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a b s t r a c t

Motivated by heterogeneous service suppliers in crowd shipping routing problems, vehicles’ similarity
assumption is questioned in the well-known logistical Vehicle Routing Problems (VRP) by considering
different start/end locations, capacities, as well as shifts in the Time Window variant (VRPTW). In
order to tackle this problem, a new agent-based metaheuristic architecture is proposed to capture the
uniqueness of vehicles by modelling them as agents while governing the search with centralised agent
cooperation. This cooperation aims to generate near optimum routes by minimising the number of
vehicles used, total travelled distance, and total waiting times. The innovative architecture encapsulates
three individual core modules in a flexible metaheuristic implementation. First, the problem is
modelled by an agent-based module that includes its components in representing, evaluating, and
altering solutions. A second metaheuristic module is then designed and integrated, followed by a
multi-objective module introduced to sort solutions generated by the metaheuristic module based
on Pareto dominance. Tests on benchmark instances were run, resulting in better waiting times, with
an average reduction of 2.21-time units, at the expense of the other objectives. Benchmark instances
are modified to tackle the unique vehicle’s problem by randomising locations, capacities, and operating
shifts and tested to justify the proposed model’s applicability.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Since their introduction by Dantzig and Ramser [1], Vehicle
outing Problems (VRPs) have been evolving into various variants
otivated by cases from real-life applications, which resulted

n incorporating additional problem attributes such as Multiple
epot (MDVRP), customer Time Window (VRPTW), Dynamic cus-
omer demand arrival (DVRP) and other variants [2]. However,
he complexity of the problem increases with such additional
eal-life constraints. As a result, it becomes challenging to find
n optimal solution since the fundamental VRP is considered
P-hard [3]. Consequently, solution approaches to these variants
ecame pragmatic, aiming at finding near-optimal solutions in
n efficient computational time, and the most commonly used
ethods are (meta)heuristics [4].
With the trend of crowd shipping, where the supply of ship-

ing services is offered by a large mass of heterogeneous actors,
atching supply with demand becomes a challenge that also

equires optimum routing of the problem [5]. Therefore, this
aper takes into consideration the heterogeneity in the supply of
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shipping services in a routing problem by challenging the vehicles
similarity assumptions in VRPs, not only in the capacity as seen
in variants of heterogeneous VRPs but also the start and ending
routes’ locations as well as different operating shifts. However,
such a problem with unique vehicle attributes was not previously
investigated. Schopka and Kopfer [6] considered vehicles can start
from anywhere but end at one depot, while Goel and Gruhn [7]
and Goel [8] considered unique vehicle locations, starting and
ending; however, the other attributes are not considered. As a
result, a unique way of modelling is required to capture the
uniqueness of the vehicles’ attributes.

Therefore, this paper aims to propose an innovative agent-
based optimisation model to capture the uniqueness of vehicles
in this routing problem, along with the customer Time Windows
(VRPTW) variant.

The main contribution of this study can be summarised as
follows:

• To propose a new agent-based representation of this unique
routing problem that adopts the centralised agent coopera-
tion approach.

• To introduce a new customisable metaheuristic framework
integrated with the proposed agent-based model, including
multi-objective components.
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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• To provide a generalised way of evaluating and altering
VRPTW solutions to make it applicable to apply any appro-
priate metaheuristic framework.

This innovative agent-based optimisation model will support
logistics planners in managing their collection or delivery opera-
tions for better cost-effective and resource-utilised solutions.

This paper is structured as follows: recent related work is pre-
sented in Section 2. In Section 3, the centralised agent-based op-
timisation approach is explained along with the proposed model
with its problem, metaheuristics, and multiple objectives compo-
nents. Experimental results on benchmark instances and modified
instances are shown in Section 4. Finally, Section 5 concludes the
paper and suggests directions for future research.

2. Related work

This work focuses on modelling and solving VRPTW with
the consideration of the uniqueness of every vehicle. The Multi-
ple Depot VRPTW (MDVRPTW) and Open VRPTW (OVRPTW) are
closely related to this problem in terms of locations, while other
related studies may include different capacities. MDVRPTW, first
tackled by Cordeau et al. [9], does allow a group of homogeneous
vehicles to be grouped having the same start and end location,
while OVRPTW, introduced by Repoussis et al. [10], relaxes the
end of routes constraints which do not require the vehicle to
return to depot and routes, therefore, remain open. The following
Sections, 2.1 and 2.2, review the recent literature on these two
variants. A thorough review of these two types of variants is con-
ducted in this section. This review provides a clear understanding
of these variants, including their settings, objectives, constraints
and methodologies.

2.1. Previous work on MDVRPTW

The MDVRPTW problem has been investigated by many re-
searchers, including but not limited to Chiu et al. [11], who
adopted a two-phase (route construction and improvement)
heuristic approach to minimise vehicle waiting times leading
to reduce total vehicles used. Ting and Chen [12] tackled the
MDVRPTW problem by proposing a Multiple Ant Colony System
(MACS) to construct routes. The routes construction starts by
firstly allocating orders to depots and then routing within depots,
while routes improvements are implemented within each ant
using Simulated Annealing (SA). Weise et al. [13] developed
a multi-objective evolutionary algorithm to minimise missed
customers and total distance while maximising vehicle utilisa-
tion. Bettinelli et al. [14] adopted an exact approach for a mixed
fleet problem where any vehicle can associate with any depot and
proposed a branch-and-cut-and price algorithm to minimise the
costs endured by vehicles’ fixed costs and distances. Luo and Chen
[15] proposed a multi-stage Shuffled Frog Leaping Algorithm
(SFLA) to the problem that firstly clusters customers to depots
as centroids, then performs an enhanced neighbourhood local
search within/across every cluster and finally selects the elitist
individual for another new clustering round unless termination
conditions are met. Dayarian et al. [16] proposed a branch-
and-price algorithm to solve heterogeneous vehicle problems to
minimise fixed and variable routes’ costs. Cantu-Funes et al. [17]
formulated a mathematical model for multi-depot and periodic
variants, where customers can be served and adopted a two-
phase heuristic approach to construct and improve routes using
local search.

Contrary to the previous MDVRPTW studies, the following
softened the customer time window constraint. Maischberger and
Cordeau [18] performed a parallel implementation of Cordeau

et al. [9] using Tabu Search (TS) and achieved slightly improved

2

results in the total distances. Xu and Jiang [19] proposed a Vari-
able Neighbourhood Search (VNS) for a case with heterogeneous
vehicles under relaxed time window and vehicle’s working time
constraints to minimise travel costs. The same authors extended
their study by adopting diversification strategies in accepting
solutions per iteration using SA. Wang et al. [20] proposed a
multi-objective evolutionary algorithm for a case with soft time
windows to minimise travel time, distances, waiting time, and
time window violations. Sadati et al. [21] tackled the MDVRPTW
problem with relaxed constraints and proposed a Variable Tabu
Neighbourhood Search (VTNS) with granular local search and
tabu shaking for its intensification and diversification mecha-
nisms, respectively. Firstly, an initial solution is provided by as-
signing customers to the nearest depot, and then a modified
saving heuristic is used to construct routes.

Further studies have incorporated additional problem con-
straints. Dharmapriya et al. [22] considered a Split Delivery (MD-
VRPTWSD) problem with additional objectives from a previous
study [13] that balanced workload across all vehicles and solved it
using a single solution metaheuristic, TS and SA. Adelzadeh et al.
[23] proposed an SA algorithm for a problem with fuzzy customer
time windows and heterogeneous vehicles that differ in travel
times, capacity, and cost. Cornillier et al. [24] considered a routing
problem of Multiple products for Petrol Station Replenishment
(MPSRPTW), where vehicles are heterogeneous. Heuristic opti-
misation was used to reduce large numbers of feasible trips if
obtained. A mathematical model was formulated to select the
required trips if the objective is to maximise the revenues. Afshar-
Nadjafi and Afshar-Nadjafi [25,26] adopted the SA approach for
a problem with time-dependent travel times determined based
on the departure time from the depot and a limited number
of heterogeneous fleets at every depot to minimise fixed and
variable travel costs. Li et al. [27] adopted a hybrid evolutionary
and local search approach for a variant where vehicles could
end their routes at any depot to minimise travel costs. Zhen
et al. [28] formulated a mathematical model for a variant with
possible multiple trips per vehicle solved with a hybrid swarm
and evolutionary algorithm to minimise the total time. Zarandi
et al. [29] considered a Multiple Depot Location Routing Problem
(MDLRPTW) with fuzzy travel times, where each depot location
has to be determined along with its routes, by proposing an SA
algorithm to optimise the travelled distances.

Pickup and delivery cases were also considered within multi-
depot problems. Flisberg et al. [30] proposed a concept of flow
demand nodes (locations) to represent the Pickup and Delivery
(PDVRP) variant with multiple depots extending a TS developed
by Cordeau et al. [9] with a relaxation of serving all customers’
constraints. Sombuntham et al. [31] proposed Particle Swarm
Optimisation (PSO) algorithm for a case with both pickup and de-
livery, where customers may require either collection or delivery
services. The aim was to optimise the number of vehicles and the
total distance.

More generalised and rich formulations can be seen in Goel
and Gruhn [7]. They introduced the General VRP (GVRP), where
real-life constraints are combined into one problem, including
heterogeneous fleets with different locations (start/end), travel
times and operating times, order-vehicle compatibility, and ca-
pacity dimensions constraints. A local search with an adaptive
neighbourhood structure maximised the total profit. A later study
proposed column generation heuristic was used to solve the
same GVRP settings [8]. Kramer et al. [32] studied a highly con-
strained variant, dubbed rich VRP, where they considered a het-
erogeneous fleet, periodic demand, soft time windows, customer-
vehicle compatibility as maximum duration, and customer con-
straints for each vehicle solved using an Iterated Local Search
(ILS) heuristic in order to minimise travel distance and operat-

ing costs. Alcaraz et al. [33] also considered a similar rich VRP
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ith an additional constraint of required route breaks for drivers
hile considering the possibility of outsourcing last-mile demand
olved using a proposed heuristic algorithm to minimise the
utsourcing costs and travelled distance.

.2. Previous work on OVRPTW

The OVRPTW problem was previously investigated, including
he targets, faced constraints, and the used methodology. The
roblem has seen variations in how the customer time window
onstraint was modelled. Norouzi et al. [34] proposed a multi-
bjective PSO algorithm for an Open VRP that considers serving
ustomers as earlier as possible in their time window, given that
he sooner customers are served, the more the sales volume,
iming to maximise the sales while minimising the total distance
nd achieving vehicles load balance. Brito et al. [35] adopted
he Ant Colony Optimisation (ACO) approach for both Closed
nd Open VRP (COVRPTW), where some vehicles may require
o return to a depot with fuzzy customers’ time windows and
ehicles capacities in order to minimise the total distance. Xia
nd Fu [36] proposed a TS algorithm for a Soft Time Window
nd customer Satisfaction Rate variant (OVRPSTWSR), where cus-
omer satisfaction is measured based on the degree of its soft time
indow violation. The aim was to minimise the used vehicles,
istance, and time window penalties.
Further studies have incorporated additional problem con-

traints. Brandão [37] proposed an ILS algorithm for a variant
here drivers’ shift constrains routes’ durations to minimise the
umber of used vehicles. Hashemi et al. [38] formulated a math-
matical model solved using a heuristic algorithm for a multi-trip
ariant of a real-life case of an OVRPTW. Yu et al. [39] considered
n OVRPTW with a two-dimensional capacity loading problem.
he original routing problem is solved using a population-based
etaheuristic, dubbed Learning Whale Optimisation Algorithm

LWOA), while the best individual in a generation undergoes
urther loading decisions using a proposed filling algorithm.

Other major modifications to OVRPTW can be seen in Schopka
nd Kopfer [6]. They introduced the Reverse Open VRP
ROVRPTW), where vehicles can start at any location and end at
central depot. An Adaptive Large Neighbourhood Search (ALNS)
as proposed for a Mixed Integer Programming (MIP) formula-
ion of the problem to optimise vehicle costs and travel times. Niu
t al. [40] proposed a TS algorithm for a Green Open variant (GOV-
PTW) to minimise emission costs and drivers’ wages based on
he vehicles used and distance travelled. Shen et al. [41] proposed
oth PSO and TS algorithms for routes construction and improve-
ent, respectively, for a multiple depot variant (MDOVRPTW)

o minimise drivers’ costs, time window violations, fuel, and
mission. Babagolzadeh et al. [42] formulated a MIP model for
variant called Two-Echelon Open (2E-OVRPTW), where stocks
re transported to intermediate depots before final customer
elivery can be released at a specific release time. The aim was to
inimise emission costs, time window violations, and total dis-

ance. Rahmani [43] combined variants of a Close–Open VRPTW
COVRPTW) and Multiple Cross-Docking (MCVRPTW). The latter
s concerned about vehicle compatibility at (un)loading at specific
ocks that occurs multiple times during the supply chain. Consid-
ring additional delivery and installation times uncertainty, they
ormulated a mathematical model that was solved using a robust
ybrid metaheuristic of Firefly Algorithm (FA) improved using
enetic operators to minimise the total costs.
Based on the above review, some studied variants are highly

imilar to the problem being investigated in this paper in terms of
he vehicles’ start/end locations. However, each vehicle’s unique-
ess, including its different operating shifts, was not previously
nvestigated. For instance, Schopka and Kopfer [6] considered ev-
ry vehicle to start at a unique location, but the end of the routes
3

is the same at a single depot, while Shen et al. [41] considered a
multi depot case where the vehicles in a depot are still sharing the
same starting location. Goel and Gruhn [7] and Goel [8] captured
only the uniqueness in these locations, while in our previous
study [44], we considered both unique locations and capacities.
However, this paper further extends our previous study and in-
vestigates the uniqueness of the vehicles’ capacities and locations
as well as assigning different shifts to vehicles, a problem that
has not been tackled before. This investigation includes modelling
each vehicle as an agent to capture individualised attributes of the
agents for a more generalised heterogeneous variant.

3. The proposed centralised agent-based metaheuristic opti-
misation architecture

The concept of applying agent-based modelling in optimisa-
tion has been addressed in earlier studies. Barbati et al. [45]
discussed the fundamentals of designing agents for optimisa-
tion problems in scheduling and routing. They differentiated
between two different types of agent-based optimisation ap-
proaches: competitive, where agents greedily seek to benefit
their objective, and cooperative, where the agents collaborate
in optimising their collective (global) objectives. Cooperative ap-
proaches can be classified into distributed, where decentralised
agents measure objects from their local perspective and act upon
them, and centralised, where a super/governing agent performs
global measures of objectives and directs the sub-agents to act to
improve such globally measured objectives. Monostori et al. [46]
further questioned the degrees in the cooperative approaches by
further classifying a hybrid approach that divides the optimisa-
tion tasks and responsibilities between either being distributed
or centralised.

Adopting the agent-based optimisation approach in VRP is not
new. Mes et al. [47] considered a Dial-A-Ride Problem (DARP)
solved using an auction algorithm to coordinate customer vehicle
communications using a competitive agent-based approach. Bar-
bucha [48] provided a centralised approach embedded with a
Guided Local Search (GLS), and in a later study [49] used GLS
to DVRP problem, and in [50], a population-based evolutionary
algorithm was also used for the same problem. Vokřínek et al.
[51] considered certain agent sorting rules and strategies aimed
to minimise vehicles. Such rules are further extended by adapting
Solomon’s insertion [52] to incorporate time windows [53]. Mar-
tin et al. [54] adopted the agent-based approach to enhance the
metaheuristic search procedure for large solution spaces that
runs different metaheuristics agents in parallel and exchange the
best-found moves.

Davidsson et al. [55] highlighted the benefits of adopting the
decentralised approach in optimisation compared to the classi-
cal optimisation techniques for large-sized problems in reducing
solution time and computational complexity. However, such a
decentralised or hybrid way of optimisation does not guarantee
optimality or perform the necessary, feasible regions searches.

Therefore, we based our methodology on the centralised co-
operative approach, contrary to our previous study that adopted
the hybrid cooperative approach [44]. This centralised approach
applies a proposed metaheuristic framework compatible with the
routing problem under study. This problem is generally modelled
and evaluated using the agent-based approach.

The proposed methodology overcomes the localised greedy
solutions generated by using the decentralised and hybrid agent-
based approaches by centralising the solution search with the
help of a metaheuristic algorithm. Such a shift to centralised
search is similar to how heuristics evolved to metaheuristics
due to their inflexibility in tackling combinatorial optimisation
problems such as VRP [56]. However, the main challenge is how
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Fig. 1. The proposed agent-based metaheuristic architecture.

to apply a metaheuristic algorithmic framework to the prob-
lem under study, given the vehicles’ heterogeneity. The issue
can be addressed by designing proper solutions Representation,
Evaluation and Variation of the problem before applying any
metaheuristic framework components.

This study’s scope lies in the modelling and optimisation of
VRP, which has a set of inputs for the model to be initiated
nd generate optimal outputs (routes). The input data is the
nformation about all the customers and vehicles where they
an be initialised as agents. This data will then set the initial
ttributes for these agents. As a result, customer agents will have
hese attributes: location, demanded quantity, time window, and
ervice time. In contrast, a vehicle agent has the capacity, current
ocation, home location, shift, and maximum duration attributes.

On the other hand, the desired model outputs should be vehi-
le routes measured against specific objectives: number of vehi-
les used, total travelled distance, total travel time, total waiting
ime and any constraints violations found at the end of the search.
he relaxed constraints are the late time window for each cus-
omer and duration and capacity limits for every vehicle. These
nputs and outputs are presented in Fig. 1.

Fig. 1 also shows process core modules that help the search for
ptimal routes. The first is the agent-based model of the problem
onsisting of the assignment, customer, and vehicle agents, which
epresent the solutions. It performs centralised evolutions and
ariations, the second being the metaheuristic framework that
erforms a more centralised and global search, and finally, a
ulti-objective module that aids in sorting the found solutions
onsidering the multiple objectives of the problem.
In metaheuristic design and implementation, it is vital to dis-

inguish between problem-dependent and metaheuristic-specific
omponents to flexibly apply the required metaheuristic com-
onents or other frameworks to the problem if necessary Talbi
57]. The problem components consist of the solution represen-
ation design, evaluation, and variation, while the metaheuris-
ic components include solution selection criteria, replacement,
nd algorithm stopping conditions. Furthermore, Talbi [57] also
onsidered the possibility of additional multi-objective compo-
ents made compatible with such implementation with a specific
itness assignment and solutions preservation techniques.

Fig. 2 illustrates how the architecture core modules communi-
ate. The model starts in the agent-based problem model, where
he Representation, Evaluation, and Variation of solutions occur
nd are sent to the adopted metaheuristic framework to perform
he required global search. Selected solutions are then sent to
he multi-objective module to be ranked using a proper sorting
echnique then the ranked solutions are returned accordingly. The
etaheuristic module then decides to request more variation of
4

solutions from the problem module or returns the most optimal
solution found.

The architecture’s core modules, including the agent-based,
metaheuristic and multi-objective components, will be further
discussed in the following sections. The detailed design of
problem-dependent components is explained in 3.1. The meta-
heuristic used along with its components is explained in 3.2. Fur-
thermore, the multi-objective components in metaheuristic im-
plementation and its detailed implementation are shown in 3.3.

3.1. The agent-based VRP module

The proposed agent-based module for the VRP comprises three
types of agents: customer, vehicle, and assignment agents. The
customer agent stores its constraints, for example, time window
and demand, and provides them when requested. In addition to
its constraints, such as capacity and location, the vehicle agent
has specific tasks in optimisation by performing feasibility evalu-
ations of its proposed routes, which are sequences of customer
agents. On the other hand, the assignment agent is a dummy
agent to govern global and centralised interactions between the
agents for the optimisation process to diverge away from the
local optima with a metaheuristic framework. This module com-
ponent’s main centralised evaluation process is explained later
in 3.1.2, where messages are exchanged between the agents
and the necessary local evaluations are performed. Fig. 3 illus-
trates the proposed module. This proposed module can provide
the necessary metaheuristic problem-dependent representation,
evaluation, and variation components.

3.1.1. Representation
In early VRP formulations, Dantzig and Ramser [1] represented

the problem as Integer Linear Programme, where the decision
variable is the connection between two nodes, also known as
the ‘‘edge representation’’. Later, when the heuristics approach
of both sweep [58] and the two-phase [59] heuristics were in-
troduced to solve this NP-Hard problem, the representation has
changed to an ordered sequence of customer nodes known as
the ‘‘path representation’’ which has been widely used in meta-
heuristics [60] hence, it was adopted. A solution representation
must represent every possible solution and be efficient when
altered where a search path must exist between any solution [57].
Therefore, any customers’ permutation is considered a solution,
as infeasible constraints can be relaxed regardless of its feasibility

Since the agent-based model consists of vehicles, sequences of
customers (can be provided to each vehicle agent), and each ve-
hicle has its start and end node; hence a solution representation
of such unique nodes is emitted. This will be known strictly and
implicitly from the vehicle agent attributes of current/home lo-
cations to be considered when evaluating solutions. The resulted
agent-based VRP solution set is shown in Fig. 4, where instances
of vehicle agents (V1, V2, . . . , Vn) are provided with sequences of
customers. All customers must be sequenced and the occurrence
of a customer across all vehicles is only once.

3.1.2. Evaluation
Since the VRP is a general from the Travelling Salesman Prob-

lem (TSP), its original goal is to minimise total travelled dis-
tance [61]. However, additional objectives have been consid-
ered, such as minimising used vehicles [62] and total waiting
time [11]. As a result, multiple objectives approaches have been
considered [63]. Furthermore, additional constraints have been
incorporated, such as the capacity, route duration, and customer
time window constraints, requiring additional feasibility evalua-
tion for these constraints. However, this has resulted in a highly
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Fig. 3. Proposed agent-based VRP module.

Fig. 4. Solution representation.

constrained problem, and certain constraints have been relaxed
to allow the search to explore infeasible regions temporarily [9].

The evaluation process in the proposed agent-based model
occurs mainly at the vehicle agent level, where a potential route
is provided, and vehicle constraints are checked. Each node in-
formation is requested from the respective customer agents, in-
cluding the time window, demand, service time and location.
Accordingly, local route measures such as distance, waiting time,
and constraint violations are determined. In contrast, global mea-
sures such as the total of these measures and the number of
utilised vehicles are determined globally at the assignment agent
level from evaluations returned from all vehicle agents for a par-
ticular solution. Fig. 5 illustrates the centralised agent messaging
for solution evaluation.

In Fig. 5, the evaluation process starts when the assignment
agent provides every vehicle agent with its route, part of a so-
lution. Then, the vehicle agent requests the constraints of every
customer agent in the route sequence. The required feasibility
evaluation will then be performed to be returned to the assign-
ment agent, for which it collects all measures from all the routes

of the potential solution and performs a centralised evaluation.

5

The considered objectives in this evaluation are the total dis-
tance, total waiting time, and the number of vehicles used, where
all to be minimised, and the respective mathematical representa-
tions are:

min
Vr∑

vr=1

Dvr (1)

min
Vr∑

vr=1

Wvr (2)

min
Vr∑

v=1

yvr (3)

where Vr is a set of different routes provided to each vehicle for
a particular solution, while the subscript vr indicates a selected
route r provided to vehicle v from the set Vr . Dvr and Wvr are
he total distance and waiting time for every route r provided
o the vehicle v while yvr indicate whether vehicle v is idle (0) or
tilised (1) if route r is provided. Calculating distance and waiting
ime measures of a vehicle route is done at the level of the vehicle
gent, taking into account the different starting and ending nodes
f the route that are unique to the vehicle. The summation of
he distances and waiting times are calculated at the assignment
gent level. On the other hand, calculating the number of vehicles
sed can be implicitly determined from the route provided to the
ehicle; if empty, then the vehicle is not utilised; otherwise, it
s. Distance and waiting time measures are considered zero if an
mpty route is provided to a vehicle.
One of two strategies can be adopted regarding constraint

andling: the Reject or Penalised Strategy. The penalised strategy
as been adopted since Cordeau et al. [9] as they solved the
DVRPTW by relaxing the time window, duration, and capacity
onstraints. However, it allows for the exploration of infeasi-
le solutions, with respect to the relaxed constraints, with a
enalty. Gendreau et al. [64] proposed an adaptive penalty strat-
gy to avoid specifying penalties as parameters. Penalties would
e initiated randomly and then adapted based on the best previ-
us h iterative solutions evaluated for each constraint violation. If
ll the previous h solutions violate a constraint, the corresponding
enalty for this violation is multiplied by a factor γ ; otherwise,
ivided by it. However, if they were mixed, the penalty value
emains. Rochat and Semet [65] randomised the factor γ between
.5 and 2. Since the relaxed constraints are each vehicle’s capacity
nd duration as well as every customer’s late time window, the
quations for each violation per potential vehicle route are as
ollows:

Qvr = max(0,Qvr − Qv) (4)

durvr = max(0, durvr − durv) (5)

TWvr =

∑
i∈vr

(max(0, bi − li)) (6)

here VQvr , Vdurvr and VTWvr are violations for capacity, duration
nd time window constraints, respectively, for a route r provided
o vehicle v. Qvr is the occupied capacity, and durvr is the resulted
uration, each for route v . The subscript i indicates a customer
r
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Fig. 5. Centralised evaluation.
n the route vr where bi and li are its arrival time and late time
indow.
Since this work takes into consideration vehicle shifts, it is

ncorporated in the time window violation equation by evaluat-
ng a route provided to a vehicle by adding two extra dummy
ustomer nodes at first and the end of the route, indicating their
tart and end locations, each with a time window of the vehicle
hift allowing for shift feasibility evaluation.
Since these measures are localised at the vehicle agent mea-

ure, the total violations for each constraint are then calculated
y the assignment agent for a particular solution of routes Vr as
er the following equations:

QVr =

∑
vr∈Vr

VQvr (7)

durVr =

∑
vr∈Vr

Vdurvr (8)

TWVr =

∑
vr∈Vr

VTWvr (9)

here VQVr , VdurVr and VTWVr are total violations for each capac-
ty, duration, and time windows for a particular solution set Vr .
n order to fully apply the penalised strategy, penalties should be
ultiplied for every total violation to influence the algorithmic
valuation of a particular solution Vr . The following equation
epresents the total penalised violations for a solution Vr :

Vr = PQ VQVr + Pdur VdurVr + PTW VTWvr (10)

here PQ , Pdur and PTW are non-negative parameters representing
enalties for each capacity, route duration, and time window
onstraints, respectively. PVr is the resulted penalty value of the
olution Vr . Each penalty is iteratively updated every h iteration
nd either increased or decreased by multiplying or dividing by
factor γ .

.1.3. Variation
Variation of VRP solutions in metaheuristics depends if the

ramework is a single solution-based or population-based meta-
euristic. Single solution variations are mainly local heuristics
hat can be adapted to generate neighbourhoods in high-level
euristics such as TS by modifying one solution with a spe-
ific move to generate alternative solutions. These single so-
ution variations can also be classified into two moves [66]:
ntra-route, variation within one route, and inter-route, variation
cross multiple routes. This paper adopts the intra-route move
f Or-opt [67], where a specific nodes’ order is flipped within a
oute and the inter-route move of CROSS-exchange [68], where
pecific customer sequences are exchanged between two routes.
6

On the other hand, population-based variations of the problem
are mainly seen in crossover operators in evolutionary algo-
rithms, such as the Genetic Algorithm (GA), where two selected
solutions exchange parts of their sequences to generate new
offspring, either one or two. However, such a procedure may
result in missing or duplicate nodes if the path representation is
used. As a result, unique crossover operators have been developed
for routing problems such as Partially-Mapped (PMX), Order (OX)
and Cycle (CX) crossovers [60]. However, with the introduction of
customer time window constraints into VRP, the crossover oper-
ators have been adapted to check further solution feasibility and
constraint satisfaction. Sequence-Based (SBX) and Route-Based
(RBX) have been proposed by Potvin and Bengio [69], where
solution repairs are done to ensure feasibility after applying the
operator. In later work, Ombuki et al. [70] proposed a crossover
operator dubbed Route Cross (RC). In this crossover, randomly
selected routes from a parent are removed and the unrouted
customers are sorted based on the occurrence in the other parent
then iteratively re-inserted in the least cost position. If no feasible
position exists, the customers’ coverage is relaxed, which allows
for missing customers during the search with a penalty. Ombuki
et al. [63] further improved RC to Best Cost RC (BCRC), that later
adopted by Ghoseiri and Ghannadpour [62] to use for solving
multiple objectives problems. The aim is to minimise the vehicles
used and total distance, where they limit the randomly selected
routes to one in both parents and customer re-insertions are
done in random order while not allowing customers to be missed
during the search by initiating new routes.

However, this paper adopts the latest developed VRPTW
crossover operator BCRC with minor adaptations. The cost cal-
culation for re-insertions considers the penalties of the relaxed
constraints, and route initiation is different as every vehicle agent
has to be checked due to their heterogeneity, increasing the
computational cost.

3.2. The metaheuristic module

This module follows the identification of the problem re-
quirements discussed in Section 3.1. This structure enables an
appropriate selection of the metaheuristic components (selection,
recombination and stopping condition) for the best problem-
solving practice. Metaheuristics are algorithmic frameworks, or
‘‘recipes’’, that provide high-level solution strategies regardless of
the problem being solved [71]. Such recipes are mostly favoured
when solving VRPs [72], with GA and TS being the most adopted
frameworks [73]. Despite that, the choice of using these recipes
is up to the researcher(s), the problem on hand dictates a frame-
work to be a population-based metaheuristic to tackle it multi-
objectively [74]. Therefore, this work adopts a population-based
evolutionary metaheuristic, GA, to solve the problem under study.
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Fig. 6. Population-based solution representation.
m
B

A, first introduced by Holland [75], is a stochastic process that
xamines pools of solutions (population) by randomly altering
elected individuals, skewed to better ones, using crossover and
utation operators to replace the current pool for another ex-
loratory evolution round.

.2.1. Agent-based adaptation to population representation
Provided that the adopted metaheuristic is a population-based

ramework, the representation provided in Fig. 4 is not suffi-
ient, given that it only represents one solution. Therefore, a
light adaptation to each vehicle’s memory structure is needed
y initiating alternative routes, or chromosomes, with proper
ndexing to create additional individuals. Each individual consists
f the same-indexed chromosomes from all vehicle agents, while
population is a group of such individuals. The best-found indi-
idual can be stored in fixed memory in the vehicle agent dubbed
oute. Individuals are selected based on their unique index during
election and recombination, then generate new individuals with
new unique index after applying recombination operations. The
opulation-based representation is illustrated in Fig. 6.

.2.2. The initialisation, selection, and recombination
To begin the search, GA needs to start with an initial popu-

ation, and in VRPTW problems, individuals can be created ran-
omly, using a heuristic or a mixture of both. There are two types
f route construction heuristics used to generate individuals:
reedy or Solomon I1 heuristics, as seen in [62,63], respectively.
owever, designing such heuristics for constructing routes and
equences of customer agents for each of the vehicle agents will
esult in decentralised cooperation between the agents, contrary
o the scope of this paper, which aims at experimenting with a
ully centralised approach. Therefore, a fully randomised initial
opulation was implemented by randomising sequences of cus-
omers, and the number of customers is equally distributed across
he vehicles for a particular individual solution. The adopted

election method is the Roulette Wheel Selection. Individuals are

7

selected based on their probability determined by their assigned
fitness, more on fitness assignment in 3.3.1, resulting in favouring
of more fitted individuals.

Regarding recombination, the chosen operators are explained
in 3.1.3, BCRC for crossover and Or-opt, with three nodes limit,
as mutation. Furthermore, a greedy search heuristic is also imple-
mented to greedily improve specific individuals with a probability
of using the CROSS-exchange operator. A similar approach was
found in Ghoseiri and Ghannadpour’s work [62], where they
adopted a hill-climbing improvement for a certain number of
individuals and Vidal et al. [76] in their education operator.

3.2.3. The adopted genetic algorithm
The overall framework of the adopted GA is shown in Algo-

rithm 1. The evolutionary process starts by defining the maxi-
mum number of generations Gen, probabilities of crossover Xrate,
utation Mrate and local search LSrate and population size PSize.
efore the evolutionary search, the initial population Pop is first

generated, and the population selection size Selsize and the num-
ber of crossovers Xcount are calculated based on the parameters
provided. At the start of every generation, a subsequent sub
population Popselected is selected of size Selsize and a subsequent sub
population of size two Parents using Roulette Wheel Selection,
and for several counts Xcount , crossovers are performed. Offspring
are added to the population Popselected. At the end of the crossover
operation, a new population Pop is set to Popselected. The mutation
and local search are applied to every individual with probabilities
of Mrate and LSrate, respectively. Towards the end of a specific gen-
eration g , fitness is calculated for every individual Ind and ranked
accordingly while the best individual is sought and checked with
the best found so far. This evolutionary process is repeated until
the maximum number of generations is reached.

3.3. The multi-objective module

After addressing the VRP requirements, multiple objectives
components (fitness assignment, diversity preservation and
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Algorithm 1: Genetic Algorithm
Data: Gen, Xrate, Mrate, LSrate, PSize
Result: Best found Vr
Generate Pop randomly;
Selsize = max(int((1 - Xrate) x Psize), 2);
Xcount = PSize - Selsize;
g = 0;
while g < Gen do

g := g + 1;
Popselected = Roulette Wheel Selection(Pop, Selsize);
Parents = Roulette Wheel Selection(Popselected, 2);
for Xcount do

Apply Crossover on Parents and generate Offspring;
Add Offspring to Popselected;

end
Set Pop as Popselected;
for Ind in Pop do

Apply Mutation on Ind with a probability of Mrate;
Apply Local Search on Ind with a probability of LSrate;

end
Calculate fitnesses for every Ind in Pop;
Rank every Ind in Pop based on fitness function;
Determine the fittest Vr ;

end

elitism) will be selected and integrated. These additional com-
ponents are suggested by Talbi [57] when aiming to address
a problem for multiple objectives using a metaheuristic. The
choice of these three components is discussed in the following
subsections.

3.3.1. Fitness assignment
Fitness assignment is when individuals are compared and

anked, in a single value, for a vector of objective functions.
espite being four types of fitness assignment [57], only two
ave been implemented in VRP: the scalar and dominance-based
pproaches. The scalar approach, traditionally adopted, adds up
ll the objectives with defined weights to transform the prob-
em into a single objective function. However, determining such
eights as parameters requires previous knowledge of the prob-

em instance from the modeller or decision-maker. Therefore,
he dominance-based approach is adopted where the Pareto op-
imality is sought by sorting solutions based on their vector of
bjectives. It is apparent in routing problems that the dominance-
ased approach is preferred to be implemented with population-
ased algorithms, evolutionary in particular, owing to their ability
o deal with a pool of solutions to find their Pareto optimality.

In contrast, the scalar approach is mainly used in single-
olution metaheuristics [74]. Therefore, in this paper, the dominan
ased Pareto ranking approach is adopted, similar to what has
een implemented in [62,63], with modification in evaluating the
bjective vector to consider the relaxed constraints. The resulted
enalties from the violated constraints have to be taken into
onsideration in each fitness assignment. Therefore, for every
bjective function, the overall solution penalty, shown in Eq. (10),
s added to it, which makes the resulted vector of objective for a
articular solution individual Vr :

verall Objective Vector = [PVr +

Vr∑
vr=1

Dvr , PVr

+

Vr∑
Wvr , PVr +

Vr∑
yvr ] (11)
vr=1 v=1 w

8

Based on the resulted objective vector, dominance sorting of
a particular population Pop in a generation can be implemented
as shown in Algorithm 2. It starts by initialising the first rank
Rankcurrent to be 1 and iterates through all the individuals of the
population and checks which of them are not dominated by any
other individual. Their rank is set to the current rank if they are
not dominated. Upon determining this rank of non-dominated
individuals, they are then removed from the unsorted population
Pop and added to the ranked population set Popranked. The current
rank Rankcurrent is then incremented by 1, and the process is
repeated to determine the next non-dominated rank set until no
further individuals are left in the unsorted population Pop.

Algorithm 2: Pareto Ranking
Data: Pop
Result: Popranked
Rankcurrent = 1;
while Pop ̸= φ do

for Ind in Pop do
if Ind is non-dominated in Pop then

Ind Rank = Rankcurrent ;
end

end
for Ind in Pop do

if Ind Rank = Rankcurrent then
Remove Ind from Pop;
Add Ind to Popranked;

end
end
Rankcurrent := Rankcurrent + 1;

end

Upon completing the Pareto dominance ranking, fitness cal-
culation for every individual is needed to be based on their rank.
Therefore, a complement of the normalised rank for every indi-
vidual in a population is calculated, based on Eq. (12), to favour
the low-ranked individuals; better solutions to this minimisation
problem in the selection process given that their fitness will be
their probability of selection.

Indfitness = 1 −
(RankInd − Rankmin)
(Rankmax − Rankmin)

(12)

here Indfitness and RankInd are the calculated fitness and rank
iven to the individual, respectively. While Rankmin and Rankmax
re the minimum and maximum ranks in a given population.

.3.2. Elitism and diversity
Elitism preserves the best-found solutions across the genera-

ions to ensure the quality of the Pareto front at every genera-
ion and prevent the deteriorating performance of the algorithm.
t the same time, diversity preservation emphasises generating
iverse solution sets to prevent biases and stagnation of the
earch [57].
This work uses an elitism strategy by passing a certain number

f good-fit individuals with no alterations to the next generation,
s evidenced in Algorithm 1, where only two individuals selected
rom the population undergo crossover recombination. In con-
rast, the remaining are passed to the next generation. However,
or diversity preservation in the multi-objective VRPTW problem,
roper distance preservation in the objective space could not be
aintained due to the discrete nature of the number of vehicles
bjective [63]. As a result, parameterless diversity preservation
as neglected in this study.
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Table 1
Summary of equations.
Description Equation No.

Total distance
∑Vr

vr=1 Dvr (1)

Total waiting time
∑Vr

vr=1 Wvr (2)

Number of vehicles used
∑Vr

v=1 yvr (3)

Capacity violation VQvr max(0,Qvr − Qv) (4)

Duration violation Vdurvr max(0, durvr − durv) (5)

Time window violations VTWvr

∑
i∈vr

(max(0, bi − li)) (6)

Total capacity violations VQVr
∑

vr∈Vr VQvr (7)

Total duration violations VdurVr
∑

vr∈Vr Vdurvr (8)

Total time window violations VTWVr
∑

vr∈Vr VTWvr (9)

Total penalised penalties PVr PQ VQVr + Pdur VdurVr + PTW VTWvr (10)

Overall objective vector [PVr +
∑Vr

vr=1 Dvr , PVr +
∑Vr

vr=1 Wvr , PVr +
∑Vr

v=1 yvr ] (11)

Individual fitness Indfitness 1 −
(RankInd−Rankmin)
(Rankmax−Rankmin)

(12)
Table 2
Tuned parameters.
Parameter Description Set value

PSize Population size 100
Gen Number of generations 150
Xrate Crossover rate 80%
Mrate Mutation rate 20%
LSrate Greedy local search rate 10%
h Generations to revisit the penalties 5
γ Penalties multiply/divide factor Uniform(1.5, 2.0)
– Number of parallel experiments 10

3.4. Summary of mathematical equations

Based on the above derivation of mathematical equations,
able 1 provides an overall summary of these equations as per
heir order.

. Computational results

In this section, the proposed centralised agent-based meta-
euristic optimisation model is validated against the MDVRPTW
enchmark instances provided by Cordeau et al. [9]. It is found
hat these instances are the nearest to the problem under study,
s other problem settings would not have direct comparison fac-
ors that suit the problem’s nature nor provide validated bench-
ark results for comparison. The proposed approach was first

ested on these instances towards initial verification, although
heir solution approach minimises the travelled distance. In a
ater study by Chiu et al. [11], they generated multiple criteria
rom Cordeau et al. [9] work, including total travelled distance,
aiting times and the number of vehicles, and the results are
ompared against them to ensure a fair multiple criteria compar-
son study. In order to further show the model’s ability to solve
roblems with unique vehicles’ attributes, modifications to these
nstances are proposed. These modifications include randomi-
ations in vehicles’ start/end locations, capacities, and ending
hifts.
The evolutionary metaheuristic settings are mostly adapted

rom Ghoseiri and Ghannadpour [62] since similar recombination
perators have been adapted; the number of runs, population
ize, crossover and mutation rates. However, since our search
lgorithm specifies a probability for an individual to undergo a
reedy local search rather than the education parameter from Vi-
al et al. [76], the greedy search could emerge in better solutions
n fewer generations. Therefore, the number of generations is
ignificantly reduced to 150, as seen in Vidal et al. [76]. Additional
9

Table 3
Optimisation results on MDVRPTW instances; number of vehicles (V), total
travelled distance (TD) and total waiting time (WT).
Inst. V TD WT CPU (h)

pr01 6 1834.91 0 0.53
pr02 9 2654.15 1 2.41
pr03 13 3534 79 3.42
pr04 17 5276.27 23 4.94
pr05 22 4862.08 268 5.94
pr06 27 6180.17 90 6.63
pr07 7 2601.83 0 0.87
pr08 13 3990.9 92 2.97
pr09 18 5739.3 40 5.96
pr10 26 7187.03 26 6.85
pr11 4 1137.32 0 0.93
pr12 8 1972.7 0 2.26
pr13 11 2566.6 0 4.21
pr14 15 3251.16 0 6.21
pr15 19 3841.19 0 7.00
pr16 23 4395.81 28 8.02
pr17 6 1583.12 5 1.46
pr18 12 2964.17 0 4.20
pr19 16 3683.63 0 6.93
pr20 24 4881.18 14 8.43

constraint handling parameters, h and γ , for penalties update,
are set to 5 for h given its low sensitivity to the problem, as
proven in Gendreau et al. [64], while a random number between
1.5 and 2.0 for γ , as firstly implemented by Rochat and Semet
[65]. The experimental setting is repeated 10 times and ran in
parallel while the best arbitrary chosen non-dominated solu-
tion is reported per instance. The overall parameter settings are
summarised in Table 2.

The centralised agent-based model has been programmed in
Python, where each problem run is conducted on a single core
of an Intel(R) Xeon(R) Broadwell CPUs E5-2683 v4 @ 2.10 GHz
(32 CPU-cores/node) with the availability of 128 GB of RAM, the
multiple cores have been utilised to perform the experiments
in parallel. The outputs of solved instances include the three
objectives considered in the optimisation, the number of vehicles
(V), total travelled distance (TD) and total waiting time (WT). CPU
core times are also reported to show the time spent per run. The
model can also report the three constraints violations; however,
none has been reported under these settings.

4.1. Results on MDVRPTW benchmarks

The approach is tested on 20 MDVRPTW benchmark instances,
10 with tight customer time windows while the remaining are
with wider time windows. Table 3 summarises the results for all
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Table 4
Optimisation results on MDVRPTW instances compared to best known solutions; percent changes in number of vehicles (V%), total
travelled distance (TD%) and total waiting time (WT%).
Instance V% TD% WT(Diff)

Cordeau Chiu Cordeau Chiu Cordeau Chiu

pr01 −12.50% 16.67% 69.27% 19.09% −602.10� −10.90�
pr02 −16.67% 11.11% 50.54% 14.96% −1128.04 −26.04
pr03 −12.50% −6.67% 46.74% 9.68% −2162.57 −13.27
pr04 0.00% 11.11% 78.36% 38.35% −1813.62 −161.92
pr05 −4.35% −4.35% 55.14% 9.14% −1948.79 219.41
pr06 0.00% 0.00% 58.30% 22.41% −2416.14 21.16
pr07 10.00% 37.50% 82.79% 34.25% −1373.70� −8.90�
pr08 −11.76% 7.14% 85.61% 36.18% −2332.35 −29.25
pr09 0.00% 15.00% 102.53% 43.00% −2648.39 −17.99
pr10 −3.45% 0.00% 93.35% 38.53% −2737.60 −26.30

Avg −5.12% 8.75% 72.26% 26.56% −1916.33 −5.40

pr11 0.00% 0.00% 10.26% −10.15% −117.00� −9.90�
pr12 0.00% 0.00% 31.47% 11.62% −294.00� 0.00�
pr13 0.00% 0.00% 27.02% 0.46% −311.80� 0.00�
pr14 0.00% 0.00% 44.68% 18.62% −693.30� 0.00�
pr15 0.00% 0.00% 53.05% 21.46% −713.70� 0.00�
pr16 −4.17% −4.17% 49.32% 20.70% −878.55 28.15
pr17 0.00% 0.00% 26.64% −1.18% −57.28 −1.48
pr18 0.00% 0.00% 63.82% 25.01% −247.60� −9.40�
pr19 −5.56% −5.56% 59.40% 28.93% −767.90� 0.00�
pr20 0.00% 0.00% 55.85% 19.70% −732.21 2.49

Avg −0.97% −0.97% 42.15% 13.52% −481.33 0.99
the instances. The CPU core times are highly dependent on the
problem size where it can go up to 6.85 h for tight time window
instances (pr01–10) and up to 8.43 h for wider time window
instances (pr11–20), which the increased solution space can be
explained with the widened time windows. Such high CPU times
are due to the extensive greedy local search of a high probable
selection of individuals. A selected sample of the resulted maps
with their routes is shown in Fig. 7, where a unique colour of arcs
represents a route on a map. A sample GA objectives improve-
ment run of instance pr05 is illustrated in Fig. 8, indicating no
more improvements were found after around generation 50 for
this particular instance run. It is worth mentioning that these evo-
lutionary generation charts update when the best non-dominated
solutions are found.

A comparison is needed to compare the model’s overall per-
ormance in all the instances against the best-known results. It
s found that Chiu et al. [11] reported their heuristic, as well as
n adapted TS from Cordeau et al. [9], results against the three
bjectives adopted in this study: vehicles used, total travelled
istance and total waiting time. They also reported the total
ime, but it can be broken down into its original objectives:
istance and waiting time by adding them and the servicing
imes of all customers if served. Since all customers have been
erved in all cases, reporting the total time is neglected in this
aper. Chiu et al. [11] showed better waiting time values, reached
ero waiting times in some instances, and reduced the number
f vehicles used if they did not remain the same compared
o Cordeau et al. [9]. Table 4 compares this work’s results to Chiu
t al. [11] and Cordeau et al. [9]. Since waiting times can reach
ero, showing deviation percentage would not be informative
s divisions by zero could occur: therefore, the differences are
eports, however, with a ✓symbol indicating if our model’s result,
or instance, reached zero waiting time.

Based on the comparison table, the proposed approach gener-
lly managed to reduce the number of vehicles and total waiting
ime in some instances, however, at the expense of the total
istance objective. Such behaviour is mainly explained by the
on-dominance search and sorting of the proposed approach
n selecting solutions by not favouring objectives over another,
ontrary to previous approaches favouring only one objective,
istance or waiting time. For instance, with a tight time window,
10
an average reduction of 5.12% in the number of vehicles was
achieved only compared to Cordeau’s solutions, while it increased
by 8.75% for Chiu’s. The total distance travelled has significantly
increased compared to both solutions, with averages of 72.26%
and 26.56%. However, a significant reduction in waiting times
is shown compared to Cordeau’s with around 1900 time units
while, compared to Chiu’s, around five-time units reduction were
achieved given the total eradication of waiting times in instances
pr01 and pr07. A new record of reduced waiting times was
achieved in all tight time window instances except pr05 and pr06,
which skewed the average.

On the other hand, in wider time window instances, the num-
ber of vehicles was reduced by an average of around 1% compared
to both previous approaches, while the total distance travelled
was increased by 42.15% and 13.52%, respectively. Waiting times
have also been decreased significantly compared to Cordeau’s
solutions with an average of around 481-time units while a
very slight average increase of one-time unit compared to Chiu’s
despite the new record of waiting times in instances pr11, pr17
and pr18 where pr11 and pr18 waiting times have been eradi-
cated. It can be concluded that the proposed approach resulted
in better waiting times with an average reduction in all instances
of 2.21-time units.

4.2. Results on modified MDVRPTW benchmarks

Although the original 20 MDVRPTW benchmarks are the clos-
est to the problem under study, slight modifications to every
vehicle’s information are necessary to tackle the problem. Lo-
cations in these benchmarks were randomised initially using a
uniform distribution, where customer and depot locations should
be within [−100, 100]2 and [−50, 50]2 squares, respectively [77].
Since vehicles can be anywhere around the map, it is assumed
that their starting locations be within [−100, 100]2 square while
their unique depot is within [−50, 50]2 square. The capacity for
every vehicle is also randomised following a normal distribution,
rounded to the nearest integer, with a 10% deviation of the
instance’s original capacity Q . Furthermore, vehicle shifts are also
considered unique by randomly selecting their ending shift time

to be either at the entire shift or reduced by 25%.
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Fig. 7. Sample outputs for pr05 (top left), pr11 (top right) and pr16 (bottom).

Fig. 8. Pr05 GA run for each objective.
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Table 5
Modification scenarios to Cordeau’s instances.
Scenario Change Vehicles’ locations Depots’ location Capacities Shifts

1 Location Uniform dist [−100, 100]2 Uniform dist [−50, 50]2 Not changed Not changed
2 Capacity Not changed Not changed ∼ N(Q , 0.1Q ) Not changed
3 Shift Not changed Not changed Not changed Full or reduced
4 All Uniform dist [−100, 100]2 Uniform dist [−50, 50]2 ∼ N(Q , 0.1Q ) Full or reduced
Fig. 9. Sample output for location modified pr11 instance.

Four scenarios are generated based on the way these changes
re applied. The first only randomises every vehicle and its home
epot locations. Capacities and shifts randomisations are individ-
ally applied in the following second and third scenarios, while
ll modifications are applied in the fourth. The model’s results
enerated in these scenarios are compared to the actual scenario
esults from Table 3. Table 5 summarises the modifications.

Table 6 summarises the results of scenario 1, where vehicles’
ocations are modified and their depots’. A sample solution map
f the location modified pr11 instance is shown in Fig. 9, where
ehicles’ starting node is blue, and their home depots are in grey.
enerally, it can be seen that there is an average increase in all
osts compared to the original scenario:

• Vehicles used increased by around 5% and 3% in tight and
wide time window instances.

• Total distance reduced by around 3% in tight time window
instances while increased by around 10% in the remaining
instances.

• Waiting times have increased by 16.85 and 1.05 of average
time units in the respective instances.

• CPU core times have been slightly increased with around 5%
and 2% increase.

Results of scenario 2, where every vehicle capacity is ran-
omised, are compared in Table 7 and summarised as follows:

• Vehicles have increased by around 7.84% and 3.16% in tight
and wide time window instances.

• Slight changes have resulted in the distance costs, with a
reduction of around 2% in tight time window instances and
an increase of around 3% in wide time window instances.

• Waiting times have increased in tight time window in-
stances with 44.64 average time units while the other in-
stances reduced by 3.66 average time units.
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Table 6
Optimisation results on scenario 1; percent changes in number of vehicles (V%),
total travelled distance (TD%) and total waiting time (WT%).
Inst. V% TD% WT(Diff) CPU(s)

pr01 −16.67% −14.36% 129.74 6.10%
pr02 0.00% 1.80% 38.87 −11.11%
pr03 7.69% 7.10% 16.56 19.15%
pr04 11.76% −6.60% 45.82 0.07%
pr05 0.00% 4.90% −154.27 −15.49%
pr06 3.70% 3.01% 57.50 −8.04%
pr07 14.29% −8.46% 9.99 15.25%
pr08 7.69% −1.67% −5.91 31.11%
pr09 16.67% −9.14% −8.14 −0.93%
pr10 7.69% −6.28% 38.32 14.01%

Avg 5.28% −2.97% 16.85 5.01%

pr11 0.00% 22.57% 0.00 −0.71%
pr12 0.00% 0.29% 0.00 25.18%
pr13 9.09% 18.62% 2.13 14.30%
pr14 6.67% 20.17% 0.15 −16.27%
pr15 5.26% 9.66% 2.65 −2.63%
pr16 0.00% 8.83% −0.67 −5.52%
pr17 0.00% −6.02% −5.32 23.32%
pr18 0.00% 5.99% 0.00 −1.01%
pr19 6.25% 8.62% 0.00 3.34%
pr20 0.00% 7.83% 11.53 −15.57%

Avg 2.73% 9.65% 1.05 2.44%

Table 7
Optimisation results on scenario 2; percent changes in number of vehicles (V%),
total travelled distance (TD%) and total waiting time (WT%).
Inst. V% TD% WT(Diff) CPU(s)

pr01 0.00% −2.62% 46.15 0.88%
pr02 0.00% −2.54% 60.87 −27.51%
pr03 7.69% 7.77% −30.08 2.01%
pr04 11.76% −4.63% 88.63 1.87%
pr05 0.00% 6.59% 43.83 10.08%
pr06 0.00% −6.49% 42.09 −5.83%
pr07 28.57% 7.38% 0.00 9.76%
pr08 15.38% −4.74% −62.73 13.35%
pr09 11.11% −9.93% 138.82 3.07%
pr10 3.85% −9.45% 118.82 0.55%

Avg 7.84% −1.87% 44.64 0.82%

pr11 0.00% −0.62% 0.00 3.68%
pr12 0.00% −6.48% 0.00 23.24%
pr13 9.09% 16.66% 2.70 3.64%
pr14 6.67% 0.67% 0.00 3.88%
pr15 5.26% −0.43% 2.60 11.91%
pr16 4.35% 3.83% −28.15 5.75%
pr17 0.00% 5.60% −5.32 10.14%
pr18 0.00% −1.38% 0.00 12.91%
pr19 6.25% −8.38% 0.00 4.89%
pr20 0.00% 16.66% −8.45 5.63%

Avg 3.16% 2.61% −3.66 8.57%

• There is a negligible average increase, less than 1%, in CPU
times in the tight time window instances, while a noticeable
increase of 8.57% is shown in the remaining instances.

Table 8 summarises the compared results of scenario 3, where
every vehicle shift is either at full shift or reduced to a shorter
one. As a general insight:
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Table 8
Optimisation results on scenario 3; percent changes in number of vehicles (V%),
total travelled distance (TD%) and total waiting time (WT%).
Inst. V% TD% WT(Diff) CPU(s)

pr01 −16.67% −15.44% 54.23 10.17%
pr02 11.11% 7.02% 14.08 −10.47%
pr03 0.00% 5.52% −47.96 −0.79%
pr04 5.88% −22.47% 154.14 −4.98%
pr05 4.55% 14.74% −130.01 0.88%
pr06 3.70% 4.82% −29.36 9.28%
pr07 28.57% −4.79% 61.93 0.72%
pr08 15.38% −3.49% −12.90 14.22%
pr09 16.67% −0.51% 76.18 −2.70%
pr10 7.69% −10.05% 54.25 5.56%

Avg 7.69% −2.46% 19.46 2.19%

pr11 0.00% 4.87% 0.00 11.37%
pr12 0.00% −4.75% 0.00 4.05%
pr13 9.09% 19.01% 0.00 −7.71%
pr14 6.67% 4.10% 0.00 0.42%
pr15 5.26% −2.97% 0.91 8.28%
pr16 4.35% −7.60% −27.20 19.05%
pr17 0.00% 1.54% −5.32 18.86%
pr18 0.00% −6.67% 0.00 −7.72%
pr19 6.25% −3.42% 0.00 −4.60%
pr20 0.00% 6.27% −9.05 4.48%

Avg 3.16% 1.04% −4.07 4.65%

Table 9
Optimisation results on scenario 4; percent changes in number of vehicles (V%),
total travelled distance (TD%) and total waiting time (WT%).
Inst. V% TD% WT(Diff) CPU(s)

pr01 −16.67% −19.19% 81.50 9.77%
pr02 0.00% −5.41% 28.25 −19.49%
pr03 15.38% 11.16% −31.13 −0.84%
pr04 5.88% −13.47% 74.85 −17.20%
pr05 9.09% 17.66% −61.43 −17.71%
pr06 3.70% 4.55% 175.82 −12.60%
pr07 28.57% 0.96% 34.08 2.73%
pr08 7.69% −10.79% −5.53 4.99%
pr09 11.11% −9.10% 126.94 −7.94%
pr10 3.85% −11.57% 153.40 −7.78%

Avg 6.86% −3.52% 57.68 −6.61%

pr11 0.00% 17.14% 1.61 3.63%
pr12 0.00% 1.84% 0.00 12.51%
pr13 9.09% 25.94% 3.00 −11.54%
pr14 6.67% 6.16% 18.83 −22.21%
pr15 5.26% 18.17% 22.97 −19.77%
pr16 4.35% 24.89% 7.93 −17.05%
pr17 0.00% 1.94% −5.32 8.70%
pr18 0.00% 6.19% 0.00 15.55%
pr19 6.25% 2.92% 0.67 −11.83%
pr20 0.00% 14.92% 11.45 −23.50%

Avg 3.16% 12.01% 6.11 −6.55%

• Similar behaviour to scenario 2 is noticed with more vehi-
cles being utilised and increased by 7.69% and 3.16% in tight
and wide time window instances, respectively.

• Minor changes resulted in the total distances, which were
reduced by 2.46% in tight time window instances and in-
creased by around 1% in wide time window instances.

• Waiting times have increased in tight time window in-
stances with a 19.46 average time units and reduced by 4.07
average time units in the remaining instances.

• An increase in CPU times with around a 2% and 5% increase
in both instances.

Finally, the last scenario’s compared results are shown in
able 9, where all previous problem modifications are considered
t once. In general, the behaviour is similar to the changes shown
n scenarios 2 & 3 and summarised as follows:
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• The number of vehicles objective has shown nearly identical
behaviour in all previous instances, with an increase of
around 7% and 3% in both problem types, respectively.

• Minor changes in the total distance in tight time window
instances with around a 4% decrease and a significant in-
crease in distance in wider time window instances with a
12% increase.

• Waiting times have significantly increased in tight time
window instances with 57.68 average time units and an
increase of 6.11 average time units in waiting times of wider
time window instances.

• Noticeable changes can be seen in CPU times which de-
creased by around 7% in both problem types.

5. Conclusion

This paper studied the VRPTW problem with a different per-
spective on the heterogeneity of the vehicles that considers differ-
ent start/end locations, capacities as well as operating shifts. The
adopted agent-based modelling approach captured this heteroge-
neous problem by proposing an architecture that initiates unique
instances of vehicles that represented the problem under study.
The proposed architecture, including integrating its core mod-
ules, successfully emerged appropriate solutions to the unique
VRP under study. The proposed architecture managed centralised
agent cooperation in solution evaluation and variations. With
the aid of a proposed evolutionary metaheuristic framework,
the problem is solved by minimising three objectives with the
necessary multi-objective components. The model resulted in
routes with around 1200 and 2 average time units less in waiting
times than Cordeau’s and Chiu’s solutions of MDVRPTW instances.
However, lower waiting times came at the expense of the other
objectives, mainly the total travelled distance. It increased by
around 57% in Cordeau’s and 20% in Chiu’s. Adopting of the
dominance-based sorting technique in solutions comparison has
prevented previous approaches from compromising the waiting
times objective by not favouring any of the objectives. MDVRPTW
instances are modified to encapsulate the problem under study
by randomising locations, capacities and shifts. As a result, four
additional scenarios are created: three of which apply each of
the changes individually, while the fourth where all are applied.
Further experiments were conducted on these scenarios, and the
results were compared with the model’s output on the original
instances and showed costly deviations in all the objectives.

Future research, creating new and generalised benchmarks or
systematically modifying existing ones, is needed to capture such
practical scenarios by adopting different levels of each of the
modifying factors. Further work can include studying additional
problem variants, such as pickup and delivery and dynamic VRP,
to be compatible with the proposed agent-based problem model.
Furthermore, systematic parametric experimentation is needed to
find the tuned parameters of the metaheuristic for the problem
under study and more experimentation with a combination of the
metaheuristic components to suitably find the best algorithm to
aid the search for this agent-based model.
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