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a b s t r a c t 

Background and Objective: The uterine electrohysterogram (EHG) contains important information about 

electrical signal propagation which may be useful to monitor and predict the progress of pregnancy to- 

wards parturition. Directed information processing has the potential to be of use in studying EHG record- 

ings. However, so far, there is no directed information-based estimation scheme that has been applied to 

investigating the propagation of human EHG recordings. To realize this, the approach of directed infor- 

mation and its reliability and adaptability should be scientifically studied. 

Methods: We demonstrated an estimation scheme of directed information to identify the spatiotemporal 

relationship between the recording channels of EHG signal and assess the algorithm reliability initially us- 

ing simulated data. Further, a regional identification of information flow termination (RIIFT) approach was 

developed and applied for the first time to extant multichannel EHG signals to reveal the terminal zone 

of propagation of the electrical activity associated with uterine contraction. RIIFT operates by estimating 

the pairwise directed information between neighboring EHG channels and identifying the location where 

there is the strongest inward flow of information. The method was then applied to publicly-available 

experimental data obtained from pregnant women with the use of electrodes arranged in a 4 − by − 4 

grid. 

Results: Our results are consistent with the suggestions from the previous studies with the added identi- 

fication of preferential sites of excitation termination - within the estimated area, the direction of surface 

action potential propagation towards the medial axis of uterus during contraction was discovered for 

72 . 15% of the total cases, demonstrating that our RIIFT method is a potential tool to investigate EHG 

propagation for advancing our understanding human uterine excitability. 

Conclusions: We developed a new approach and applied it to multichannel human EHG recordings to 

investigate the electrical signal propagation involved in uterine contraction. This provides an important 

platform for future studies to fill knowledge gaps in the spatiotemporal patterns of electrical excitation 

of the human uterus. 

© 2022 The Authors. Published by Elsevier B.V. 
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. Introduction 

The contractile activity of the uterus is involved in physiolog- 

cal processes such as menstrual cycle, gestation and childbirth. 

bnormal uterine contractions (UCs) may lead to severe obstet- 

ic complications. For example, inappropriately early activation of 

he uterus can result in preterm birth which increases the risks 

f neonatal mortality (accounting for more than 50% of all neona- 
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al deaths) and numerous health risks for surviving neonates [1,2] . 

nsufficient uterine activation at term is also a marked pregnancy 

omplication and can result in post-date gestation and postpartum 

emorrhage [3,4] . 

Uterine contraction (UC) is determined by episodic spontaneous 

lectrical action potentials (APs) traveling across the muscle cells 

f the wall of the uterus. A possible way to distinguish between 

ormal and abnormal activation, and thereby inform clinical diag- 

osis and intervention for problematic situations, is to investigate 

he difference between the features of propagation of their under- 

ying electrical stimulation [5] . The information of surface AP prop- 

gation revealed by the technique of multi-lead electrohysterogram 

EHG), which records uterine electrical activity externally at several 

oints on the abdomen, has demonstrated a potential in this re- 

ard and distinguishing the productive UCs from the unproductive 

Cs [6–11] . 

The estimation of EHG propagation may be feasible with the 

se of delay estimators that calculate the timings between EHG 

ignals recorded from different electrodes of a grid. This can, with 

he acknowledgment of several assumptions, calculate the speed 

s well as the direction of EHG propagation between electrodes 

5,8,10,12–16] . The Maximum Likelihood (ML) method for delay 

stimation has been developed and applied to multichannel EHG 

ecordings for action-potential (AP) conduction velocity (CV) es- 

imation [8,10,12] . Meanwhile, the direction of propagation has 

een defined by the incidence angle with regard to the verti- 

al axis of the electrode grid [10] . The delay estimators which 

an identify EHG propagation direction between each pair of elec- 

rodes are based on cross-correlation or cross-coherence analy- 

is [13–15] , a spectral matching method [16] or the center of 

ass calculation of the EHG burst envelope [5] . However, each of 

hese methods is based on the assumption of a linear propaga- 

ion of EHG between electrodes, which may not be suitable for 

he EHG signal that is likely to contain also non-linear propagation 

attern [5,17,18] . 

The directed information (DI) process, which measures the 

mount of information that flows from one process to the other 

19] , is capable of exploring both linear and nonlinear causality 

elationships. The major advantages of DI are its model-freeness, 

nlike the Granger causality, and wide applicability to different 

ypes of physiological data, including electrophysiological record- 

ngs [20–25] . For example, the potential of DI measures in terms 

f identifying causal influence of electrical connectivity between 

rain regions has been reported in recent years [20–24] . Our pre- 

iminary work demonstrated the potential use of DI in the study 

f EHG recordings [26] . However, so far, there is no scheme for DI

stimation that has been assessed thoroughly for investigating the 

ropagation of human EHG recordings. To realize this, the reliabil- 

ty and adaptability of the DI-based algorithm should be scientifi- 

ally studied. 

In this paper, we demonstrated the step-wise development of 

n estimation scheme of information transfer direction between 

aired EHG electrodes. The reliability of a DI-based algorithm 

as assessed, and its adaptive parameters were investigated, us- 

ng simulated data. Thereafter, its applicability was tested using 

xisting raw datasets of multichannel EHG recordings from hu- 

an subjects. In doing so, we also sought to reveal informa- 

ion on the direction of EHG AP propagation utilizing a novel 

ropagation terminal zone (PTZ) identification method. The PTZ 

pproach was created to compare the significance of surround- 

nward flow regarding each electrode. This, in turn, enabled us 

o develop a regional identification of information flow termina- 

ion (RIIFT) method, and apply it, for the first time, to multichan- 

el EHG signals to establish new biophysiological information on 

he spatiotemporal nature of electrical excitation of the human 

terus. 
c  

2 
. Materials and methods 

.1. Estimation of directed information 

The conditional entropy of A given B is defined as 

(A | B ) = E A,B [ − log p(A | B )] , (1) 

hich measures the average prediction error on A given the ob- 

ervation of B . Throughout, we use capital letters for random 

ariables and lowercase letters for their realizations. We denote 

he sequence of the first i sources from data X 1 , X 2 , · · · as X i =
 X 1 , X 2 , · · · X i ] . The directed information from a random sequence

 

n to another random sequence Y n is defined as 

(X 

n → Y n ) � 

n ∑ 

i =1 

I(X 

i ;Y i | Y i −1 ) = H(Y n ) − H(Y n ‖ X 

n ) , (2)

here H(Y n ) = 

∑ n 
i =1 H(Y i | Y i −1 ) is the entropy of Y n and H(Y n ‖

 

n ) = 

∑ n 
i =1 H(Y i | Y i −1 , X i ) is the causally conditional entropy [27] .

ccording to the interpretation of conditional entropy, the directed 

nformation from X n to Y n defined as (2) measures the improve- 

ent in the prediction of Y i given the past samples Y i −1 , when 

amples X i are also available. 

In this study, we use one of the estimators of the directed infor- 

ation rate I (X n → Y n ) = 

1 
n I(X n → Y n ) introduced in [28] , which

s defined as: 

ˆ 
 (X 

n → Y n ) � 

1 

n 

n ∑ 

i =1 

D KL (Q(y i | x i , y i −1 ) ‖ Q(y i | y i −1 )) , (3)

here D KL (p ‖ q ) = E p [ log p(x ) 
q (x ) 

] is the relative entropy between

robability distributions p(x ) and q (x ) and Q(y i | y i −1 ) denotes the

stimate of the conditional probability mass function of y i given 

he observation y i −1 . This is estimated by the Context-Tree Weight- 

ng (CTW) algorithm [28,29] . The depth of the context tree D indi- 

ates the memory of the model, i.e., the number of past samples 

ncluded in the sequences x i and y i −1 in (3) . Note that one only 

eeds to estimate the distribution Q(x i , y i | x i −1 , y i −1 ) since the

istribution Q(y i | x i , y i −1 ) is obtained as Q(y i | x i , y i −1 ) = Q(x i , y i |
 

i −1 , y i −1 ) / 
∑ 

y i 
Q(x i , y i | x i −1 , y i −1 ) . The estimator ˆ I in (3) is always

onnegative. 

.2. Direction discrimination 

The information flow of signal S between channel i and j

as defined to be inward to channel i if the factor used for di- 

ection discrimination between two channels, �( j → i ) = I (S n 
j 

→ 

 

n 
i 
) − I (S n 

i 
→ S n 

j 
) , is larger than �s , above which the absolute val-

es of �( j → i ) are regarded as significant. 

In order to identify values of | �( j → i ) | that can be regarded

s significant, we first evaluated (3) on two independent white 

oise processes. The absolute values of �( j → i ) corresponding to 

0,0 0 0 different pairs of source and destination were then cal- 

ulated. Finally, a one-tailed test, where the pre-specified signif- 

cance level was set to 5% , was used and the values larger than

s were determined as significant. It is worth noting that �s 

aries with the change of value of parameters involved in DI 

stimation. 

.3. Assessment of DI-based algorithm reliability using simulated data 

To assess the reliability of the DI-based algorithm for estimat- 

ng the direction of information flow between two neighboring 

hannels, it was initially tested with the use of simulated sig- 

als. The simulated surface EHG signal associated to the uterine 

ontraction, which is between 0 . 1 − 0 . 8 Hz [30,31] , was gener-
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Fig. 1. Plots obtained using simulated data for the investigation of how �( source → destination ) changes with the time delay from the source to the destination in two 

cases. (a) Simulated APs without additional noise. (b) Simulated signals with additional Gaussian white noise added to the source and destination. The significant values of 

�( source → destination ) were above the threshold �s , which was indicated by the red dashed lines. Corresponding examples of simulated source signal and destination 

signal delayed by 1 s are shown in the top plots. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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ted by summing the sinusoidal components of frequency f i with 

andom phases, where f i = 0 . 01 × i ( i = 1 , 2 , . . . 80 ) Hz. The sam-

ling frequency is set to 200 Hz to coincide with the sampling 

requency of physiological EHG signal used in this study. Its am- 

litude was then modulated by a Hanning window of 40-second 

ength. The signal was artificially delayed (between 0 s and 2 s) to 

enerate the signal of destination. Pseudorandom noise with nor- 

al distribution was added to both source and destination signals, 

espectively. 

The simulated EHG segments of 20-second length were then 

sed in this study to coincide with the estimation on physio- 

ogical data. Fig. 1 shows how the direction discrimination fac- 

or, �( source → destination ) , changes with the time delay t d from 

he source to the destination. Without additional noise, the val- 

es above zero indicate correct identification of the direction of in- 

ormation flow ( i.e. from the source to the destination). As shown 

n Fig. 1 (a), accurate results could be obtained when the delay of 

HG signal between two channels was no more than 1.3 s as indi- 

ated by the red dashed line. In the cases with added noise to the 

ource and destination channels, a new threshold (see Section 2.2 ) 

as taken into consideration, the values above which indicate cor- 

ect identification of direction ( Fig. 1 (b)). Gaussian white noise was 

dded to the source and destination channels, contributing to 6 

B signal-to-noise ratio (SNR), which was the mean value of the 

NR distribution obtained from a previous study [10] . Compared 

o the case without additional noise, the accurate result in this 

ase was obtained within a narrower range of time delay (approx- 

mately between 0.1 s and 1 s) between the source and destina- 

ion. It is worth noting that the linear propagation model was used 

pecifically for determining the parameters in Section 2.4 which 

ould be difficult if including the non-linear behavior in the 

odels. 
s

3 
.4. Determination of adaptive DI parameter using simulated data 

Further, using the simulated EHG segments (SNR = 6 dB), the 

arameters of the DI-based algorithm, i.e. the factor of down- 

ampling ds , the depth of context-tree D and the way for dis- 

retization, were determined. In order to minimize the storage 

nd computational complexity, the EHG segments were down- 

ampled by a factor ds [29] . In this way, the past activity 

f any sequence X n considered in the estimation can include 

 x n −ds , x n −2 ×ds , . . . , x n −D ×ds } . This assumed that the current activity

t an EHG channel does not depend on more than t p = D × ds/F s of

ast activity at this and the other channels, where F s is the sam- 

ling frequency. To reduce the variance of the DI rate, the DI-based 

lgorithm was applied to all the possible down-sampled sequences 

 

n 
(k ) 

= { x n −k , x n −ds −k , x n −2 ×ds −k , . . . } , k = 0 , 1 , 2 . . . ds − 1 , and the DI

ate was obtained by averaging over all X n 
(k ) 

. We compared four 

airs of values of D and ds ( i.e. D = 8 , ds = 50 ; D = 5 , ds = 50 ;

 = 6 , ds = 40 ; D = 8 , ds = 30 ) as shown in Fig. 2 (a). Several points

hould be kept in mind when selecting the values of D and ds in

elation to our later analyses of human EHG data: 

1) Although the down-sampling was introduced to reduce the 

omputational complexity, the factor ds should not be too large 

uch that the main components corresponding to pregnancy con- 

raction (0.1 - 0.8 Hz) be rejected. 

2) According to the distance between a pair of neighboring 

lectrodes used in our later analyses, 1.75 cm on the longitude and 

atitude grid line and 2.47 cm along the diagonal, as well as the es- 

imated CV of EHG signals during excitation-contraction coupling 

vents (ranging from 2.18 to 8.65 cm/s [5,8,10,12,32] ), the time it 

akes for the EHG signal to transmit from a channel to its neighbor 

as assumed to be within the range 0.29 to 1.13 s. Therefore, t p 
hould be larger than 1.13 s. 
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Fig. 2. Comparison between �( source → destination ) obtained from different settings of parameters involved in DI-based algorithm: (a) the factor of down-sampling ds and 

the depth of context-tree D ; (b) different ways of discretization. The factors considered in discretization include: 1) the form of samples, which can be the original form 

( alg = 1 ) or the first-order difference between successive samples ( alg = 2 ); 2) the number of counterparts for discretization, which can be 2 ( N x = 2 ) or 3 ( N x = 3 ); 3) the 

binning method, either the Equal Width Binning method ( z = 1 ) or the Equal Frequency Binning method ( z = 2 ). The dashed lines represent to corresponding threshold �s 

and upper boundary of delay for accurate result. Note that since the minimum propagation time of EHG from one channel to its neighbor is assumed to be 0.29s, where 

�( source → destination ) increases above the threshold in all cases, there is no need to consider the lower boundary of the delay. The best performance among different 

cases was indicated by the thick black curves, which covers most of the assumed range of delay ( i.e. 0.29 - 1.13 s) between two neighboring channels. 

4 
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3) The larger the value of D is, the greater the computational 

omplexity becomes. 

We can observe from Fig. 2 (a) that when D = 5 and ds = 50

black line), the performance of DI-based algorithm is best among 

hese cases, which accepts the longest delay between two chan- 

els. Also, in this way, the acceptable range of delay, where the 

urve is above the corresponding threshold, covers most of the as- 

umed range of delay ( i.e. 0.29 - 1.13 s) between two neighboring 

hannels in our later analyses. 

After the values of D and ds had been selected, the most adap- 

ive way for discretization, which is used to generate the finite al- 

habet for probability assignment, was explored (see Fig. 2 (b)). The 

iscretization transforms numerical variables into categorical coun- 

erparts. The factors involved in the discretization include the form 

f samples, the number of counterparts and the binning method. 

pecifically, we computed the discrete derivative of the EHG sig- 

als by looking at either the original values of EHG samples ( alg =
 ) or the first-order difference between successive EHG samples 

 alg = 1 ). The samples were transformed into several counterparts 

y the means of binning methods. The size of alphabet depends 

n the number of counterparts for discretization. Although orig- 

nally the size of alphabet for the CTW algorithm is 2 ( N x = 2 )

29] , we compared it to a larger alphabet ( N x = 3 ) [33] to explore

f larger alphabet would perform better in this study. Two com- 

only used binning methods were compared, i.e. , the Equal Width 

inning method ( z = 1 ) and the Equal Frequency Binning method 

 z = 2 ) [34] . 

The thresholds �s were determined by the method described in 

ection 2.2 using corresponding settings of the factors described 

bove for DI estimation between independent white noise pro- 

esses. After considering all combinations of different settings of 

hese three factors in Fig. 2 (b), it was observed that the best result

hich accepts the longest delay was obtained when we computed 

he discrete derivative of the EHG signals by looking at the orig- 

nal values of EHG samples ( alg = 1 ) and then transformed them

nto two counterparts ( N x = 2 ), using the Equal Frequency Binning 

ethod ( z = 2 ) [34] . These determined parameters will be used for

urther investigation with the physiological EHG signals. 

.5. Physiological database and EHG data preprocessing 

The Icelandic 16-electrode EHG database [35] was used for in- 

estigating the direction of UC. The 16-channel EHG signals were 

ecorded from 45 pregnant women using a 4 × 4 monopolar elec- 

rode grid placed on the surface of abdomen as shown in Fig. 3 .

he distance between the centers of neighboring rows or columns 

as 17.5 mm. The third column of electrodes (electrodes 9 to 12) 

as desired to be placed on the median axis of the uterus with 

he 10th-11th pair of electrodes half way between the uterine fun- 

us and pubic symphysis. Signals were passed to a digital con- 

erter and sampled at 200 Hz and filtered by an anti-aliasing filter 

ith high cut-off frequency of 100 Hz. External tocodynamometry 

TOCO) was recorded simultaneously from the abdomen. 

Recordings used for the study were performed during the third 

rimester of pregnancy (112 recordings; 16 channels of EHG for 

ach recording) with the average duration of 61 minutes. Two to 

even recordings were obtained for each participant at different 

estational weeks during the same pregnancy. A detailed descrip- 

ion of the experiments for data collection can be found in [35] . 

or the current data analysis, two clinicians were asked to inde- 

endently identify the UCs in accordance with the TOCO signal and 

C annotation [36] . Only those identifications with full agreement 

f the two clinicians were used as reference information for iden- 

ifying UC activities with associated EHG signals. 

The wavelet transform using Daubechies db7 wavelet was ap- 

lied to each recording for separating the UC component from the 
5 
ther components which are regarded as noise in this study. In- 

tead of considering the whole frequency range of main compo- 

ents of EHG activities (0.1 - 3 Hz), we filtered the EHG signals 

o keep only the low-frequency components (0.1 - 0.8 Hz), in or- 

er to discard the maternal and fetal ECG as much as possible and 

over the components by which the pregnancy contraction can be 

ainly represented [10,30,31,37] . Furthermore, the baseline inter- 

erence was eliminated by using a median filtering whose order 

as set to 10 0 0. 

The analyzable EHG segments were then selected using the 

OCO-identified UCs as reference. Only those segments with corre- 

ponding analyzable EHG signals from all 16 electrode array chan- 

els were taken into account for further analysis. The diagram 

f EHG segment selection is shown in Fig. 4 . An example of 16- 

hannel filtered EHG signals and corresponding TOCO recording is 

hown in Fig. 5 , where the selected analyzable EHG segments are 

ndicated by the dashed red frames. 

Next, for these analyzable segments, the UC-associated EHG 

eaks were identified by averaging EHG signals over 16 channels. 

he preprocessed EHG segments from each of the 16 channels 

ere then obtained by applying the windows of 20-second length 

hat began 10 s before, and ended 10 s after, the time instant cor- 

esponding to the UC-associated EHG segment peaks. In this way, it 

as ensured that the APs involved in the estimation have reached 

heir termination. An example of an analyzable EHG segment can 

e observed in Fig. 6 . Finally, a total of 79 × 16 analyzable seg- 

ents from 25 recordings were selected to determine the prop- 

gation terminal zone (PTZ) of EHG signal. 

.6. EHG propagation terminal zone identification algorithm 

The PTZ of EHG signals was defined in this study as the loca- 

ion in the plane of uterus towards which the information flow 

erminated. The identification algorithm was proposed, specifically, 

or electrode configuration of M-by- N grid ( M ≥ 3 , N ≥ 3 ; for this

tudy, M = N = 4 ), where each electrode has at most 8 neighbors.

ence, the significance of surround-inward flow of causal informa- 

ion towards electrode i in terms of a specific UC can be calculated 

s follow: 

(i ) = 

1 

8 

(∑ 

j∈ A i 

(
1 

2 

+ 

�( j → i ) 

2 | �( j → i ) | 
)

+ 

1 

2 

× (8 − n r ) 

)
, (4) 

here A i is the aggregate consisting of all neighboring electrodes 

f electrode i and n r is the number of elements in A i . When the

alue of | �( j → i ) | is smaller than �s , �( j → i ) is set to zero. The

dditional 8 − n r model neighboring electrodes were introduced to 

stimate α for the electrodes on the edges of grid. Fifty-percent 

otential of inward flow was assumed towards the estimated elec- 

rode from each of its model neighbors. This appears as the last 

erm on the right side of 4 ) as a moderating factor. In this way,

t would be consistent for all the electrodes when estimating the 

nward flow of information to an electrode from its neighboring 

lectrodes. According to the values of α of M × N electrodes, the 

TZ within the area of electrode grid was finally determined by the 

osition of electrode corresponding to the largest value of α. Intu- 

tively, activity at the PTZ electrode is driven by the activity at the 

ther electrodes via causal interactions. The PTZ is thus expected 

o be the destination of UCs, where there are strongest incoming 

ausal connections. 

. Results 

From 25 recordings ( i.e. Rec01 - Rec25) there were 79 UCs 

ith interpretable EHG segments from all 16 channels used for 

he PTZ identification of the surface AP within the estimated area 
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Fig. 3. The estimated area on the abdomen is within the position of 4 × 4 electrode grid. The third column of electrodes is expected to be placed on the medial axis of 

uterus represented by the vertical dashed line and the horizontal dashed line between the second and third rows of electrode grid represents the half way between the 

uterine fundus and pubic symphysis [35] . 
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n the abdomen corresponding to the electrodes of a 4 − by − 4 

rid ( Fig. 3 ). An example of the filtered 16-channel EHG signals for 

ec02 is shown in Fig. 5 , where 6 UCs were considered. 

The PTZ was obtained by estimating the significance of 

urround-inward flow of information of each channel using the es- 

imator α in (4) . Table 1 summarizes the PTZ electrode identi- 

ed for each UC by the method of RIIFT. For 57 out of 79 UCs ( i.e.

2 . 15% of total cases), the determined PTZ electrodes were along 

he third column, which was desired to be placed on the median 

xis of the uterus, avoiding the navel. Among these, 44 UCs ( i.e. 

5 . 70% of total cases) had their estimated PTZ at electrodes 10 or 

1, which were expected to locate in the middle between the uter- 

ne fundus and pubic symphysis. For 13 UCs, the PTZ was identi- 

ed corresponding to the 9th or the 12th electrode, which is in 

he third column, but not in the middle of it. The PTZ was iden-

ified corresponding for the second or the fourth column of elec- 

rodes for 21 cases. There was only one PTZ obtained farther away 

n the first column. It can also be observed from Table 1 that, for

he recordings with more than one UCs, the PTZ was often iden- 

ified in a same column or even corresponding to the same elec- 

rode. However, this was not always the case. 

Fig. 7 compares the percentage of cases where the PTZ were 

dentified corresponding to each electrodes of the grid, showing 

he desired position of electrode grid on the abdomen of the preg- 

ant women. The most probably identified PTZ within the record- 

ng area on abdomen of the 79 cases is shown clearly in Fig. 7 . 

Fig. 8 shows some examples of the cases in Table 1 , where the

TZ is identified on the third column of electrodes. The values of 

(i ) corresponding to each electrode are represented by different 
olors. In order to have a clearer view of the flow direction of in- p

6 
ormation of EHG within the electrode grid, additional points were 

nterpolated between each pair of neighboring channels using cu- 

ic interpolation method to increase the resolution. We can ob- 

erve in Fig. 8 that how α changes within the recording area, as 

ell as the PTZ region where the highest value of α is obtained. 

or example, in Fig. 8 (c), the warmest color is observed in the area

elow and nearby the intersection point of vertical and horizontal 

ashed lines, which indicates the PTZ at the location of electrode 

1. The color turns colder radially, which shows obvious flow in- 

ard to the PTZ. 

. Discussion 

RIIFT uses, as a basis, the estimation of DI to infer the causal in- 

eractions between recordings at EHG channels, via which the ac- 

ivities at the destination channels are driven by the activities at 

he source channels. As we demonstrate here, RIIFT can be applied 

o investigate the likely termination point of APs, estimated within 

he confines of the recording area, using the multielectrode array 

ata. The parameters involved in the estimation are determined ac- 

ording to the results from previous EHG measurements. For exam- 

le, the parameters of the DI-based algorithm were valued consid- 

ring the estimated CV of EHG observed in the previous publica- 

ions. Also, the length of preprocessed EHG segment was decided 

y considering the minimum duration of burst [5,7,8,10,12,32] . 

This is the first time that DI estimation has been applied to 

he analysis of spatiotemporal electrical excitation in the human 

terus. It has been considered previously in the electrophysiologi- 

al studies of brain network to investigate EEG propagation, which 

aves the way for the development of novel nonsurgical treat- 
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Table 1 

PTZ electrode identified by RIIFT method for each UC. 

Recording UC 

C1 C2 C3 C4 

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 

Rec01 01 
√ 

Rec02 

02 
√ 

03 
√ 

04 
√ 

05 
√ 

06 
√ 

07 
√ 

Rec03 

08 
√ 

09 
√ 

10 
√ 

11 
√ 

12 
√ 

13 
√ 

14 
√ 

15 
√ 

Rec04 
16 

√ 

17 
√ 

Rec05 

18 
√ 

19 
√ 

20 
√ 

21 
√ 

22 
√ 

23 
√ 

Rec06 

24 
√ 

25 
√ 

26 
√ 

27 
√ 

28 
√ 

Rec07 
29 

√ 

30 
√ 

Rec08 
31 

√ 

32 
√ 

Rec09 

33 
√ 

34 
√ 

35 
√ 

Rec10 

36 
√ 

37 
√ 

38 
√ 

39 
√ 

40 
√ 

41 
√ 

42 
√ 

Rec11 
43 

√ 

44 
√ 

Rec12 

45 
√ 

46 
√ 

47 
√ 

Rec13 

48 
√ 

49 
√ 

50 
√ 

51 
√ 

Rec14 52 
√ 

Rec15 53 
√ 

Rec16 54 
√ 

Rec17 
55 

√ 

56 
√ 

Rec18 57 
√ 

Rec19 

58 
√ 

59 
√ 

60 
√ 

Rec20 
61 

√ 

62 
√ 

Rec21 63 
√ 

Rec22 

64 
√ 

65 
√ 

66 
√ 

67 
√ 

( continued on next page ) 

7 
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Table 1 ( continued ) 

Recording UC C1 C2 C3 C4 

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14 e15 e16 

Rec23 

68 
√ 

69 
√ 

70 
√ 

71 
√ 

72 
√ 

73 
√ 

74 
√ 

75 
√ 

Rec24 

76 
√ 

77 
√ 

78 
√ 

Rec25 79 
√ 

C1 - C4: the 1st to the 4th columns of the electrode grid; e1 - e16: the 1st to the 16th electrodes. 

Fig. 4. Diagram to illustrate the selection of EHG segments. (a) 25 recordings with 79 × 16 segments were selected from 112 recordings as analyzable to be investigate 

further. (b) Example of EHG segment of which there is corresponding TOCO-identified UC but is not analyzable. (c) Example of analyzable EHG segment. 
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ents for the diseases such as epilepsy and Parkinson’s disease 

20–24] . Since there is not a commonly used non-linear model of 

HG propagation, we used the linear propagation model in this 

tudy to assess the reliability of the DI-based algorithm and to de- 

ermine the adaptive DI parameters. As a principled tool from the 

nformation theory, DI has a model-free nature. Hence, when then 

pplied to the real physiological data, DI has the ability to capture 

oth linear and non-linear behaviors. The results obtained by RI- 

FT are reliable only when the distance between neighboring elec- 

rodes is within an acceptable range (as is the case with 16 elec- 

rode array of the Icelandic dataset used in this study) in part due 

o resolution of current EHG signals as well as the CV being es- 

imated to be as low as 2.18 cm/s [5,8,10,12,32] . This prevents us 

rom estimating EHG propagation by RIIFT using another database 

f obtained by a bespoke eight-electrode system where the distance 

etween neighboring electrodes can be up to 8 cm [38,39] . Us- 

ng the Icelandic dataset, the resulting identified PTZ within the 

stimated area in this study is obtained in the third column of 

lectrodes in most cases ( Table 1 ), indicating that during preg- 

ancy, surface APs propagate to the media axis of uterus within 
8 
he recording area. Moreover, the PTZ electrodes of more than half 

f the UCs are shown in the middle of the third column, indicating 

hat the information flow of pregnancy contraction in this area is 

nward to the center, likely, between the uterine fundus and pu- 

ic symphysis along the medial axis. However, these results were 

btained from only a small region. In the clinical setting, the Ice- 

andic 16-electrode EHG database was obtained using the electrode 

rid which covered 5 . 25 cm × 5 . 25 cm area measured by the center

f each electrode. While this facilitates minimizing discomfort and 

ntrusion to the pregnant women, and has enabled us to advance 

ur understanding of important features of spatiotemporal electri- 

al excitation of uterine contractions, this comes with limitations. 

or example, there may be other PTZs that occur away from the 

ecording electrode array which cannot be identified by the current 

ettings. This possibility was suggested by the data obtained from 

 151-channel electromagnetic sensor array developed to evaluate 

 multiscale electromagnetic forward model of human myometrial 

ontractions [40] . Another limitation is that, in this scenario it is 

ifficult to extrapolate detailed information regarding the source 

nd path of EHG propagation. Instead, therefore, we focused on de- 
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Fig. 5. Example of the 16-channel filtered EHG signals. The identified UC-associated fluctuations are circled by the dashed red frames. (For interpretation of the references 

to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Illustration of EHG segmentation. The EHG signal that is averaged over 16 channels is used for identifying the UC-associated EHG peaks. The time instant of EHG 

peak is indicated by the dashed red line. The preprocessed EHG segments from 16 channels were obtained by a window of 20-second length represented by the dashed 

black lines. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

t
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t
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fi

w

ermining the probabilities of spatial termination of APs within the 

stimated area and report that the APs propagate towards the cen- 

er of uterus plane within the recording area ( i.e. the middle part 

f uterus) during pregnancy. 

Many previous studies investigating the propagation of UC- 

ssociated electrical activity, which focused on its source, direc- 
9 
ion and/or velocity, have indicated that the electrical activity of 

Cs could originate from more than one location on the uterus 

nd propagate in different directions [5,10,12,15,16,18,41] . Our anal- 

sis is consistent with these suggestions with the added identi- 

cation of preferential sites of excitation termination. However, 

hile indeed, various directions of EHG propagation have been 
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Fig. 7. The probability of PTZ electrodes shown on the desired position of abdomen identified for the estimated UCs. The circles with number represent the corresponding 

electrodes, composing the 16-channel electrode grid ( 5 . 25 cm × 5 . 25 cm measured by the center of each electrode) used for EHG recording (see Fig. 3 ). The color represents 

the percentage of cases where the PTZ is identified corresponding to the electrode. 

Fig. 8. Examples of four individual cases where the PTZ was identified on the third column of electrodes. The dash lines in this figure correspond to the dash lines in Fig. 3 . 

Specifically, the vertical dashed line corresponds to the third column of electrodes (electrodes 9 to 12), which was desired to be placed on the median axis of uterus. The 

horizontal dashed line corresponds to the middle line of electrode grid between the second and third rows, which was desired to be placed in the center between the uterine 

fundus and pubic symphysis. The color represents the value of α. The higher the value is, the more significant the surround-inward flow of information of corresponding 

area is. The PTZ is identified corresponding to (a) the 9 th electrode, (b) the 10 th electrode, (c) the 11 th electrode and (d) the 12 th electrode, respectively. 
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a

(

-  
uggested, including: 1) top down [8,16,18] 2) upward and down- 

ard [5,41] and 3) no preferred direction [12] . The identified pref- 

rential sites of excitation termination in our study revealed not 

nly the possible simultaneous upward and downward propaga- 

ion during the pregnancy period, but also the preferred horizontal 

irection of propagation, i.e. toward the median axis of the uterus. 

his can also illustrate that the source may locate on different sites 

f the uterus. Nonetheless, the AP terminations identified in this 

tudy exhibit variation within the same recording. This indicates, 

n turn, some variation in the propagation direction of APs, and/or 

he possible low synchronization of uterine electrical activities or 

he inhomogeneous structure of uterus [42–45] . As the PTZ illus- 

rates the propagation of electrical activity, to some extent, one 

ay speculate that differences of its location may occur between 

ormal and abnormal uterine activation thereby informing clinical 

iagnosis for pregnancy complications. This requires further inves- 
10 
igation on the EHG signals recorded from patients at risk of, or al- 

eady diagnosed with, relevant diseases ( i.e. spontaneous preterm 

abor). Future work should focus on examining any variation of 

HG propagation during different gestations and periods of labor. 

In order to achieve better understanding of EHG propagation 

irection, given the limitations involved in the current available 

atabases regarding their low resolution of EHG signals, the es- 

ablishment of a new database of recordings should be consid- 

red. Ideally this would be furnished with data obtained utilizing 

 greater number of electrodes with higher signal detection per- 

ormance appropriate to RIIFT analysis and covering a larger area 

f uterus. This requires future work to be focused on developing 

dvanced EHG recording devices and accompanying analysis tools 

such as that described herein). 

Also, we lack the knowledge of the topology of the uterus 

 it could be that part of the uterine wall is closer to a sub-
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ermal layer of skin at these positions compared to others, which 

ay affect signal fidelity in a manner that influences information 

ow. Hence, in future experiments, electrode array positioning and 

ecording could be optimized with information obtained with the 

id of sub-dermal imaging techniques, e.g. , ultrasound [46] . It is 

ossible that positioning electrodes close to the median vertical 

xis is beneficial for the SNR during contraction due to the change 

n conducting volume induced by the movement of the uterus dur- 

ng contraction [47] . In this study, we did not consider the con- 

ucting volume effect since the EHG signals were obtained using 

he electrode grid which covered only a small area of pregnant 

terus, where we believe the conducting volume effect would not 

e substantial. 

Continued advances in such a relatively non-invasive record- 

ng approach is required to improve our biological and clinically- 

elevant understandings of how electrical excitation controls hu- 

an uterine contractile function (relevant to the onset timing, pe- 

iodicity of events and strength of contractions). In particular, a 

etter understanding of AP propagation direction is a prerequisite 

o enable the utilization of these features for clinical implementa- 

ion, thereby achieving diagnosis of dysfunction in pregnancy and 

abor, e.g. , preterm birth or dystocia at term. 

. Conclusion 

In summary, we have developed a new approach and utilized 

t to the analysis of in vivo human uterine EHG recordings that 

eveals preferential spatial regions of termination of propagated 

lectrical signals. This provides an important platform for future, 

uch-needed, studies to fill knowledge gaps in the spatiotemporal 

atterns of electrical excitation. A combination of this analytical 

rocess with new, technologically advanced, experimentation of- 

ers the possibility of advancing our understanding, including iden- 

ification of clinically-relevant features, of human uterine excitabil- 

ty. 
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