determined	as	 the	difference	between	 intake	and	
oxidation.

Twenty-	four-	hour	EE	was	partitioned	into	the	follow-
ing	components.	Total	EE	(TEEchamber)	represented	the	EE	
between	2000	and	2000 h;	SMR	was	determined	as	the	low-
est	EE	over	a	continuous	3 h	period	between	0000-0600 h	
(Schoffelen	&	Westerterp,	2008);	RMR	was	measured	be-
tween	0700-0800 h	 following	awakening	at	06:50 h	with	
the	 participant	 supine,	 but	 awake.	 The	 first	 20	 and	 last	
10 min	were	discarded,	and	RMR	was	calculated	during	
the	least	restless	consecutive	20 min	period	between	0720-
0750 h	(Adriaens	et	al.,	2003).	The	energy	cost	of	step	ex-
ercise	was	determined	as	the	mean	EE	whilst	participants	
were	 in	 steady-	state	 (McClave	 et	 al.,	 2003;	 Reeves	 et	 al.,	
2004).	Other	components	of	EE,	including	sedentary	EE,	
AEEchamber,	SPA,	and	DIT	were	calculated	using	the	inter-
cept	 method	 (see	 Figure	 S2)	 (Hall	 et	 al.,	 2016;	 Ravussin	
et	al.,	1986;	Westerterp	et	al.,	1999).	Physical	activity	level	
(PALchamber)	 was	 determined	 by	 dividing	 TEEchamber	 by	
RMR.	 Components	 of	 EE	 and	 substrate	 oxidation	 are	
expressed	as	raw	values	and	adjusted	for	body	mass	and	
composition	(FFM	and	FM)	using	linear	regression	equa-
tions	derived	from	the	baseline	chamber	visit	(Hall	et	al.,	
2016).

2.9	 |	 EE and physical activity via 
accelerometry

At	baseline	and	week	12,	participants	wore	a	tri-	axial	accel-
erometer	(Actigraph	GT9X;	Actigraph,	Pensacola,	Florida,	
USA)	 continuously	 on	 the	 dominant	 wrist	 for	 7  days	 in	
free-	living.	At	least	5 days	of	≥10 h	wear	time	was	required	
for	data	to	be	included	in	the	final	analysis	(Schrack	et	al.,	
2016).	The	accelerometer	was	sampled	at	80 Hz	and	was	an-
alyzed	in	60-	s	epochs	for	total	activity	(Activityaccelerometry;	
counts/d)	 using	 ActiLife	 (Version	 6.13.4;	 Actigraph,	
Pensacola,	 Florida,	 USA).	 Activityaccelerometry	 was	 used	 to	
estimate	 AEE	 (AEEaccelerometry)	 and	 PAL	 (PALaccelerometry)	
using	 the	 equations	 of	 Ekelund	 et	 al.	 (2004).	 Total	 EE	
(TEEaccelerometry)	was	estimated	by	multiplying	RMR	meas-
ured	 inside	 the	 respiration	 chamber	 by	 PALaccelerometry.	
TEEaccelerometry	 and	 AEEaccelerometry	 are	 expressed	 as	 raw	
values	and	adjusted	for	body	mass	and	composition	using	
methods	previously	described.

2.10	 |	 Statistical analysis

Sample	 size	 was	 based	 on	 change	 (pre-		 vs.	 post-	
intervention)	 and	 difference	 (between	 interventions	
post-	intervention)	 in	 RMR	 from	 previous	 respiration	
chamber	 studies	 in	 older	 adults	 (the	 former	 in	 older	
women)	 investigating	 the	 longitudinal	 effects	 of	 RE	
(Treuth	et	al.,	1995)	and	a	high	protein	diet	(Drummen	
et	 al.,	 2020),	 respectively.	 Using	 G*Power	 (Version	
3.1.9.2;	Dusseldorf,	Germany),	a	minimum	of	34	partici-
pants	 (17/group)	were	 required	 to	observe	a	group-	by-	
time	 interaction	 between	 RE	 and	 non-	exercise	 groups	
and	PRO	and	CON	groups	for	a	mixed-	model	ANCOVA	
with	 two	 covariates	 [α  =  0.05;	 β  =  0.8;	 effect	 size	
(Cohen's	f) =	0.5].

Statistical	analysis	was	performed	using	JASP	Version	
0.15	 (https://jasp-	stats.org/).	 Data	 are	 presented	 as	
means ± SE.	All	data	were	checked	for	normality	using	
the	Shapiro-	Wilk	test.	Outliers	(±	>3SD	from	the	group	
mean)	were	identified	and	removed.	Non-	normally	dis-
tributed	data	were	transformed	using	appropriate	trans-
formation	 (i.e.,	 log,	 square	 root,	 or	 reciprocal).	 Where	
transformation	 was	 unsuccessful,	 non-	parametric	 tests	
were	utilized.	Baseline	characteristics	were	analyzed	by	
independent	 samples	 t-	tests.	A	mixed-	model	ANCOVA	
with	 time	 as	 the	 within-	subjects	 factor,	 group	 as	 the	
between-	subjects	 factor,	 and	 respective	 baseline	 val-
ues	 and	 dietary	 intervention	 group	 (PRO	 or	 CON,	 for	
RE	 vs.	 non-	exercise	 analyses)	 or	 RE	 participation	 (RE	
or	 non-	exercise,	 for	 PRO	 vs.	 CON	 analyses)	 included	
as	 covariates	 were	 performed	 on	 outcome	 variables.	
For	 exploratory	 sub-	analyses	 comparing	 the	 RE+CON	
and	 RE+PRO	 groups,	 outcomes	 were	 analyzed	 by	 a	
mixed-	model	 ANCOVA	 with	 baseline	 value	 included	
as	a	covariate	only.	Non-	normally	distributed	data	were	
analyzed	using	the	Scheirer-	Ray-	Hare	two-	way	ANOVA	
of	ranks	test.	Longitudinal	changes	within	groups	were	
analyzed	by	2-	tailed	paired	samples	t-	tests.	Correlations	
were	 analyzed	 using	 Pearson's	 partial	 correlation	 con-
trolled	 for	 the	 intervention	group.	Significance	was	set	
at	p < 0.05.

3 	 | 	 RESULTS

3.1	 |	 Participants

Thirty-	nine	 older	 men	 were	 randomized:	 Thirty	 three	
completed	the	study	and	6	withdrew	(see	Figure	S1 for	par-
ticipant	flow).	Baseline	characteristics	of	the	CON,	PRO,	
non-	exercise,	 and	 RE	 groups	 are	 shown	 in	 Table	 1	 and	
characteristics	of	the	RE+CON	and	RE+PRO	groups	are	
shown	in	Table	S3.

https://jasp-stats.org/
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3.2	 |	 Exercise and 
supplement compliance

The	 mean	 attendance	 to	 the	 RE	 sessions	 was	 98  ±  1%	
and	 did	 not	 differ	 between	 the	 RE+CON	 and	 RE+PRO	
groups	 (p  =  0.98).	 All	 participants	 completed	 their	 pre-
scribed	 repetitions	 for	 sets	 1–	2	 of	 each	 exercise.	 During	
the	 final	 set	 (to	 volitional	 failure),	 the	 mean	 number	 of	
completed	repetitions	was	9.1 ± 0.2	and	did	not	differ	be-
tween	the	RE+CON	and	RE+PRO	groups	(p = 0.94).	The	
mean	 compliance	 with	 the	 experimental	 supplements	
was	96 ± 1%	and	did	not	differ	between	CON	and	PRO	
groups	(p = 0.27)	or	the	RE+CON	and	RE+PRO	groups	
(p = 0.97).	Treatment	allocation	was	unable	to	be	judged	
by	81%	of	participants.

3.3	 |	 Dietary intake

Protein	intake	(g/d,	g/kg/d,	and	%	energy)	increased	in	the	
PRO	group	greater	than	the	CON	group	at	weeks	6	and	12	

(p < 0.001;	Table	2).	Similarly,	protein	intake	(g/d,	g/kg/d,	
and	 %	 energy)	 increased	 in	 the	 RE+PRO	 group	 greater	
than	 the	RE+CON	group	at	weeks	6	and	12	 (p < 0.001;	
Table	 S4).	 Carbohydrate	 intake	 increased	 in	 the	 CON	
group	greater	than	the	PRO	group	at	weeks	6	(g/d	and	%	
energy;	 p  <  0.001)	 and	 12	 (g/d	 only;	 p  <  0.001).	 In	 the	
RE+CON	group,	carbohydrate	intake	(g/d	and	%	energy)	
increased	greater	than	the	RE+PRO	group	at	weeks	6	and	
12	(p < 0.001).	Fat	intake	(g/d	and	%	energy)	and	habit-
ual	total	EI	decreased	in	the	PRO	group	greater	than	the	
CON	group	at	week	12	(p < 0.05).	No	differences	in	any	
dietary	marker	occurred	between	the	RE	and	non-	exercise	
groups.

3.4	 |	 Body composition

Fat-	free	 mass	 significantly	 increased	 in	 the	 RE	 group	
greater	than	the	non-	exercise	group	(p = 0.04;	Figure	2a),	
but	no	differences	occurred	for	any	other	body	composi-
tion	marker	between	these	groups.	Body	mass	(p = 0.04;	

T A B L E  1 	 Baseline	characteristics	of	participantsa

CON PRO p valueb Non- exercise RE p valueb

n 16 17 —	 16 17 —	

Age,	years 67 ± 1 67 ± 1 0.74 66 ± 1 67 ± 1 0.48

Height,	m 1.77 ± 0.01 1.76 ± 0.08 0.54 1.78 ± 0.01 1.75 ± 0.02 0.31

Body	mass,	kg 78.3 ± 2.5 80.3 ± 2.5 0.57 80.1 ± 2.2 78.6 ± 2.8 0.68

BMI,	kg/m2 24.9 ± 0.6 25.9 ± 0.5 0.25 25.3 ± 0.6 25.5 ± 0.6 0.81

FFM,	kg 59.0 ± 1.6 60.7 ± 1.7 0.47 60.6 ± 1.1 59.2 ± 2.0 0.55

SMM,	kg 26.2 ± 0.7 27.2 ± 0.7 0.34 27.1 ± 0.5 26.3 ± 0.9 0.37

FM,	kg 19.3 ± 1.4 19.6 ± 1.2 0.85 19.5 ± 1.5 19.4 ± 1.1 0.95

FM,	% 24.3 ± 1.3 24.2 ± 1.0 0.96 23.9 ± 1.3 24.5 ± 1.0 0.75

TEEchamber, kcal/d 2439 ± 64 2490 ± 56 0.55 2473 ± 62 2457 ± 59 0.85

TEEaccelerometry, kcal/d 2616 ± 81 2643 ± 74 0.81 2640 ± 81 2620 ± 75 0.86

RMR, kcal/day 1617 ± 50 1633 ± 46 0.81 1632 ± 50 1619 ± 46 0.86

PALchamber 1.51 ± 0.02 1.53 ± 0.02 0.62 1.52 ± 0.02 1.53 ± 0.02 0.95

PALaccelerometry 1.56 ± 0.02 1.58 ± 0.02 0.60 1.56 ± 0.01 1.58 ± 0.02 0.26

Fasting	plasma	glucose,	mmol/L 5.8 ± 0.2 5.9 ± 0.2 0.70 5.8 ± 0.2 5.8 ± 0.2 0.95

HOMA-	IR 2.5 ± 0.3 2.5 ± 0.3 0.98 2.7 ± 0.3 2.3 ± 0.3 0.39

Step	count,	steps/d 11,505 ± 666 11,840 ± 798 0.75 11,618 ± 775 11,733 ± 709 0.91

Activitychamber,	% 16.9 ± 0.8 17.3 ± 1.1 0.81 16.9 ± 1.2 17.3 ± 0.7 0.74

Activityaccelerometry,	counts/day 276,039 ± 43,841 307,065 ± 39,979 0.61 257,482 ± 40,750 324,530 ± 41,496 0.26

Abbreviations:	BMI,	body	mass	index;	FFM,	fat-	free	mass;	FM,	fat	mass;	HOMA-	IR,	homeostatic	model	assessment	of	insulin	resistance;	PALaccelerometry,	
estimated	physical	activity	level	in	free-	living	by	accelerometry;	PALchamber,	physical	activity	level	calculated	inside	the	respiration	chamber;	RMR,	resting	
metabolic	rate;	SMM,	skeletal	muscle	mass;	TEEaccelerometry,	estimated	total	energy	expenditure	in	free-	living	by	accelerometry;	TEEchamber,	total	energy	
expenditure	calculated	inside	the	respiration	chamber.
aValues	are	means ± SE.
bp	value	refers	to	differences	between	groups	analyzed	by	independent	samples	t-	test.
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Figure	 2b)	 and	 BMI	 (p  =  0.04;	 Figure	 2c)	 significantly	
increased	 over	 time	 in	 the	 CON	 compared	 to	 the	 PRO	
group,	and	both	absolute	(p = 0.03;	Figure	2d)	and	%FM	
(p = 0.04)	decreased	greater	in	the	PRO	group	compared	
to	CON	group.	No	differences	in	skeletal	muscle	or	FFM	
occurred	 between	 the	 PRO	 and	 CON	 groups	 (p ≥  0.52).	
In	 the	 RE+CON	 group,	 body	 mass	 (p  =  0.02)	 and	 BMI	
(p = 0.04)	increased	greater	than	the	RE+PRO	group.	In	
contrast,	absolute	FM	decreased	greater	in	the	RE+PRO	
group	compared	to	the	RE+CON	group	(p = 0.04;	Figure	
2e).	No	differences	in	skeletal	muscle	or	FFM	occurred	be-
tween	the	RE+CON	and	RE+PRO	groups	(p ≥ 0.80).

3.5	 |	 EE and substrate oxidation

3.5.1	 |	 TEE	and	energy	balance

TEEaccelerometry	 significantly	 decreased	 over	 time	 in	 the	
non-	exercise	group	greater	than	the	RE	group	(p = 0.03;	
Figure	3	and	Table	3),	which	remained	significant	when	

adjusted	 for	 body	 mass	 and	 composition	 (p  <  0.05).	 No	
differences	in	TEEaccelerometry	occurred	over	time	between	
the	 CON	 and	 PRO	 groups	 (p  =  0.55)	 or	 the	 RE+CON	
and	RE+PRO	groups	 (p = 0.80;	Table	S5).	No	between-	
group	 differences	 occurred	 for	 unadjusted	 or	 adjusted	
TEEchamber.

Across	 the	 whole	 sample,	 energy	 balance	 inside	
the	 respiration	 chamber	 (EBchamber)	 was	 20  ±  33	 and	
50 ± 25 kcal/d	at	baseline	and	12 weeks,	respectively	(Table	
3).	 No	 between-	group	 differences	 occurred	 (p  ≥  0.27).	
EBchamber	at	baseline	and	12 weeks	was	checked	by	com-
paring	obtained	energy	balance	by	a	fictive	energy	balance	
of	 zero.	 No	 groups’	 EBchamber	 significantly	 differed	 from	
zero	at	either	baseline	or	12 weeks.	Energy	balance	in	free-	
living	(EBfree-	living)	was	–	631 ± 49	and	–	465 ± 50 kcal/d	at	
baseline	and	12 weeks,	respectively,	across	the	whole	sam-
ple.	 No	 between-	group	 differences	 occurred	 (p  ≥  0.13).	
Negative	 EBfree-	living	 in	 all	 groups	 was	 confirmed	 using	
the	methodology	previously	described.	As	participants	in	
the	CON	and	RE+CON	groups	gained	body	mass	and	no	
changes	 were	 observed	 in	 the	 PRO	 or	 RE+PRO	 groups,	

F I G U R E  2  Changes	in	(a)	FFM	(kg)	between	RE	(n = 17)	and	non-	exercise	(n = 16)	groups;	(b)	body	mass	(kg),	(c)	BMI	(kg/m2),	and	
(d)	FM	(kg)	between	PRO	(n = 17)	and	CON	(n = 16)	groups;	and	(e)	FM	(kg)	between	RE+CON	(n = 8)	and	RE+PRO	(n = 9)	groups	over	
the	intervention	period	(means ± SE).	Circles	represent	individual	data	points.	Data	were	analyzed	using	a	mixed-	model	ANCOVA	with	
baseline	value	and	dietary	intervention	(PRO	or	CON)	included	as	covariates	(panel	a),	baseline	value	and	RE/non-	exercise	included	as	
covariates	(panels	b,	c	and	d)	and	baseline	value	only	included	as	a	covariate	(panel	e).	BMI,	body	mass	index;	FFM,	fat-	free	mass;	FM,	fat	
mass.	†p < 0.05	between	groups
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underreporting	 of	 self-	report	 EI	 (~20%)	 largely	 was	 as-
sumed	to	explain	the	observed	negative	EBfree-	living.

3.5.2	 |	 24-	h	substrate	oxidation	and	balance

Twenty-	four-	hour	 protein	 oxidation	 increased	 over	 time	
in	the	PRO	group	greater	than	the	CON	group	(p < 0.001;	
Table	 3),	 which	 remained	 significant	 when	 adjusted	 for	
body	 mass	 and	 composition	 (p  <  0.001).	 Similarly,	 24-	h	
protein	 oxidation	 significantly	 increased	 over	 time	 in	
the	 RE+PRO	 group	 greater	 than	 the	 RE+CON	 group	
(p  <  0.001;	 Table	 S5).	 The	 increase	 in	 24-	h	 protein	 oxi-
dation	 following	 the	 high	 protein	 diet	 was	 driven	 by	 a	
rise	 in	 overnight	 protein	 oxidation,	 which	 increased	 by	
30 ± 6 g/d	(p < 0.001)	(Figure	4).	No	differences	in	24-	h	
(p  =  0.99)	 or	 overnight	 protein	 oxidation	 (p  =  0.94)	 oc-
curred	between	 the	RE	and	non-	exercise	groups	and	no	
between-	group	 differences	 occurred	 for	 daytime	 pro-
tein	oxidation	(p ≥ 0.19;	see	Figure	4	for	PRO	vs.	CON).	
Protein	balance	was	positive	in	all	groups	at	baseline	but	
decreased	in	the	PRO	group	compared	to	the	CON	group	
when	protein	intake	was	returned	to	the	chamber	diet	at	
week	 12	 (p  <  0.001).	 Likewise,	 protein	 balance	 signifi-
cantly	decreased	over	time	in	the	RE+PRO	compared	to	
the	 RE+CON	 group	 (p  =  0.01).	 Protein	 balance	 did	 not	
differ	over	time	between	the	RE	and	non-	exercise	groups	
(p = 0.38).	No	between-	group	differences	in	24-	h	oxidation	

or	balance	of	 carbohydrate	or	 fat,	or	RQ,	were	observed	
over	the	course	of	the	study.

3.5.3	 |	 Resting,	sedentary,	and	sleeping	
EE	and	substrate	oxidation

Resting	metabolic	rate	(p = 0.03),	sedentary	EE	(p = 0.049),	
and	 SMR	 (p  <  0.001)	 significantly	 increased	 in	 the	 RE	
group	 greater	 than	 the	 non-	exercise	 group	 (Table	 3	 and	
Figure	5).	When	adjusted	for	measured	changes	in	body	
composition,	RMR	(p = 0.007)	and	SMR	(p = 0.008)	re-
mained	significantly	increased,	but	sedentary	EE	did	not	
(p = 0.35).	No	differences	in	RMR,	sedentary	EE	or	SMR	
occurred	between	the	PRO	and	CON	groups	(p ≥ 0.28)	or	
the	RE+CON	and	RE+PRO	groups	(p ≥ 0.55;	Table	S5).	
Two	participants’	SMR	data	[n = 1	participant	from	both	
the	CON	and	RE	groups	 (the	 latter	of	which	n = 1	par-
ticipant	 from	 the	 RE+CON	 group)]	 were	 removed	 from	
analysis	due	 to	poor	sleep	quality	at	baseline,	which	 led	
to	elevated	baseline	SMR	and	the	resulting	ΔSMR	being	
clear	outliers	(>3SD	from	group	mean).

Resting	 fat	 oxidation	 significantly	 decreased	 in	 the	
PRO	group	compared	to	the	CON	group	(p = 0.01;	Figure	
6a),	which	remained	significant	when	adjusted	 for	body	
mass	 (p  =  0.008)	 and	 composition	 (p  =  0.01).	 In	 the	
RE+CON	 group,	 resting	 fat	 oxidation	 significantly	 in-
creased	compared	to	the	RE+PRO	group	(p = 0.01;	Figure	
6b)	 and	 remained	 significant	 when	 adjusted	 for	 body	
mass	(p = 0.004)	and	composition	(p = 0.01).	No	between-	
differences	occurred	for	resting	or	sleeping	carbohydrate	
oxidation,	RQ,	or	sleeping	fat	oxidation.

3.5.4	 |	 Activity	EE

Activityaccelerometry	 (p  =  0.046;	 Figure	 7a)	 and	
AEEaccelerometry	 (p  =  0.049;	 Figure	 7b)	 significantly	 de-
creased	in	the	RE	group	compared	to	non-	exercise	group,	
the	latter	of	which	remained	significant	when	adjusted	for	
body	mass	 (p = 0.048)	and	composition	(p = 0.046).	No	
differences	occurred	between	 the	PRO	and	CON	groups	
(p ≥ 0.82;	Table	3)	or	the	RE+CON	and	RE+PRO	groups	
(p ≥  0.10).	 AEEchamber	 did	 not	 differ	 over	 time	 between	
groups	 (p ≥ 0.11);	however,	 significant	within-	group	de-
creases	were	observed	in	the	RE	(p = 0.001)	and	RE+PRO	
groups	(p = 0.03;	Table	S5),	which	remained	significant	
when	adjusted	for	body	mass	and	composition	(p < 0.05).	
The	decrease	in	AEEaccelerometry	and	AEEchamber	following	
RE	led	to	a	greater	decrease	in	PALaccelerometry	(p = 0.049;	
Figure	7c)	and	PALchamber	(p = 0.06;	Figure	7d)	compared	
to	the	non-	exercise	group.	The	decrease	in	AEEchamber	fol-
lowing	RE	was	driven	by	a	decrease	in	SPA	(p < 0.001),	

F I G U R E  3  Change	in	unadjusted	TEEaccelerometry	(kcal/d)	
between	RE	(n = 17)	and	non-	exercise	(n = 16)	groups	
(means ± SE).	Circles	represent	individual	data	points.	Data	were	
analyzed	using	a	mixed-	model	ANCOVA	with	baseline	value	
and	dietary	intervention	(PRO	or	CON)	included	as	covariates.	
†p < 0.05	between	groups.	TEEaccelerometry,	total	energy	expenditure	
estimated	by	accelerometry
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which	 tended	 to	 decrease	 greater	 than	 the	 non-	exercise	
group	 (p  =  0.09).	 Decreased	 activitychamber	 (p  =  0.049,	
Figure	7e)	as	opposed	to	SPA	per	%	of	activity	(p = 0.35)	
caused	 the	 decrease	 in	 SPA	 in	 the	 RE	 compared	 to	 the	
non-	exercise	 group.	 The	 Δactivitychamber	 significantly	
inversely	 correlated	 with	 ΔRMR	 (r  =  −0.45,	 p  =  0.009;	
Figure	7f).	No	differences	occurred	between	the	RE+CON	
and	RE+PRO	groups.

3.5.5	 |	 Step	exercise	EE	and	
substrate	oxidation

At	baseline	and	12 weeks,	across	the	whole	sample,	fat	ox-
idation	was	significantly	greater	and	carbohydrate	oxida-
tion	was	significantly	less	during	the	fasted	step	exercise	
bout	(EX-	1)	than	during	both	EX-	2	(p < 0.001)	and	EX-	3	
(p  <  0.001;	 Figure	 8).	 Energy	 expenditure	 did	 not	 differ	
between	step	exercise	bouts	at	baseline	(p ≥ 0.10).	In	con-
trast,	at	12 weeks,	EE	during	EX-	1	(4.7 ± 0.1 kcal/min)	was	
significantly	 less	 than	during	both	EX-	2	(4.9 ± 0.1 kcal/
min;	p < 0.001)	and	EX-	3	(4.8 ± 0.1 kcal/min;	p < 0.001).	
Following	the	intervention,	no	significant	between-	group	
differences	in	unadjusted	or	adjusted	EE	or	substrate	oxi-
dation	occurred	overtime	for	any	step	exercise	bout	(see	
Table	4	and	Table	S6	for	unadjusted	data).

F I G U R E  4  Changes	in	unadjusted	overnight	and	daytime	
protein	oxidation	(g/d)	between	PRO	(n = 17)	and	CON	(n = 16)	
groups	over	the	intervention	period	(means	±	SE).	Circles	represent	
individual	data	points.	Data	were	analyzed	using	a	mixed-	model	
ANCOVA	with	baseline	value	and	RE/non-	exercise	included	as	
covariates.	††p < 0.01	between	groups
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F I G U R E  5  Changes	in	unadjusted	resting	metabolic	rate	(RMR),	sedentary	EE	and	sleeping	metabolic	rate	(SMR)	(kcal/d)	between	RE	
(n = 17	for	RMR	and	sedentary	EE;	n = 16	for	SMR)	and	non-	exercise	(n = 16	for	RMR	and	sedentary	EE;	n = 15	for	SMR)	groups	over	the	
intervention	period	(means ± SE).	Two	participants	SMR	data	(n = 1	participant	from	the	RE	and	non-	exercise	groups)	were	removed	from	
analysis	as	described	in	the	main	text.	Circles	represent	individual	data	points.	Data	were	analyzed	using	a	mixed-	model	ANCOVA	with	
baseline	value	and	dietary	intervention	(PRO	or	CON)	included	as	covariates.	EE,	energy	expenditure.	†p < 0.05	between	groups.	††p < 0.01	
between	groups
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3.5.6	 |	 Diet-	induced	thermogenesis

Diet-	induced	thermogenesis	was	similar	between	groups	
at	baseline	(p ≥ 0.31;	Table	3	and	Table	S5).	A	high	inter-	
individual	 variability	 was	 observed	 (range	 −3.1–	12.5%).	
At	 12  weeks	 when	 protein	 intake	 was	 returned	 to	 the	
baseline	chamber	diet,	no	within-		or	between-	group	dif-
ferences	occurred.

4 	 | 	 DISCUSSION

The	present	study	is	the	first	to	examine	changes	in	24-	h	
EE,	 substrate	 oxidation,	 and	 body	 composition	 in	 older	
adults	 (60–	75  years)	 following	 RE	 and	 a	 high	 protein	
diet	 via	 whey	 protein	 supplementation	 [which	 aimed	 to	
increase	 dietary	 protein	 intake	 by	≥0.4  g/kg/d	 to	 1.6  g/
kg/d	(~25%	of	EI)].	The	main	findings	were:	(i)	RE	signifi-
cantly	increased	FFM,	RMR,	SMR	and	sedentary	EE	and	
mitigated	a	decline	 in	 free-	living	TEE	compared	to	non-	
exercise;	 however,	 decreased	 AEE	 and	 PAL;	 (ii)	 a	 high	
protein	diet	(~1.6 g/kg/day	and	~25%	of	EI)	via	whey	pro-
tein	supplementation	improved	body	weight	maintenance	
and	reduced	FM	compared	to	control,	but	reduced	resting	
fat	 oxidation	 and	 increased	 overnight	 protein	 oxidation,	
which	subsequently	decreased	24-	h	protein	balance;	and	
(iii)	a	high	protein	diet	via	whey	protein	supplementation	
combined	with	RE	synergistically	improved	body	weight	

maintenance	and	reduced	FM	compared	to	RE	and	a	car-
bohydrate	control,	but	did	not	 significantly	augment	 in-
creases	in	FFM	or	EE	components.

Twelve	weeks	of	RE	resulted	in	increased	RMR,	seden-
tary	EE,	and	SMR.	These	increases	were	likely	largely	a	re-
sult	of	the	energetic	cost	of	increased	FFM	(Hunter	et	al.,	
2004).	The	 rise	 in	 SMR	 observed	 in	 the	 present	 study	 is	
in	line	with	those	reported	in	older	women	(67 ± 1 years)	
(Treuth	 et	 al.,	 1995);	 however,	 the	 increase	 in	 RMR	 is	
considerably	 less	 than	 studies	 that	 reported	 increases	 of	
~7–	9%	(Campbell	et	al.,	1994;	Hunter	et	al.,	2000;	Pratley	
et	al.,	1994;	Treuth	et	al.,	1995	).	Fat-	free	mass	increased	by	
a	similar	or	greater	magnitude	in	the	present	study	than	
that	reported	by	the	majority	of	these	studies	(Campbell	
et	al.,	1994;	Pratley	et	al.,	1994;	Treuth	et	al.,	1995);	there-
fore,	inconsistencies	may	be	due	to	alternative	factors,	in-
cluding	 participant	 training	 status,	 sex,	 changes	 in	 rates	
of	 MPS	 and	 sympathetic	 nervous	 system	 activity,	 and	
differences	in	the	timing	of	post-	intervention	RMR	mea-
surement	 relative	 to	 termination	of	 the	 final	RE	session	
(Geisler	et	al.,	2016b;	Geisler	&	Müller,	2017;	Schutz,	2011;	
Speakman	&	Selman,	2003).

The	 present	 study	 reports	 that	 a	 high	 protein	 diet	
(~1.6 g/kg/d	and	~25%	of	EI)	via	whey	protein	supple-
mentation	aided	maintenance	of	body	mass	and	reduc-
tions	in	both	absolute	and	%FM	compared	to	an	isocaloric	
carbohydrate	control.	Similarly,	a	high	protein	diet	com-
bined	with	RE	also	aided	body	weight	maintenance	and	

F I G U R E  6  Change	in	unadjusted	resting	fat	oxidation	(g/d)	between	(a)	PRO	(n = 17)	and	CON	(n = 16)	groups	and	(b)	RE+CON	
(n = 8)	and	RE+PRO	(n = 9)	groups	over	the	intervention	period	(means ± SE).	Circles	represent	individual	data	points.	Data	were	analyzed	
using	a	mixed-	model	ANCOVA	with	baseline	value	and	RE/non-	exercise	included	as	covariates	(panel	A)	and	baseline	value	only	included	
as	a	covariate	(panel	B).	†p < 0.05	between	groups
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reduced	 FM	 compared	 to	 RE	 combined	 with	 control.	
These	findings	coincide	with	studies	that	demonstrated	
that	a	high	protein	diet	effectively	maintains	energy	bal-
ance	 and	 body	 mass	 and	 decreases	 FM	 (Clifton	 et	 al.,	
2014;	 Drummen	 et	 al.,	 2018;	 Kim	 et	 al.,	 2016;	 Martens	
et	 al.,	 2015),	 and	 augments	 RE-	induced	 FM	 reduction	
(Bell	et	al.,	2017;	Liao	et	al.,	2017).	As	no	effect	of	a	high	
protein	diet	on	EE	components	was	observed,	compen-
satory	reductions	in	habitual	fat	and	EI	might	partially	
explain	 the	 present	 findings.	 Though,	 in	 agreement	
with	many	previous	studies	as	reviewed	by	Ravelli	and	
Schoeller	(2020),	it	must	be	emphasized	that	significant	
underreporting	(~20%)	of	self-	report	EI	was	observed	in	
this	study	compared	to	that	of	estimated	free-	living	TEE	
by	 accelerometry.	 Consequently,	 self-	report	 dietary	 in-
take	data	in	this	study	should	be	interpreted	cautiously.

In	 the	 present	 study,	 we	 anticipated	 that	 EE	 compo-
nents	would	increase	following	a	high	protein	diet,	mainly	
due	 to	 the	 energetic	 cost	 of	 increased	 FFM	 (Drummen	
et	 al.,	 2018).	 However,	 no	 individual	 or	 augmented	 in-
creases	 in	 EE	 were	 observed,	 which	 contradicts	 studies	
in	younger	adults	that	demonstrated	protein-	induced	in-
creases	 in	 SMR	 (Bray	 et	 al.,	 2015;	 Martens	 et	 al.,	 2015),	
RMR	 (Bray	 et	 al.,	 2012),	 and	 TEE	 (Bray	 et	 al.,	 2012,	
2015).	The	findings	of	this	study	also	contradict	those	of	
Drummen	et	al.	(2020),	who	reported	an	increase	in	RMR	
following	~34 months	of	a	high	compared	to	a	moderate	
protein	diet	in	older	adults.	Though,	it	must	be	noted	that	
Drummen	 et	 al.	 (2020)	 only	 measured	 EE	 components	
post-	intervention,	so	the	pre-	post	energetic	effects	of	the	
intervention	 used	 in	 this	 study	 are	 unknown.	 Contrary	
to	 these	 studies,	 however,	 the	 findings	 of	 the	 present	
study	are	in	agreement	with	studies	that	demonstrated	no	

F I G U R E  7  Changes	in	(a)	Activityaccelerometry	(counts/d);	(b)	unadjusted	AEEaccelerometry	(kcal/d);	(c)	PALaccelerometry;	(d)	PALchamber;	and	
(e)	Activitychamber	(%)	between	RE	(n = 17)	and	non-	exercise	(n = 16)	groups	(means ± SE).	Circles	represent	individual	data	points.	Panel	F	
shows	the	correlation	between	ΔRMR	(kcal/d)	and	Δactivitychamber	(%).	Circles	and	triangle	symbols	in	panel	(f)	represent	individual	data	
points	in	the	non-	exercise	and	RE	groups,	respectively.	Data	were	analyzed	using	a	mixed-	model	ANCOVA	with	baseline	value	and	dietary	
intervention	(PRO	or	CON)	included	as	covariates	(panels	a	to	e)	and	by	Pearson's	partial	correlation	(controlled	for	intervention	group;	
panel	f).	Activityaccelerometry,	physical	activity	measured	by	accelerometry;	Activitychamber,	physical	activity	measured	inside	the	respiration	
chamber;	AEEaccelerometry,	activity	energy	expenditure	estimated	in	free-	living	by	accelerometry;	PALaccelerometry,	estimated	physical	activity	
level	by	accelerometry;	PALchamber,	physical	activity	level	calculated	inside	the	respiration	chamber;	RMR,	resting	metabolic	rate;	†p < 0.05	
between	groups.	#p < 0.05	from	baseline
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synergistic	effects	of	combined	RE	and	increased	dietary	
protein	intake	on	RMR	(Amamou	et	al.,	2017;	Campbell	
et	al.,	1994;	Maltais	et	al.,	2016;	Weinheimer	et	al.,	2012)	
and	no	effect	of	increased	dietary	protein	intake	alone	on	
either	 resting	 (Luger	 et	 al.,	 2013;	 Negro	 et	 al.,	 2019)	 or	
SMR	in	older	adults	(Drummen	et	al.,	2020).

The	most	likely	explanation	for	the	present	and	above-	
cited	null	findings	is	due	to	a	lack	of	protein-	induced	in-
crease	in	FFM	(Amamou	et	al.,	2017;	Campbell	et	al.,	1994;	
Maltais	et	al.,	2016;	Weinheimer	et	al.,	2012).	These	find-
ings	are	consistent	with	others	that	observed	no	individual	
(Björkman	et	al.,	2020;	Kim	et	al.,	2012;	Kirk	et	al.,	2020;	
Verreijen	et	al.,	2017;	Zhu	et	al.,	2015)	or	synergistic	effects	
(Arnarson	et	al.,	2013;	Candow	et	al.,	2006;	Dulac	et	al.,	
2021;	Holm	et	al.,	2008;	Holwerda	et	al.,	2018;	Kirk	et	al.,	
2020;	Kukuljan	et	al.,	2009;	Leenders	et	al.,	2013;	Thomson	
et	al.,	2016;	Verdijk	et	al.,	2009)	of	increased	dietary	pro-
tein	 intake	 on	 FFM	 in	 healthy	 older	 adults	 habitually	
consuming	ample	amounts	of	dietary	protein	(~1.0–	1.2 g/
kg/d).	In	contrast,	studies	conducted	in	older	adults	who	
were	 either	 sarcopenic/frail	 or	 reported	 lower	 habitual	
intakes	 of	 dietary	 protein	 (<1.0  g/kg/d)	 have	 observed	
both	individual	(Bauer	et	al.,	2015;	Bo	et	al.,	2019;	Kang	
et	al.,	2020;	Park	et	al.,	2018;	ten	Haaf	et	al.,	2019)	and	aug-
mented	 increases	 in	FFM	(Kang	et	al.,	2019;	Rondanelli	
et	al.,	2016,	2018;	Tieland	et	al.,	2012b;	Yamada	et	al.,	2019;	
Zdzieblik	et	al.,	2015).	The	relatively	good	health	status	of	
participants	who	habitually	consumed	adequate	amounts	
of	dietary	protein	in	this	study	may	have	masked	any	ef-
fects	of	increased	intake	via	supplementation.

It	 must	 also	 be	 noted	 that	 in	 the	 present	 study,	 par-
ticipants	in	the	high	protein	diet	groups	were	not	fed	the	

same	diet	whilst	residing	in	the	respiration	chamber	post-	
intervention,	 which	 contrasts	 with	 previous	 respiration	
chamber	studies	that	demonstrated	longitudinal	protein-	
induced	increases	in	components	of	EE	(Bray	et	al.,	2015;	
Martens	et	al.,	 2015).	As	 the	acute	energetic	effects	of	a	
high	protein	diet	are	well-	known	(Drummen	et	al.,	2018),	
these	 methodological	 differences	 may	 also	 explain	 the	
contrasting	 findings	 between	 the	 present	 and	 previous	
studies.	However,	as	previously	detailed	 in	the	methods,	
we	opted	for	this	methodology	to	determine	the	effects	on	
FFM	and	subsequent	effects	on	energetics	in	the	absence	
of	acute	protein-	induced	effects	on	EE.	Nevertheless,	the	
present	study	still	observed	increases	in	overnight	protein	
oxidation	and	we	have	previously	reported	a	73%	increase	
in	 awakening	 cortisol	 concentration	 following	 the	 high	
protein	diet	in	this	cohort	(Griffen	et	al.,	2022),	suggesting	
an	 increase	 in	 gluconeogenesis.	These	 increases	 did	 not	
translate	into	increased	EE	however	as	per	previous	stud-
ies	(Drummen	et	al.,	2018;	Veldhorst	et	al.,	2009),	largely	
due	to	the	increase	in	protein	oxidation	being	spared	for	
reduced	 fat	 oxidation.	 This	 finding	 is	 consistent	 with	 a	
previous	study	on	younger	adults	(Bray	et	al.,	2015).

While	 RE	 increased	 several	 EE	 components,	 TEE,	
measured	 both	 inside	 the	 respiration	 chamber	 and	 esti-
mated	 in	 free-	living	 by	 accelerometry,	 did	 not	 increase.	
Although,	 it	 should	be	noted	 that	RE	did	mitigate	a	de-
crease	 in	 free-	living	TEE	compared	 to	non-	exercise.	The	
lack	of	increase	in	TEE	in	free-	living	and	whilst	residing	in	
the	respiration	chamber	following	RE	was	caused	by	a	de-
crease	in	PAL	and	AEE,	an	observation	frequently	seen	in	
older	adults	following	exercise	interventions	(Westerterp,	
2018c).	The	decrease	in	AEE	was	due	to	a	decrease	in	SPA.	
In	fact,	inside	the	respiration	chamber,	non-	exercise	activ-
ity	decreased	by	1.9 ± 1.1%	following	RE,	which	equated	
to	a	27 min	(1440 min ×	0.019)	reduction.	These	findings	
are	consistent	with	others	(Hunter	et	al.,	2018;	Melanson,	
2017)	and	have	been	suggested	to	occur	due	to	increased	
training	 frequency-	induced	 fatigue	 (Hunter	 et	 al.,	 2018)	
and/or	energy	compensation	to	maintain	energy	balance	
(Careau	et	al.,	2021;	Hall	et	al.,	2012).	 In	support	of	 the	
latter,	we	report	an	inverse	correlation	between	change	in	
RMR	and	change	in	non-	exercise	physical	activity	whilst	
participants	resided	in	the	respiration	chamber.	As	prior	
work	has	shown	that	increasing	AEE	may	be	an	effective	
strategy	in	the	defense	against	adiposity	(Kotz	et	al.,	2017),	
these	findings	somewhat	question	the	use	of	RE	in	older	
adults	 to	 increase	 habitual	 physical	 activity	 and	 offset	
sarcopenic	obesity.	However,	as	the	present	study	was	of	
relatively	short	duration,	it	may	be	that	older	individuals	
require	a	 longer	duration	than	12 weeks	 to	adapt	 to	 fre-
quent	RE	training.	Therefore,	future	work	should	investi-
gate	AEE	following	a	longer	period	of	RE	training	in	this	
population.

F I G U R E  8  Carbohydrate,	fat	and	protein	oxidation	(g/d;	
unadjusted)	during	the	three	step	exercise	bouts	performed	at	
75 steps/min	at	baseline	and	12 weeks	(n = 33;	means ± SE).	
EX-	1,	step	exercise	bout	1	(0830 h	in	the	fasted	state);	EX-	2,	step	
exercise	bout	2	(1445 h);	EX-	3,	step	exercise	bout	3	(1915 h).	
Baseline	and	week	12	data	were	analyzed	by	repeated	measures	
ANOVA.	*Significant	main	effect	of	exercise	bout	for	fat	oxidation.	
†Significant	main	effect	of	exercise	bout	for	carbohydrate	oxidation.	
+p < 0.001	compared	to	EX-	2.	$p < 0.001	compared	to	EX-	3
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The	 increase	 in	 24-	h	 protein	 oxidation	 following	
12  weeks	 of	 a	 high	 protein	 diet	 via	 whey	 protein	 sup-
plementation	 concurs	 with	 studies	 in	 both	 young	 (Bray	
et	al.,	2015;	Martens	et	al.,	2015;	Pannemans	et	al.,	1995a;	
Robinson	et	al.,	1990)	and	older	adults	(Drummen	et	al.,	
2020;	Pannemans	et	al.,	1995b,	1998).	In	the	present	study,	
raised	overnight	as	opposed	to	daytime	protein	oxidation	
stimulated	the	24-	h	 increase,	consistent	with	prior	work	
(Price	 et	 al.,	 1994).	 Furthermore,	 the	 present	 study	 also	
established	when	dietary	protein	 intake	was	 returned	 to	
that	 of	 the	 chamber	 diet,	 24-	h	 protein	 balance	 was	 sig-
nificantly	 reduced.	 This	 outcome	 is	 in	 agreement	 with	
others	 that	 established	 a	 lower	 net	 protein	 balance	 in	
older	 men	 following	 habituation	 to	 a	 high	 protein	 diet	
(Højfeldt	et	al.,	2020)	and	a	reduced	nitrogen	balance	fol-
lowing	 termination	of	a	high	protein	diet	until	nitrogen	
output	matched	the	new	level	of	intake	(Waterlow,	1999).	
Previously	in	this	cohort,	as	formerly	mentioned,	we	ob-
served	an	increase	in	awakening	salivary	cortisol	in	addi-
tion	to	increased	fasting	plasma	myostatin	concentration	
following	termination	of	the	high	protein	diet	used	in	this	
study	(Griffen	et	al.,	2022).	Together	with	the	increase	in	
overnight	protein	oxidation	observed,	this	indicates	a	de-
crease	in	protein	breakdown	whilst	fasting.	These	findings	
indicate	 a	 potential	 drawback	 of	 older	 adults	 habitually	
consuming	high	 intakes	 (~1.6 g/kg/d)	of	dietary	protein	
and	 suggest	 that	 older	 individuals	 should	 refrain	 from	
drastically	reducing	protein	intake	once	commenced	on	a	
high	protein	diet	to	minimize	transient	periods	of	reduced	
protein	balance.

During	the	step	exercise	bouts,	greater	rates	of	fat	oxi-
dation	were	observed	in	the	fasted	step	exercise	bout	com-
pared	 to	 step	 exercise	 performed	 postprandially	 at	 1445	
and	1915 h	at	both	baseline	and	12 weeks.	These	findings	
are	similar	to	that	of	Edinburgh	et	al.	(2020),	who	observed	
higher	 rates	 of	 fat	 oxidation	 following	 an	 acute	 bout	 of	
fasted	exercise	compared	to	exercise	performed	following	
consumption	of	breakfast.	Edinburgh	et	al.	(2020)	also	ob-
served	a	greater	sustained	increase	in	fat	oxidation	when	
exercise	 was	 performed	 in	 the	 fasted	 state	 for	 6  weeks	
alongside	 improvements	 in	 insulin	 sensitivity.	 Based	 on	
these	 data,	 research	 quantifying	 the	 longitudinal	 meta-
bolic	response	of	 fasted	exercise	 in	the	elderly,	of	whom	
are	at	greater	risk	of	metabolic	dysfunction	(Hunter	et	al.,	
2019),	is	warranted	to	determine	the	safety	and	effective-
ness	of	mitigating	age-	related	metabolic	disease.

To	 date,	 only	 a	 few	 studies	 of	 ≥4  weeks	 in	 duration	
have	assessed	the	effects	of	either	a	dietary	or	exercise	in-
tervention	 on	 multiple	 components	 of	 EE	 and	 substrate	
oxidation	 using	 respiration	 chambers	 in	 older	 adults	
(Bush	 et	 al.,	 2018;	 Drummen	 et	 al.,	 2020;	 Morio	 et	 al.,	
1998;	 Treuth	 et	 al.,	 1995).	 The	 investigation	 of	 both	 the	
individual	and	combined	effects	of	a	dietary	and	exercise	

intervention	over	12 weeks	on	these	outcomes	measured	
inside	 a	 respiration	 chamber,	 which	 was	 supplemented	
with	 an	 estimation	 of	 EE	 in	 free-	living	 by	 accelerome-
try,	 are	 key	 strengths	 and	 novel	 aspects	 of	 this	 study.	 A	
limitation	of	 this	 study	 is	 the	use	of	pooled	data	 for	 the	
main	analysis,	which	may	have	 impacted	 the	 individual	
effects	of	RE	and	a	high	protein	diet	via	whey	protein	sup-
plementation.	A	second	limitation	is	 the	relatively	small	
number	 of	 participants	 in	 our	 exploratory	 sub-	analysis	
investigating	the	synergistic	effects	of	RE	and	a	high	pro-
tein	 diet.	The	 sample	 sizes	 of	 these	 groups	 where,	 how-
ever,	congruent	with	previous	respiration	chamber	studies	
(Apolzan	 et	 al.	 2014;	 Bray	 et	 al.,	 2015;	 Melanson	 et	 al.,	
2007;	Westerterp-	Plantenga	et	al.,	2009).	Other	limitations	
include	the	failure	to	check	protein	intake	during	the	in-
tervention	period	by	measured	urinary	nitrogen,	omission	
of	 hydration	 status	 assessment	 prior	 to	 BIA	 measure-
ment,	and	 inclusion	of	only	men	who	were	healthy	and	
had	a	normal-	to-	overweight	BMI.	Women	were	excluded	
based	on	age-	related	sex	differences	in	the	decline	in	RMR	
(Geisler	 et	 al.,	 2016b).	 Individuals	 with	 obesity	 were	 ex-
cluded	due	to	differences	in	metabolic	profile	(Perna	et	al.,	
2017)	 and	 due	 to	 the	 preventative	 nature	 of	 this	 study.	
Investigation	of	these	groups	and	older	adults	with	insuf-
ficient	habitual	protein	 intakes	(<1 g/kg/d)	should	 form	
future	work.

In	conclusion,	12 weeks	of	RE	significantly	increased	
FFM,	 RMR,	 SMR,	 and	 sedentary	 EE	 compared	 to	 non-	
exercise.	Conversely,	RE	decreased	AEE	and	PAL.	A	high	
protein	diet	 (~1.6 g/kg/d	and	~25%	of	EI)	via	whey	pro-
tein	 supplementation	 aided	 body	 weight	 maintenance	
and	reduced	FM	compared	to	control.	However,	decreased	
resting	fat	oxidation	and	increased	overnight	protein	oxi-
dation,	which	subsequently	reduced	24-	h	protein	balance.	
Resistance	exercise	combined	with	a	high	protein	diet	via	
whey	 protein	 supplementation	 synergistically	 improved	
body	 weight	 maintenance	 and	 reduced	 FM	 compared	
to	 RE	 and	 control	 but	 did	 not	 significantly	 augment	 in-
creases	in	FFM	or	EE	components.
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