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Abstract

Human activity recognition with non-intrusive sensors is an emerging topic in the field of
computer vision, which has led to applications for supporting the older population. The cur-
rent studies lack a holistic evaluation of data derived from infrared (IR) sensors including
multiple layouts, sensors positions, noise analysis, multi-subject activities, and model gener-
alisation. Micro-Doppler radars are also used extensively for human activity recognition, but
the majority of studies fall in the supervised learning category. The very few studies associ-
ated with unsupervised human activity recognition with micro-Doppler radars suffer from a
number of limitations such as intermediate accuracy and an exploration of a few techniques
for feature extraction.

This thesis explores the use of IR sensors and micro-Doppler radars for human activity
recognition for healthcare and eldercare applications. An investigation of such data with a
variety of feature extraction and classification methods is achieved by using a number of
datasets, comprising of multiple scenarios. Hence, these results address the shortcomings of
the previous literature by providing a holistic understanding and evaluation of such data for
healthcare purposes. The achieved results for the IR sensors data demonstrate the optimum
model for feature extraction and classification, optimum sensor position and layout as well
as a novel periodic noise reduction technique. The outcomes of this work bring us a step
closer to the potential application of such systems in elderly care homes.

In terms of micro-Doppler radar data, unsupervised learning is studied considering its
importance for unlabelled and poorly labelled projects. Two unsupervised feature extraction
techniques are proposed, which are comparable with the existing Convolutional Variational
Autoencoder (CVAE) architecture in terms of classification accuracy. The proposed methods
provide a reasonable trade-off between computational time and accuracy, which makes them
attractive for unsupervised applications.

Finally, a user acceptance questionnaire is administered in a care home to understand the
views and needs of older adults towards sensing technology and physical robots. An exten-
sion to the Technology Acceptance Model (TAM) is achieved to cover more characteristics
also seen from the perspective of health improvement. Trust and control, as well as physical
appearance and functionalities of robots are studied. Two age-based groups are distinguished
for statistical analysis with interesting findings.
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To conclude, the techniques presented in this thesis significantly increase the usability
of IR sensors and micro-Doppler radars for human activity recognition applications. This
brings us a step closer to the application of these systems in care home, where their real
world significance will be evaluated.

viii



Contents

List of Figures xv

List of Tables xvii

List of Abbreviations xix

1 Introduction 1
1.1 Motivation for Research . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Thesis Novelty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 List of Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Literature Survey 9
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Sensing Technologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Intrusive Technologies . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Non-Intrusive Technologies . . . . . . . . . . . . . . . . . . . . . 11

2.3 Analysis Techniques for Non-Intrusive Sensing Technologies . . . . . . . . 15
2.3.1 Hand-Crafted Techniques . . . . . . . . . . . . . . . . . . . . . . 15
2.3.2 Deep NN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.3 Supervised Learning . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.4 Unsupervised Learning . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Evaluation Metrics for Sensing Technologies . . . . . . . . . . . . . . . . 22
2.4.1 Supervised Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.2 Unsupervised Metrics . . . . . . . . . . . . . . . . . . . . . . . . 26

2.5 Evaluation Criteria for Sensing Technologies . . . . . . . . . . . . . . . . 27
2.6 User Acceptance of Sensors and Robots . . . . . . . . . . . . . . . . . . . 29

2.6.1 User Acceptance of Sensors . . . . . . . . . . . . . . . . . . . . . 29
2.6.2 User Acceptance of Robots . . . . . . . . . . . . . . . . . . . . . . 30

2.7 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

ix



3 IR Sensing Array Based Human Activity Recognition 35
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Data Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.2.1 Infrared Human Activity Recognition Dataset Coventry-2018 . . . 36
3.2.2 Infrared Human Activity Recognition Dataset Infra-ADL2018 . . . 38

3.3 Data Analysis Based on Sparse Techniques . . . . . . . . . . . . . . . . . 39
3.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.3.2 Data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.3.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Noise Analysis and Classification Modeling for Holistic Understanding of
LRIR Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.4.1 Data Analysis Framework . . . . . . . . . . . . . . . . . . . . . . 47
3.4.2 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4 Unsupervised Doppler Radar Based Activity Recognition 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2.1 Dataset Description . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.2.2 Number of Classes Estimation . . . . . . . . . . . . . . . . . . . . 77
4.2.3 Feature Extraction Methods . . . . . . . . . . . . . . . . . . . . . 80
4.2.4 Clustering Methods . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.2.5 Visualisation Techniques for High-Dimensional Data . . . . . . . . 86

4.3 Evaluation and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
4.3.1 Local DCT-based Analysis Results . . . . . . . . . . . . . . . . . . 89
4.3.2 Local Entropy Analysis Results . . . . . . . . . . . . . . . . . . . 90
4.3.3 CAE and CVAE Robustness Evaluation . . . . . . . . . . . . . . . 91
4.3.4 Comparison of the Average Training and Testing Accuracies for K-

Means and K-Medoids Using all Feature Extraction Techniques . . 91
4.3.5 Visualisation Results . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.4 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5 User Acceptance of Sensors and Robots 96
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2.1 Study Aims . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2 Survey Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.3 Participants and Data Collection . . . . . . . . . . . . . . . . . . . 98
5.2.4 Analysis of Responses . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3 Study Findings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
5.3.1 User Acceptance of Sensors . . . . . . . . . . . . . . . . . . . . . 100
5.3.2 Factors Affecting the User Acceptance of Robots . . . . . . . . . . 100
5.3.3 User Acceptance of Robots Based on Appearance . . . . . . . . . . 102

x



5.3.4 User Acceptance of Robots Based on Role and Functions . . . . . . 102
5.3.5 User Acceptance of Robots Based on Cost . . . . . . . . . . . . . . 104
5.3.6 Open-Ended Question . . . . . . . . . . . . . . . . . . . . . . . . 104
5.3.7 Comparison Between User Acceptance of Sensors and Robots . . . 104
5.3.8 Participants’ Responses Based on Age . . . . . . . . . . . . . . . . 105

5.4 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 Discussion 108
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.2 Discussions on the Analysis of IR Data . . . . . . . . . . . . . . . . . . . 108

6.2.1 Limitations of the Extrapolation Method . . . . . . . . . . . . . . . 108
6.2.2 Optimum Model for Activity Recognition . . . . . . . . . . . . . . 109
6.2.3 The Effect of Changes in Sensing Layout and Model Generalization 109

6.3 Discussions on the Analysis of Doppler Radar Data . . . . . . . . . . . . . 109
6.3.1 Analysis of Local Patching Strategy . . . . . . . . . . . . . . . . . 109
6.3.2 The Effect of the Clustering Strategy . . . . . . . . . . . . . . . . 110
6.3.3 Optimum Models for Doppler Radar Data . . . . . . . . . . . . . . 110
6.3.4 Fusion of Different Methods . . . . . . . . . . . . . . . . . . . . . 111
6.3.5 Analysis of Higher Standard Deviation . . . . . . . . . . . . . . . 111
6.3.6 High-Dimensional Data Projection and Visualisation . . . . . . . . 111
6.3.7 Results Comparison with Supervised Strategies . . . . . . . . . . . 111

6.4 User Acceptance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.4.1 User Acceptance of Non-Intrusive Sensing Technology . . . . . . . 112
6.4.2 Older People’s Acceptance of Robots . . . . . . . . . . . . . . . . 112
6.4.3 Acceptance and Trust of Robot in Own Home . . . . . . . . . . . . 113
6.4.4 Comparison Between User Acceptance of Sensors and Robots . . . 113
6.4.5 Comparison Between Age Groups . . . . . . . . . . . . . . . . . . 114
6.4.6 Strengths and Limitations of Study . . . . . . . . . . . . . . . . . 114

6.5 Overall Discussions on the Use of Non-Intrusive Sensing Technologies for
Health Monitoring of Aged Population . . . . . . . . . . . . . . . . . . . . 114

6.6 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7 Conclusion 117
7.1 Research Questions and Thesis Contributions . . . . . . . . . . . . . . . . 118
7.2 Human Activity Recognition Using IR Sensors . . . . . . . . . . . . . . . 119
7.3 Human Activity Recognition Using Doppler Radars . . . . . . . . . . . . . 120
7.4 User Acceptance of Sensors and Robots By Older Adults . . . . . . . . . . 121
7.5 Research Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.6 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.7 Chapter Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography 125

xi



Appendices 144

A User Acceptance Questionnaire 145

xii



List of Figures

1.1 Signs and symptoms of epileptic seizures [10]. . . . . . . . . . . . . . . . . 3
1.2 The projected stages of Parkinson’s disease [14]. . . . . . . . . . . . . . . 4

2.1 Bias-variance trade-off graph based on error [101]. . . . . . . . . . . . . . 23

3.1 Layouts and experiment scenario. (a), Small and large experiment layouts;
(b), The real experiment scenario. . . . . . . . . . . . . . . . . . . . . . . 37

3.2 Layout and experiment scenario. (a), Experiment layout; (b), The real ex-
periment scenario. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.3 Methodology steps for data analysis based on sparse methods. . . . . . . . 39
3.4 Example of (a) a single frame of an IR image and (b) a stream of a number

of frames. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5 Layout and experiment scenario for Sensor-1. (a), Experiment layout; (b),

The real experiment scenario. . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.6 Accuracy of SVM, RF, KNN and LR on both training and testing sets for

SPCA and SDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.7 Visualisation of the original data matrix and the transformed samples using

SPCA and SDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.8 Accuracy of SVM, RF, KNN and LR on both training and testing sets for

SPCA and SDA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.9 Comparison of the clean and noisy test data classification performances for

RRLDA and SDA as well as PCA and SPCA. . . . . . . . . . . . . . . . . 46
3.10 Visualisation of the first sparse component of SDA β1 and first sparse eigen-

vector of SPCA V1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.11 (a) Examples of 8 × 8 pixel frames for the activity sitting, and (b) the vec-

torised spatio-temporal 2D array over 40 frames and 64 pixels. . . . . . . . 47
3.12 The data processing flow in this work, which shows the two undertaken

strategies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.13 Data vectorisation and dimension description. One sample 2D spatio-temporal

array is visualised in blue color in the middle. . . . . . . . . . . . . . . . . 50
3.14 The (a) one-subject and (b) two-subject vectorised 8× 8 frames of activities

(64) over 40 equalised frames. . . . . . . . . . . . . . . . . . . . . . . . . 51
3.15 The power spectrum with prominent peaks rounded in red. . . . . . . . . . 52

xiii



3.16 Illustration of the 3D cube of validation accuracy and the 2D average valida-
tion array obtained by averaging over K folds of the 3D cube for selection of
T ∗h and Num∗h parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.17 Heatmaps of average CV validation accuracy for selection of optimum T and
Num parameters for (a) horizontal (b) vertical stripes. . . . . . . . . . . . 55

3.18 (a) Original image and (b) noise reduced image. . . . . . . . . . . . . . . . 56
3.19 (a) Forming GLCM matrices in four directions i.e., 0◦, 45◦, 90◦, 135◦; (b)

Computation of GLCM matrix based on horizontal occurrences at d = 1 for
an image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.20 Illustration of the CNN-LSTM architecture. . . . . . . . . . . . . . . . . . 61
3.21 Comparison of the classification performances of random methods and pro-

posed methods for interpolation and extrapolation before denoising (BD) and
feature extraction using all four classification methods. The Coventry-2018
large layout data (15-class problem) of Sensor-1 was used. . . . . . . . . . 62

3.22 Comparison of the classification performances before denoising (BD) and
after applying the DFT-based periodic noise removal algorithm (AD) using
different feature extraction methods and LR classification. The Coventry-
2018 large layout data (15-class problem) of Sensor-1 was used. . . . . . . 63

3.23 CNN-LSTM model evaluation using Coventry-2018 large layout data (15-
class problem) of Sensor-1. . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.24 Comparison of the effect of small layout and large layout data in classifica-
tion performance. The LR classifier with the four feature extraction methods
are applied on the single-subject activities for small layout and the single-
subject activities for the large layout as well as CNN-LSTM using Coventry-
2018 Sensor-1 large and small layout data sets. . . . . . . . . . . . . . . . 66

3.25 (a) Single-subject activities and (b) double-subject activities. The vertical
axis show the unseen test subject and the numbers show the average test
accuracy over three repetition of each activity. . . . . . . . . . . . . . . . . 68

3.26 Patterns for activity 9 using all single-subjects. . . . . . . . . . . . . . . . 69
3.27 Patterns for activity 2 using all double subjects. . . . . . . . . . . . . . . . 69
3.28 Classification accuracy for individual sensors and combinations of them for

Coventry-2018 dataset using SVD+LR on large layout for the 15-class prob-
lem including single and double subjects. . . . . . . . . . . . . . . . . . . 70

3.29 Comparison between the confusion matrices of the two side sensors, Sensor-
1 (a) and Sensor-3 (b), of Coventry-2018 dataset. The large layout with sin-
gle and double subject data was used for training a model based on SVD+LR. 71

3.30 Comparison between Coventry-2018 Sensor-1 (a) and Sensor-3 (b) for “Stand-
ing + Small Movements” activity. . . . . . . . . . . . . . . . . . . . . . . 71

4.1 Example of an 80× 80 image of the activity walking (1). . . . . . . . . . . 74
4.2 Flowchart, describing the overall analysis framework of the study. . . . . . 75
4.3 Experimental layout for conducting the activities in the used Doppler radar

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xiv



4.4 Example of an 80 × 80 = 6400 image for each activity: (1) walking, (2)
running, (3) jumping, (4) turning, and (5) standing. . . . . . . . . . . . . . 76

4.5 An Elbow test used to determine the number of clusters K. . . . . . . . . . 78
4.6 Silhouette score, Davies score, Dunn’s index and Calinski-Harabasz index

used to determine the number of clusters K. . . . . . . . . . . . . . . . . . 80
4.7 Flowchart of the proposed local DCT-based method. . . . . . . . . . . . . 81
4.8 The three patching strategies for entropy analysis. . . . . . . . . . . . . . . 82
4.9 Flowchart of the proposed local entropy-based method. . . . . . . . . . . . 82
4.10 The CAE architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.11 The CVAE architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.12 (a) Illustration of the 40× 40 local patches in the Doppler spectogram. The

optimum patch for feature extraction is ticked in green color. (b) The corre-
sponding Dunn’s index for the four 40× 40 local patches. . . . . . . . . . . 89

4.13 Illustration of the Dunn’s index for the three patching strategies used for
feature extraction based on local entropy analysis. . . . . . . . . . . . . . . 90

4.14 (a) CAE and (b) CVAE robustness evaluation using the Dunn’s index based
on average testing results. . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.15 Confusion matrices for DCT features using (a) K-Means, and (b) K-Medoids
for different subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.16 Confusion matrices for CVAE encoded features using (a) K-Means and (b)
K-Medoids for different subjects. . . . . . . . . . . . . . . . . . . . . . . . 93

4.17 Visualisation of the first two components of (a) the raw data, and (b) the first
components of the CVAE encoded data. . . . . . . . . . . . . . . . . . . . 93

4.18 Visualisation of the transformed raw data Dn×6400 using t-SNE, MDS, and
LLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.19 Visualisation of the transformed encoded data Dn×50 using t-SNE, MDS,
and LLE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Health and well-being improvement based on sensing technology. . . . . . 101
5.2 Relative importance of five robot characteristics . . . . . . . . . . . . . . . 101
5.3 User acceptance of a robot at home and trusting the robot for making decisions102
5.4 User acceptance of robots based on physical appearance . . . . . . . . . . 103
5.5 User acceptance of robots based on functions . . . . . . . . . . . . . . . . 103
5.6 Health and well-being improvement based on robot’s activities . . . . . . . 104

xv



List of Tables

3.1 Two categories of activities in Coventry-2018 . . . . . . . . . . . . . . . . 37
3.2 Three categories of activities of Infra-ADL2018 . . . . . . . . . . . . . . . 38
3.3 Investigated Activities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.4 The f-score and p-value results of the ANOVA analysis for the average hor-

izontal and vertical stripes (excluding the DC components) of the 2D power
spectrum for all three sensors (S1, S2, S3), and a combination of them
(S1+S2+S3) using large layout and 15 classes data from Coventry-2018
dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Testing performances for all combinations of the feature extraction and clas-
sification methods as well as CNN-LSTM using the Sensor-1 large layout
data set from Coventry-2018 for 15 classes of single subject and double sub-
ject activities. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.6 Testing performance of the classification models using SVD+LR for single-
subject, double-subject, and all activities of Infra-ADL2018. . . . . . . . . 65

3.7 Comparison between single-subject activities and double-subject activities
using Coventry-2018 large layout data of Sensor-1 and Infra-ADL2018 Sensor-
2 data. LR was used together with all feature extraction methods as well as
CNN-LSTM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.8 Testing performance of leave-one-subject-out model generalisation for single-
subject activities and double-subject activities of Infra-ADL2018. . . . . . . 68

4.1 Average and standard deviations of testing accuracies based on K-Means and
K-Medoids using DCT features from the raw data 80 × 80 single patch and
those from the selected 40× 40 local patch features over 4 rounds of LOOCV. 90

4.2 Average training accuracies with standard deviations of K-Means and K-
Medoids using the five feature extraction methods over 4-subjects LOOCV. 91

4.3 Average testing accuracies with standard deviations of K-Means and K-
Medoids using the five feature extraction methods over 4-subjects LOOCV. 92

5.1 All participants including their gender and age. . . . . . . . . . . . . . . . 100
5.2 One-way ANOVA statistics for the two age-based groups described in Table

5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
5.3 Spearman’s rank correlation coefficient and Kendall’s rank correlation coef-

ficient for the two age-based groups . . . . . . . . . . . . . . . . . . . . . 106

xvi



xvii

6.1 Total computational time over 600 samples of the four folds for the two
proposed feature extraction methods as well as CVAE. . . . . . . . . . . . 110



xviii

List of Abbreviations

2DPCA 2-Dimensional Principal Component Analysis

AE Autoencoder

AIC Akaike Information Criterion

BIC Bayesian Information Criterion

BW Bandwidth

CAE Convolutional Autoencoder

CNN Convolutional Neural Network

CV Cross Validation

CVAE Convolutional Variational Autoencoder

DCT Discrete Cosine Transform

EM Expectation-Maximisation

FP False Positive

FN False Negative

GLCM Grey Level Co-occurrence Matrix

GMM Gaussian Mixture Model

HMM Hidden Markov Models

IR Infrared

k-NN k-Nearest Neighbours

LLE Locally Linear Embedding

LR Logistic Regression

LRIR Low-Resolution Infrared

LSTM Long Short-Term Memory

MDS Multidimensional Scaling



xix

MLP Multi-Layer Perceptron

MSE Mean Square Error

NN Neural Networks

PCA Principal Component Analysis

PIR Pyroelectric Infrared

PRC Precision Recall Curve

PRIM Patient Rule Induction Method

RF Radio Frequency

RF Random Forest

RNN Recurrent Neural Network

ROC Receiver Operating Characteristic

RRLDA Reduced Rank Linear Discriminant Analysis

SDA Sparse Discriminant Analysis

SOM Self-Organising Map

SPCA Sparse Principal Component Analysis

SSE Sum of Squared Errors

SVD Singular Value Decomposition

SVM Support Vector Machine

TAM Technology Acceptance Model

TP True Positive

TN True Negative

t-SNE t-Distributed Stochastic Neighbour Embedding

VAE Variational Autoencoder



Chapter 1

Introduction

Currently, an ageing population represents a global challenge. The problem is further exac-
erbated by the gradual fall of the working population due to lower birth rates. In addition,
elderly care homes are faced with staff shortage due to unfavourable working conditions.
The complicated problem with an expected ageing population has led to the pursuit of cost-
effective solutions for human activity monitoring and recognition to supplement the envis-
aged considerably reduced carer to cared ratio. The detection and recognition of human
activity is crucial in the field of early disease diagnosis, such as dementia, as well as fall
detection. A diverse range of of devices is proposed for this purpose such as traditional
cameras, wearable technologies, acoustic sensors, infrared (IR) sensors, and radar sensors.
When considering common constraints and limitations associated with cameras, wearables,
and acoustic sensors, present healthcare provision has mostly adopted IR sensors and radar
sensors. The selection of these two types of devices for human activity monitoring and
recognition is attributed to their non-obtrusiveness, relatively small size, cost-effectiveness,
and reliable recognition accuracies.

Human activity recognition is an emerging field of computer vision. The goal of human
activity recognition is to detect and characterise a human activity, and more importantly, a
deviation from normal activity, from sensor data in real world settings. Most commonly, hu-
man activity recognition is aimed at assistive applications for healthcare and eldercare. The
challenging problem of detecting and recognising activities is exacerbated by the individual
constraints associated with each sensor device for this purpose. While vision-based human
detection is the most common area of research, the modern healthcare and eldercare block
its usage due to privacy issues. Thermal-based and radio frequency-based human detection
are emerging fields in the literature. Still, a number of limitations and shortcomings have
been discovered, which block the continuous application of these approaches in real world
scenarios.

This thesis explores the use of IR sensors and Doppler radar sensors for the detection and
recognition of common human activities for the purpose of modern e-healthcare and elder-
care. Considering the limitations of current research on both types of devices, improvements
are proposed accordingly. In terms of IR sensors, a novel dataset is proposed to cover a
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CHAPTER 1. INTRODUCTION 2

broad range of scenarios such as number of sensors, sensor positioning, layouts, and multi-
subject activities. Additionally, a novel method for noise alleviation is developed as well as
a holistic consideration of machine learning approaches for feature extraction and classifi-
cation. Radar sensors are considered in terms of unsupervised learning, which is a far less
researched area for human activity recognition. Based on this study, two novel methods for
unsupervised feature extraction are proposed, which show a recognition improvement over
the state-of-the-art approaches. Finally, user acceptance of non-obtrusive technologies and
robots with a physical presence are evaluated among older adults in a residential care home
with interesting findings.

1.1 Motivation for Research
The need to support the older adults is continuously growing with the increasing rates of
ageing population. An ageing population is a global challenge, which is characterised by the
increase of older people compared to the decrease of younger generations due to a decline in
fertility and increased life expectancy. The most recent report by the United Nations (UN)
identified 727 million people aged 65+ globally in 2020 [1]. This number is projected to
increase by more than double to 1.5 billion by 2050. A previous report by the UN identified
that two thirds of older people are reported to reside in developing countries, which disproves
the common assumption of an ageing population being restricted to developed countries [2].
While the percentage of older populations in Europe and Northern America is higher, the
same processes extending lifespan are gaining control of the population in the remaining
world. The pessimistic prognosis is further complicated by the lack of trained staff in elder-
care. The shortage of staff has been exacerbated by lack of job satisfaction, stress at work,
and no clear career progression [3]. Data from various countries report disproportional re-
sults for older generations living independently or with families. Despite these results having
been generated mostly by cultural differences, recent results show that older people are be-
coming more likely to live independently. Home care is also seen to be a far cheaper option
than care homes. The ageing population issue is inevitably evident in the United Kingdom
(UK) as well. The Office for National Statistics (ONS) reported 11.8 million UK residents
aged 65+ in 2016 [4]. As with the global trends, this number is expected to grow to 20.4
million by 2066.

Major concerns surrounding ageing populations are neurological health problems, most
commonly dementia leading to a cognitive decline. Other neurological diseases affect-
ing people’s movement include epilepsy, Parkinson’s disease, and Motor Neurone Disease
(MND). Dementia is an umbrella term for a number of neurocognitive diseases includ-
ing vascular dementia, dementia from Parkinson’s disease, dementia with Lewy bodies,
frontotemporal dementia, Creutzfeldt-Jakob disease, mixed dementia, Huntington’s disease,
Traumatic brain injury, and most commonly Alzheimer’s disease [5]. Currently, there are
approximately one million people suffering from dementia in the UK. This number is pro-
jected to double to over two million in 2051. Needless to say, the prevalence of the disease
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leads to huge economic costs. The total cost for dementia in the UK is estimated at £26.3
billion and is one of the largest impediments in the NHS [6]. Early motor-related signs and
symptoms of dementia include coordination difficulties and disorientation [7]. In addition,
changes in behaviour are observed, which can lead to disrupting daily schedule routines such
as repeating or missing activities. Therefore, human activity recognition can be useful for
detecting these early symptoms of dementia.

Regarding epilepsy, it is a chronic disease known to affect one in 100 people in the
UK, while one in every new four diagnosed is over 65 [8]. Epileptic seizures can be life-
threatening, however, many of them can be prevented with the accurate treatment. In ad-
dition, seizures are often accompanied with motor-related symptoms [9]. The overall signs
and symptoms of epileptic seizures are illustrated in Figure 1.1. As observed, motor-related
symptoms include uncontrollable jerking movements as well as sudden falls. Hence, activity
recognition models can be useful for detecting the onsets of some epileptic seizures.

Figure 1.1: Signs and symptoms of epileptic seizures [10].

Another similar disease to dementia that affects older adults and specifically their move-
ment is Parkinson’s disease. Adults over 50 are usually affected by the disease, while one in
20 adults with the condition developed Parkinson under 40 [11]. The symptoms of Parkinson
include involuntary shaking of different parts of the body (also known as tremor), stiff and
inflexible muscles, slow movement, loss of automatic movements, and impaired posture and
imbalance potentially leading to falls. [12]. With the increasing rates of ageing population,
the prevalence of Parkinson’s disease is estimated to increase by 18% between 2018 and the
the quarter of the century in the UK [13]. The projected stages of Parkinson’s development
shown in Figure 1.2 reveal the need for early intervention.

Some materials have been removed from this thesis due to Third Party Copyright. 
Pages where material has been removed are clearly marked in the electronic 
version. The unabridged version of the thesis can be viewed at the Lanchester 
Library, Coventry University
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Figure 1.2: The projected stages of Parkinson’s disease [14].

Furthermore, MND is a uncommon neurological condition, which negatively affects the
muscles. In terms of movements, weakness in legs, a weak grip, muscle cramps and twitches
are examples of some of the symptoms. [15]. The disease usually affects adults in their 60s
or 70s, however, it can affect people in all age groups. In addition, early disease diagnosis
can be useful for reducing the influence of MND’s symptoms on one’s life.

When considering the huge economic costs needed to support ageing populations across
the world, governments are investing into cost-effective solutions for both home monitoring
and eldercare monitoring solutions. A number of devices are capable of obtaining monitoring
data for the purpose of activity recognition, respiration and vital signs monitoring or gait
analysis. A straightforward example of activity recognition is a fall detection system, which
can notify care staff if an accident occurs. In addition, common daily activities such as
sitting, standing, walking, and others can reveal important patterns for the subject. The
obtained information can subsequently be used for early disease diagnosis. The devices
considered for activity recognition are cameras, wearable technologies, acoustic sensors, IR
sensors, and radio frequency (RF) radars.

There is a plethora of current literature covering vision-based approaches for human
activity recognition. While these approaches can be useful for healthcare applications for
posture correction for instance, the modern eldercare blocks its use due to privacy issues. In
addition, IR sensors and radar sensors are currently being examined, but the findings lack
some important practical aspects related to the use of such sensing systems. For example,
research investigating IR sensors has major shortcomings including a lack of an evaluation
of multiple sensor scenarios [16, 17, 18, 19, 20, 21, 22]. The existing studies focus on a

Some materials have been removed from this thesis due to Third Party Copyright. 
Pages where material has been removed are clearly marked in the electronic version. 
The unabridged version of the thesis can be viewed at the Lanchester Library, Coventry 
University
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single scenario, which leads to the lack of holistic evaluation. Noise reduction in the sense
of periodic noise is not evident in any of the previous studies. In regard to radar sensors for
human activity recognition, unsupervised learning, that uses machine learning algorithms
to analyze and cluster unlabelled datasets, is a beneficial area despite its unpopularity. Un-
supervised learning can be applied to scenarios with poor or no data labelling, especially
in cases of large and diverse datasets. Only two studies exist for the purpose revealing
mediocre recognition tasks, which is a source of motivation for further research [23, 24].
In addition, these studies also lack an evaluation of a broad number of methods, which
can provide means for comparison. Furthermore, user acceptance of non-obtrusive sensing
technology and robots with a physical presence have been studied as individual paradigms
[25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39]. In addition, perceived health
improvement, trust, cost, physical appearance and preferred activities conducted by robots
are less researched among Long-Term Care (LTC) residents. This thesis also aims to pro-
vide a comparison between user acceptance of the two types of technologies as well as an
evaluation on a broad range of factors, which can influence the potential adoption of the two
agents.

Taking into consideration the limitations of previous research that poses barriers to the
potential application of human activity recognition in healthcare and eldercare, this thesis
presents novel machine learning approaches for noise alleviation and feature extraction as
well as a holistic understanding and evaluation of such sensing systems. Therefore, the
findings and contribution of the current work will advance the field of passive human activity
recognition for healthcare, specifically using IR sensors and radar sensors for healthcare.
Finally, user acceptance by older adults in terms of sensing technology and robots with a
physical presence reveals key findings for a meaningful interaction.

1.2 Research Questions
The research questions addressed in this thesis are as follows:

1. “Is it possible to develop novel approaches for data analysis and machine learning to
correctly classify human activities derived from non-intrusive remotely sensed data?”

By “data analysis”, the author refers to a novel method for periodic noise alleviation as well
as frames equalisation by the means of interpolation and extrapolation. “Machine learning”
is used in the sense of approaches for feature extraction such as the two novel methods for
unsupervised feature extraction of 2D Doppler radar images. The overall goal is to pro-
vide improvements to the recognition performances of the architectures in order to reach a
significant level for potential applications in real world scenarios.

2. “What factors influence the user acceptance of non-intrusive sensing technology and
robots with a physical presence by older adults?”
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“User acceptance” refers to the potential adoption of non-intrusive sensing technology and
robots with a physical presence among older adults. In terms of factors that influence the
potential adoption, the Technology Acceptance Model (TAM) framework is used, which
stresses on only two factors: (1) perceived usefulness, and (2) perceived ease-of-use. To
extend it further, a number of new factors are included in this thesis, such as perceived health
improvement, cost, functionalities, and physical appearance.

1.3 Thesis Novelty
The novelty of research presented in the thesis is in the form of data analysis and machine
learning methods for human activity recognition. The data for this research is acquired from
non-obtrusive sensors. In addition, a novel user acceptance framework of non-obtrusive tech-
nology and robots with a physical presence is developed and applied in care home settings.

The contributions presented in Chapters 3, 4, 5 can be summarised as follows:

• A periodic noise reduction method aimed for the 2D spatio-temporal maps of the low
resolution IR (LRIR) streams, which is based on Discrete Fourier Transform (DFT)
with model selection strategies evaluated with K-fold cross validation (CV).

• Two methods for unsupervised feature extraction of 2D Doppler radar images based
on local Discrete Fourier Transform (DCT) and local entropy analysis respectively,
which are evaluated with Dunn’s index as an unsupervised metric.

• A holistic understanding and interpretation of IR data and Doppler radar data for hu-
man activity recognition.

• A human activity dataset Coventry-2018 acquired using IR sensor arrays with multiple
capabilities, which address the shortcomings of previous datasets in the literature.

• A user acceptance framework of non-obtrusive sensors and robots with a physical pres-
ence among older adults, which includes comparison between the two agents, trust,
cost, preferred appearance and activities, and acceptance evaluated from the potential
improvement of physical health and mental health.

1.4 List of Publications
Chapters 3, 4, 5 contain findings of the following peer-reviewed and accepted publications:

Y. Karayaneva, S. Sharifzadeh, W. Li, Y. Jing and B. Tan, “Unsupervised Doppler Radar
Based Activity Recognition for e-Healthcare,” in IEEE Access, vol. 9, pp. 62984-63001,
2021, doi: 10.1109/ACCESS.2021.3074088.
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Y. Karayaneva, S. Sharifzadeh, Y. Jing, K. Chetty, B. Tan, “Sparse Feature Extraction for
Activity Detection Using Low-Resolution IR Streams”, in IEEE International Conference on
Machine Learning and Applications, Florida, US, 2019.

Y. Karayaneva, S. Baker, Y. Jing, B. Tan, “Use of Low-Resolution Infrared Pixel Array
for Passive Human Motion Movement and Recognition” British Computer Society (BCS)
Human-Computer Interaction Conference, Belfast, UK, pp. 1-5, 2018.

The following publications are currently under review at peer-reviewed journals:

Y. Karayaneva, S. Sharifzadeh, Y. Jing, B. Tan, “Human activity recognition for AI-
enabled healthcare using low resolution infrared sensor data”, submitted for IEEE Access,
2022.

Y. Karayaneva, A. Szczepura, Y. Jing, “Conceptual framework for co-design of sensors
and robots with older adults living in a UK long-term residential care facility”, submitted for
Robotica, 2022.

1.5 Thesis Structure
The following Chapter 2 reviews the existing findings in three main domains: 1) human ac-
tivity recognition using IR sensors; 2) human activity recognition using Doppler radars; 3)
user acceptance of human activity recognition sensing technology and robots with a physical
presence among older adults. An in-depth study of existing approaches of IR data are pre-
sented including their major limitations and constraints. The Doppler radar data for human
activity recognition are evaluated from the perspective of unsupervised learning, which is
a minimally studied research area. Overall, existing machine learning approaches are in-
vestigated based on two categorisations: 1) traditional machine learning and deep neural
networks (NN); 2) supervised and unsupervised. Evaluation metrics for activity recognition
models as well as evaluation criteria for sensing technologies are described as well. Finally,
user acceptance of the aforementioned two types of agents is evaluated from individual per-
spectives.

Chapter 3 presents both the implementation of novel methods for data analysis and ma-
chine learning as well novel applications of existing methods to IR data. Novel methods
for interpolation, extrapolation and periodic noise reduction are presented and evaluated. In
regard to existing techniques, sparse feature extraction methods are applied for dimension-
ality reduction and variable selection. Additionally, a wide range of both unsupervised and
supervised methods for feature extraction and classification are applied in the pursuit of the
most accurate architecture.
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Chapter 4 is concerned with unsupervised learning for the Doppler radar data. Two
novel feature extraction methods are implemented and compared with state-of-the-art tech-
niques. In addition, a novel application of the existing Convolutional Variational Autoen-
coder (CVAE) is presented. Moreover, a number of existing methods for finding the number
of clusters are presented and compared.

Chapter 5 presents the novel user acceptance questionnaire framework. This includes an
extension to the TAM framework as well as additional novel insights, which can influence
the potential acceptance of sensing technology and robots with a physical presence in the
care home settings.

The findings of Chapters 3, 4, 5 are evaluated in Chapter 6. The chapter includes analysis
of the proposed findings as well as limitations of the work. Then, Chapter 7 provides a
conclusion to the study with insights for future work. This is followed by a list of references
and an appendix. Finally, Appendix A includes a copy of the user acceptance questionnaire
used in Chapter 5.



Chapter 2

Literature Survey

2.1 Introduction
This chapter discusses the existing sensing technologies and their relevant AI methods for hu-
man activity recognition. The sensing technologies in this case are categorized into intrusive
technologies and non-intrusive technologies. The available machine learning techniques for
human activity recognition can be grouped into two categorisations: handcrafted (manual)
techniques and deep learning techniques. In addition, evaluation metrics for both supervised
and unsupervised activity recognition models will be distinguished and reviewed. Then, both
intrusive and non-intrusive sensing devices will be evaluated considering key metrics such
as ease-of-use, cost-effectiveness, comfort, energy consumption. Finally, user acceptance of
sensors and robots by older adults will be included.

The modern healthcare is concerned with the privacy of patients. Intrusive technologies
such as cameras and wearables are therefore not recommended for use in healthcare con-
sidering their privacy-violating limitation. On the other hand, IR sensors and radar sensors
can be employed as non-intrusive devices, which will be outlined in depth. In regard to IR
sensors, introductory studies exist, which lack evaluation and discussion of layout arrange-
ments, number of sensors, multi-subject activities, and model generalisation. Furthermore,
micro-Doppler radars are considered for human activity recognition. The current literature
identifies only two studies concerned with unsupervised learning for micro-Doppler radars
for the studied purpose. Hence, unsupervised learning is the topic of interest of this thesis.

In this chapter, the machine learning techniques for human activity recognition will be
discussed based on the aforementioned categorisations. Handcrafted techniques are tradi-
tionally used by providing inexpensive computational time. On the other hand, the emer-
gence of deep learning methods allowed their applicability to large, high-dimensional datasets
with exceptional performances. Supervised learning methods for classification are used pre-
dominantly for human activity recognition, while feature extraction is either supervised or
unsupervised. Unsupervised methodologies are rare for this purpose as described above.

9
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A review of the evaluation metrics will also be performed for both supervised and un-
supervised methods. Accuracy, k-fold CV, Bayesian Information Criterion (BIC), Akaike
Information Criterion (AIK), confusion matrix, sensitivity, specificity, Receiver Operating
Characteristic Curve (ROC), Precision Recall Curve (PRC), and F-score will be discussed
for evaluating supervised methods. In terms of unsupervised methods, sum of squared errors
(SSE), Silhouette score, Davies-Boulding index, Dunn’s index, and Calinski-Harabasz index
index will be outlined. These metrics can be used for both evaluation of the clustering results
and finding the number of clusters.

In addition, all sensing devices will be reviewed based on their key characteristics such
as ease-of-use, comfort, cost, and size. Moreover, user acceptance of sensors and robots will
be conducted to outline any differences. Important enablers and barriers for the introduction
of aforementioned devices will be investigated initially. Then, studies for user acceptance by
older adults will be evaluated including both prior interaction studies and short to medium-
term interaction studies.

The literature review chapter is organised as follows: Section 2.2 will review both intru-
sive devices (Section 2.2.1) and non-intrusive devices (Section 2.2.2). Then, Section 2.3 will
evaluate the techniques as hand-crafted feature extraction strategies (Section 2.3.1), deep
learning (Section 2.3.2), supervised (Section 2.3.3) and unsupervised (Section 2.3.4). Eval-
uation metrics will be presented in Section 2.4 for both supervised methods (Section 2.4.1)
and unsupervised methods (Section 2.4.2). The sensing devices will be reviewed in Sec-
tion 2.5. Section 2.6 presents user acceptance of sensors (Section 2.6.1) and robots (Section
2.6.2) by older adults. Finally, Section 2.7 will conclude the literature review with the most
important highlights.

2.2 Sensing Technologies

2.2.1 Intrusive Technologies
Cameras are an obvious solution for human activity detection, which have been widely used
in gaming, healthcare, and security [40]. Thanks to the growing resolution (number of pixels
per unit area) and frame updating rate, the video streams contain rich spatio-temporal infor-
mation, which reveals the detailed and implicit features of human activities. For example,
detecting respiration from slight periodical movement of nose and chest [41, 42] and extrac-
tion of walking gaits features [43]. Working together with the depth sensor, the camera is
also widely used for facial articulated assessment for identification [44]. On the other hand,
taking of the identification information, generates privacy issue that blocks the deployment
of camera in residential area for continuous monitoring. In addition, the high definition and
fast frame-per-second (FPS) rates result in resource-demanding data stream in network that
limits large-scale deployment for daily in-home activity recognition.
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Wearable sensors refer to the miniaturized kinetic sensors, which are used to capture
human signals or sense their activities. Examples are accelerometers, gyroscopes or grav-
ity sensors [45, 46] that are often embedded in the wearable devices like smartwatches and
fitness trackers. These sensors accurately and timely measure the dynamic of body parts dis-
placement, orientation and tilt, and are low-cost solution for monitoring patients with activity
difficulties, assessing athletes’ movements and performance [47]. However, the discomfort
for wearing [48] and limited battery life [49] block the continuous use of them in daily life.

Application of acoustic sensors for activity recognition can be categorised into two gen-
res: echo-based; spectrum feature based. The former genre employs similar signal process-
ing techniques as radar, treats the reflected acoustic wave from the target as a distorted and
delayed copy of the acoustic source and uses the Doppler shifts as the metric to interpret the
subject activities [50]. The later genre detects activities via the feature of sounds from the
event sources including falling, glass breaking, door closing, and others [51]. Their main
limitation is the fact that basic to medium acoustic sensors suffer from a large number of
false positives due to environmental sounds such as winds. On the other hand, the highly
precise acoustic sensors capable of providing stable accuracies are often expensive [52].

To conclude, modern camera devices often suffer from subject identification privacy con-
cern. This poses a problem for their implementation in private areas considering the negative
user acceptance. While wearable technologies provide beyond human activity recognition –
including vital signs monitoring – they are usually constrained by low battery life and pa-
tients forgetting or feeling uncomfortable wearing the device. In terms of acoustics, their
signal is 1D and compared to 2D camera images, they are cheaper in terms of processing
time. However, they are very prone to be mixed with lots of environmental sounds and also
cannot detect health conditions that happen in silence without any sound. Considering the
limitations of the aforementioned devices, IR sensors and RF radars become the point of
interest for our research. Both devices obtain unobtrusive data, where subject identification
is avoided. In addition, the success of IR sensors and micro-Doppler radars has been shown
in the literature considering their high accuracy rates.

2.2.2 Non-Intrusive Technologies
2.2.2.1 IR Sensors

Heretofore, the pyroelectric infrared (PIR) and thermal camera are two types of popular
IR sensors. While PIR sensors have been applied for fall detection [53], the binary output
from the sensor only delivers coarse activity indication and also suffers from the false alarm
caused by varying environmental brightness. The thermal cameras obtain the high resolution
thermal pixels that can be used for constructing subject body profile and activity recognition.
However, the use of thermal camera has also the privacy and cost issues. Therefore, in
this thesis, characteristics of LRIR sensor are investigated that have the potential to provide
low-cost, non-intrusive, and high-accurate activity recognition solution while preserving the
privacy [17].
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IR sensors are a type of thermopile IR sensors, which detect the IR rays (also known as
IR energy) [54]. The thermopile sensors use small thermocouples deployed on a silicon chip.
These small thermocouples can absorb the IR rays and produce a signal output. Passive IR
sensors are known to have applications for non-intrusive human detection and recognition.
These sensors deliver thermal images based on temperature emitted from subjects and items.
As such, multiple human recognition is possible as well as human tracking. The main ad-
vantage of passive IR sensors is their non-intrusiveness compared with traditional cameras.
Hence, they can be deployed in private areas such as bedrooms and bathrooms.

An important disadvantage of passive IR sensors is their sensing distance, which is usu-
ally with a distance range of up to several metres. Considering this constrain, these thermal
devices can be employed in small to medium areas only. In addition, passive IR sensors
provide extremely low resolution thermal images, where small fractions of the human body
are difficult to be recognised [17]. Nevertheless, the low resolution can play the role of an
advantage considering the inexpensive computational time. Another particular concern is
the presence of ambient temperature when positioned in the field of view of the IR sensor.
Sources of ambient temperature are usually heaters, air conditioners or warm weather.

Grid-EYE (AMG8833) sensor is a passive IR sensor produced by Panasonic [55]. The
sensor has 60° field of view and provides 8 × 8 resolution outputs. The sensor distance is
within 5-7 metres, while the refresh rate is 1 or 10 FPS (frames per second). Grid-EYE’s
temperature range of measuring object is 0°C to 80°C for the high gain type, while the same
range is within -20°C to 100°C for the low gain type.

While human activity recognition is a constantly evolving field of machine learning,
passive IR sensor arrays have also been proposed for this aim. The main areas of this field
include applications for smart healthcare and eldercare. The applications of passive IR sensor
arrays are still novice, which contributes to the lack of research on certain topics surrounding
the issue. These topics include sensor positions, number of sensors, detection of multiple-
subject activities, noise alleviation, sensor displacement, and model generalisation.

The majority of current studies deploy a single ceiling-mounted passive IR sensor for a
number of single-subject activities [16, 17, 20]. These activities include standing, sitting,
walking, falling, and others. An evident lack of research exists concerning optimal sensor
position and number of sensors. In addition, multiple-subject activities are less prevalent than
single-subject activities, which leads to a lack of comparison. While ceiling-mounted sensors
can be useful for activities such as walking and falling, they pose difficulties for activities
conducted in the same location. The number of deployed sensors is also not studied, which
has important applications for multiple-subject activities. This is due to the fact that multiple-
subject activities lack symmetry when captured by two side sensors. As such, optimal sensor
selection can be applied in similar scenarios to discover the optimal sensor based on the most
correctly classified multiple-subject activities.
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An introductory study for IR sensor-based human activity recognition was focused specif-
ically on recognising falling for eldercare applications [16]. A single wall-mounted sensor
was deployed to classify fall or non-fall. Physical feature selection of four features was
proposed. The four selected features included: 1) the number of consecutive frames with de-
tected motion, 2) maximum number of pixels that temperature variance changed during step
1), 3) maximum temperature variance during step 1), and 4) distance of a maximum temper-
ature pixel prior and after activities. Selected features were then classified with k-Nearest
Neighbours (k-NN) with Euclidean distance as a measure. The authors used an older ver-
sion of Grid-EYE with a sensing distance of up to 5 metres. The same authors extended
their introductory study to cover more activities in addition to falling: no event, stopping,
walking, and sitting [17]. However, the experimental settings remained identical to their first
study. In addition, the same types of physical features were extracted for subsequent recogni-
tion. The extracted features were then analysed and classified using Support Vector Machine
(SVM). The recognition results revealed 100%, 100%, 94.8%, 99.9%, and 78.6% for falling,
no event, stopping, walking, and sitting respectively. Despite the limited number of sam-
ples, it can be concluded that sitting had the worst recognition result. This is in line with
with the fact that ceiling-mounted sensors are capable of detecting motion-related activities
very accurately. However, when presented with an activity such as sitting, the recognition
performance drops.

A similar study [20] improved the extracted physical features from Mashiyama’s papers.
By using the same experimental scenario with a single ceiling-mounted sensor, the authors
achieved 97% testing accuracy for detecting humans instead of using human activities. In
addition, the authors used the physical features from Mashiyama’s work for comparison,
which led to 70% accuracy.

Contrary to previous papers, a different study [18] used a single front far-infrared sensor
with 16 × 16 resolution. A dataset with various activities was collected including sitting,
walking, extending arms, and others. The authors proposed thermo-spatial histogram fea-
ture extraction contrary to thermal histogram and spatial histogram. The proposed methods
improved the recognition performance of the both previous state-of-the-art methods.

Noise alleviation methods for IR data are only seen in two studies [20, 21]. The authors
in the first study [20] proposed a Kalman filter-based method for reducing noise in sensor
recordings. While the Kalman filter method has shown robustness, it is difficult to be applied
to real world scenarios due to its assumptions that both system and observation models are
linear. In addition, the authors applied the existing background subtraction method to sep-
arate the target from the background. Background subtraction method was also applied in
the second study [21]. For this purpose, clear background frames with no targets should be
collected and subtracted from frames with targets and background noise. The background
subtraction method assumes a static background, which has shown unsuitability in real world
scenarios. This is due to the fact that real world scenarios are mostly dynamic occluded by
multiple objects and factors. To the best of our knowledge, no previous papers consider the
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alleviation of periodic noise from 2D spatio-temporal maps. In addition, no previous papers
consider the use of sparse techniques for alleviating the effect of Gaussian noise and no al-
gorithm was developed for the periodic noise effect seen in 2D spatio-temporal maps that
will be further explained in Chapter 3.

2.2.2.2 Radar Sensors

Radio sensors refer to the active and passive radars working on different spectrum segments.
The 2.4 GHz passive Wi-Fi radar and variants have generated big impact on recognizing the
indoor body gesture and respiration, even in the through-the-wall condition [56]. Taking
advantages of the wider bandwidth, higher sensitivity on target motion and diverse signal
modulations, UWB (around 10GHz band) [57] and mmWave radars (on 24, 60 and above
70GHz bands) [58] achieve higher activity recognition performance and detect accurate bio-
information such as respiration and heartbeat. But, the radio sensors have their own limi-
tations. The high performance variance brought by interference and geometry uncertainty,
makes the radio sensors difficult to be generalized in practice.

Doppler radars are a category of RF radars, which utilise the Doppler shift (effect) to
detect motion-related activities [59]. Such activities include walking, running, jumping, and
others. The Doppler shift is related to activities involving motion, which cause a shift in
the frequency. As such, this phenomenon can be used to capture and detect these activi-
ties. Doppler radars can be used for both detecting the activities and locating the position.
They work by sending a transmitted pulse and receiving echo. Therefore, the change of the
frequency is measured, which corresponds to motion-related activities.

Doppler radars have shown suitability for human activity recognition due to their deep
penetration, non-intrusiveness, and reliable accuracy rates. In addition, micro-Doppler radars
have been used for respiration monitoring [60], and gait pattern analysis [61]. Regarding
human activity recognition, micro-Doppler radars have been used for healthcare purposes
[23, 24, 60, 62].

Most of the current studies for Doppler radar based human activity recognition are based
on supervised learning, which requires the knowledge of the true labels. Hence, the frame-
works are supervised, which consist of unsupervised feature extraction followed by super-
vised classification. While unsupervised learning can be used in scenarios with poor la-
belling, it has not received enough attention.

The current literature for Doppler radar-based unsupervised human activity recognition
identifies only two papers. The first attempt to solve the unsupervised scenario for Doppler
activities data is seen in a previous study [23]. The introductory paper used the existing El-
bow method for distinguishing the number of activities. The number of activities were seen
as unknown as the ground truth labels were seen as not present. The Elbow method is a visu-
alisation technique, where a different number of potential candidate numbers of activities are
given. For each, the method calculates the mean square error (MSE) and a noticeable decline
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indicates the selected number of activities. The method can often be seen as ambiguous and
it was not compared with other number of clusters estimation techniques. Then, state-of-the-
art physical feature extraction followed by Hidden Markov Models (HMM) classification
was applied. The achieved average classification accuracy was 69%.

The same authors extended their study with a more sophisticated analysis [24]. Log-
likelihood HMM was implemented as a supervised feature extraction method. The features
were then clustered with the unsupervised clustering methods K-Means and K-Medoids. In
addition, comparison was performed for different state-of-the-art feature extraction methods
including physical feature extraction, Singular Value Decomposition (SVD), and Principal
Components Analysis (PCA). The overall accuracies were 79% and 80% for K-Means and
K-Medoids respectively using the newly derived feature extraction method, which presents
an improvement to their previous work.

2.3 Analysis Techniques for Non-Intrusive Sensing Tech-
nologies

The techniques for analysis of data derived from remote non-intrusive sensors are based
on two categorisations: 1) hand-crafted methods, and deep NN methods; (2) supervised
methods, and unsupervised methods. In addition, the described techniques can be used for
human activity recognition purposes based on different criteria. More specifically, hand-
crafted features can be utilised in small to medium datasets, while deep NN approaches are
seen as useful for larger datasets (including more activities and participants). Furthermore,
supervised approaches are applicable for human activity systems with knowledge of true
labels. On the other hand, unsupervised methods will allow the clustering of a wide range
of daily activities occurring in real settings, where only crucial activities such as a fall or
immobility can be labelled.

2.3.1 Hand-Crafted Techniques
Hand-crafted feature extraction methods are common in human activity recognition appli-
cations for IR data and Doppler radar data. These methods offer cheap computational time
combined with stable recognition performances. Two common categories of feature extrac-
tion methods are prevalent in the literature: physical features, and SVD/PCA.

A common method for unsupervised feature extraction used for both IR and radar data is
selecting physical features from the thermal images and Doppler spectrogram respectively.
In regards to IR data, four thermal image feature were selected by Mashiyama et al. in their
study [16], as described above, for detecting falls. Similar physical features were extracted
in previous studies [19, 20]. In terms of Doppler radar data, the pioneering study by Kim
and Ling [59] proposed the following six Doppler spectrogram features: 1) torso Doppler
frequency; 2) total bandwidth (BW) of the Doppler signal; 3) offset of total Doppler; 4) the
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BW without micro Dopplers; 5) normalized standard deviation of Doppler signal strength;
6) period of the limb motion. As observed, the method retained a very limited number of
features compared to the original high-dimensional data. Still, the recognition performance
revealed more than 90% testing accuracy using the state-of-the-art classification method such
as SVM.

Another group of methods used for feature extraction of IR data and Doppler radar data
are PCA and SVD. Both PCA and SVD have the capacity to decompose the original fea-
tures to low-dimensional principal components, which retain the most of the data variance.
In regards to Doppler radar data, variations of PCA have been applied in the pursuit of a
more accurately measured covariance matrix. The authors in a previous study [63] applied
L1 norm PCA opposed to standard PCA, which led to improved classification performance.
2DPCA has also been explored as a variation of PCA, which accepts 2D matrices instead of
vectors [64]. 1D-PCA requires the input to be vectorised, which often leads to vectors with
high-dimensionality. As such, the large covariance matrix is difficult to evaluate and requires
more computational time in comparison with 2DPCA. Previous work for Doppler radar data
has shown improved testing accuracies with 2DPCA feature extraction. In addition, unsuper-
vised multilinear PCA was combined with Linear Discriminant Analysis (LDA) and Shallow
Neural Networks (SNN) [65]. This work for Doppler radar data marked the first attempt to
include a 3D representation data of joint-variable signal of Doppler data in order to retain
the original dependencies. Results were optimistic compared to PCA and 2DPCA.

Unlike previous studies for IR-based human activity recognition, thermo-spatial sensi-
tive histogram was used in a single study [18], which was based on feature point extraction
seen in many high-resolution vision-based applications. In addition to IR applications, the
frequency-based method Discrete Cosine Transform (DCT) was applied to extract both tem-
poral and spatial features from each sequence [21].

In summary, previous works mostly utilised physical features, and SVD/PCA including
their variations for feature extraction. However, the IR images individually or concatenated
into 2D spatio-temporal maps along with Doppler spectrograms can be treated as images.
As a result, image texture analysis methods, that have not been used previously, can be
employed. The previous solutions for human activity recognition also lack the use of novel
methods for feature extraction as opposed to the off-the-shelf techniques.

2.3.2 Deep NN
The extracted features using handcrafted methods have increased over time as the methods
are applied to more complex problems. Therefore, this leads to expensive computational time
for both training and testing steps, which is problematic in real world scenarios. The current
literature presents a single study concerned with the application of deep NN approaches
to IR data for human activity detection [22]. More precisely, the authors proposed a 3D
Convolutional Neural Network (CNN) architecture with achieved 97.22% overall accuracy.
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This recognition performance served as an improvement in comparison with the state-of-the-
art feature extraction and classification approaches used for the same data in a previous study
[21]. On the other hand, Doppler radar based applications for human activity recognition
have a rich history of deep learning approaches. These approaches include deep feature
extraction or a combination of deep feature extraction and deep classification.

The main deep architectures deployed in Doppler radar based human activity recogni-
tion applications include CNN, Recurrent Neural Networks (RNN), Autoencoders (AE), and
Hybrid deep models. CNNs and Stacked AE (SAE) compared to SVM for classification
were used [66]. Despite the deep models’ complexity, SVM showed a slight improvement
to the recognition performance for the first dataset used in the study. In addition, CNNs
were used with three layers each having 20 filters for classifying human activities [67]. The
deep CNN architecture reported more than 90% average accuracy performance for human
activities detection.

A hybrid CNN-Long Short-Term Memory (LSTM) architecture was deployed for detect-
ing human activities using Doppler radars [68]. The proposed architecture combined the
advantages of hierarchy-based CNNs and temporal feature extractors of LSTM. The hybrid
architecture showed improved performance compared to both hand-crafted and deep learning
techniques such as SVM, CNN and CAE. In addition to hybrid architectures, an RNN-LSTM
architecture was deployed for detecting six human activities [69]. The inability of RNN to
process long sequences is compensated with the introduction of the LSTM structure to the
architecture. Recognition results revealed improvement using the proposed architecture in
comparison with deep CNN.

AEs are common unsupervised NNs, which consist of an encoder and a decoder. The
decoder aims to reconstruct the original data representation given the reduced dimension-
ality from the encoder. A stacked AE was used for recognising human activities including
falls derived from Doppler radar [70]. The unsupervised feature extraction structure was
followed by a softmax classifier, which required the labels as input. Similarly to this study,
convolutional autoencoder (CAE) for human activity recognition of Doppler data was re-
cently deployed [71]. The proposed architecture utilised the advantage of CNN in the sense
of feature detector and the unsupervised feature extraction of AE. Similarly, it was followed
by the supervised softmax classifier.

In conclusion, there have been limited studies on the use of deep NN strategies for IR-
based human activity recognition and more specifically their use has been limited to the
simple CNN architectures. However, other more advance architectures such as combina-
tions of CNN with LSTM for automated feature extraction and prediction, or deep AEs for
dimensionality reduction have not yet been utilized. On the other hand, radar-based applica-
tions for the similar purpose have a richer history of using deep NN architectures. However,
the majority of them fall in the supervised learning category opposed to the unsupervised
learning, where the latter is one of the topics addressed in this research.
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2.3.3 Supervised Learning
Supervised learning methods learn from a large number of training examples, each with a
given ground-truth output known as label in the case of classification or target in the case
of prediction problems [72]. For classification, given a number of concrete classes, each
training example is assigned a label. So that, each data sample is given as an input-label pair
consisting of a feature vector and a label. On the other hand, regression problems are defined
by a given real-valued output instead of a label. Supervised classification includes both
traditional machine learning methods and deep NN. Human activity recognition applications
with IR sensors and Doppler radars usually employ supervised classification based on hand-
crafted techniques or deep NN. The features for such systems can be extracted based on
supervised or unsupervised methods, where the latter is more common.

Reduced Rank Linear Discriminant Analysis (RRLDA) is a common supervised feature
extraction technique [73]. The goal for the method is to minimise the within-class distance
and maximise the between-class distance. An important constraint of the method is the
Gaussian assumption of data. As such, non-Gaussian data can lead to poorer results using
RRLDA. Supervised PCA is another popular method for supervised feature extraction [74].
The supervised variation of PCA estimates the PCs by their maximum dependence on the
response variable.

Probably the most common supervised classifier is SVM. It was invented in early 1960s
[75]. Improved later, the method has shown substantial results for classification, especially
with the use of kernels [76]. The use of kernel in its objective function allows classification
of datasets with non-linear nature. Another widely used supervised classification method
is k-NN. It was developed in 1951, which follows a basic rule for nearest neighbours [77].
The method most commonly uses Euclidean distance as a metric, while other distances can
also be applied. As described earlier, both SVM and k-NN have been previously used for
IR sensor and Doppler radar based activity recognition applications. That is due to their
simplicity and efficiency. The two classification approaches have shown stable accuracies,
which have been comparable to the more complex deep NN approaches. Additional methods
include Random Forest (RF) and Logistic Regression (LR). RF represents an ensemble of a
number of decision trees, where voting takes place. Inspired by Amit and Geman [78], the
researcher in a later study [79] proposed RF by showing the importance of individual tree
classifiers and the connections between them. LR was originally used as a binary classifier
indicating the probability of a certain class or event. Later, the LR method was successfully
implemented for multi-class problems [73].

Deep learning exploration of supervised techniques begins with the development of a
single-layer perceptron in 1958 [80]. The network consists of only input and output layers
lacking any hidden representations. As such, the single-layer perceptron has shown appli-
cability to linear problems. However, the network failed at non-linear problems such as the
XOR function, which required a hidden layer.
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Considering this major shortcoming of single-layer perceptrons, multi-layer perceptrons
(MLPs) were invented in the 1970s [81]. These networks introduced a hidden layer and had
the ability to separate non-linear data. Backpropagation based on gradient descent optimiza-
tion was introduced as the main method for training MLPs. The backpropagation method
consisting of two steps, forward pass and backward pass, allows the network to learn, and
has now become the most common network training method. Since MLPs faced strong op-
position in the face of simpler methods such as SVM and k-NN, the field was temporarily
abandoned [82]. However, the emergence of deep learning allowed these networks to re-
ceive more attention. An important breakthrough was the invention of faster GPUs, which
tangibly reduced the training computational time for deep learning architectures. Since then,
deep NNs have proven their recognition advantage compared to SVM and k-NN as well as
their capability of gradual improvement with the addition of more training data.

In summary, supervised learning solutions for human activity recognition have been
widely researched and proposed. These include both traditional machine learning architec-
tures and deep NN architectures, where the latter found popularity later leading to extreme
emergence in the literature. Classical machine learning architectures are less computation-
ally expensive and more easily implemented. Despite the emergence of deep learning, these
classical architectures still remain popular and have shown significant results, especially for
smaller training datasets. That is also the case for IR sensors data. Most previous research
works have used these groups of techniques and only one previous research was concerned
with supervised deep NN classification. Therefore, in this research, deep NN architectures
will be employed and compared with other supervised strategies in order to find the most
optimum solutions for IR data.

2.3.4 Unsupervised Learning
Unsupervised learning is a major field of machine learning, which does not require the true
labels as an input [73]. This, on the other hand, can negatively affect the classification per-
formance as only the data samples are used as an input. However, unsupervised frameworks
are desirable when labelling large datasets is too costly. There are a variety of unsupervised
learning subfields, where the most widely known is cluster analysis or also known as data
segmentation. Since unsupervised learning does not require the labels, in data segmentation
the data samples are designated in different groups / clusters based on their inputs and char-
acteristics. The goal for cluster analysis implies that data samples from the same cluster are
more related to one another. On the other hand, data samples from different clusters should
be more distinct.

Reviewing the previous studies show that there have been few studies, where unsuper-
vised clustering methods were used for human activity recognition. Especially, there are
not any cases for IR data and in terms of Doppler radar based human activity recognition,
only two papers were found. As described in Section 2.2.2.2, the two studies are focused on
unsupervised clustering by using hand-crafted techniques in comparison with the plethora
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of supervised classification approaches for the same purpose. On the other hand, the feature
extraction was mainly performed unsupervised for radar data. For example, physical fea-
ture extraction or SVD/PCA have been used. Considering (1) the diverse number of daily
activities and the fact that few of them might be important for recognition (2) the difficult
labeling of large number of recorded data, unsupervised strategies are important to tackle
these problems. Therefore, in this work, their use for radar sensors data will be addressed.

Three types of clustering methods exist: combinatorial methods, mixture modelling, and
mode seeking. Currently, only combinatorial clustering methods have been used in the area
of human activity recognition using Doppler radars. Combinatorial methods for clustering
only consider the input variables for each data sample excluding any underlying probability
[83]. The goal is to assign each data sample to only one cluster based on similarity. An
important constraint of combinatorial methods for clustering is the number of clusters K
to be known priori and K < N , where N is the total number of samples. The methods
use distance, most commonly Euclidean distance to assign the data samples to each cluster.
Two common clustering approaches are K-Means and K-Medoids, which have been applied
previously for unsupervised Doppler radar based activity clustering [24].

Hierarchical clustering methods omit the constraint of user to provide the number of
clusters [84]. In hierarchical clustering, the lowest level assumes each data sample as a
distinct cluster, while the highest level represents one large cluster, where all data samples
are assigned. Two categories of hierarchical clustering exist based on level starting point:
agglomerative clustering and divisive clustering. Agglomerative clustering begins from the
lowest level by merging clusters based on similarity at each step. On the other hand, divisive
clustering starts from the large cluster at the highest level and divides it to more clusters.
Hierarchical clustering is a less researched area of clustering and has been largely constrained
by the lack of precise objective functions. A major development in hierarchical clustering
was the proposal of cost function minimisation by Dasgupta [85]. Inspired by Dasgupta’s
work, researchers in a later study [86] analysed the definition of a “good” objective function
by considering a number of functions for both similarity graphs and dissimilarity graphs.
Therefore, the definition of a precise objective function will allow the implementation of
improved approximation algorithms.

Mixture modelling methods are clustering methods based on probability. Multivariate
Gaussian Mixture Models (GMM) are the most common mixture methods used in the litera-
ture [87]. These methods assume a number of Gaussian distributions. Each distribution can
be viewed as a single cluster or group. The goal is to define a probability for a specific data
sample to belong to a certain distribution. In addition, Poisson distribution [88] and Mises-
Fisher distribution [89] have enjoyed some popularity for a number of applications including
document classification, text and gene expression. Expectation-Maximisation (EM) algo-
rithm is commonly applied in cases of missing or incomplete data.

Mode seeking methods are a less researched field of clustering methods. Mean shift
clustering and Patient Rule Induction Method (PRIM) are two popular mode seeking meth-
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ods [73]. The first approach for mode seeking methods proposed in 1975 uses mean shift
for density function estimation [90]. Mean shift is used as a non-parametric approach for
positioning the modes. The algorithm assigns each data sample to the closest modes. The
modes in this approach can be viewed as clusters. On the other hand, the PRIM starts from
the highest level, where all data samples belong to one large cluster or box. The feature
space in this method is known as a “box”. To complete terminology, “face” is used at each
step of the method, which is usually the highest box mean. At each peeling step, some of
the data samples are removed based on the face. This results to a specific minimal number
of data points in the box. Therefore, the process is repeated until a satisfactory number of
boxes is achieved. However, the mean shift has been highly constrained by its expensive
computational time. Later, k-NN was proposed, which improved the computational time
[91]. In addition, to improve the performance of the method on high-dimensional data, a
novel method has been proposed to directly estimate the ratios of density derivatives [92].

Unsupervised learning methods can be categorised as manual or automated methods for
feature extraction and decision making. For manual techniques, prior information about
the experiment’s conditions and environment are required [93]. In spatio-temporal feature
extraction techniques, the signal strength and angle of measurement can affect the filtering
window size and scaling or choice of basis function. On the other hand, automated methods
do not require prior knowledge about the experiment and remove the need for manual settings
[94, 95]. Nevertheless, the computational time required for training automated methods is
noticeably more expensive compared to manual methods.

Another group of unsupervised methods are based on NN. The idea of competitive learn-
ing, opposed to error-correction learning such as backpropagation, was first introduced in the
1970s [80]. Competitive learning implies that the output neurons compete with one another
to be activated. In addition, only one output neuron can be active at a time. Later, Koho-
nen introduced Self-Organising Maps (SOMs), which are based on the notion of competitive
learning [96]. The SOMs are largely based on the human brain’s cerebral cortex – an area
responsible for the sensory inputs such as visual or auditory information. SOMs are used for
dimensionality reduction of high-dimensional data to a relatively low-dimensional output.
In SOMs, the networks learn by shifting its weights to the active neurons. More specifically,
only the active neurons are allowed to learn.

AEs are a powerful category of unsupervised neural networks for dimensionality reduc-
tion, commonly used for denoising [97]. Their main disadvantage is the fact that they learn
local parameters of each data sample and include only a reconstruction term. To address
these limitations, Variational AEs (VAEs) were introduced recently [98]. VAEs include a
regularisation term and introduce a probability distribution for each data sample. The proba-
bility distribution is normally a standard distribution with zero mean and variance of one. In
this sense, it ensures that data samples belonging to the same class are given similar represen-
tations in the Euclidean region. As described in Section 2.2.2.2, variations of AEs including
CAE and SAE have been used for unsupervised feature extraction for Doppler radar based
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human activity recognition. While these deep approaches are more complex, they have pro-
vided improvements compared to their hand-crafted competitors. In terms of IR sensors,
while unsupervised approaches are common for feature extraction, they usually fall in the
hand-crafted category.

In conclusion, unsupervised methods have not been used widely for human activity
recognition despite their advantages. Therefore, the existing literature lacks a comparison
between different unsupervised methods for clustering. While the manual data labelling is
expensive, unsupervised approaches can provide clustering of activities in the absence of
labels. Since, in practice, recognition of only few groups of extreme health condition are of
interest, unsupervised clustering results can be used together with few extreme activity labels
in this case. Unsurprisingly, the disadvantage relates to the fact that the unsupervised meth-
ods are only guided by the characteristics and variations of data samples and, this constraint
usually leads to poorer accuracy in comparison with supervised architectures. However, a
semi-supervised framework based on clustering of activities followed by the use of the labels
of extreme condition can be considered.

2.4 Evaluation Metrics for Sensing Technologies
This section discusses metrics for evaluating activity recognition models. In particular, the
generalisation ability is studied, which is a crucial capability of every model. Generalisation
is the model ability to predict new data to a reasonable level. Most commonly, the data in
machine learning is divided to three sets: training data, validation data, and testing data [73].
The manner of data split is usually by random order. Training data are used for training
the model, while validation data are used for finding the optimal model’s parameters. On
the other hand, the optimum model is tested with the use of the remaining testing set. The
metrics can be distinguished in two categories: 1) supervised metrics; and 2) unsupervised
metrics.

2.4.1 Supervised Metrics
Classification accuracy is one of the most common metrics for both binary and multi-class
supervised learning problems [99]. The metric is highly applicable for balanced human
activity recognition datasets. It is calculated by diving the number of correct predictions by
the total number of predictions as given in the following equation:

Accuracy =
TP + TN

TP + TN + FP + FN
(2.1)

where TP and TN refer to true positives and true negatives respectively, while FP and FN
denote false positives and false negatives respectively.
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As such, the accuracy varies in the range of 0 to 1 or 0% to 100%. An important note for
accuracy is the equal number of data samples for all classes. Hence, if the overall accuracy is
considerably high, it can be assured that the model performance over all classes is reasonable.
The train accuracy shows the model performance over the same data used for developing the
same model and usually is the highest accuracy. The validation accuracy shows the optimum
accuracy that is achieved on the validation process as the model parameters were varied. On
the other hand, the test accuracy shows the model performance over the unseen data during
the training. A well-trained generalized model should show very close accuracies over the
train, validation and test data.

The model accuracy is a function of model complexity [100]. Poor train and test accu-
racies can be due to a high bias in the model. A high level of bias indicates a low complex
model that is under-fitted. For example, when the number of variables are not enough and
more information in the form of additional features or variables are required. It also might
be due to the lack of enough samples. On the other hand a model can suffer from over-fitting
issue that is an indicator of high complexity. An over-fitted model accuracy is very good on
the training and is low in the case of testing data. Such model is not generalized to work on
unseen future data. The aim of validation process and model selection strategies is to find an
optimum model that does not suffer from any of the over- and under-fitting issues. This is
called the bias-variance trade-off, which is illustrated in Figure 2.1 based on error.

Figure 2.1: Bias-variance trade-off graph based on error [101].

One of the common techniques for tuning the optimum model parameters and selection
of the best model parameters is K-fold CV [102]. It is also widely used for estimation of the
prediction error. Usually, K-fold CV is deployed especially in cases with reasonably large
datasets. A whole numberK is selected, which denotes the number of subsets of the original
data. Most commonly, 5 or 10 are applied forK in CV. By usingK = 5 CV, five presumably
equal subsets of the data are used. At each step, the model is fit to the remaining K − 1
subsets of the data. Therefore, prediction error is estimated for each step with a total number
of K steps. Finally, the total prediction error is calculated based on the average of errors
over the K steps. For the purpose of model selection, several candidate parameters of the
model are varied over the CV loop. Then, the dimension of the average error array is equal
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to the number of parameters and based on that, optimum model parameters corresponding to
minimum average error are found.

A common question is the correct selection of K. The value for K should be chosen in a
way that the samples in the validation fold are reasonable in number. That allows validating
the trained model without having bias or variance issues. In condition that a large number of
samples compared to the number of variables exist, K can be chosen as a large number e.g.
10. However, when the number of samples are limited, K should be small, so that the vali-
dation fold will not be so limited in the number of samples. The authors in a previous study
[102], who considered K = 5 CV, observed that the classifiers improved their performance
by increasing the dataset to 100 observations. In addition, increasing the dataset to 200 can
provide only a minor improvement to the previous result. It can be concluded that bias is of a
particular concern for smaller applications. With K = N CV, the training sets are extremely
similar, which explains the higher variance in the validation errors over the folds. However,
the results are unbiased for this case, which is an advantage. Considering the computational
complexity, it is obvious that K = N CV is more expensive than K = 5 or K = 10 CV.

Bayesian information criterion (BIC) is a statistical method for model selection based
on maximisation of log-likelihood function estimation [102]. The method, also known as
Schwarz information criterion (SIC) was proposed by Schwarz in 1978, by using a Bayesian
approach [103]. BIC is similar to Akaike information criterion (AIC), which is another
statistical method for assessing a model’s quality [104]. More specifically, BIC and AIC are
given as:

BIC = ln(n)k − 2 ln(L̂)

AIC = 2k − 2 ln(L̂)
(2.2)

where n refers to the number of data observations, while the number of parameters estimated
by the models is denoted by k. In addition, the maximisation of the log-likelihood function
of the model is given by L̂.

A common property for both BIC and AIC is the ability to penalise models, which are
given a higher number of parameters. This is important due to the fact more parameters
can lead to over-fitting. As such, these techniques provide a good trade-off between model
complexity and model goodness. However, it is worth noting that BIC provides heavier
penalties if the model’s complexity increases. In addition, the model with minimum BIC
corresponds to the model with the maximum posterior probability. On the other hand, AIC
computes the difference between the data likelihood and the true likelihood. Similarly, the
AIC with the lowest value is the optimum model. A particular limitation of BIC is the fact
that it imposes a selection of simpler models due to its penalties nature. Considering this
limitation, AIC usually tends to choose more complex models due to its penalty function.

Confusion matrices, also known as contingency tables or tables of confusion, are used
for analysing classification accuracy per class, which are both applicable to binary and multi-
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class problems [105]. In addition, confusion matrices serve as means for identifying prob-
lematic classes by providing a cross-section of actual class versus predicted class. The tables
of confusion provide the true positives, true negatives, false positives, and false negatives.
By having this detailed analysis in hand, commonly misclassified classes can be identified
and studied.

Two additional important evaluation metrics are sensitivity, also known as recall, and
specificity [106]. Both methods are commonly used in the field of medical test diagnosis for
binary problems. The sensitivity and specificity are calculated as follows:

Sensitivity/Recall =
TP

TP + FN

Specificity =
TN

TN + FP

(2.3)

ROC [107] and PRC [108] are visualisation methods, which illustrate the model at all
thresholds. Similarly to sensitivity (recall) and specificity, ROC and PRC are commonly
used for binary problems. More specially, the ROC curve represents a plot between true
positives rate (TPR), also known as sensitivity or recall, and false positives rate (FPR). The
definition of FPR is given as follows:

FPR =
FP

FP + TN
(2.4)

The PRC aims to show the direct representation of precision and recall (sensitivity). This
is extremely useful in cases of imbalanced data, where the number of negatives dominates
over the number of positives [109]. As such, the user will be more interested in discovering
the positives rather than the negatives. A common example is imbalanced medical data,
where the majority of patients do not have the disease in question due to its low prevalence
among the population. Precision is given by:

Precision =
TP

TP + FP
(2.5)

The F-score provides the Harmonic mean of precision and recall [110]. It is discovered
that the F-score provides better results for projects with higher sensitivity. On the other
hand, projects with higher specificity will suffer when using this measure. The method is
commonly used for handling imbalanced classification data. It is defined as follows:

F − score = 2 ∗ Precision ∗Recall
Precision+Recall

(2.6)

where recall and precision were given in equation (2.3) and equation (2.5) respectively.

In summary, classification accuracy and confusion matrices are utilised in this thesis.
This is due to the fact that the thesis involves multi-class problems with balanced data. In
addition, confusion matrices are used to identify the misclassification between two or more
classes that provide further insight about the problems.
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2.4.2 Unsupervised Metrics
Unsupervised learning’s main property is the absence of true labels [83]. As such, the dis-
cussed metrics such as classification accuracy, K-fold CV, BIC, AIC, confusion matrix, sen-
sitivity, specificity, ROC, PRC, and F-score are not applicable. On the other hand, unsuper-
vised metrics exist, which are primarily based on the two important characteristics of cluster
analysis. These are the minimisation of data points distances belonging to the same clus-
ter/class, and maximisation of the data points distances, which belong to different clusters.
As distances are considered, different types for distance computation can be used. For the
studies in this thesis, Euclidean distance is applied. Two-dimensional Euclidean distance is
given as follows:

d(p, q)2 =
√

(q1 − p1)2 + (q2 − p2)2 (2.7)

where p and q have the coordinates p1, p2, and q1, q2 respectively.

In addition to the unknown true labels in unsupervised learning applications, the number
of clusters is also unknown. As such, the described methods below can serve two purposes.
Firstly, they can show the quality of a model, which can be used for model selection of
unsupervised methods. Secondly, they can be used in a combination with a clustering method
such as K-Means and K-Medoids for number of clusters estimation [111].

Sum of squared errors (SSE) can be used as a metric for identifying the clustering quality
[112]. More specifically, SSE estimates the sum of squared Euclidean distances between an
observation and the centre of the cluster, also known as centroid. The centroid is usually
represented by a central vector and it is used by a wide range of methods such as the popular
clustering methods K-Means and K-Medoids. For K-Means, the centroid is not necessarily
a data sample. On the other hand, K-Medoids, which can be implemented as a similar
distance-based clustering method, requires the centroid to be a data sample. SSE is given as
follows:

SSE =
n∑
i=1

(xi − x̄) (2.8)

where n refers to the total number of observations, xi represents a single observation, and x̄
is the cluster centroid/centre.

Silhouette score is probably the most common technique for estimating the quality of a
clustering model [113]. In addition, the method can also be used for graphically estimating
the fit of a data point to a cluster, and number of clusters estimation. Silhouette coefficients
considers two important values: the mean distance between a sample and all other samples
in a cluster; the mean distance between the same sample and all other samples belonging to
the second nearest cluster. A higher value for Silhouette coefficients is desirable.
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Davies-Bouldin index is another clustering evaluation metric, which considers the simi-
larities between clusters [114]. Differently from other metrics, a smaller value corresponds
to dissimilar clusters, which is desired in cluster analysis.

Dunn’s index is a popular method for evaluating clustering methods [115]. It refers to the
minimum inter-cluster distance, which is divided by the maximum cluster size. Logically,
the method has constraints in cases with a higher inter-cluster distance and a small maximum
cluster size. Hence, this can lead to a large value, which can be misleading in some cases.

Calinski-Harabasz index is a method for evaluating clustering methods [116]. It is given
as a ratio of the between-cluster sum of squares and within-cluster sum of squares. As such,
Calinski-Harabasz index measures both separation by evaluating the maximum distance be-
tween clusters centroid and compactness of the data points belonging to the same cluster.

There are cases similar to our proposed project, where the true labels are known, but
unsupervised learning is applied for analysis. By having the true labels and estimated cluster
assignments, a number of techniques can be applied to match them. This is needed due to
the fact that cluster assignments order do not necessarily follow the original order of the true
labels. The most popular methods for this purpose are homogeneity, completeness, and V-
measure [117]. Two important constraints are noticeable for homogeneity and completeness.
In regard to homogeneity, each cluster needs to contain only members of a single class.
Completeness implies that all members of a given class have to be assigned to the same
cluster. Due to these constraints, the results can be misleading and unexpected since they
are linked to accuracy. V-measure, on the other hand, can provide more accurate results, but
it also has an important constraint. If the true labels and predicted labels are swapped, the
result will be identical.

To conclude, a number of clustering methods for finding K and estimating the “good-
ness” of clustering results are used in this thesis. As the true labels are known, supervised
metrics can be used such as accuracy and confusion matrix considering that the problem is
multi-classed with balanced data.

2.5 Evaluation Criteria for Sensing Technologies
The aforementioned sensor devices are evaluated in terms of comfort, ease-of-use, energy,
and cost in this section. Their metrics are seen from the perspective of the end-users, which
are the older adults in this context. A major review study identified that older adults showed
willingness to accept a new technology mostly based on the perceived health and environ-
ment benefits [48]. In addition, cost and perceived need were found crucial for adopting a
new technology by older adults [118].

The rapid development of modern technologies has allowed the dissemination of more
affordable, cost-effective, and portable sensors [119]. Hence, the smart sensors can relieve
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the need for staff monitoring, while providing important features such as human activity
recognition, vital signs monitoring, or gait pattern analysis. While the user acceptance of
ambient sensors is constrained by cost and maintenance, the acceptance of wearable sensors
is more complex [120].

In terms of comfort, wearable sensors can be directly evaluated as they interfere with the
user. Ideally, wearable sensors should be with minimal weight and size, while causing a less
intrusive sense to the user’s skin. The most common wearable system is the combination
of an accelerometer with a gyroscope for human activity recognition [45]. Wearable sensors
can be attached to different parts of the human’s body including most commonly wrist, chest,
and waist. Wrist-attached sensors can recognise basic activities, while motion activities are
best detected by waist-mounted sensors, which cover a larger part of the human body. [121].
Additional body parts for sensor attachment include foot and thigh for leg-related activities
[122]. Considering all other studied sensors, as they are less-obtrusive and interaction-free
devices, older adults have generally shown moderate to high user acceptance [26, 27]. The
comfort of wearable sensors can be regarded as mixed considering a study with 28 subjects
[123]. On the other hand, wrist-worn wearable sensors for activity tracking were highly
admired by the participants group (n = 20) in a different study [120]. As observed, the
number of participants in each study was mostly limited, which can potentially lead to bias
in the results.

The ease-of-use is an important factor for user acceptance. In the context of sensor
systems with applications in the eldercare, installation [119], device maintenance and man-
agement [124], and interaction [125] are of particular concern. In terms of installation and
device maintenance, it was reported that the majority of sensor systems require professional
installation and frequent maintenance. The interaction factor mainly affects private home-
based older adults and elderly care homes’ staff. As identified earlier, a study has outlined the
the need for training requested by care home staff when approached with potential interac-
tion of any new technology [126]. Furthermore, care home staff have particularly expressed
concerns with operating and maintaining technologies due to lack of special knowledge.

Cost-effectiveness is an important factor for user acceptance of sensor systems, which in-
cludes device cost, infrastructure components cost, installation and maintenance cost [127].
However, wearable sensors are required for each older adult, which, on the other hand, in-
creases the overall cost. In addition, it was reported that multiple sensors are needed for
each person to detect more complex activities [122]. Acoustic, IR, and radar sensors have
also shown a cost decrease with the mass production of such technologies. While acoustic
sensors are usually inexpensive, a broad number of devices is needed for optimal accuracy.
Hence, this can increase the overall cost of the system [122]. A single radar sensor can be
required in one room due to their deep penetration and high distance range [128]. Likewise,
IR sensors do not cause huge economic burden, but they often suffer from low distance range
[16]. In this regard, more IR sensors can be required to cover one large room.
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Energy consumption is crucial in the context of portable devices used for older adults.
Low battery life for wearable devices has been identified as an important barrier [129]. The
higher battery life corresponds to a bigger in size battery, which then poses a different issue.
IR sensors have been identified as low power consumption devices [122]. Micro-Doppler
radars are shown to leverage the existing RF bursts in the environment, which lowers the
used power consumption [130]. Wi-Fi radars, on the other hand, are high power consumption
devices, which limits their long-term usage [122].

2.6 User Acceptance of Sensors and Robots
The introduction of sensors [131], and robots [132] in the eldercare has been emerging in
the recent years. Ideally, user acceptance of any technology should be studied prior the
development and introduction. Nevertheless, user acceptance of such technologies among
residents of care homes has largely been ignored. In terms of sensors, while the studied
solutions in this thesis are less intrusive, factors influencing their user acceptance are still
minimally researched. Considering the very diverse real settings with a number of furniture,
occupants, and heating source, an IR sensor or a Doppler radar can be mounted to the body
of a robot for human activity recognition. As such, the robot can provide interactive sensing
of subjects, while its user acceptance among the residents is crucial.

Current studies are focused on identifying the potential enablers and barriers to the in-
troduction of (1) sensors and (2) robots in the care home settings or private home. A small
qualitative study [126] investigated the enablers and barriers for older adults (n = 9) and
care home staff (n = 24) towards sensing systems. The major enabler identified by the older
adults group was safety enhancement. On the other hand, the care home staff expressed
concerns for lack of knowledge to use the technology. Besides emergency sensors for safety
enhancement, sensors capturing daily activities for subsequent analysis were not addressed
due to the lack of discussions for the potential benefits.

The most recent research, which included analysis of 12 qualitative studies for socially
assistive robots, was focused on enablers and barriers for robots. The study identified four
enablers and three barriers [133]. The enablers included enjoyment, usability, personali-
sation, and familiarisation. On the other hand, technical problems, limited capabilities, and
negative preconceptions were found to be the major barriers. Similar study focused explicitly
on the zoomorphic robot Paro identified the social stigma as a primary barrier [134].

2.6.1 User Acceptance of Sensors
Sensors in general are emerging in almost every field of daily life. As such, a number of stud-
ies have outlined the general user acceptance of these devices among the end-users mostly
in healthcare applications [135, 136, 137]. A major review discussing 31 studies for sen-
sors user acceptance in different fields of healthcare found overall acceptance of sensors in
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the sense of telemedicine research [138]. However, the individual studies had a number of
differences in relation to sample size, time of interaction, and healthcare field, which posed
issues for drawing conclusions.

The literature investigating the user acceptance of sensors among the older population
is very limited. A pilot study (n = 13) focused on private home-based residents found that
sensors are desirable in cases where no interaction is required [25]. The authors of the study
stressed that no prior interaction of the study participants with sensors was conducted. As
such, the views, perceptions, and attitudes of the older adults were less affected by previous
experience. In regards to potential benefits of sensor systems, fall detection was regarded
important by the participants. Likewise, a similar study (n = 11) found the capability of
detecting falls crucial [26]. This finding corresponds to the interaction-free preference as
participation by the older adults is not needed. Since both studies included focus groups
based at private homes, they found the sensors as a potential tool for prolonging their inde-
pendent stay at home. In addition, cost was found to be a major concern for the participants
in these studies. This is due to the fact that they live independently and might be required
to cover the cost by their own means. Wearable sensors were evaluated explicitly in a small
study (n = 5) with mainly positive responses [28]. However, the same study only evaluated
this technology failing to provide comparison between different types of systems. Neverthe-
less, a Switzerland-based study (n = 34) reported low to moderate positive user acceptance
for a wireless sensor system [29].

To conclude the findings of the limited literature, older adults highly value technologies
for emergency situations, which omit the need for any specific interaction. Independently
living participants identify cost as a major barrier if expected to be covered by themselves.
In addition, more investigation is needed with potential comparison of sensor systems with
robots with a physical presence.

2.6.2 User Acceptance of Robots
The use of robots in human social spaces is becoming increasingly common. Ideally, hu-
man perceptions and opinions towards the introduction of any new technology should be
considered by developers prior to the design and modelling stage [139]. This will ensure
that a newly implemented technology leads to fewer errors and less likelihood of provid-
ing misleading information, which, in its turn, will make the technology more usable and
satisfactory. The term ‘robot’ is defined as a machine—especially one programmable by
a computer— capable of carrying out a complex series of actions automatically. Robotics
involves design, construction, operation, and use of robots. Because many robots are now
accepted in homes and wider society, consideration of their acceptance by the elderly popu-
lation can be made purely based on their existing characteristics [140].

Due to the fact that robots are regarded as a new type of technology, several countries
have surveyed ‘general acceptance’ by their populations. A 2012 survey of citizens in Euro-
pean Union (EU) countries [141] found that, although acceptance varied between countries,
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robots were generally accepted by the majority (70%) of EU citizens, with men more likely
to demonstrate a positive view (76% versus 65% of). In terms of age, those between 15 to
24 years old reported 79% acceptance of robots, with this falling to 62% among citizens
aged 55 and over. Higher education level, interest in technology and science, and personal
experience with robots were also key factors that increased user acceptance. In terms of the
fields and/or institutions where robots should be used, the vast majority of EU citizens con-
sidered that robots should perform jobs that are too hard and dangerous for humans. Priority
areas were space exploration, manufacturing, military and security, and search and rescue.
The least accepted fields were care (children, elderly and disabled), leisure and education.
Overall, 60% of EU citizens believed that robots should be banned in the area of care al-
though 76% agreed with the statement that robots are good for society because they help
people. A very high proportion of people (91%) agreed that careful management of robots
is needed. This was closely connected to perceived impact on employment; 70% considered
robots could steal people’s jobs and only 39% agreed that robots will boost job opportunities.

A similar study has examined the views of American citizens towards robots [142]. This
more recent research mainly focused on the potential for automation to impact on jobs in
various sectors, with only 33% “enthusiastic” about the concept of human replacement. Mir-
roring the European findings [141], the majority of Americans (85%) favoured use of robots
in settings that are too dangerous and unhealthy for humans. Similarly, the least accepted
businesses for automation were healthcare and education.

Classical user acceptance models such as the TAM only consider the perceived ease-of-
use and usefulness of a new technology. For robots, however, other hedonic principles have
been identified such as enjoyment and attractiveness, especially when considering social
robots [143]. Physical attractiveness is therefore another important property which could
appeal to users in a positive way. A further study investigating humanoid robots acceptance
(n = 15) found that although the majority of such robots were criticised by the participants,
some small humanoid robots were highly admired. [144].

The literature focused on user acceptance of robots among elderly residents is richer com-
pared with studies for sensors user acceptance. However, the majority of studies investigate
the attitudes towards a specific robot with a physical presence following short to medium
term interaction. Hence, this potentially results in bias in elderly people’s perceptions and
attitudes. To begin with, the robot’s orientation in the context of elder care has been studied
(n = 71) [145]. The study mainly identified the lack of conversation of potential activities
and their benefits related to robots interaction. More specifically, the study stressed on how
potential benefits of robots should be related to real world scenarios. Similarly to the stud-
ies identifying the barriers, another study reported the limited capabilities of such agents as
pivotal [34].
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2.6.2.1 Robot’s Physical Appearance

The robot’s physical appearance is crucial as it presents the first impression. It can be cat-
egorised in the following categories: android, human-like, mechanical humanoid, zoomor-
phic, and mechanical. An important concept in the field of robot’s physical appearance is
the term “uncanny valley” coined by the Japanese professor Mori [146]. The uncanny valley
identifies that mechanical humanoid robots are highly likely to cause familiarisation among
people. On the other hand, when humanoid robots possess human’s attributes such as skin,
hair, and nails, this can easily lead to revulsion among people.

Anthropomorphism (translation from Greek: “human form”) is particularly relevant when
robots resemble humans and are used in social tasks. Attribution of human characteristics to
non-human entities means that people’s expectations towards robots are principally formed
based on their own perceptions, emotions and beliefs [147]. This is closely linked to user
acceptance, with the assumption that if robots resemble humans physically, mentally and
technically more closely, the chances of acceptance increase. Research about the reasons
behind attribution of human characteristics to robots concludes that it makes a non-human
entity more familiar, friendly, and predictable for people [148].

A France-based study (n = 25), which included all physical appearance categories for
evaluation among older adults [30], has found correlations with Mori’s uncanny valley. The
most preferred category was mechanical humanoid, followed by zoomorphic (mechanical
animal-like, and animal-like) and mechanical robots. Android and human-like robots were
ranked at the bottom of the table.

These findings are in line with two other studies, which evaluated the user acceptance
of mechanical humanoid robots Kompai (n = 11) [31] and NAO (n = 19) [32]. The first
study reported the views of Kompai following one-month interaction. While the interaction
reported mainly negative responses, the physical appearance was highly admired by the resi-
dents. The short interaction with NAO reported high preferences for its physical appearance.
In regards to zoomorphic robots, a study (n = 42) compared a 1) zoomorphic robot cat, with
a 2) physical monitor [33]. The findings revealed stronger acceptance for the zoomorphic
robot.

To conclude, android and human-like robots might easily “fall” in Mori’s uncanny valley,
which is highly undesirable in the context of eldercare. The studies found that mechanical
humanoid robots are the most preferred category followed by animal-like robots, while me-
chanical robots find less sympathy.

2.6.2.2 Robot’s Role and Capabilities

The role of robots is highly related to the capabilities they possess. Robots can be distin-
guished in two main categories in terms of their role: 1) physical robots, and 2) socially-
assistive robots [132]. Physical robots are known to provide manual tasks such as cleaning,
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cooking, washing, environmental navigation, and others. On the other hand, socially as-
sistive robots directly interact with people by providing companionship. Generally, it is
concluded that older adults prefer physical robots with little to no interaction [149]. The
requirement for no interaction has a strong correlation with the user acceptance of sensor
systems, where the same attitude is found. Still, socially assistive robots play an important
role for meaningful interaction and have found their applicability in the eldercare context.

Studies in the literature identified both positive responses for physical robots with minor
interaction and socially-assistive robots. A robot concerned with helping older adults to
drink water (n = 10) found positive attitudes [34]. On the other hand, a socially assistive
mechanical humanoid robot Matilda (n = 115) found strong preferences for the activity
dancing [35]. The same study reported the willingness (60%) of the older adults to participate
in a group activity with Matilda. Similar findings were reported by a study (n = 46) related
to the social robot Brian [36]. The majority of the participants valued the social interaction
with the robot.

The literature for socially-assistive robots consists of studies, which included compari-
son between two types of robots: 1) social robots, and 2) less social robots. The more social
robot used in the experiments usually possessed stronger communication skills compared to
its less social competitor. More specifically, communicative robots were preferred to non-
communicative robots reported by a focus group (n = 40), which included interaction with
two versions of a robot [37]. The results show that older adults felt more comfortable and
expressive with the more social version of the robot. A further study by the same authors
(n = 40) reported increased enjoyment, sociability, and social presence by the more commu-
nicative robot compared with a non-communicative version [38]. A similar study (n = 28)
in Japan developed two versions of a wheelchair robot based on its social capabilities [39].
Likewise, the findings reported the same pattern of views among the older adults.

To conclude, physical robots are highly preferred as they require little to no interaction.
Still, social robots have found their presence in the context of eldercare by the introduction of
many similar agents. The studies mainly reported positive responses, while communicative
social robots were more admired than non-communicative robots.

2.7 Chapter Conclusion
The above discussion outlined a number of sensing devices for the purpose of human activity
recognition in eldercare and healthcare. In addition, the analysis strategies were reviewed.
With the rapid increase of ageing population worldwide, the need for supporting elderly
populations with cost-effective technologies is constantly growing. However, some of the
discussed devices suffer from intrusiveness, which is highly undesirable in the context of
healthcare and blocks their usage.
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IR sensors were discussed in depth by focusing on their non-intrusiveness and relative
cost-effectiveness. These devices possess great potential for human activity recognition, but
the current literature lacks in-depth evaluation of different layouts, multi-subject activities,
number of sensors, and sensor displacement. Currently, IR sensors are shown to detect ac-
tivities such as walking, sitting, standing, falling with more than 90% accuracy rates. In ad-
dition, noise alleviation methods and machine learning techniques require further research.
Micro-Doppler radars are extensively researched with supervised learning methods. How-
ever, supervised learning is expensive in terms of labeling time, while unsupervised learning
is an appealing area for research.

The current techniques for human activity recognition were outlined with the major de-
velopments in the field of machine learning. Evaluation metrics for both supervised and un-
supervised methods were presented and discussed. In addition, evaluation was presented for
sensing devices with key factors discussed. Finally, user acceptance and evaluation criteria
of both sensors and robots were presented, which are crucial for any technology introduction
in eldercare.



Chapter 3

IR Sensing Array Based Human Activity
Recognition

3.1 Introduction
The previous chapter was aimed at reviewing the current findings in terms of human activity
recognition with both LRIR sensors and micro-Doppler radars. The existing techniques
for these devices were categorized based on handcrafted feature extraction strategies and
the automated feature extraction based on deep learning methods. Furthermore, supervised
and unsupervised modeling strategies as well as the evaluation metrics were reviewed. In
addition, the previous studies on user acceptance of both sensing technologies and robots
with a physical presence were reviewed.

This chapter is focused on the interpretation of LRIR data for human activity recognition.
As outlined in the previous chapter, the current studies suffer from a number of limitations. In
particular, noise reduction methods for 2D spatio-temporal maps are not widely researched,
which is pivotal for the proposed work in this chapter. In addition, multiple sensor layouts,
sensors positions, multi-subject activities, and model generalisation in cases of sensor re-
placement as well as leave-one-subject-out analysis are not evident in the current literature.
The proposed contributions of this chapter are summarised as follows:

• A periodic noise reduction method aimed for the 2D spatio-temporal maps of the LRIR
streams, which is based on DFT with model selection strategies evaluated with K-fold
CV.

• A holistic understanding and interpretation of IR data for human activity recognition
including analysis of multiple layouts, number of sensors, multi-subject activities and
model generalisation.

• Methods for interpolation and extrapolation aimed at equalising the number of frames
per IR sensor recordings.

35
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• A human activity dataset Coventry-2018 derived from IR sensing arrays with multiple
capabilities, which address the shortcomings of previous datasets in the literature.

The next section of this chapter will introduce the proposed dataset Coventry-2018 as
well as the model verification dataset Infra-ADL2018. Then, dimensionality reduction with
sparse methods applied only on a subset of Coventry-2018 dataset will be considered. In
addition, this analysis will include noise tolerance, where sparse methods are known to out-
perform their non-sparse equivalent techniques. Secondly, the remaining analysis will be
concerned with periodic noise reduction as well as analysis of the aforementioned limita-
tions in previous research. This stage of analysis will use the entire Coventry-2018 dataset
including different subsets of it, and Infra-ADL2018 dataset.

3.2 Data Description

3.2.1 Infrared Human Activity Recognition Dataset Coventry-2018
Coventry-2018 dataset was collected in Faculty of Engineering, Environment and Comput-
ing, Coventry University, United Kingdom in March 2018. Three Panasonic® Grid-EYE
(Model: AMG8833) sensors, described in Section 2.2.2, were used for conducting the ex-
periment. The three sensors included two side sensors and one front sensor corresponding
to position in regard to the area of interest. The three AMG8833 evaluation boards were
connected to a host laptop via universal asynchronous receiver-transmitter (UART) inter-
faces. The evaluation boards were synchronised with a refresh rate of 10 FPS. All sensor
recordings were saved in a *.csv format. The 10 FPS was chosen for: i) keeping update rate
for capturing the detailed states transition during the activity cycle; ii) reserve enough time
for sensor reacting to the changes in temperature and obtain accurate thermal reading. The
configuration of the AMG8833 evaluation boards and controlling of the data streams were
coordinated by National Instruments LabVIEW®.

Two layouts of sensors positioning were used in this dataset: 1) small layout; 2) large
layout. In small layout, the three sensors were positioned equally 1.5 metres from experi-
ment area, designated for performing the activities. Regarding large layout, the distance of
the sensors was increased to 2.5 metres. All three sensors were elevated approximately 1
metre from the ground for both layouts. Both layouts ensured that the subject was in cover-
age of sensing system. The exact sensors positioning can be observed in Figure 3.1a, while
Figure 3.1b depicts the experiment venue with the three sensors and a subject. Regarding
the thermal concerns, the pixels of the IR array correspond to the measured temperature. In
the beginning of the experiment, the temperature was measured at 18° centigrade. The small
layout experiment data was collected during these conditions. Later, the temperature grad-
ually rose to 21° centigrade, which marked the data collection in the large layout scenario.
The participants were wearing normal early spring clothes to be compliant with a real world
scenario.
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Figure 3.1: Layouts and experiment scenario. (a), Small and large experiment
layouts; (b), The real experiment scenario.

The dataset is composed with activities distinguished in two categories: a) single-subject
activities; b) double-subject activities. An important note is that double-subject activities
were collected only in large layout. On the other hand, single-subject activities were col-
lected in both layouts. Three participants (one female and two males) with diverse body sizes
contributed for capturing the activities. Each single-subject activity was repeated 10 times
by each participant in small layout (AS1∼AS8) and large layout (AL1∼AL8). Regarding
double-subject activities, the three possible double combinations of three subjects similarly
performed 10 repetitions of each activity in the large layout (B1∼B7). This leads to 480
single-subject activity outputs (240 outputs in small layout; 240 outputs in large layout) and
210 outputs of double-subject activities as observed in Table 3.1.

Table 3.1: Two categories of activities in Coventry-2018

1-subject 2-subject

Activities Small Large Activities Large
Sit Down AS1 AL1 Both Sitting B1
Stand Still AS2 AL2 Sitting & Moving B2
Sit Down; Stand-Up AS3 AL3 Sitting & Standing B3
Stand Up AS4 AL4 Random Moving B4
Move Left, Right AS5 AL5 Both Standing B5
Move For, Backward AS6 AL6 Standing & Moving B6
Walking Diagonally 1 AS7 AL7 Walking Across B7
Walking Diagonally 2 AS8 AL8
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3.2.2 Infrared Human Activity Recognition Dataset Infra-ADL2018
Infra-ADL2018 dataset was collected in Bristol Robotic Lab (BRL), University of West Eng-
land, United Kingdom in 2018. Similarly to Coventry-2018, Grid-EYE Panasonic® sensors
were used for conducting the experiment. There exist four key differences of Infra-ADL2018
compared to Coventry-2018: i, a ceiling-mounted sensor is deployed in addition to the two
side sensors and one front sensor; ii, besides single-subject activities and double-subject ac-
tivities, triple-subject activities are presented; iii, nine participants contributed for dataset
collection; iv, only one layout exists in the dataset. The experiment layout and experiment
venue are observed in Figure 3.2a and Figure 3.2b respectively.
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Figure 3.2: Layout and experiment scenario. (a), Experiment layout; (b), The
real experiment scenario.

Table 3.2 depicts the name of activities designated in three categories. The nine single-
subject activities were repeated each three times from nine subjects (243 outputs per sensor).
In regard to double-subject activities, there exist 10 activities, which were repeated three
times by each of eight combinations (240 outputs per sensor). Finally, the two triple-subject
activities were repeated similarly three times by three combinations (18 outputs per sensor).

Table 3.2: Three categories of activities of Infra-ADL2018

1-subject
Stand to Sit; Sit to Stand; Sitting Still; Standing Still
Walking LR; Walking RL; Walking Away; Walking Toward; Falling;

2-subject

Sitting+Standing; Falling+Walking
Standing+Walking Front; Standing+Walking Behind;
Sitting+Walking Front; Sitting+Walking Behind;
Walking Opp Direction; Walking Same Direction; Sitting; Standing;

3-subject Free Movement; Stand Still
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3.3 Data Analysis Based on Sparse Techniques
The data derived from the sensors has extremely high-dimensionality of 40 × 64 = 2560,
where 40 are the number of frames and 64 refers to vectorised 8× 8 2D IR images. Consid-
ering the limited number of samples, this leads to an ill-posed problem and overfitting. The
current section outlines the analysis of using sparse methods for supervised and unsuper-
vised feature extraction of high-dimensional data from Coventry-2018. Only single-subject
data from this dataset are used. The sparse methods are compared with their non-sparse
equivalents in terms of recognition accuracy as well as additive noise tolerance.

3.3.1 Methodology
Figure 3.3 describes the steps for the data analysis based on sparse techniques. Once the data
are collected and pre-processed, component selection is achieved using 10-fold CV. Feature
extraction is implemented using SPCA and SDA, described later. Therefore, the extracted
sparse features are classified with four off-the-shelf methods: SVM, k-NN, RF, and LR.

Figure 3.3: Methodology steps for data analysis based on sparse methods.

3.3.1.1 Data Acquisition

A subset of the Coventry-2018 dataset based on one of the three sensors is used for the
sparse techniques analysis. The LRIR sensor employed in this study is used for Coventry-
2018 dataset. As explained earlier, the Panasonic Grid-EYE (AMG8832) sensor was used,
where each of the 8 × 8 pixels represents temperature value derived from the environment.
A single frame is visualised in Figure 3.4a for the activity sitting. A 10 FPS is selected
observed in Figure 3.4b.
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(a) An 8×8 thermal pixel matrix (b) A stream of different frames
Figure 3.4: Example of (a) a single frame of an IR image and (b) a stream of a
number of frames.

Considering the fact that only a subset of Coventry-2018 dataset was used, the large
layout is selected as observed in Figure 3.5a. The experimental area is positioned 2.5 metres
from the only used side Sensor-1. The sensor was positioned approximately 1 metre from
the ground. The actual experimental venue with one of the participants are shown in Figure
3.5b.

(a) Experiment layout (b) Experiment venue with the side Sensor-1
Figure 3.5: Layout and experiment scenario for Sensor-1. (a), Experiment layout;
(b), The real experiment scenario.

As explained earlier, the IR sensors detect the temperature of the environment including
ambience, subjects, and different heat sources. Considering subjects, the normal human’s
temperature is approximately 36◦C, which is usually considerably higher than the ambience
in a room. The dataset Coventry-2018 was collected in March 2018, where a temperature in
the range of 18◦C-21◦C was observed. The three participants who volunteered for creating
the dataset were all wearing normal daily clothes, which provides realism to the scenario.
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3.3.1.2 Data Preparation

For the sparse techniques analysis, the eight (8) single-subject activities of the Coventry-2018
dataset from all three participants are used. They are listed in Table 3.3.

In this work, each of the single-subject activities is recorded separately. While segmenta-
tion techniques are possible for separating the activities in continuous streams, this is not the
case for the current work. In addition, each activity is performed 10 times by each participant
considering the fact that the participant is positioned 2.5 metres from the area of interest in
the case of large layout.

The Coventry-2018 dataset was described earlier in Section 3.2.1. Considering the cur-
rent data analysis with sparse methods, only single-subject activities are used captured by the
side Sensor-1. More specifically, eight single-subject activities exist, which were repeated 10
times by each of the three participants. This leads to a total of 240 samples. Obviously, dif-
ferent activities require different amounts of time for execution. Therefore, it was computed
that the average duration among all activities was 4 seconds or 40 frames considering the 10
FPS. Interpolation and extrapolation methods are used for equalisation, which are described
later. This leads to a cuboid of shape 240×40×64, where 64 refers to the 8×8 pixel matrix.
For data analysis, the cuboid shapes are transformed to a 2-dimensional space of 240×2560.

Table 3.3: Investigated Activities
Activities Activities

A1 Sit Down A5 Move Left, Right
A2 Stand Still A6 Move Forward, Backward
A3 Sit Down; Stand Up A7 Walking Diagonally 1
A4 Stand Up A8 Walking Diagonally 2

Obviously, the extremely high-dimensionality of the data compared to the limited number
of samples can lead to overfitting. To address the issue, sparse methods are applied for feature
extraction, which are later compared to their non-sparse equivalents. Sparse methods are
known to identify unimportant features and set them to zero, which is their main advantage.
Hence, the results can provide means for analysis and discussion.

3.3.2 Data Analysis
3.3.2.1 Sparse Feature Transformation Techniques

3.3.2.1.1 Sparse Principal Components Analysis (SPCA) PCA is one of the leading
dimensionality reduction methods in the literature. The method identifies the directions, also
referred to as principal components, capturing the most variance. As such, a limited number
of principal components can be selected explaining more than 90% of the data variance
[150].
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The non-sparse PCA has a main disadvantage, where each principal component uses a
linear combination of all features. As such, it is difficult to identify problematic and insignif-
icant features with low or none contribution for explaining the data. To address the issue,
SPCA is a regression-type problem, which uses a quadratic penalty as seen in equation (3.1).
In its most common implementation, the sparse method uses elastic net by imposing L1
(Manhattan distance) and L2 (Euclidean distance) penalties. The used penalties set unim-
portant features to zero by leaving only features with contribution to data variation with
non-zero values. As such, SPCA provides interpretation and analysis of the data features.

Let X = [x1, ..., xn], and x ∈ Rm ∼ p(x) be a random variable, where p(x) is a distri-
bution. Initially, A = V [v1, ..., vK ] as the first K loadings of ordinary PCs. In first step, the
first k PCs A = [α1, ..., αK ] are considered fixed and the following elastic net objective is
solved for βj , j = 1, ..., K:

βj = arg min
β

(αj − β)TXXT (αj − β) + λ ‖β‖2 + λ1,j ‖β‖1 (3.1)

Then in the second step, B = [β1, ..., βK ] are considered fixed and the SVD of XTXB =
UDV T is computed and A = UV T is updated. The first and second steps are iterated until
convergence. Finally, the eigenvectors are normalized as ordinary v̂j =

βj
‖β‖j

, j = 1, ..., K.
Further information in this case can be found in [151].

3.3.2.1.2 Sparse Discriminant Analysis (SDA) Linear Discriminat Analysis (LDA) is a
widely used method as both a Gaussian classifier and a supervised dimensionality reduction
method. The dimensionality reduction method known as Reduced Rank LDA (RRLDA) as-
sumes that the Q classes are positioned in an a space with dimension Q− 1. The assumption
of Gaussian distribution allows a limited number of components to be selected as specified.
Considering this, at most Q− 1 discriminant features can be extracted, which is a significant
drop in the dimensionality. The RRLDA method computes the within-class covariance ma-
trixW along with the between-class covariance matrixB. The Fisher’s canonical variables
or discriminant coordinates allow the transformation of data to a lower dimensional space
[73]. More specifically, the Fisher’s aims to maximise the Rayleigh quotient given by:

max
a

aTBa

aTWa
(3.2)

where a is canonical variable or discriminant coordinate. The method focuses on in-
creasing the distances between the classes means (centroids) for improving separability.

In cases with n � p condition as in this study, where n refers to the number of sam-
ples, and p denotes the number of features, LDA cannot be applied directly. This is due
to the fact that the within-class covariance matrix W of the features is singular. To ad-
dress the issue, sparsity is implemented using the L1 (Manhattan distance) norm used in the
lasso objective function. More specifically, the method calculates the sparse transformations
βq, q = 1, 2, ..., Q − 1 to transform the original data X to a new low dimensional space
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Xβ1:m,m ≤ Q − 1. In addition, the 1 : m notation refers to the selection of the first m
vectors. In this study, each βq vector length is 2560, which corresponds to the total number
of raw features. The objective function uses the L1 norm penalty as shown below:

min
βq

{
1

n

∥∥Y θq −Xβq∥∥2 + γβTq Ωβq + λ
∥∥βq∥∥1} (3.3)

where Y = n×Q presents a matrix of dummy variables for the Q classes, while Yiq serves
as an indicator showing whether the ith observation belongs to the qth class. In addition, θq
denotes a Q-vector of scores. The original data matrix is transformed to a lower dimensional
space Z = Xβ1:m, m ≤ Q− 1 using the sparse matrix. To address the aforementioned issue
with singularity in the within-class covariance matrix W , Ω is defined as a positive definite
matrix. In addition, λ and γ are non-negative tuning parameters. For further information, the
readers are referred to [152].

3.3.2.2 Classification Methods for Activity Detection

In this work, four traditional classification methods are used - SVM, RF, k-NN, and LR.
All four techniques are supervised and have shown suitability for multi-class classification
problems.

SVM uses hyperplanes to divide the input space by providing separation between the
classes [153]. In cases where the classes are non-linearly separable, a number of kernels can
be adapted to these problems. The second considered method RF represents an ensemble of
decision trees used for making predictions [79]. Considering the resulting predictions of each
decision tree for classification, the majority output class is selected. Next, k-NN adapts a
simple concept of computing distances between the data samples [154]. Euclidean distances
are used in this work. When a new data sample is considered, it is assigned to the class
belonging to its nearest neighbour or majority of nearest neighbours. The nearest neighbour
is based on the calculated nearest Euclidean distance. Finally, LR models the probabilities
of a data sample to belong to a specific class [73]. The classification technique ensures to
keep to sum-to-one constraint of the probabilities and their range of [0, 1]. While LR was
initially used for binary problems only, it has been later adapted to multi-class problems.

To ensure fair distribution of data samples in both training set and testing set, the data was
randomly divided. In addition, 75% were used for training, while the remaining 25% were
designated for testing. This leads to 180 × 2560 training set, and 60 × 2560 testing set. To
select a number of principal components for SPCA, 10-fold CV was applied. This resulted
in selected 25 principal components. In terms of SDA, the maximum possible number of
components Q − 1 is selected, which is 7 in this case. Therefore, the described above four
classification methods are used: SVM, RF, k-NN, and LR. Subsequently, a scenario with
additive positive Gaussian noise is implemented, which resembles the overall increase in the
room temperature in a real scenario. Since sparse methods are known to set certain features
to zero, they are expected to perform better compared to their non-sparse equivalents.
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3.3.2.3 Sparse Dimension Reduction and Model Selection

As described above, 10-fold CV is used for selecting the optimum number of PCs ĉ. A candi-
date set of number of sparse principal components is [10, 15, 20, 25, 30, 35, 40, 45]. Training
and validation accuracy maps are computed shown in Figure 3.6a and Figure 3.6b respec-
tively. Both accuracy maps are based on the four classification methods described earlier. As
observed, 25 SPCA components are selected since the prominent peaks refer to 25 compo-
nents in the validation map. Therefore, the transformation to the reduced space is performed
based on Ztr = XtrV1:ĉ, ĉ = 25. The 1 : ĉ notation shows the first 25 eigenvectors. Con-
sidering the original 2560 features, the selection of only 25 SPCA components represents a
significant drop in the dimensionality as observed in Figure 3.7.

In terms of SDA, a sparse β2560×7 is obtained, whereQ−1 = 7, and used for transforming
data Ztr = Xtrβ.

(a) Average of training accu-
racy over 10 folds of CV loop,
used for SPCA component se-
lection

(b) Average of validation accu-
racy over 10 folds of CV loop,
used for SPCA component se-
lection

(c) Comparison of SVM accuracy
using original features, trans-
formed features based on SPCA
and SDA

Figure 3.6: Accuracy of SVM, RF, KNN and LR on both training and testing sets
for SPCA and SDA.

Figure 3.7: Visualisation of the original data matrix and the transformed samples
using SPCA and SDA.

3.3.2.4 Classification Analysis

The effectiveness of the sparse dimensionality reduction methods is further analysed. This
is achieved by visualising the eight (8) different classes in their original dimension as well
as their reduced representations with SPCA and SDA as observed Figure 3.7. As illustrated,
the general variations of the data samples as well as the variations between different classes
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are increased, which is a positive indicator for improved classification. To prove this, Fig-
ure 3.6c shows the classification accuracy using the raw features compared with the sparse
transformations with SPCA and SDA. As expected, the classification accuracy is improved
significantly.

3.3.3 Experimental Results
The four classification methods have been applied to both the training set and the testing sets.
Figure 3.8 reveals the accuracies with all combinations of feature extraction strategies and
classification methods. The training accuracy is exactly 100% for all combinations. In terms
of testing accuracy, SDA outperforms SPCA with the exception of RF. This is attributed
to the fact that SDA is a supervised method. To conclude, these results are only based on
the large layout. In order to evaluate the effect of the subject’s distance from the sensors,
the comparison experiment discussed in Section 3.4.2.5 demonstrates the results based on
the two layouts in Coventry-2018 dataset. Model generalisation in terms of layout in two
scenarios is further discussed in Section 3.4.2.6.

Figure 3.8: Accuracy of SVM, RF, KNN and LR on both training and testing sets
for SPCA and SDA.

3.3.3.1 Noise Analysis

As discussed above, sparse methods are known to set certain features to zero, which can
potentially lead to a higher tolerance of noise. To explore this, randomly distributed positive
Gaussian noise with µ = 0 and σ = 0.1, 0.5, 1 is added to the testing data only and the clas-
sification performance for the testing data is computed. The sparse methods are compared
with their non-sparse equivalent techniques - PCA and RRLDA. The results in Figure 3.9
are expected as the sparse methods show higher tolerance to noise.
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Figure 3.9: Comparison of the clean and noisy test data classification perfor-
mances for RRLDA and SDA as well as PCA and SPCA.

3.3.3.2 Visualisation of Sparse Components

In terms of the sparse methods’ ability to set unimportant features to zero, it is important to
further analyse this property. Therefore, the absolute value of the first SDA component β1
and the first SPCA eigenvector V1 are visualisaed in Figure 3.10.
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Figure 3.10: Visualisation of the first sparse component of SDA β1 and first sparse
eigenvector of SPCA V1.

As observed, the largest non-zero coefficients over 40 frames of activity are shown to be
distributed in the central frames although not as strongly. This may match to the fact that the
participants are less active in the beginning and ending of an activity. However, the first and
last frames also show contribution to the activity variations.
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3.4 Noise Analysis and Classification Modeling for Holistic
Understanding of LRIR Data

This section considers the entire Coventry-2018 dataset for a number of experiments as well
as Infra-ADL2018 dataset for techniques verification and analysis. More precisely, first data
pre-processing with frame equalisation algorithms are described in detail. Second, noise re-
duction from the 2D spatio-temporal maps is considered. Figure 3.11 shows the formation of
2D spatio-temporal maps from the individual 8× 8 frames. Next, traditional machine learn-
ing architectures are applied for recognition performance as well as a deep NN architecture.
Furthermore, small layout and large layout data are compared to test the models’ sensitivity
towards the sensors’ distances. Similarly, single-subject activities and double-subject activ-
ities are then compared. Moreover, model generalisation is achieved, where the models are
trained on the small layout data and tested on the large layout data, and vice versa. Finally,
model generalisation in terms of unseen subjects is evaluated in a leave-one-subject-out fash-
ion, where the models are tested on data from subjects not used for training.

(a) Single frames (b) 2D spatio-temporal array
Figure 3.11: (a) Examples of 8 × 8 pixel frames for the activity sitting, and (b)
the vectorised spatio-temporal 2D array over 40 frames and 64 pixels.

3.4.1 Data Analysis Framework
This section focuses on the feature representation of the LRIR data. Since the acting duration
is not equal for different activities and participants, the durations of records in both Coventry-
2018 and Infra-ADL2018 show diversity. As described in Section 3.3.1.2, the records are
equalised before passed for feature extraction for both machine learning and deep learning
architectures. The 2D spatio-temporal maps suffer from periodic noise as shown in Figure
3.11. Therefore, a periodic noise removal algorithm is introduced to alleviate the effect of
noise in the developed 2D spatio-temporal arrays after frame equalisation. This improved the
activity detection. It is important to note that the periodic noise removal method is applied
only to the machine learning architectures. In regards to the deep learning architecture, the
40 × 8 × 8 inputs are used instead of 2D spatio-temporal arrays. Hence, periodic noise
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removal is not needed for this architecture. The above mentioned two operations are called
pre-processing. The overall data flow for the two categories of architectures can be generally
described by Fig. 3.12.

SVD

Feature Extraction
Fisher’s 

Canonical 
VariablesGLCM

DCT
Frames

Equalization

Periodic
Noise

Removal

Pre-processing Classification
SVM

K-NN

RF

LR

Automatic Feature 
Extraction + Classification

CNN-LSTM

1)

2)

Pre-processing

Frames
Equalization

Figure 3.12: The data processing flow in this work, which shows the two under-
taken strategies.

3.4.1.1 Data Pre-Processing

3.4.1.1.1 Frames Equalisation and Vectorisation In order to implement the feature ex-
traction and training processes, the records are equalised to 4 seconds (equivalent to 40
frames), which is the average duration of the all the activities in Coventry-2018 dataset. Ap-
propriate methods based on interpolation and extrapolation are proposed in this case. For the
records longer than 4 seconds, extrapolation is used by removing frames at regular intervals.
In the case of records shorter than 4 seconds, a new frame is added between already existing
two frames. The newly added frame is an average of the two. The proposed methods for
interpolation and extrapolation are described in Algorithm 1 and Algorithm 2 respectively.

The main idea for interpolation algorithm is to randomly select frame indices from the
existing sequence of frames and order the indices in ascending order. Then for each index,
the average of the corresponding frame and the following frame is computed to generate a
new frame which is placed between them in the new sequence. This strategy is compared
with random selection and insertion of the frames within the streams. The proposed strategy
shows better accuracy compared to the random repetition of some frames in the sequence.

Regarding the extrapolation method, the main idea is to delete frames from equal inter-
vals. As shown in Algorithm 2, a step size is used to remove some frames. Depending on
the length of the frames N , two different step sizes are calculated; if N is large so that, the
floored result of step1 = N

N−d is one, an empty array C is formed first. The array C is used
to keep the frame indices that should be removed. Then, series of frame deletion indexes are
computed via two nested loops. The outer loop variable i, counts all frame numbers, skip-
ping only the first one. The inner loop variable j starts from 0 up to step2− 1, that generates
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small values to be added to i, in order to skip some frames. The summation of i + j gener-
ates the indexes for deletion. The iteration within the nested loops will stop if the required
number of deletion indexes N − d is achieved. Otherwise, if N is not large compared to the
desired number of frames d = 40 so that step1 > 1, the deletion indexes are found simply
based on one loop. The frame index selection equation z = i× step1− i is used in this case.
Since both i and step1 are integers, z can never become a non-integer value.

Algorithm 1: Interpolation algorithm for frames equalisation
Input: Set of the acquired 8× 8 IR frames A; Desired frames number d = 40
Algorithm:
1. Compute N = length(A).
2. Initialise an empty array C.
3. Initialise C = A.
4. Select d−N number of random values (without replacement) in range 0, 1, ..., N − 2 and

sort them in ascending order in a set (rs).
5. Set index counter k = 1.

(1) For i=0,...,d−N − 1
-C[rs(i) + k] = avg(A[rs(i)], A[rs(i) + 1])

-k = k + 1

End Loop 1
Output: Interpolated array C.

Algorithm 2: Extrapolation algorithm for frames equalisation
Input: Set of the acquired 8× 8 IR frames A; Desired frames number d = 40
Algorithm:
1. Initialise N = length(A)

2. Compute step1 = int
(

N
N−d

)
; step2 = int

(
N
d

)
.

If step1 = 1:
-Initialise an empty array C
(1) For i=1,. . . ,N-1 with step size step2 + 1

(2) For j=0,. . . ,step2 − 1

if length(C) < N − d:
-Append frame number i+ j to C

End Loop 2,1
-Sort C in descending order
(3) For i in C

-Delete a frame with index i from the array A
End Loop 3

End Loop 1
Else:
(1) For i=0,...,N − d− 1

-Delete a frame with index z = i× step1 − i from array A
End Loop 1

Output: Extrapolated array A.

In later stages of this PhD, it was found that the above extrapolation algorithm has a lim-
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itation for some frame numbers. More specifically, in some cases when the criterion inside
the two nested loops stops the index generation, it was observed that most of the selected
frames for removal were from the earlier part of the stream and some last indexes were re-
mained. This means this selection strategy has favoured earlier frames for deletion for some
frame streams. Then, it is recommended to perform the frame removal based on analysis
of frames data variation so that, some frames from the smooth sequence of frames with less
variation to be selected. Despite of the described limitation, comparison of the used strat-
egy with random selection and exclusion of the frames, showed some improvements. The
proposed strategy worked better based on the achieved results as described later in Section
3.4.2.1. The same equalisation strategy is applied on Infra-ADL2018 dataset.

After frame equalisation, the algorithms yield 40 frames per activity with 8× 8 tempera-
ture pixels. Considering the low resolution of IR images and low level of correlation between
local pixels, the individual pixels can be considered as independent variables. Therefore,
each 8 × 8 frame is vectorised. This is performed for all frames of each activity. Thus, the
equalised 4-second records of each activity, are re-formed into a 40× 64 2D spatio-temporal
array as observed earlier in Fig. 3.11 in Section 3.4. This 2D array can be treated as an
image. In the analyses performed in this study, the 2D spatio-temporal arrays are formed for
both Coventry-2018 and Infra-ADL2018 datasets.

In the case of Coventry-2018 dataset, the equalised and vectorised data consist of a
cuboid of size 240 × 40 × 64 for single-subject activities in small layout and large lay-
out, and a cuboid of size 210 × 40 × 64 for double-subject activities in large layout. This
is illustrated in Fig. 3.13. To simplify the writing and avoid confusion, the cuboid size is
considered as Z × 40 × 64. Z = 240 is used for the single-subject data (in both small and
large layout) and Z = 210 for the double-subject data (only in large layout). The example
visualisation of the equalised and vectorised LRIR data are shown in Fig. 3.14. They are the
2D spatio-temporal maps used for activity recognition in this Chapter.

. 
. .

A single 8 X 8 frame

Vectorized 64 X 1 

64 

40
 

64 

40
 

Duration 
equalized frames

A Dataset

2D spatio-temporal
array

Figure 3.13: Data vectorisation and dimension description. One sample 2D
spatio-temporal array is visualised in blue color in the middle.
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a)

b)

Figure 3.14: The (a) one-subject and (b) two-subject vectorised 8 × 8 frames of
activities (64) over 40 equalised frames.

3.4.1.1.2 The Proposed Noise Removal Algorithm In order to improve the activity clas-
sification accuracy, having high quality data is important. The equalised 40× 64 2D spatio-
temporal maps formed for each activity show periodic noise effect in both horizontal and
vertical direction. This can be observed in Fig. 3.18a. The periodic noise includes both
horizontal and vertical stripes. The reason can be due to the low resolution of the frames that
cannot encode small local variations. Then, the same value is assigned for adjacent pixels
with small level of variations. For example, the horizontal noise stripes are formed due to
a similarity of vectorised sequential frames. That can occur for example when an activity
includes slow movements or still condition. On the other hand, the vertical noise stripes
correspond to some unchanged pixels over all 40 frames, such as pixels that have never been
occluded by the subjects. As it can be seen, these effects are prominent in the arrays and the
classification tests demonstrated that they can negatively affect the classification accuracy in
both training and validation stages.

In order to alleviate the effect of the noise, 2D Discrete Fourier Transform (DFT) is used.
It is a digitized version of the Fourier Transform, so that, it contains sampled frequencies of
image rather than all continuous frequency information. The 2D DFT of an image array is
a 2D array of the same size. Each pixel in this 2D array corresponds to the coefficient in a
specific frequency. They show the main spectral information of the image. The equation for
2D DFT is shown in (3.4).

F [u, v] =
M−1∑
m=0

N−1∑
n=0

X[m,n]e−j2π(u
m
M

+v n
N
) (3.4)

In equation (3.4), M and N show the number of rows and columns of X and X[m,n] is
one pixel in the original image, which is the 2D spatio-temporal map in this work. F (u, v)
is the element in row u and column v of the output array F . This 2D DFT equation com-
putes each element, F (u, v), in spectral domain by multiplying the spatial image X with the
corresponding sinusoidal and cosinusoidal base functions and summing up the result. For
example, F(0,0) describes the information in zero frequency called DC. If u and v are set to
zero in equation (3.4), the DC component is calculated as the average of the gray levels in
the 2D spatio-temporal map. On the other hand, F(M-1,N-1) is the highest frequency coeffi-
cient. In this work, 2D DFT is calculated for each 40 × 64 2D spatio-temporal map, which
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is illustrated in Figure 3.13. Though, F(u,v) is a complex value matrix, the amplitude of the
complex coefficients are considered for further processing. Due to the large dynamic range
of the DFT coefficients, the logarithm function is applied, yielding a 2D power spectrum.

Next, the resulting power spectrum in FFT domain is visualised, as shown in Fig. 3.15.
Due to the Hermetian symmetry property of DFT, the elements in F [m,n] = F (M − 1 −
m,N − 1−n) so that, there is symmetry about (M−1

2
, N−1

2
), the central pixel in the 2D DFT

array. For more information, the readers are referred to [155]. The coefficients in the central
horizontal and vertical lines in this 2D spectrum are considered for periodic noise removal,
as previously used in other works [156, 157, 158]. As expected, there exist noticeable peak
pixel values in both directions of stripes, that indicate periodic effect of noise. The peaks
are also symmetric with respect to the central point of the 2D DFT array. The horizontal
periodic noise corresponds to the peaks in vertical stripes coefficients and the vertical noise
is connected to the peaks in horizontal stripe as shown in Figure 3.15.

Figure 3.15: The power spectrum with prominent peaks rounded in red.

In order to reduce the noise, a threshold needs to be defined to identify the peaks and
change their values to a lower level over the central stripes. The DC component is not
considered as it represents zero frequency. Two early issues about the choice of threshold
value and changing the peak values are addressed.

The first issue is the strategy about considering the threshold value for each horizontal
and vertical direction. The two possible choices to consider are i) a unique constant threshold
value for each direction based on the overall mean of the horizontal and vertical stripes
over all 2D power spectrum arrays or ii) a random variable based on the individual power
spectrum arrays statistics for the threshold value. For the first choice, the mean values over
horizontal and vertical stripes (excluding the DC component) µh and µv for all the three
sensors (of Coventry-2018 dataset) are calculated. Under the null hypothesis that all power
spectral arrays have similar mean values (over the stripes) for each of the horizontal and
vertical directions, the one-way analysis of variance (ANOVA) test is performed described
in detail in Section 3.4.2.2.1. The p-value rejects the null hypothesis, and therefore, general
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thresholds (for the two directions) based on the stripes mean values cannot be used for all
data. Therefore, the threshold values are customised for each 2D power spectrum array over
the two directions.

The second initial issue is about the reduction strategy to replace the peak values. The
two values considered are 0 and statistics based on mean and standard deviations µh±σh and
µv ± σv, where the two latter showed better accuracy. Therefore, for the peaks replacement
strategy, the statistical approach using the average stripe values is considered.

After addressing these two initial issues, a supervised strategy was developed for finding
the best parameters for periodic noise removal. For this aim, the threshold parameters Th
and, Tv for each horizontal and vertical direction, are formulated based on the mean and the
standard deviation of all the coefficients in the corresponding stripe as follows:

Th = µh + i1 ∗ 0.5 ∗ σh;Tv = µv + i1 ∗ 0.5 ∗ σv (3.5)

where i1 is an integer value within the range {-2, 8} that is learned based on a supervised
strategy. In addition, as there exists a number of pixel pairs greater than the threshold, it
needs to be decided how many of them should be reduced to achieve the highest accuracy.
The number of pairs of pixels to be changed depends also on the threshold value. In other
words, the smaller the threshold, the bigger the number of pixel pairs violating the threshold.
Overall, the parameters, Th and Tv and number of pairs of pixels Numh and Numv, that
influence the quality of noise removal, are found based on a supervised learning strategy in
order to achieve optimum accuracy.

The supervised learning strategy is based on the K-fold CV model selection technique.
So that, 10-fold CV is used to find the optimum parameters T ∗h /T ∗v and Num∗h/Num∗v, for
each of the horizontal and vertical directions. For this aim, candidate sets of values are
formed for these parameters TCandSet and NumCandSet first. The TCandSet is formed based
on the variable i1 as shown in equation (3.5) and the NumCandSet is formed based on the
maximum pairs of pixels in each direction. Thus, based on the CV loop, a 3D array of
validation accuracy of size K × length(TCandSet)× length(NumCandSet) is calculated.

In each CV iteration, one candidate threshold value from TCandSet is used to find the pairs
of peaks that violate the threshold (in the corresponding direction). Then, one candidate
number of pixel pairs is selected from (NumCandSet) and used to select a number of highest
peaks. The selected peaks values are reduced to µh or µv depending on the direction. Next,
based on the 2D inverse DFT (iDFT) function shown in equation (3.6), the de-noised images
are calculated in spatial domain.

X(m,n) =
1

MN

M−1∑
u=0

N−1∑
v=0

F [u, v]ej2π(u
m
M

+v n
N
) (3.6)

The image with alleviated horizontal noise is merged with the image with reduced vertical
noise, by averaging the two matrices of inverse transform. After repeating this for all training
and validation images, they are used to perform activity recognition in the next step.
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Then, the recognition performance for both train and validation sets is calculated. This
process is iterated inside the three nested loops for all feasible combinations of the three
parameters, namely, K (of CV loop), TCandSet and NumCandSet (of the candidate sets). That
explains the reason for the aforementioned dimension of the performance arrays to be three
for both training and validation. The three dimensional array is also referred as training
and validation cube. Figure 3.16 shows the 3D cube of validation accuracy as well as the
averaged 2D array of validation performances over the K folds. In the validation and training
cubes, only the elements corresponding to the feasible combinations of candidate thresholds
and number of pixel pairs, are filled. This is explained further in the following.

Figure 3.16: Illustration of the 3D cube of validation accuracy and the 2D av-
erage validation array obtained by averaging over K folds of the 3D cube for
selection of T ∗h and Num∗h parameters.

Not all combinations of the candidate thresholds and number of pairs of pixels are feasi-
ble for noise removal. Because, the number of violating peaks of pixel pairs changes based
on the threshold value so that, the smaller threshold increases them and the bigger thresh-
old value reduces their number. Then, there might not exist any candidate pair of peaks for
some combinations of the TCandSet and NumCandSet. As a result, the elements of the vali-
dation cube corresponding to those infeasible combinations of the candidate thresholds and
the number of pixel pairs are empty.

As shown in Figure 3.16, by averaging the 3D cube of validation performances over
the K-folds, 2D validation array of performance is obtained. The size of this 2D array is
length(TCandSet)× length(NumCandSet) for each direction. The 2D array shows the varia-
tion in performance for different feasible combinations of the candidate parameters TCandSet
and NumCandSet, shown as two heat maps in Figure 3.17 for the two directions. Then, the
highest performance in the 2D arrays corresponds to the optimum parameters T ∗h /T ∗v and
Num∗h/Num∗v. Using these parameters, the vertical and the horizontal noises are removed,
resulting in two de-noised images after applying 2D iDFT transform. The two de-noised
images are merged by averaging. This is performed for all training images in the data set,
making them ready for activity recognition in the next step. Algorithm 3 shows the pro-
cedure, which is used on the training data only. Thus, the required parameters, T ∗h /T ∗v and
Num∗h/Num∗v are derived and applied to the test images. A sample noisy image and the
result after de-noising is illustrated in Figure 3.18.
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Algorithm 3: DFT-Based Periodic Noise Removal
Input: Training data (Xtr, Ytr), The number of folds K
Algorithm:
1. Divide data into K training and validation sets: xtrk, ytrk, xvk, yvk.
2. Repeat the following steps for both horizontal and vertical stripes, represented as

horizontal/vertical for showing all parameters.
3. Form the TCandSet = 2, ..., 8 and NumCandSet =1,..., Maximum number of pixel pairs.
4. (1) For k=1,. . . , K

(2) For i1 = 1, ..., length(TCandSet)

(3) For i2 = 1, ..., length(NumCandSet)
(4) For j=1,. . . ,number of images in xtrk and xvk

-Compute the power spectrum coefficients of the jth image,
-Compute µhj /µvj , σhj /σvj 1,
-Find pixel pairs in horizontal/vertical stripes higher than:
Thji1 = µhj + TCandSet(i1) ∗ 0.5 ∗ σhj
Tvji1 = µvj + TCandSet(i1) ∗ 0.5 ∗ σvj ,
-Reduce the first ith2 greatest pixel pair values to µhj /µvj1

-Compute the de-noised image using 2D iDFT,
End Loop 4

-Use the de-noised image sets xtrdk and xvdk to classify the

activities and calculate the element (k, i1, i2) in training and
validation performance arrays, Prftr and Prfv.

End Loop 3,2,1
5. Average the Prftr and Prfv arrays over the K folds
6. Find the highest validation accuracy corresponding to the optimum

threshold T ∗h /T ∗v and number of pixel pairs Num∗h/Num∗v.
Output: T ∗h /T ∗v and Num∗h/Num∗v

(a) (b)
Figure 3.17: Heatmaps of average CV validation accuracy for selection of opti-
mum T and Num parameters for (a) horizontal (b) vertical stripes.

1The sign / is not used for mathematical fraction, it shows both cases.
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(a) (b)
Figure 3.18: (a) Original image and (b) noise reduced image.

3.4.1.2 Feature Extraction Methods

In this work, two main categories of feature extraction approaches based on variation anal-
ysis and texture analysis are employed on the dataset for classification of activities. The
variation analysis methods include the principal components based SVD and linear discrim-
inant analysis based Fisher’s canonical variables. The texture analysis method includes the
frequency domain analysis based on DCT and spatial domain analysis based on GLCM.

3.4.1.2.1 Singular-Value Decomposition (SVD) As stated earlier, the individual pixels
can be considered as independent variables. Then, the original feature space dimension in
this view can be considered as the number of pixels in one slide of data (for example, the
blue slide in Figure 3.14, which is 40×64 = 2560. 2560 is much higher than the sample size
(240 for single-subject samples, 210 for double-subject samples in Coventry-2018 dataset).
Having much smaller samples compared to the high dimension of the feature space can
result in an ill-posed problem, models with high variance and overfit issue. Then, feature
extraction for dimension reduction can alleviate this issue and improve the classification
accuracy. SVD is a commonly used method for feature extraction [159, 160]. The original
cuboid data matrix Z × 40 × 64 is first reformed to Z × 2560 by vectorising the 40 × 64
arrays. This new data form is denoted by S. Here Z is the number of the selected samples
for training. According to SVD, the array S can be decomposed as:

S = UDV ∗ (3.7)

where U is a Z×Z unitary matrix and V is a 2560×2560 unitary matrix. The columns of V
are the orthogonal eigenvectors describing the main directions of the data and D is Z× 2560
matrix with non-negative real numbers on the diagonal which are known as singular values
and often are sorted in descending order. (·)∗ shows the conjugation transpose. The value of
the singular value indicates the level of variation along each eigenvector. In this work, the
first k singular values describing 95% of the main variation of data are selected. Using these
eigenvectors, the original array of data S is transformed into a much lower dimensional
space, by applying ZSVD = SV1:k. In this work, k = 45 eigenvalues are used describing
more than 95% of the variance of the data. This means the feature dimension is reduced
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from 2560 to 45. That is a linear combination of all variables used to transform data to a
much smaller orthogonal space.

3.4.1.2.2 Fisher’s Canonical Variables One of the supervised dimension reduction strate-
gies is feature extraction based on Fisher’s canonical variables. It is based on maximising
the Rayleigh quotient that finds applications in feature transformation for improving the
between-class separability [161, 162, 163]. Rayleigh maximisation was formulated pre-
viously in equation (3.2) in Section 3.3.2.1.2, where the sparse equivalent of the method,
namely SDA, was described.

As described earlier, based on this supervised method, the data is transferred to a new
orthogonal feature space so that, the Euclidean distance between the features in each class
is minimized, while their distance to the features of the other class is maximized. The class
centroids C of the data S lie in an affine subspace of dimension C − 1. Thus, only the first
C − 1 eigenvectors corresponding to the highest discriminative directions are considered.
That is a considerable drop in the dimension, if the original data lies in high dimensional
space, which is the case for the current data (2560). In the case of Coventry-2018 dataset, if
both single-subject and double-subjects activities can be used to shape a 15 class problem,
the first 14 eigenvectors, l = 1, 2, ..., 14 are used so that, the transformed matrix is calcu-
lated as Zl = vTl S, where vl = W

1
2v∗l . The use of the first C − 1 eigenvectors in Fisher’s

method results in a reduction in the overlap between the features of different classes and
enhances the classification model. The above maximisation, applies an eigendecomposition
on W−1B to find eigenvectors that maximise the generalised Rayleigh quotient objective
function. Fisher’s method is close to the RRLDA technique [163]. RRLDA also projects
data into a lower dimension. Having C number of classes, with class centroids matrix M of
size C × n in n-dimensional input space, first the class centroids are mapped using the com-
mon within-class covariance W . That is performed by eigendecomposition of W so that, the
transformed matrix of class centroidsM∗ = MW− 1

2 is calculated. RRLDA assumes a Gaus-
sian distribution of data and this transformation of class centroids minimises the overlap of
the Gaussian data. This new subspace can be further decomposed into successively optimal
subspaces in terms of centroid separation. For this aim, B∗ (the between-class covariance of
M∗) is decomposed as B∗ = V ∗DBV

∗T . The columns of V ∗ are the eigenvectors v∗l sorted
based on their variances described by their corresponding eigenvalues. They define the co-
ordinates of the optimal subspaces, while DB is a diagonal matrix with the corresponding
eigenvalues.

3.4.1.2.3 Discrete Cosine Transform (DCT) For texture analysis, the 2D spatio-temporal
maps of size 40× 64 are considered as images with unique pattern of textures for each type
of activity. Then, based on this view, image texture analysis strategies are employed.

For texture analysis in frequency domain, images can be represented as frequency coef-
ficients sorted in a two dimension representation based on 2D DCT transform. Depending
on the nature of the image, having smooth variation of colours or sharp changes, the higher



CHAPTER 3. IR SENSING ARRAY BASED HUMAN ACTIVITY RECOGNITION 58

value DCT coefficients are distributed in lower or higher frequencies respectively. The DCT
method is similar to DFT, as it transforms a signal or an image to the frequency domain.
However, it sorts the frequency information of the image from lowest (DC) to highest. In
this study, 2D DCT is used to extract spectral information from the 2D spatio-temporal maps
shown in the middle part of Figure 3.14. From mathematical perspective, DCT represents
an image as a sum of sinusoids of varying magnitudes and frequencies [164]. In fact, it is a
real, orthogonal, linear transformation that can be represented based on equation (3.8):

F [p, q] = 2√
MN

apaq
M−1∑
m=0

N−1∑
n=0

f [m,n] cos π(2m+1)p
2M

cos π(2n+1)q
2N

(3.8)

where, F [p, q] values are the DCT coefficients at row p and column q, f [m,n] is the element
in row m and column n of the image matrix and M = 40 and N = 64. 0 ≤ p ≤M − 1 and
0 ≤ q ≤ N − 1. Moreover, ap = 1√

2
if p = 0 and it is 1 otherwise. Similarly, aq = 1√

2
if

q = 0 and its value is 1 otherwise.

The resulting 2D DCT map has the same size as the original image, which is 40× 64 in
this work. The selected coefficients in this work are from the lower order coefficients due
to the higher energies observed there. Therefore, six significant coefficients are extracted
in a zigzag pattern from the top left corner of the 2D DCT map. The coefficients are then
concatenated into a feature vector. In this work, the images are divided to 40 sub-patches. 2D
DCT is applied to each sub-patch for subsequent feature selection. Therefore, six coefficients
are extracted from the top left corner in a zigzag pattern from each sub-patch. The resulting
feature vectors are of size Z× 40× 6 = Z× 240. Z varies depending on the number of data
samples in large layout or small layout as described earlier.

3.4.1.2.4 Grey-Level Co-occurrence Matrix GLCM is a common technique for texture
analysis and is used to quantify the spatial alternation of pixel values [165]. For example,
how often a pixel with the similar intensity La occurs at a distance d to another pixel with
the intensity Lb in horizontal, vertical or diagonal direction as shown in Fig. 3.19. Due to the
nature of the 40× 64 images in this work, this method is applied on the images of the cuboid
Z × 40 × 64 shown in Figure 3.14. GLCM uses decomposition levels denoted as scales for
reducing the intensities in an image. Depending on the range of intensities in an image, a
number of scales are defined. Figure 3.19 shows an example of the formation process of a
GLCM matrix based on horizontal occurrences at d = 1. The gray scales are between 1 to
maximums 8 in this case. Then, the GLCM square matrix of the same dimensional size is
formed. The image pixels are quantized based on the discrete scales and the GLCM matrix
is filled for each direction.



CHAPTER 3. IR SENSING ARRAY BASED HUMAN ACTIVITY RECOGNITION 59

Pixel of 
interest

1

2

4

8

1

3

5

5

5

5

7

1

6

7

1

2

8

1

2

5

1

0

0

0

1

0

2

0

2

0

0

0

0

0

0

0

0

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

1

0

0

0

0

1

0

0

0

0

0

0

0

2

0

0

0

0

0

0

0

0

1

0

0

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

Level a

Level b

(a) (b)
Figure 3.19: (a) Forming GLCM matrices in four directions i.e., 0◦, 45◦, 90◦,
135◦; (b) Computation of GLCM matrix based on horizontal occurrences at d = 1
for an image.

Next, four second order statistics metrics are calculated from GLCM matrix: Correlation,
Contrast, Dissimilarity, and Energy that are defined in equation (3.9):

Correlation =
∑
i,j

(i− µi)(j − µj)p(i, j)
δiδj

Contrast =
∑
i,j

(i− j)2p(i, j)

Dissimilarity =
∑
i,j

|i− j|p(i, j)

Energy =
∑
i,j

p(i, j)2

(3.9)

where p is the grey co-occurrence matrix, i, j denote row and column indexes, µi, µj , δi and
δj are the means and standard deviations of px(i) and py(j), so that px(i) =

∑G−1
j=0 p(i, j)

and py(j) =
∑G−1

i=0 p(i, j) andG is the number of intensity scales used during GLCM matrix
forming.

In this work, first the 40× 64 images are divided into 5 local patches of size 8× 64 and
then, for each local patch, GLCM matrices are calculated for two different distances (one and
three number of pixels) and three different angles 0°, 45°and 90°. This results into 5× 2× 3
GLCM matrices. For each GLCM matrix, four GLCM statistics are calculated as described
in equation (3.9). Then, for each 40 × 64 image, 120 texture features are extracted based
on GLCM analysis resulting into GLCM features of size Z × 120 for the cuboid data sets
Z× 40× 64.
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3.4.1.3 Classification Methods for Activity Detection

In this work, four traditional classification methods are used: SVM, RF, k-NN, and LR,
which were described earlier in Section 3.3.2.2. All four techniques are supervised and have
shown suitability for multi-class classification problems.

3.4.1.4 Deep Neural Networks (DNN) for Activity Detection

DNN models can learn a hierarchy of features from low-level features to build high-level
ones. Therefore, the process of feature extraction is automated when there is a lack of em-
pirical or hand-crafted features. In this work, the DNN model is used for analysis of streams
of LRIR images for human activity recognition. As the LRIR data corresponding to a given
activity can be treated as the sequence of the IR frames, the mixed convolutional and recur-
rent NN model is explored. The CNN layers are used to interpret the features of each frame,
while the LSTM layer is used to explore the sequential relation between the frames.

The CNN-LSTM belong to the class of models that are both spatially and temporally
deep. They are flexible to capture spatial features from each time frame data and also capture
their temporal variations. Then, they are capable to utilise both spatial and temporal features
for prediction over sequences of varying inputs frames [166]. For this aim, they utilise CNN
layers in early parts of their architecture to extract deep spatial features from input data such
as video frames that have sequential nature. The sequential deep features are fed into the
LSTM layer to learn temporal variations and perform prediction.

In this work, three convolutional and two LSTM layers are designed for the CNN-LSTM
architecture. Then, the input are samples each consisting 40 frames of size 8 × 8 and their
corresponding activity label. The model robustness to the number of layers is validated in
Section 3.4.2.3. The convolutional layers are used to extract spatial features from the LRIR
streams, while the LSTM layers learn the temporal variations of the sequence of features.
The developed classification model is capable of identifying the activities. The number of
epochs used until model convergence is 1000, while the batch size is 32. The developed
CNN-LSTM architecture with the hyperparameters is represented in Fig. 3.20. The first
convolutional layer has 16 filters with 3 × 3 size. Regarding the second and third convo-
lutional layers, 32 filters with the same size are used. The two LSTM layers have both 32
filters.

3.4.2 Evaluation and Results
The datasets in this study are divided into training (75%) and testing (25%). The testing
accuracy is used as an evaluation metric. In this section, the following experiments are
presented:

• Noise-reduction test - the test is performed on Coventry-2018 dataset to outline the
models performance on noisy data and noise-reduced data.



CHAPTER 3. IR SENSING ARRAY BASED HUMAN ACTIVITY RECOGNITION 61

40 8

8

input

16 3

3

conv1

2

2

pooling

32 3

3

conv2

2

2

pooling

32 3

3

conv3

32

lstm1

32

lstm2

15

fc

Figure 3.20: Illustration of the CNN-LSTM architecture.

• Comprehensive model comparison test - the test is performed on Coventry-2018 dataset
to discover the most optimum model. Then, the best model is applied to the total class
problem as well as different subsets of the Infra-ADL2018 dataset.

• Layout-sensitivity test - the test is performed on Coventry-2018 dataset to compare
small layout and large layout.

• Subject-sensitivity test - the test is applied on both Coventry-2018 dataset and Infra-
ADL2018 dataset to report classification results on single-subject activities data and
double-subject activities data.

• Model-generality in terms of layout - the test is applied on Coventry-2018 dataset,
where the models are trained on small layout and tested on large layout, and vice
versa.

• Model-generality in terms of subjects - the test is applied on Infra-ADL2018 dataset to
report results on models trained with a fixed number of subjects and tested on subjects
data not used for training.

• Optimum sensor test - all individual sensors and combinations of them are used to
discover the most optimum sensor or combination solution.

3.4.2.1 Frames Equalisation

The proposed methods for interpolation and extrapolation in Algorithm 1 and Algorithm 2
respectively are compared with random methods for the same purpose. In terms of inter-
polation, random frames are selected from the existing frames, which are then added to the
existing matrix. The random extrapolation method selects random frames to be deleted until
the total number of frames becomes 40. For comparison, the proposed methods and ran-
dom methods are tested on the 15-class problem in the large layout from the Coventry-2018
dataset. More precisely, the raw data are used before applying periodic noise reduction and
feature extraction techniques for this experiment. Figure 3.21 outlines the performance of the
proposed methods against random techniques. The proposed methods exhibit an improve-
ment of up to 3.54% for LR, which will later be evaluated as the most optimum classifier.
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Figure 3.21: Comparison of the classification performances of random methods
and proposed methods for interpolation and extrapolation before denoising (BD)
and feature extraction using all four classification methods. The Coventry-2018
large layout data (15-class problem) of Sensor-1 was used.

3.4.2.2 Periodic Noise Removal

3.4.2.2.1 ANOVA Test In order to demonstrate the significant difference in the mean val-
ues over the horizontal and vertical stripes (excluding the DC component), one-way ANOVA
is applied as described in Section 3.4.1.1.2. The null hypothesis is that the average of the
horizontal and vertical stripes in power spectrum 2D arrays (excluding the DC component)
is not significantly different for all 2D spatio-temporal maps. F-score and p-value are cal-
culated for each sensor and direction (horizontal and vertical) as outlined in Table 3.4. The
p-values are very small and the null hypothesis is rejected at 0.01 level. Thus, it is concluded
that the threshold values based on average of stripes must be customized for each 2D array
and a pre-defined threshold cannot be used for the same purpose.

Table 3.4: The f-score and p-value results of the ANOVA analysis for the av-
erage horizontal and vertical stripes (excluding the DC components) of the 2D
power spectrum for all three sensors (S1, S2, S3), and a combination of them
(S1+S2+S3) using large layout and 15 classes data from Coventry-2018 dataset.

Horizontal line Vertical line
f-score p-value f-score p-value

S1 507.06 4.71e-259 68.51 1.67e-100
S2 418.67 3.89e-242 40.83 3.06e-70
S3 551.57 1.50e-266 81.58 5.02e-112
S1+S2+S3 832.71 0 137.26 1.64e-246
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3.4.2.2.2 Result of Periodic Noise Removal Cancellation In order to evaluate the effect
of the proposed periodic noise removal strategy, the classification results of data before pre-
processing and after pre-processing are compared. For this aim, the Coventry-2018 dataset
for 15-class problem including both single subjects and double subjects activities of Sensor-
1 was used. Sensor-1 is selected as the optimum sensor selection, which is evaluated later in
this Chapter.

The four feature extraction methods: SVD, Fisher’s method, DCT, and GLCM with LR
are used to train classification models. The LR classifier was chosen because it was one
of the best classifiers compared to others in terms of accuracy. This will be shown in next
section. The models are trained using the raw data (before denoising) first. Then, the same
modeling strategies are applied on the denoised data sets. The results of this experiment
show an increase in accuracy. Figure 3.22 shows the result of classification. The Coventry-
2018 large layout Sensor-1 data was used for these tests. The results show improvement in
the classification performance in all cases.

Figure 3.22: Comparison of the classification performances before denoising
(BD) and after applying the DFT-based periodic noise removal algorithm (AD)
using different feature extraction methods and LR classification. The Coventry-
2018 large layout data (15-class problem) of Sensor-1 was used.

3.4.2.3 CNN-LSTM Model Robustness Evaluation

In order to discover the most optimum model for the CNN-LSTM architecture, a number
of combinations of CNN and LSTM layers are used. Average testing accuracy is used as
a model evaluation metric. The models are tested on Coventry-2018 dataset for large lay-
out with all 15 activities. In particular, two, three and four layers are used for both CNN and
LSTM. All nine combinations are evaluated for random splits of Coventry-2018 dataset. Fig-
ure 3.23 reveals the testing accuracy for each model. As observed, 3CNN-2LSTM represents
the model with the highest accuracy.
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Figure 3.23: CNN-LSTM model evaluation using Coventry-2018 large layout
data (15-class problem) of Sensor-1.

3.4.2.4 Comprehensive Comparison of Recognition Techniques

This section compares the capability of different combinations of feature extraction and
classification methods described in Section 3.4.1.2 as well as the CNN-LSTM in activity
recognition. The idea is to evaluate the methods using the most challenging dataset at hand.
Therefore, instead of evaluating based on the 8-class data (of single-subject activities) or
7-class data (using double-subject activities), the 15-class data including both single-subject
and double-subject activities from the Coventry-2018 large layout Sensor-1 are considered
in this section. The hand-crafted feature extraction methods are SVD, Fisher’s Canonical
Variables, DCT and GLCM. The investigated classifiers include SVM, RF, k-NN and LR.
K-fold CV (K = 10 in this work) is used in order to find the optimal parameters for the
classifiers. Therefore, the selected dataset is divided randomly into training and testing for
10 times to perform the tests for several times (10) and the average and standard deviation
of the results are reported. The percentage of the training and testing sets are 75% and 25%
respectively.

Table 3.5 presents the results achieved based on different feature-classifier combinations
as well as the CNN-LSTM model. The results show that the applied methodologies were suc-
cessful to discriminate activities. The highest accuracy obtained based on the unsupervised
variance-based SVD and CNN-LSTM model, where the former achieves 100% when us-
ing LR classifier. Although CNN-LSTM model is more complicated compared to SVD+LR
model in terms of computation time and implementation to the embedded systems, its per-
formance is not higher. Justification of the results will be given in Chapter 6.

Based on the classification results for Coventry-2018 dataset, SVD feature extraction
with LR classifier is selected as the optimum modeling strategy. Therefore, this modeling
strategy is used for the rest of the tests in this study. Since in the Infra-ADL2018 dataset
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Table 3.5: Testing performances for all combinations of the feature extraction
and classification methods as well as CNN-LSTM using the Sensor-1 large layout
data set from Coventry-2018 for 15 classes of single subject and double subject
activities.

SVM RF KNN LR CNN-LSTM
SVD 96.66%±0.9 97.02%±1.04 88.88%±1.57 100%±0

Fisher’method 87.03%±2.28 88.14%±0.52 86.29%±1.04 83.33%±1.6
DCT 88.14%±2.28 92.21%±0.9 87.39%±0.5 86.29%±1.38

GLCM 77.39%±2.09 82.22%±1.81 73.7%±2.09 74.07%±1.04
CNN-LSTM 95.88%±1.1

among the three categories of activities for single-subject, double-subject and three-subject
activities, the number of samples for the latter are very limited (18 samples per sensor),
making it very difficult to train a model. Therefore, the selected optimum model was used to
train classifiers for single-subject (9 classes) and double-subject (10 classes) activities using
each sensor data separately, as shown in Table 3.6. In addition, all of the subjects data were
used to develop models for classification of all activities (21 classes) using each sensor data.
The achieved results show the robustness of the classification methods on this dataset.

Table 3.6: Testing performance of the classification models using SVD+LR for
single-subject, double-subject, and all activities of Infra-ADL2018.

Single-subject Double-subject All subject
Sensor 1 94.53% ±0.77 100% ±0 96.02% ±0.72
Sensor 2 95.62% ±0.77 100% ±0 100% ±0
Sensor 3 98.36% ±1.33 100% ±0 97.34% ±0.37
Sensor 4 95.08% ±1.33 100% ±0 95.49% ±0.37

Because of the robustness of classification models on individual sensors data, there is no
need to use several sensors, which increases the hardware and software complexity. How-
ever, as shown in Table 3.6, the nine-class single-subject classification using individual sen-
sors (Sensor-1, Sensor-2, Sensor-3 and Sensor-4) shows that the results deviated from 100%.
Therefore, experiments for combination of two sensors data were performed. All six possi-
ble combinations of two sensors data including single-subject activities are formed. Using
the SVD with LR classification, the average test accuracy was 100%±0 for all six models.
Overall, considering this result and the results in Table 3.6, the use of Sensor-2, which is a
side sensor, showing > 95% accuracy is the optimum choice.

3.4.2.5 Layout-Sensitivity Test Results

One of the concerns about the use of LRIR sensors is sensitivity in their distance to the target.
In this section, the impact of distance when using the LRIR sensor for human target activity
recognition is experimented. For this aim, the single-subject small layout (1.5 m away from
area of interest) 240×40×64 data and the single-subject large layout (2.5 m away from area
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of interest) 240× 40× 64 data are utilised. The performance of the four SVD, Fisher, DCT
and GLCM feature extraction methods using the LR classifier as well as the CNN-LSTM
model are compared. In Figure 3.24, the recognition performances are shown.

Figure 3.24: Comparison of the effect of small layout and large layout data
in classification performance. The LR classifier with the four feature extrac-
tion methods are applied on the single-subject activities for small layout and
the single-subject activities for the large layout as well as CNN-LSTM using
Coventry-2018 Sensor-1 large and small layout data sets.

As expected, the accuracy for the small layout is higher as the subject body profile will
cover more pixels. Nevertheless, the difference in the accuracy is not significant, which
showcases that activities are correctly classified in both cases. That indicates the applied
techniques including pre-processing, feature extraction, and classification are applicable for
sensor settings placed in different distances with respect to the subject.

3.4.2.6 Model-Generality in Terms of Layouts

A classical machine learning problem is whether a model can generalize for different scenar-
ios. In Coventry-2018 experiments, two facts are worth to be noticed: i), there are small and
large layouts; ii), The room temperature increased during the experiments when collecting
the large layout data. These two facts can be utilised to test the models’ generalization when
having unseen layout condition after training. For this aim, two tests are performed:

1. Extreme model generalisation: The model which was trained using the single-subject
Sensor-1 data in small layout was tested on the single-subject Sensor-1 data in large
layout. The same experiment was also repeated for the large layout as train and small
layout as test. The distance from sensors to the subjects is different. In addition, the
average and standard deviation of the pixels for the small layout are 17.47 ± 1.21,
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while for the large layout, they are 18.86 ± 1.11. All combinations of feature extrac-
tion and classification methods as well as CNN-LSTM were tested. GLCM for feature
extraction with LR for classification achieved the best accuracy in both experiments
using Sensor-1. In the first experiment, the accuracy was 71%. In the opposite sce-
nario, where the large layout is used for training and the model is evaluated on the
small layout, the testing accuracy was 64.58% using the same feature extraction and
classification strategy. (GLCM + LR) can still generalise and show intermediate levels
of results of 71% for small layout training and large layout testing. This is a positive
indication that such systems still work in the case of changes in the original settings
such as displacement, etc.

2. Mixed model generalisation: The single-subject data from both small layout (240
samples) and large layout (240 samples) are mixed, which represents the moderate
scenario. Therefore, the data are divided into training and testing. This ensures that
samples from both layouts are distributed both in the training set, and testing set. Sim-
ilarly to the previous experiment, all classification models were tested in the pursuit
of the most optimum model. As a result, the most accurate model was the automatic
feature extraction and classification with the deep CNN-LSTM architecture, achieving
94.99%±1.66 average testing accuracy. Considering the very high accuracy, this ex-
periment shows that the approximately equal distribution of data from both layouts in
all sets provides a very accurate representation of the data.

3.4.2.7 Sensitivity to the Number of Subjects Test Results

In this section, the sensitivity of the algorithms in detection of the activities with a different
number of subjects are evaluated. For this aim, the single-subject dataset of size 240×40×64
and double-subject of size 210 × 40 × 64 both from Coventry-2018 large layout settings of
Sensor-1 are used for comparison. In addition, single-subject activities of size 243× 40× 64
and double-subject activities of size 240× 40× 64 from Infra-ADL2018 using Sensor-2 are
also compared. Fig. 3.7 describes the test accuracy of LR classifier when applied on SVD,
Fisher’s method, DCT and GLCM features as well as the CNN-LSTM structure. The graph
shows that the double-subject activities outperform the single-subject activities for all five
models.

3.4.2.8 Model-Generality in terms of Subjects

The dataset Infra-ADL2018 includes samples from nine subjects. As such, leave-one-subject-
out experiment is conducted to evaluate the model tested on unseen subject data. Similarly
to the other experiments, the most optimum model SVD+LR is selected for training and test-
ing the models. The data from the side Sensor-2 is used as it outperformed the other three
sensors. Considering single-subject activities, all nine cases were considered so that, each
time eight subjects were used for training and the remaining one was used for test. Regard-
ing double-subject activities, there exist eight combinations of subjects for conducting the
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Table 3.7: Comparison between single-subject activities and double-subject ac-
tivities using Coventry-2018 large layout data of Sensor-1 and Infra-ADL2018
Sensor-2 data. LR was used together with all feature extraction methods as well
as CNN-LSTM.

Coventry-2018 Infra-ADL2018
Single Double Single Double

SVD 88.88%±1.57 98.11%±0 97.63%±2.01 100%±0
Fisher 86.11%±1.56 91.82%±0.89 83.05%±2.78 97.21%±0.78
DCT 84.71%±0.98 92.25%±1.03 92.5%±0.9 100%±0
GLCM 83.33%±1.69 84.91%±1.12 68.02%±0.96 96.52%±.98
CNN-LSTM 96.29%±2.62 96.87%±2.2 95.13%±5.77 96.66%±6.66

activities. Therefore, all eight possible cases are presented similarly. The average testing
accuracies with standard deviations are seen in Table 3.8.

Table 3.8: Testing performance of leave-one-subject-out model generalisation for
single-subject activities and double-subject activities of Infra-ADL2018.

Single-subject Double-subject
SVD+LR 88.06% ±12.32 71.25% ±9.27

The results reveal considerably high standard deviation for both cases. The probable
reason is the difference in the body characteristics and motion behavior of the unseen test
subjects compared to the training set. The average activity recognition performance over
three repetitions of each activity is visualised for each unseen test subject in Figure 3.25.
The graph showcases the poorly classified activities.

(a) (b)

Figure 3.25: (a) Single-subject activities and (b) double-subject activities. The
vertical axis show the unseen test subject and the numbers show the average test
accuracy over three repetition of each activity.
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As observed in Fig. 3.25a, Activity 3, Activity 4 and Activity 8 are the three single-
subject activities, which are recognised for all three repetitions and nine subjects. The ac-
tivities which are not recognised for the specific cases yield 0% average accuracy for the
three repetitions. This shows that a subject pattern used for testing is likely to be noticeably
different from the subject patterns used for training. To visualise this, one activity that was
not recognized for an unseen subject is considered. Then, the average of some key frames is
visualised for the unrecognized activity for all test subject. This helps to identify the differ-
ence from the unrecognized subject profile compared to the rest of the subjects. Our research
discovered that the middle frames represent the essence of the activities, while the starting
and ending frames represent mostly still environment as observed in Section 3.3.3.2. The
following Figure 3.26 represents the patterns for Activity 9, which was not recognised for
subject 8 as observed in Fig. 3.25a.

Figure 3.26: Patterns for activity 9 using all single-subjects.

Figure 3.25b reveals the performance for double-subject activities in leave-double-subject-
out experiments. Likewise, some of the activities were not recognised for all three repetitions
or they were recognised for all three. To evaluate this, the same average frame approach is
generated to discover whether the unrecognised activity of a double subject profile differs
from the rest. Fig. 3.27 reveals Activity 2 patterns, which was not recognised for double
subject 1-3 as seen in Fig. 3.25b. As observed, the patterns for double subjects 2-3 and 4-6
are similar. Likewise, the double subjects 7-8 and 7-9 represent the second group of similar
patterns. Finally, the double subjects 4-5, 5-6, and 8-9 have similar profiles. However, none
of these groups’ patterns are similar to the only unrecognised double subject’s pattern.

Figure 3.27: Patterns for activity 2 using all double subjects.
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3.4.2.9 Optimal Room Setup and Sensor Selection

The room setup was part of a comprehensive discussion prior to any experiment conduction.
For Coventry-2018 experiments, instead of using one sensor attached to the ceiling of the
room, it was decided to use three sensors in total. Then, it appeared that the most successful
results come from Sensor-1 with a side view to the subjects. In order to identify the optimum
sensor arrangement, the classification accuracy for different combinations of sensors are
compared. The results of this comparison are shown in Figure 3.28.

Figure 3.28: Classification accuracy for individual sensors and combinations of
them for Coventry-2018 dataset using SVD+LR on large layout for the 15-class
problem including single and double subjects.

By using multiple sensors, a systematic review of the performance of each sensor can
be performed. As seen in Figure 3.28, using Sensor-1 data, the best accuracy is achieved,
showing that the other two sensors can be excluded from the experiments. Considering
the fact that Sensor-1 is a side sensor, it can better capture activities such as sitting, where
a front sensor or a ceiling sensor would fail. That simplifies both hardware and software
requirements. Furthermore, as mentioned earlier, the temperature of the room rose from
18° centigrade to 21° over the experiments in the large layout. However, the classification
models still remain accurate despite of the higher temperature in the room.

Another issue to investigate is the reason for the difference in the performance of the two
side sensors, Sensor-1 and Sensor-3. While they are symmetric with respect to the subjects
position, Sensor-3 shows lower accuracy compared to Sensor-1. The confusion matrices
shown in Fig. 3.29 outline that the lower accuracy of Sensor-3 is due to the double-subject
activities such as B4 (Small Movements) and B6 (Standing; Moving). This is due to the fact
that these activities are not symmetric as visualised in Fig. 3.30. In a real world scenario
there are many different range of activities and further studies are required about the optimum
set of sensors position and orientation for accurate activity recognition in practical settings.
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Furthermore, the confusion matrices in Fig. 3.29 prove that the pair-subject activities are
problematic and this leads to lower performance of the data captured by Sensor-3.

(a) (b)
Figure 3.29: Comparison between the confusion matrices of the two side sensors,
Sensor-1 (a) and Sensor-3 (b), of Coventry-2018 dataset. The large layout with
single and double subject data was used for training a model based on SVD+LR.

(a) (b)
Figure 3.30: Comparison between Coventry-2018 Sensor-1 (a) and Sensor-3 (b)
for “Standing + Small Movements” activity.

3.5 Chapter Conclusion
This chapter of the thesis presented a novel method for DFT-based supervised periodic noise
reduction aimed for the 2D spatio-temporal maps of LRIR data. The performance of the
method, compared with noisy data, achieved outstanding results of up to 13.28% for the
model SVD+LR. Comparison between single-subject data and double-subject data from
the two datasets, Coventry-2018 and Infra-ADL2018, discovered double-subject activities
as more correctly classified for all used models. Unsurprisingly, the most optimum model
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SVD+LR showed better performance on small layout data, while its recognition accuracy
dropped when using the large layout data from Coventry-2018. In addition to the contribu-
tions, novel methods for interpolation and extrapolation were proposed. Despite the limita-
tions of the extrapolation method, the two strategies have shown an improvement compared
to random selection methods.

The first novel strategy was in formation of the 2D spatio-temporal maps from LRIR
streams followed by the proposed periodic noise reduction algorithm that improved the
recognition accuracy. Despite the great efforts of previous research studies, no compari-
son for the different aforementioned scenarios was achieved as well as discovery of the most
optimum machine learning or deep learning model. Frames equalisation was not discussed
in the current literature, which lacked any proposed methods for the purpose of interpolation
and extrapolation.

This work brings us closer to implementing a working LRIR system for applications in
healthcare and eldercare. However, the main limitations of the presented study are mostly
the limited number of samples for both datasets. In addition to this limitation is the fact that
datasets were collected by younger adults, which may not correctly resemble the activities
and movements of older adults.



Chapter 4

Unsupervised Doppler Radar Based
Activity Recognition

4.1 Introduction
The previous chapter was focused on IR sensors for human activity recognition using su-
pervised learning strategies. A number of methods were proposed for data pre-processing.
In contrast to the previous chapter that was based on supervised learning strategies, in this
chapter unsupervised learning strategies will be considered for human activity recognition
using passive micro-Doppler radars.

Passive micro-Doppler radars have been introduced for human activity recognition [59],
which led to a diverse number of applications, mostly focused on supervised scenarios.
These radars are a preferred option for human activity recognition applications considering
their privacy-preserving advantage, deep penetration, high distance range, and substantial ac-
curacy rates [60], [62]. Micro-Doppler radars use the Doppler effect, a phenomenon caused
by motion-related activities such as walking, running, jumping and others, which cause a
shift in the frequency. Therefore, the shift in the frequency can be used for detecting these
activities.

As described in Chapter 2, unsupervised learning applications for human activity recog-
nition with micro-Doppler radars is a largely ignored area in the literature. However, such
applications have advantages such as removing the need for manually labelling the data.
Clustering methods are only guided by the variations and characteristics of the data samples,
which are then grouped in clusters. Obviously, the absence of labels can negatively influence
the quality of the clustering results. On the other hand, the models can be updated faster in
unsupervised applications, while supervised applications are highly limited due to the need
for labelling any new coming data. In a real world scenario in a care home, a diverse number
of activities are performed including walking, sitting, drinking a cup of tea, reading a news-
paper, and others. However, only critical activities are important such as a fall or immobility.
Considering this, such activities can be labelled and recognised for future scenarios. How-

73
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ever, this work is only focused on unsupervised activity clustering of Doppler radar data and
the latter problem is not addressed in this thesis. In addition, unsupervised learning usu-
ally requires the use of techniques for estimating the number of clusters. This is due to the
fact that subjects conduct a broad number of activities in a real world scenario. As such,
embedding all activities in a pre-collected dataset for supervised frameworks is problematic.

The employed mmWave Doppler radar dataset in this chapter was equalised and nor-
malised as it will be explained in detail in Section 4.2. Each data sample was vectorised to
6400 variables. In order to obtain 2D images for subsequent image analysis, 80× 80 reshap-
ing was applied. Figure 4.1 reveals the patterns of the activity walking (1). It is obvious that
some areas of the image present richer information, while others can be removed from the
analysis. This notion will be used for the the proposed two unsupervised feature extraction
methods based on local patching.

Figure 4.1: Example of an 80× 80 image of the activity walking (1).

Currently, only two studies are focused on the use of unsupervised learning strategies for
Doppler radar-based human activity recognition [23, 24]. Considering their main limitation
with intermediate level of recognition accuracy, this chapter aims to deliver unsupervised
solutions using the mmWave Doppler radar dataset for the aim of activity recognition with
improved results. By addressing the variations in 2D radar profiles, different image feature
extraction methods can be used for activity detection. For this reason, in this thesis the au-
thor is investigating interpretation strategies for the 2D images. In particular, considering
the high dimensionality of the radar data, two novel unsupervised feature extraction methods
for 2D Doppler maps will be proposed. These two methods are based on analysis of image
local areas using 2D DCT and entropy analysis. Furthermore, CVAE will be considered as
a unsupervised architecture for feature extraction. This method as an unsupervised feature
extraction strategy has not been applied to this data for previously. Additionally, for visual-
isation of high dimensional data in lower dimension, three state-of-the-art methods will be
employed. This will be performed in two scenarios. Firstly, the raw data will be transformed
to a 2D space, which will be visualised with the three methods. Secondly, the CVAE encoded
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data will be then transformed similarly, and visualised. The aim is to show the visualisation
capabilities of CVAE purely for illustration purposes.

4.2 Methodology
The unsupervised framework proposed in this study is described in Figure 4.2. As observed,
the first step is to manipulate the data by reshaping. Therefore, the data are divided to train
and test considering the fact that leave-one-subject-out fashion is implemented. Since the
study’s nature is unsupervised, the number of clusters/classes is unknown. Then, a number of
methods for number of clusters estimation are employed. The next step is to perform feature
extraction with both proposed and state-of-the-art methods. The proposed methods include
local DCT-based method and local entropy-based method, which are compared with the
existing CVAE, CAE, PCA, and 2DPCA. The state-of-the-art CVAE for feature extraction
has not been used previously for human activity recognition with Doppler radars.
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Figure 4.2: Flowchart, describing the overall analysis framework of the study.

4.2.1 Dataset Description
The micro-Doppler radar dataset Dopler-Radar-2018 was collected independently by re-
searchers at University of Bristol, UK. Figure 4.3 illustrates the experimental layout, where a
5×7 metres room is observed. Energy Harvesting Transmitter (TX91501 POWERCASTER)
radio source was used working on 915 MHz ISM band with 30dBm DSSS signal. The micro-
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Doppler radar consisted of two channels: 1) surveillance channel; 2) reference channel. Both
channels were synchronised using NI USRP 2920s and connected with directional antennas.
As observed, the surveillance channel was pointed at the subject, while the reference channel
was positioned 1 metre from the Energy Harvesting Transmitter. To obtain range-Doppler
plots, a Cross-Ambiguity Function (CAF) was used. For further information, the readers are
referred to [60].

Computing
Unit

Surveillance
Channel

0.5 m

Energy Harvesting
Transmitter

0.5 m

7 m

5
 m

Wall
0.2 m

Figure 4.3: Experimental layout for conducting the activities in the used Doppler
radar dataset.

The dataset was created by four participants (one female and three male) in total with di-
verse body sizes. Each of the five activities, including (1) walking, (2) running, (3) jumping,
(4) turning, and (5) standing, was performed 10 times by each participant. This resulted in
40 samples for each activity leading to a total of 200 samples.

The Doppler radar dataset used in this study was already pre-processed. More specifi-
cally, the total number of features per sample is 6400 (2 directions × 100 Doppler bins × 32
time index). In addition, the data is normalised referring to the fact that each feature’s value
is within the range of (0, 1). The vectorised data with 6400 features is therefore reshaped to
2D maps of size 80 × 80. This is implemented in order to obtain 2D images, which can be
manipulated with image analysis strategies considering the local variations and patterns in
each image. Figure 4.4 presents an example sample of each activity reshaped into 2D maps.

Figure 4.4: Example of an 80× 80 = 6400 image for each activity: (1) walking,
(2) running, (3) jumping, (4) turning, and (5) standing.



CHAPTER 4. UNSUPERVISED DOPPLER RADAR BASED ACTIVITY RECOGNITION 77

The study is implemented in Python, where a number of libraries are used. For data pre-
processing, pandas (version 1.0.5) and numpy (versions 1.19.1) are applied. The methods
for number of clusters estimation with K-Means are implemented with scikit-learn (version
0.22.2). K-Medoids for clustering is applied using scikit-learn-extra (version 0.1.0b2). The
deep learning architectures for CAE and CVAE are implemented and run with Tensorflow
(version 2.2.0) and Keras (version 2.2.4). In order to implement visualisation results, mat-
plotlib (version 3.2.2) functionalities are applied.

4.2.2 Number of Classes Estimation
The number of class/clusters in this study is unknown a priori considering the unsupervised
scenario. To estimate the correct the number of clusters, a number of methods are applied
in combination with K-Means including Elbow method, Silhouette analysis, Davies-Bouldin
score, Dunn’s index, and Calinski-Harabasz index.

4.2.2.1 Elbow Method

The Elbow method is a visualisation technique aimed for finding the optimal number of
clusters [167], [168]. The overall goal for the method is to minimize the intra-class variability
and maximize the inter-class variability. In this work, the data samples are denoted as D =
D1, D2, ..., Dn, where n refers to the total number of samples. Additionally, the number of
clusters is given by K, while the centroids are defined as ω1, ω2, ..., ωK . The effectiveness of
the method described by the distortion J is given by:

J(K,ω) =
1

n

n∑
i=1

(
K

min
j=1

(Di − ωj)2) (4.1)

The Elbow method is implemented in combination with K-Means clustering, which is de-
scribed later in this section. A candidate number of clusters K = 2, 3, ..., 10 are selected.
Elbow method computes the sum of squared errors for the data samples in each cluster. The
increase of K refers to the decrease of J . An optimal selection is where an additional in-
crease in the number of clusters K does not change the squared sum of errors significantly.
In other words, a further increase would result in over-clustering. The bend point is where
the decrease in J is noticeable before reaching the actual K and smoother afterwords. Since
Elbow method is a visualisation technique, the graph shows a significant decline before
reaching the actual K. Therefore, with the further increase of the number of clusters K, the
distortion J is very similar. Figure 4.5 shows the Elbow method for these data.

As illustrated K = 5 is selected as the optimum number of clusters. This is the actual
number of class in our data. However, Elbow method is a visualisation technique and the
finding can be ambiguous in some cases. To strengthen the analysis, additional heuristics
techniques for finding K are applied.
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Figure 4.5: An Elbow test used to determine the number of clusters K.

4.2.2.2 Silhouette Analysis

Silhouette analysis is probably the most popular method for estimating the number of clusters
[113]. It is given by:

Silhouette =
1

n

n∑
i=1

b(Di)− a(Di)

max{a(Di), b(Di)}
(4.2)

where a(Di) refers to the average distance between data sample Di and all other data sam-
ples belonging to the same cluster. In addition, b(Di) denoted the minimum average distance
between data sample Di and the remaining clusters. The Silhouette analysis aims to show
the suitability of a data sample Di to belong to a cluster. More specifically, it shows the
“goodness” of clustering results and can serve as a parameter selection technique. The Sil-
houette score is within the range of (-1, 1), where a lower values shows overlapping clusters,
while the higher value refers to good clustering results.

4.2.2.3 Davies-Bouldin Index

The Davies-Bouldin index is a method for estimating the number of clusters, which con-
siders the worst clustering scenario. Therefore, unlike previous methods, a smaller value is
desirable. The method is given by:

Davies =
1

K

K∑
i=1

max
i 6=j

∆(Ci) + ∆(Cj)

λ(ωi, ωj)
(4.3)

where ∆(Ci) =
n∑

Di∈Ci
||Di − ωi||2 refers to the distance between each data sample Di and

the centroid of the corresponding cluster ωi. Therefore, the distance between the centroids
of all clusters is given by λ(ωi, ωj) = ||ωi − ωj||2. The maximisation term computes the
ratio of between-clusters for the ith and jth clusters. More specifically, all combinations
of clusters are considered. The Davies-Bouldin method shows the clusters with minimum
inter-cluster distance, where the data samples in each cluster have large spreads. This is the
worst clustering scenario. As already specified, a smaller number of Davies-Bouldin method
is desirable.
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4.2.2.4 Dunn’s Index

Dunn’s index is a one of the oldest methods for estimating the number of clusters [115].
As with most methods concerned with clustering, the aim is to minimise the distance of
data samples in each clusters, and maximise the distance between data samples from distinct
clusters. The method is given by:

Dunn =
min

1≤i<j≤K
λ(ωi, ωj)

max
1≤k≤K

∆(Ck)
(4.4)

where the distance between cluster centroids ωi and ωj is given by λ(ωi, ωj). In addition,
the distance between data samples belonging the same class is given by ∆(Ck). Since the
numerator seeks to find the distance between clusters, a maximum value is desired. On the
other hand, a minimum value is desired for the denominator aiming the compute the intra-
cluster distance. Similarly to Silhouette analysis, a higher value for Dunn’s index is needed.

4.2.2.5 Calinski-Harabasz Index

Calinski-Harabasz index is a popular method for estimating the number of clusters and clus-
tering quality [116]. It computes the ratio of between-cluster dispersion and within-cluster
dispersion. The specific formulation of the method, also knows as Variance ratio criterion,
is given as follows:

CH =
B(K)

W (K)
× n−K
K − 1

(4.5)

where B(K) =
∑K

k=1 nk||ωk − ω||2, while W (K) =
∑K

k=1

∑nk
i=1 ||Di − ωk||2. The total

number of points is denoted by n, while K refers to the total number of clusters. The global
centroid is given by ω, while ωk is the centroid of a cluster k. In line with the majority of
clustering methods, a higher value is desirable for Calinski-Harabasz index.

Similarly to the Elbow method implementation, a candidate set of clusters is given K =
2, 3, ..., 10 for K-Means clustering. The heatmap in Figure 4.6 shows the results for each
heuristic technique, where a darker colour refers to a higher value. As already discussed, the
Davies-Bouldin index refers to the worst clustering scenario, where the lowest value shows
the best clustering. Therefore, the inverse of this method is used in the graph in order to be
in line with the other methods. The selected number of clusters is K = 5 for Silhouette,
Davies and Dunn’s index, while the Silhouette coefficient is very similar for K = 4 and
K = 5. Only Calinski-Harabasz index shows K = 3 as the most optimum number of
clusters. Overall, K = 5 is selected as the most optimum number of clusters by the majority
of methods.
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Figure 4.6: Silhouette score, Davies score, Dunn’s index and Calinski-Harabasz
index used to determine the number of clusters K.

4.2.3 Feature Extraction Methods
In order to extract features from the usually high-dimensional micro-Doppler radar data,
researchers have used two main approaches. More specifically, physical feature extraction
is commonly applied, which includes features such as average torso velocity, duration of
an activity, upper and lower envelope variances [59, 169]. This information, also known as
empirical information, can be very useful for finding the intuitive relation between Doppler
samples and feature. However, datasets with unknown and uncontrolled conditions require
different features such as treating the micro-Doppler samples as time-spectrogram and range-
Doppler time points [170, 171, 172]. In this work, we will explore two novel local feature
extraction approaches including local DCT-based method and local entropy-based method.
The proposed methods will be compared with the existing convolutional-based methods such
as CAE and CVAE. In addition, PCA and its variation 2DPCA will also be applied for
comparison.

4.2.3.1 The Proposed Local DCT-based Method

The first feature extraction method proposed in this study considers local areas from the
original 2D maps 80× 80 from the Doppler radar data, where 2D DCT is applied [164]. The
2D DCT method has already been described in Section 3.4.1.2.3.

As observed earlier, some of the local areas in the 2D Doppler maps contain richer infor-
mation opposed to other areas with little or no information. By using this notion, a systematic
search algorithm can be applied in order to discover the most optimum patch. More specif-
ically, non-overlapping patches of different square sizes are considered - 10 × 10, 20 × 20,
40 × 40 including the original 80 × 80 images as illustrated in Figure 4.7. Therefore, 2D
DCT is applied to each local patch, which then divides the patch to 3 × 3 sub-patches. The
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following step is to select six coefficients in a zig-zag pattern from the top-left corner of
each sub-patch. The resulting six features from each of the 3 × 3 sub-patches are then con-
catenated. This results in only 54 features considering the extremely high dimensionality of
80 × 80 original features. In order to assess the suitability of each strategy, Dunn’s index is
applied, where a higher value refers to better clustering results.

max

D1

D2

..
.

D85

1

..
.

2

9

Patches of 
size 10×10

Patches of 
size 20×20

Patches of 
size 40×40

Patch of 
size 80×80

Dunn’s indices:
D1,…,D64

Dunn’s indices: 
D65,…,D80

Dunn’s indices:
D81,…,D84

Dunn’s 
index: D85

9
1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 4 5 6

1 2 3 … 53 54

Figure 4.7: Flowchart of the proposed local DCT-based method.

Dunn’s index is selected as an unsupervised model selection metric in this work. This is
due to the fact that it represents an easily interpretable metric. As shown in equation (4.4),
the numerator finds the minimum distance between cluster centroids for all combinations,
while the denominator refers to the maximum intra-cluster distance. By using this model
selection strategy, the unsupervised nature of the work is preserved.

4.2.3.2 The Proposed Local Entropy-based Method

Considering the fact that the Doppler data are treated as 80 × 80 images, texture analysis
methods can be applied in order to interpret the patterns for different activities. Entropy
is used in this study, which is a statistical measure based on randomness. It is defined by
Shannon’s equation [173] given by:

H(ρ) = −
b∑
i=1

ρi log(ρi) (4.6)

where ρi is the normalised histogram counts for each image, while b refers to the total number
of histogram bins. More specifically, ρi is computed based on the histogram of each image.

The entropy value changes based on the local variations in the image. If the local patch
contains similar information with low variation, then the entropy value will be small. On the
other hand, the entropy value increases with the increased variation in the images. Based
on the notion used in the previous technique, some of the patterns in the 2D Doppler maps
can be removed from the analysis. In addition, a careful selection of local patches can show
good discriminative entropy.

Three local patching strategies are considered, which start with larger patches that are
narrowed down systematically. The proposed local patches strategies are illustrated in Figure
4.8. Similarly to the previous method, the unsupervised metric Dunn’s index is selected for
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estimating the goodness of clustering. The steps of the proposed local entropy-based method
are outlined in Figure 4.9.

(a) First strategy (b) Second strategy (c) Third strategy
Figure 4.8: The three patching strategies for entropy analysis.
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Figure 4.9: Flowchart of the proposed local entropy-based method.

4.2.3.3 Convolution Filter-based Methods

This section outlines the convolutional-based method for feature extraction including CAE
and CVAE. More specifically, the drawbacks of CAE are described, which naturally leads to
the improved CVAE architecture.

4.2.3.3.1 Convolutional Autoencoder (CAE) Autoencoders (AEs) are unsupervised neu-
ral networks commonly used for feature extraction. In addition to their applications, popular
areas of investigation include data denoising [174], anomaly detection [175], and image gen-
eration [176]. The structure of AEs consists of an encoder and a decoder. The input of the
encoder is the original image x, which is then transformed to a latent information z with
lower dimensionality. On the other hand, the role of the decoder is to reconstruct x given
the limited information of z. A reconstruction loss is only included in the implementation of
AEs, which guides the decoder in the correct reconstruction of x.

The disadvantages of CAE refer to the fact that the architecture fails to obtain any statis-
tical strength between all data samples. More specifically, it learns local parameters of each
data point individually. The inclusion of a reconstruction loss only usually leads to mean-
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ingless representations of similar data samples. As such, these data samples belonging to the
same class may be given very distinct representations in the Euclidean space.

A deep CAE with three hidden layers for both the encoder and decoder is used in this
work as shown in Figure 4.10. A three-dimensional input of 2 × 100 × 32 is used for the
Doppler samples. It is important to note that the structure of the encoder is symmetric to the
structure of the decoder. The first convolutional layer in the encoder and its corresponding
third convolutional layer in the decoder have 256 filters with size of 2 × 3. In addition, the
second convolutional layers in both encoder and decoder have 128 filters with size of 1× 3.
Finally, the third convolutional layer in the encoder and the first convolutional layer in the
decoder both have 64 filters with size of 1×3. A ReLU activation function is used for the lay-
ers in both structures. The latent information, which is the output of the encoder z, contains
only 50 features, which is an extreme decrease in the dimensionality. As already described,
the decoder aims to reconstruct x given z. For the purpose of feature extraction, the encoded
features are used. In addition, the robustness of the deep architecture is performed in Section
4.3.3.

Encoder Decoder

2×100×32

Input x
256(2×3)

Convolution
128(1×3)

Convolution
64(1×3)

Convolution
z=50

Reconstructed 
Input x

64(1×3)

Convolution
128(1×3)

Convolution
256(2×3)

Convolution

Figure 4.10: The CAE architecture.

4.2.3.3.2 Convolutional Variational Autoencoder (CVAE) CVAEs are generative mod-
els defined recently [177], which have found applications in feature extraction [178], data
augmentation [179], reinforcement learning [180], and others. To begin with, the encoder is
also referred as recognition model or inference model, while the other name for the decoder
is a generative model. Similarly to CAE, the input of the encoder x is transformed to the
latent information z. Then, the tasks for the decoder is to reconstruct x given z. In addi-
tion to the implementation of CAE, each feature in the latent representation is treated as a
single-valued output. To improve this constraint, the CVAE architecture considers a proba-
bility distribution for each feature, which is commonly a normal distribution also known as
Gaussian distribution. As already specified, the use of only a reconstruction loss in the CAE
implementation may produce meaningless content. CVAE includes a regularisation term,
which ensures that the probability of the encoded space is close to standard normal distribu-
tion, which has µ = 0 and σ = 1. This is developed with Kullback-Leibler divergence. The
implementation of CVAE is given by:

li(θ, φ) = −Ez∼qθ(z|xi)[logpφ(xi|z)] +KL(qθ(z|xi)||p(z)) (4.7)

where the first term describes the reconstruction loss, while the regularisation term is given
as the second term. More specifically, pφ(xi|z) describes the generative probability of the
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reconstructed output xi given the latent information z. Then, the distribution of z given x is
given by qθ(z|xi). The parameters of the distributions are given as θ and φ.

The architecture of the used CVAE model is outlined in Figure 4.11. The three-dimen-
sional Doppler radar data are used as an input of the encoder. Similarly to the CAE archi-
tecture, the encoder and the decoder are symmetric. In addition to the similarities of both
deep architectures, ReLU activation functions are used for the convolutional layers. In terms
of the illustrated CVAE architecture, two convolutional layers are used for both encoder and
decoder structures. More specifically, the first convolutional layer in the encoder and its cor-
responding second convolutional layer in the decoder contain 128 with size of 1×3 referring
to height and width respectively. Then, the second convolutional layer in the encoder and its
corresponding first convolutional layer in the decoder have 64 filters with the size of 1 × 3.
The regularisation term in the CVAE architecture ensures that the distribution of the encoded
data is close to standard normal distribution with parameters mean µφ and variance log σ2

φx.
Instead of outputting the direct latent information, the encoder outputs the mean and variance
of the information. The size of the latent representation z is again 50, which is used by the
decoder in order to reconstruct x.

Encoder Decoder

2×100×32

Input x

128(1×3)

Convolution
64(1×3)

Convolution
Flatten z=50

Reconstructed 
Input x

64(1×3)

Convolution
128(1×3)

Convolution

Figure 4.11: The CVAE architecture.

4.2.3.4 Variation-based Projection Techniques

4.2.3.4.1 Principal Components Analysis (PCA) 1D-PCA is one of the most popular
methods for linear feature extraction [181], which was briefly described in Section 3.3.2.1.1.
The method aims to find the directions of the main variations of the data and project these
variations to a smaller dimensional space. More specifically, 1D-PCA is aimed at computing
the covariance matrix of the centred data. Therefore, eigendecomposition of the covariance
matrix is applied, which results in principal components. It is known that the first principal
component (PC1) preserves the most variance of the data, which allows a smaller number of
PCs to be selected. The overall goal is to select PCs preserving 95% of the data variance.
Therefore, the original data is transformed to a smaller space Dn×mWm×s = Zn×s, where s
refers to the number of PCs.

4.2.3.4.2 2D Principal Components Analysis (2DPCA) The discussed method 1D-PCA
requires the data to be projected to a 1D vector. This can often lead to a high-dimensional
vector with a large covariance matrix. In order to preserve the originality of 2D data, 2D-
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PCA is proposed [182], which allows for a more accurate calculation of the covariance ma-
trix. Therefore, instead of vectorising the 2D Doppler images, the 80× 80 dimensionality is
used. This also leads to a faster computational time, which is an additional advantage. The
covariance matrix is calculated as follows:

V =
1

n

n∑
i=1

(Xi − X)T (Xi − X) (4.8)

where n refers to the total number of training samples, while X = 1
n

∑n
i=1Xi is the average

training image among all samples. The size of the average training image is also 80× 80.

2DPCA usually computes the covariance matrix only for the row or column dimension
only. In this work, the 80 × 80 dimensionality is considered, where only the columns are
used for the covariance matrix computation. As described above, eigendecomposition is then
applied on the covariance matrix. Therefore, a limited number of PCs is selected preserving
95% of the data variance.

4.2.4 Clustering Methods
Two clustering methods are used for grouping the data samples. Both of the methods are
used by computing distances: K-Means and K-Medoids.

4.2.4.1 K-Means

K-Means clustering is probably the most common method for unsupervised learning clus-
tering [183]. An important constraint of the method is the consideration of the number of
clustersK is known a priori. Then, the method aims to group the data samplesD1, D2, ..., Dn

based on minimisation of intra-class variability and maximisation of inter-cluster variability.
The method is distance-based, while Euclidean distances are used in this study. In addition, a
new data sample is assigned to the already specified clusters by computing the Euclidean dis-
tance between the sample and the corresponding cluster centroids ω1, ω2, ..., ωk. Therefore,
the data sample is assigned to the cluster with the smallest distance. K-Means clustering
objective function is given by:

J =
n∑
i=1

K∑
k=1

rik||Di − ωk||2 (4.9)

where rik is a binary function, which is 1 if a data sample Di is assigned to cluster k with
centroid ωk. It is 0 otherwise:

rik =

{
1, if k = arg minj ||Di − ωj||2

0, otherwise
(4.10)

The aim of the method is to minimize the objective function J for rik and ωk by iterative
optimization. In the first step, ωk is fixed, while the focus is on optimising rik. In the second
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step, the roles are reversed with the same intuition. The whole process is repeated until there
is no further re-assignment of data samples in the defined clusters.

4.2.4.2 K-Medoids

K-Medoids is a clustering method, which is usually concerned with finding dissimilarities
instead of calculating distances [83]. Therefore, it has shown improved results for noisy and
problematic data in comparison with the distance-based K-Means clustering. However, the
method can also be used with distances, which is the case for this study. More specifically,
Manhattan distances are used.

Unlike K-Means clustering, K-Medoids considers a data sample Di for the cluster cen-
troid. The first step of the method aims to find such data sample in a cluster C(i) = k that is
in minimum distance to the remaining data points in the cluster Di′ . The Manhattan distance
is given by ||Di −Di′||, while the minimisation is as follows:

i∗k = arg min
i:C(i)=k

n∑
Ci′=k

||Di −Di′ || (4.11)

In order to find a new centroid or medoid, the output of i∗k is used considering ωk = Di∗k
,

k = 1, 2, ..., K.

The second step aims to re-assign each data sample Di to the closest centroid or medoid
by calculating Manhattan distances. Similarly, the centroids are given by ω1, ω2, ..., ωK .

C(i) = arg min
1≤k≤K

||Di − ωk|| (4.12)

The K-Medoids clustering iterates the two steps until no further re-assignment of data sam-
ples D1, D2, ..., Dn to centroids ω1, ω2, ..., ωk is observed.

4.2.5 Visualisation Techniques for High-Dimensional Data
The following section outlines three common manifold learning methods for high-dimen-
sional data visualisation by projecting it to 2- or 3-dimensional space. More specifically,
these manifold learning techniques are known to preserve the original distances in the high-
dimensional space when projected to a much lower dimensionality. Hence, their similarity
patterns are preserved, which improves visualisation. As described in Section 4.1, the meth-
ods will be used in two scenarios. Therefore, important insights for mapping of individual
classes of the dataset can be extracted.

4.2.5.1 t-Distributed Stochastic Neighbour Embedding (t-SNE)

T-SNE is a popular manifold learning method for non-linear dimensionality reduction, which
has been proposed recently [184]. The method has quickly gained attention for its superior
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ability for visualising high-dimensional data by projecting it to a 2- or 3-dimensional space.
In addition, t-SNE aims to preserve the similarity patterns from the high-dimensional space
into the reduced space, which is not the case for common feature extraction techniques such
as PCA and SVD.

T-SNE begins with analysing the Doppler sequencesD1, D2, ..., Dn in their original high-
dimensional spaces. The Euclidean distances between the data samples are computed, which
are later converted to probabilities with normal distribution. Similarity score for each data
points pairDij is computed, which is obtained based on probabilities pij . Therefore, the data
samples are initially projected randomly to the lower dimensional space.

The aim for t-SNE is to preserve the similarities in the high-dimensional space to the
lower dimensionality. In order to achieve this, similarities based on Euclidean distances are
computed similarly. Again, they are converted to probabilities with t-Distribution qij , which
has higher tails. The higher tails avoid dissimilar data samples to be positioned in closed
locations in the Euclidean space. The probabilities of data samples in the high-dimensional
space pij , and the corresponding low-dimensional space qij are then optimised with KL
divergence. The KL divergence iteratively compares the distances in the high-dimensional
and low-dimensional space, which allows the data samples to be re-positioned accordingly.

4.2.5.2 MultiDimensional Scaling (MDS)

MDS is one of the older non-linear methods for dimensionality reduction [83, 185, 186].
Unlike other manifold learning techniques, MDS is concerned with dissimilarities instead of
similarities. More specifically, the method calculates the Euclidean distances between the
data samples D1, D2, ..., Dn ∈ Rm, while dij denotes the dissimilarities of each pair of two
samples Di and Dj . Therefore, MDS is focused on preserving the distances z1, z2, ..., zn ∈
Rk in the lower dimensionality k by ensuring k < m. The defined stress function is given
by:

Stress(z1,...,zn) =
n∑

i6=j

(dij − ||zi − zj ||)2 (4.13)

where the Euclidean distance between the samples in the lower dimension zi and zj is given
by ||zi − zj||. The MDS method aims to preserve the distances in the low dimensional
space, so the focus is on minimising the so-called stress function. This is achieved by using
a gradient descent algorithm. Similarly to t-SNE, close samples in the original space are
projected in close locations in the lower space, while the same notion is used for dissimilar
data samples.

4.2.5.3 Locally Linear Embedding (LLE)

LLE is a non-linear method for dimensionality reduction, which uses geometric principles
[187]. The LLE method assumes that the data samples are positioned on an underlying
manifold represented by vectors. More specifically, each vector is denoted by ~Xi with index
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i in the high dimension m, while it has a number of so-called neighbours. Considering the
fact that each vector is a member of a neighbourhood, the similar data samples are expected
to lie on a close locally linear patch of the manifold. There exist p neighbours in each
neighbourhood. In addition, each vector can be reconstructed by its neighbours, which is
given by:

ε(W ) =
n∑
i=1

|| ~Xi −
p∑
j=1

Wij
~Xj||2 (4.14)

where Wij refers to weights defined for the reconstruction of ~Xi based on ~Xj . More specifi-
cally, the weights show the contribution of a data point for reconstructing another data point
in the same neighbourhood. The number of samples is given by n, while p denotes the
number of neighbours. There exist two main constraints for the weights function. It is 0, if
the two data points do not belong to the same neighbourhood. This ensures that each data
point is reconstructed only by its neighbours. To make the weights invariant to rotation, and

scaling, the weight matrix’s rows should be one or
p∑
j=1

Wij = 1.

By having the weights Wij fixed, the original high-dimensional data points ~Xi can be
projected to a lower dimension, where the points are denoted by ~Yi. This is achieved by
minimising an embedded cost function defined as:

Φ(Y ) =
n∑
i=1

||~Yi −
n∑
j=1

Wij
~Yj||2 (4.15)

4.3 Evaluation and Results
This section presents the clustering results obtained using K-Means and K-Medoids based
on the projected data. As described, the projected data are achieved using a number of
feature extraction methods, which are compared. These include the proposed local DCT-
based method and local entropy-based method. The proposed techniques are then compared
with existing convolutional-based CAE and CVAE, and variational-based PCA and 2DPCA.

The two proposed local methods and 2DPCA take the 2D inputs of 80 × 80. The CAE
and CVAE architectures consider the 2 × 100 × 32 inputs, while for 1D-PCA, the data are
vectorised. As already specified, the selected eigen vectors for 1D-PCA and 2DPCA preserve
95% of the data variance.

To strengthen the analysis and avoid over-fitting, leave-one-subject-out CV (LOOCV)
is applied. More specifically, the data from three subjects are used for training, while the
remaining data from one subject are used for clustering. This is repeated for all four com-
binations, where the average and standard deviation of the clustering are outlined. Hence,
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Ztr = 150×m defines the training matrix, while the testing matrix is given by Zts = 50×m,
where m denotes the number of features, which are different for each feature extraction
method.

The three manifold learning methods t-SNE, MDS, and LLE are applied in two scenarios
for the sake of visualisation results. In the first scenario, the methods transform the original
raw data with 6400 feature to a 2-dimensional space. Then, the projected data are visualised.
In the second scenario, the CVAE encoded features are projected to a 2-dimensional space.
Similarly, the projected data are then visualised.

The true labels are available in this study. However, they are only used for model evalu-
ation and mapping the samples in the visualisation graphs. Considering the fact that the pre-
dicted labels by clustering do not follow the original order, a mapping algorithm is applied.
The predicted labels are then matched to the corresponding actual true labels by finding the
best-matching pairs of clusters labels and true labels.

4.3.1 Local DCT-based Analysis Results
As already described, the proposed local DCT-based method extracts non-overlapping square-
sized patches from the original 80 × 80 images, while the original large patch is also used.
To preserve the unsupervised scenario of the study, Dunn’s index is used as an unsupervised
metric for evaluating the goodness of the clustering results. The highest values for Dunn’s
index correspond to the 40× 40 patches, which are four non-overlapping patches. These are
illustrated in Figure 4.12a. By applying 2D DCT to each patch, it is then divided to 3 × 3
sub-patches. The aim is to extract six coefficients in a zig-zag order from the top-left corner
of each sub-patch, where the most information is preserved. Therefore, K-Means is used in
combination with Dunn’s index to find the most optimum local patch. As observed in Figure
4.12b, the top-left 40× 40 local patch is selected as the most optimum patch.

(a) (b)
Figure 4.12: (a) Illustration of the 40 × 40 local patches in the Doppler spec-
togram. The optimum patch for feature extraction is ticked in green color. (b) The
corresponding Dunn’s index for the four 40× 40 local patches.
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To strengthen the findings, 2D DCT is applied on the original 80×80 image by preserving
exactly 54 features as it was the case with the local patching strategy. 4-subjects LOOCV is
applied with average and standard deviation as shown in Table 4.1. The results reveal that
the proposed method improves the clustering performance by more than 10%.

Table 4.1: Average and standard deviations of testing accuracies based on K-
Means and K-Medoids using DCT features from the raw data 80 × 80 single
patch and those from the selected 40 × 40 local patch features over 4 rounds of
LOOCV.

DCT Raw Data DCT-Based Method
K-Means 63.5%±8.64 75%±5.74

K-Medoids 62%±9.89 77%±4.58

4.3.2 Local Entropy Analysis Results
The entropy analysis considers three strategies as described earlier in Figure 4.8. The first
strategy and the second strategy result both in two-dimensional features. On the other
hand, the third strategy results in 10-dimensional features. Similarly to the local DCT-based
method, Dunn’s index is used for unsupervised clustering evaluation. As observed in Figure
4.13, the third strategy obtains the highest results. Unsurprisingly, the winning strategy con-
siders the most features. The other two strategies do not represent the variations of the data
as well as the third strategy. The clustering results of the local entropy-based method will be
shown in Table 4.2 and Table 4.3 for training and testing respectively.

Figure 4.13: Illustration of the Dunn’s index for the three patching strategies
used for feature extraction based on local entropy analysis.
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4.3.3 CAE and CVAE Robustness Evaluation
In order to evaluate the robustness of the two convolutional-based architecture CAE and
CVAE, two criteria are addressed including the number hidden layers, and the number of
extracted features z as latent dimension. Two, three, and four convolutional layers for the
both the encoder and decoder are considered. The consideration of the number of projected
features is in line with the total number of data samples, which is 200. Therefore, 50, 100,
150, and 200 features are used for evaluation. Dunn’s index is applied similarly considering
the fact that the study is unsupervised. Figure 4.14a and Figure 4.14b show the Dunn’s index
for the CAE and CVAE architectures respectively.

(a) (b)
Figure 4.14: (a) CAE and (b) CVAE robustness evaluation using the Dunn’s index
based on average testing results.

Based on these results, three convolutional layers with 50 features are selected for the
CAE architecture. In terms of the CVAE architecture, again 50 features are selected, while
two convolutional layers are retained.

4.3.4 Comparison of the Average Training and Testing Accuracies for
K-Means and K-Medoids Using all Feature Extraction Techniques

To evaluate the different feature extraction strategies, K-Means and K-Medoids clustering
are applied. The 4-subjects LOOCV pattern is applied, where the average with standard
deviation are reported in Table 4.2 and Table 4.3 for training and testing respectively.

Table 4.2: Average training accuracies with standard deviations of K-Means and
K-Medoids using the five feature extraction methods over 4-subjects LOOCV.

DCT-Based
Method

Entropy-Based
Method CVAE CAE PCA 2DPCA

K-Means 80%±4.41 69.5%±3.23 83.75%±3.11 52%±4.74 64.25%±7.32 67%±10.29
K-Medoids 77.5%±8.87 69.5%±4.05 79.75%±3.11 54.5%±4.55 47%±4.41 64.5%±5.93
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Table 4.3: Average testing accuracies with standard deviations of K-Means and
K-Medoids using the five feature extraction methods over 4-subjects LOOCV.

DCT-Based
Method

Entropy-Based
Method CVAE CAE PCA 2DPCA

K-Means 75%±5.74 72%±7.11 84%±5.09 66%±8.6 58.5%±1.65 57.5%±2.59
K-Medoids 77%±4.58 72%±8.48 82%±4.89 65%±5.74 57%±2.23 64%±8.12

The reported results show that the superior architecture for feature extraction is the con-
volution filter-based CVAE. In addition, the local DCT-based method shows reliable results
for an unsupervised architecture. More specifically, the method has been validated with
Dunn’s index for the scope of the study. The other proposed technique for feature extraction,
local entropy-based method, provides an improvement to CAE, PCA, and 2DPCA. Consid-
ering the variation-based PCA and 2DPCA, the latter shows a minor improvement to the
former only for K-Medoids. To conclude the findings, as CVAE is a deep NN architecture,
the training time is significantly more expensive compared to the simpler local DCT-based
method. This will be evaluated later in Chapter 6, where the advantages and disadvantages
of CVAE and the proposed methods will be discussed.

To discover the presence of any problematic classes, confusion matrices are used, which
are supervised techniques. The proposed local DCT-based method along with CVAE are
used with K-Means and K-Medoids. Figure 4.15a and Figure 4.15b reveal the confusion
matrices for the local DCT-based method for K-Means and K-Medoids respectively.

(a) (b)
Figure 4.15: Confusion matrices for DCT features using (a) K-Means, and (b)
K-Medoids for different subjects.

Then, Figure 4.16a and Figure 4.16b show the confusion matrices for CVAE using K-
Means and K-Medoids respectively.
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(a) (b)
Figure 4.16: Confusion matrices for CVAE encoded features using (a) K-Means
and (b) K-Medoids for different subjects.

The confusion matrices for both feature extraction methods show that walking (1) and
jumping (3) are problematic as they are often mis-classified. In addition, the fifth class
standing is also frequently confused with other classes for K-Medoids. To address the issue
with misclassification, more data can be collected from diverse subjects. Even in cases with
richer data captured by diverse subjects, the unsupervised scenario of the project still can
influence the accuracy of the clustering results in the absence of labels.

4.3.5 Visualisation Results
The first two components of the extremely high-dimensional data Dn×6400 are initially visu-
alised, where the labels are used for mapping the samples and distinguishing the activities.
As observed in Figure 4.17a, there is a mismatch between the samples of the five classes. In
addition, the first two components of the CVAE encoded features Dn×50 are also visualised
in Figure 4.17b. The mismatch between the samples has been improved, but still, some of
the samples are overlapping. This is aimed to be improved in the following two scenarios.

(a) (b)
Figure 4.17: Visualisation of the first two components of (a) the raw data, and (b)
the first components of the CVAE encoded data.
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The first scenario of visualisation considers the original data Dn×m, where m = 6400.
The extremely high-dimensionality is transformed to a 2-dimensional space using the mani-
fold learning method t-SNE, MDS, and LLE. As observed in Figure 4.18, t-SNE proves its
superiority by providing the best separability between the classes. In the cases of MDS, and
LLE, over-lapping between data samples from different classes are present.

Figure 4.18: Visualisation of the transformed raw data Dn×6400 using t-SNE,
MDS, and LLE.

The second scenario considers the CVAE encoded data. Since CVAE is known to map
close samples in close locations, a comparison can be achieved. Similarly, t-SNE, MDS, and
LLE are used for projecting the CVAE encoded data to a 2-dimensional space. As observed
in Figure 4.19, t-SNE is still superior, while the remaining two methods have been improved.
More specifically, the intra-cluster distances have been decreased, which is desired. How-
ever, no accurate clustering can be expected using the resulting 2-dimensional features from
t-SNE. K-Means and K-Medoids provide 42% and 45% average testing accuracies respec-
tively. It can be concluded that these methods are good for visualisation, but cannot be used
for clustering.

Figure 4.19: Visualisation of the transformed encoded data Dn×50 using t-SNE,
MDS, and LLE.
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4.4 Chapter Conclusion
This chapter has explored the novel idea of using unsupervised learning for Doppler radar
based human activity recognition. Two main contributions were proposed: 1) a unsupervised
local DCT-based feature extraction method for 2D Doppler maps; 2) a unsupervised local
entropy-based feature extraction method for 2D Doppler maps. Additionally, the chapter
included a novel application of CVAE for feature extraction of Doppler radar data. Appli-
cation of a wide range of methods for estimating the number of clusters K was included.
Three visualisation methods were compared for illustration purposes of raw data and CVAE
encoded data.

All three methods provided reasonable recognition performances in the sense of unsu-
pervised learning. More specifically, the methods outperformed state-of-the-art techniques
such as CAE, PCA, and 2DPCA. Despite the superiority of the CVAE architecture for feature
extraction, the computational time for training the model is more expensive in comparison
with the two proposed methods.

The following chapter investigates the user acceptance of (1) sensors, and (2) robots
among older adults living in a care home. Sensors are investigated from the perspective of
improved health and well-being. On the other hand, robots are evaluated in terms of their
physical appearance, characteristics, and functionalities. In addition, a comparison between
the user acceptance of these two types of innovative technologies is achieved.



Chapter 5

User Acceptance of Sensors and Robots

5.1 Introduction
This chapter will address the problem of health monitoring of aged population using sens-
ing technologies and the relevant robotic systems from a different perspective. It is mainly
focused on the deployment of sensors and robots in such cases. For this aim, the user ac-
ceptance including preferences and needs of older adults for using such systems is studied.
This is different from the previous two chapters, where different technical aspects of using
non-intrusive sensing technologies for human activity monitoring have been studied.

The most recent research identifies negative preconceptions as one of the leading barriers
for positive user acceptance [133, 134]. Despite an increasing push for such technologies in
the context of elderly care [131, 132], relatively little attention has been paid to understand-
ing factors influencing acceptance by the end-users, in this case an increasingly older, frail
population living in care homes.

This study also covers an extension to the popular TAM [188]. TAM is an information
technology framework, which studies the acceptance of any technology by people in their
workplaces. In its originality, the TAM framework considers that people have the likelihood
the accept any technology purely based on its (1) perceived usefulness, and (2) perceived
ease-of-use. Considering the complex user acceptance of older adults, these two factors can
be seen as limited.

The majority of studies exploring the user acceptance of sensors and robots with a phys-
ical presence among older populations are based on evaluations of a specific agent following
interaction [30, 31, 32, 33, 34, 35, 39, 189, 190]. Hence, these studies can be regarded as
limited considering the fact that they evaluate a specific agent only. As such, exploration
of a diverse range of sensor systems and robots with a physical presence is not present. In
addition, comparison between the user acceptance of sensors and robots among the older
population is not evident in the literature. As described, the most influential acceptance
model in the literature TAM only covers two proposed factors. As such, these factors can
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be viewed as limited and further exploration is needed. Current studies also lack perceived
health improvement analysis based on the two types of technology. In addition, age-based
groups among the extremely older population are not distinguished, and therefore, the studies
do not include the analysis of responses.

The following study will investigate the views and attitudes of older adults living in Long-
Term Care (LTC) facility in the UK towards non-intrusive sensor systems and robots with
a physical presence. More specifically, a questionnaire format is employed in the LTC set-
tings, which covers a wide range of commercially available robots with a physical presence.
In terms of sensor systems, a non-intrusive LRIR sensor is illustrated and presented as an
example, which is identical to the used system in Chapter 3. The survey aims to investigate
the perceived health improvement based on the two types of agents including both physical
health, and the less explored among this population, mental health. Considering only robots
with a physical presence, specific factors are explored such as physical appearance, activi-
ties, and characteristics. In regards to robot’s characteristics, the described TAM framework
is enriched to cover more aspects that may influence the user acceptance.

5.2 Methodology

5.2.1 Study Aims
The current study is focused on evaluating the views and attitudes of older adults unaffected
by prior experience with a specific agent. As such, the study ensured that the selected partic-
ipants lacked any previous interaction with the researched intelligent agents. This important
factor was incorporated to reduce any potential bias, which can influence the study’s re-
sults. Specific categories related to user acceptance of both discussed agents were identified
as important: general acceptance of a non-intrusive monitoring technology and robots with
a physical presence, robot’s physical appearance distinguished in three categories, robot’s
roles including social role and physical role, perceived improvement of health.

5.2.2 Survey Design
A questionnaire was designed to address the aforementioned factors (see Appendix A). The
questionnaire contained illustrative examples to aid understanding. A specific example in-
cluded a non-intrusive wall-mounted sensor, which can detect subject’s activities including
falls. In addition, commercially available robots based on different physical appearance such
as humanoid, zoomorphic, and mechanoid were illustrated. The questionnaire was written
in English language, as this was the native language of all participants. The majority of
questions adopted the 5-point Likert scale answers (definitely yes, probably yes, might or
might not, probably no, definitely no) or the 7-point Likert scale answers (strongly agree,
agree, somewhat agree, neither agree nor disagree, somewhat disagree, disagree, strongly
disagree), where the participants were asked to show a level of agreement. The final ques-
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tion was an open-ended question, which allowed the participants to leave notes for requested
robot’s activities, not included in the previous questions.

The study strictly followed the ethical standards for working with vulnerable people.
Ethical approval for the study was granted by the Health and Life Sciences Research Ethics
Committee, University of Coventry (Project P65532).

5.2.3 Participants and Data Collection
The study was employed in a 84-bed residential care home owned by WCS Care in Kenil-
worth, England (https://www.wcs-care.co.uk/our-homes/kenilworth-castle-brook). The re-
quirement for inclusion in the study was the absence of neurological diseases such as de-
mentia, epilepsy, Parkinson’s disease, and MND, which were discussed in detail in Chapter
1. A total of 24 healthy individuals were identified by the care home manager for par-
ticipation in the study. All of the listed potential participants were approached in their
living areas for informed consent. The final number of residents who agreed to partici-
pate was 21. Despite the fact that the study sample is limited, the current literature in-
cludes similar small to medium studies with interesting findings, which generated discussion
[25, 26, 27, 28, 29, 30, 31, 32, 34, 39]. Anonymity of the participants was ensured by col-
lecting only age (instead of date of birth) and gender statistics.

The questionnaire was administered among the participants who signed an informed con-
sent over the period of September 2019 - October 2019 at WCS Castle Brook, Kenilworth.
All participants were approached in their preferred living area including communal areas
or private rooms. Considering the fact that a number of the participants had visual impair-
ment, the questionnaire was employed in the format of a one-to-one interview, where the
participant had the opportunity to ask the interviewer questions or repetitions of questions.
In addition, participants could write their answers with a pen/pencil or verbally, where in
the latter the interviewer wrote their answers. Overall, the interviews had different dura-
tion based on the participant’s ability to understand the questions and provide answers. On
average, each interview lasted approximately 1 hour.

5.2.4 Analysis of Responses
All participants were analysed using descriptive statistics such as age and gender. Based
on the two statistics, the participants were distinguished in two groups. The age of the cat-
egories of participants designated in groups was summarised based on mean and standard
deviation (SD). Considering the fact that the male group was limited in terms of participants,
no specific comparison could be achieved. As such, the age-based groups included younger
participants (aged 81-89), and older participants (aged 90-99). The statistics used for com-
parison were one-way ANOVA, Spearman’s rank correlation coefficient, and Kendall’s rank
correlation coefficient.
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In order to strengthen the findings of ANOVA, a correlation analysis with Spearman’s
coefficient was also undertaken. The Spearman’s rank correlation coefficient can quantify
any linear or nonlinear statistical dependence between the rankings of two variables [191].
Then, the relationship between two variables is described based on a monotonic function. It
actually computes the Pearson correlation between the rank values of two variables. How-
ever, since the rank of the variables are used, instead of the linear characteristics of Pearson’s
correlation, Spearman’s correlation is capable of assessing monotonic relationships. It varies
between -1 and +1. So that, when observations have similar rank it is high (absolute value
1 when identical) and it is low when observations have dissimilar rank. The Spearman’s
coefficient is given by:

rs = prgx,rgy =
cov(rgx, rgy)

σrgxσrgy
(5.1)

where p denotes the Pearson’s correlation coefficient, but it is applied to ranks in the case
of Spearman’s rank correlation coefficient. The rank variables are given by rgx and rgy
respectively. The covariance of the rank variables is given by cov(rgx, rgy), while σrgx and
σrgy denote the standard deviations of the rank variables respectively.

Kendall’s rank correlation coefficient is a statistical method, which measures the ordinal
relationship between two groups [192]. Similarly to Spearman’s method, it measures rank
correlation, where coefficient values are in the same range (-1, 1). The interpretation of the
values is similar: an absolute value closer to 1 indicates strong correlation. On the other
hand, absolute values closer to 0 show weak or negligible correlation. The formulation of
Kendall’s method is as follows:

τ =
(number of concordant pairs)− (number of discordant pairs)(

n
2

) (5.2)

where concordant pairs of values (xi, yi) and (xj, yj) are only if i < j. The opposite implies
they are discordant. Otherwise, the pairs are discordant. In addition,

(
n
2

)
= n(n−1)

2
denotes

binomial coefficient.

Open-text comments expanding on responses to closed questions and text replying to
open questions were analyzed using thematic content analysis. The results of these analyses
will be presented in the following sections.

5.3 Study Findings
The demographics for each participant are presented in Table 5.1. The gender breakdown
reflects the fact that residents in UK care homes are mostly women [193]. All male residents
in the care home were approached but the remaining residents had a chronic condition, which
prevented them from participating. Two groups are distinguished in the Table: younger group
(aged 81-89: P1,...,P6) and older group (aged 90-99: P7,...,P21).
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Table 5.1: All participants including their gender and age.

Gender

Participants Male Female Age
P1 84
P2 82
P3 81
P4 88
P5 89
P6 84
P7 91
P8 90
P9 94
P10 90
P11 94
P12 93
P13 99
P14 97
P15 93
P16 92
P17 93
P18 91
P19 92
P20 91
P21 91

5.3.1 User Acceptance of Sensors
Initially, non-intrusive sensor systems were analysed by asking the participants whether such
technology can improve their (1) physical health and well-being, and (2) mental health and
well-being. In terms of physical health, a rapid detection of a fall was given as an example.
Considering mental health, residents were asked whether they would feel more stable and
secure by having such technology in their room. The responses for physical health and
mental health are given in Figure 5.1a and Figure 5.1b respectively.

5.3.2 Factors Affecting the User Acceptance of Robots
The classical TAM framework considers only two factors for potential user acceptance in
its originality: perceived ease-of-use and perceived usefulness. Considering the fact that
these two factors can be regarded as limited, additional characteristics are included for user
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(a) Physical well-being (b) Mental well-being

Figure 5.1: Health and well-being improvement based on sensing technology.

acceptance of robots. These include functionalities, physical appearance, and cost. The
participants had the opportunity to select more than one option. Figure 5.2 shows the relative
importance of the five factors, which can influence the user acceptance of robots among older
adults. As observed, usefulness is seen as the most important factor, while ease-of-use is the
second most favoured option. However, the newly included factors, functionalities, physical
appearance, and cost, still find sympathy among some of the residents.

Figure 5.2: Relative importance of five robot characteristics

In terms of user acceptance of robots, residents were asked to show their willingness to
have robots in their current home (considering the fact that the LTC facility is now their own
home). More specifically, the residents had the opportunity to show how far they agree with
the sentence “I am likely to use robots in my home”. Figure 5.3a shows the outcome of the
question. As observed, the responses are very mixed considering the fact that the residents
have previously only interacted with Amazon Alexa. Only 5 residents strongly agreed and 3
agreed, while 6 disagreed and 3 strongly disagreed. This can be attributed to the fact that the
robots are often faced with stigma and preconceptions by older populations as discussed in
Section 2.6.

The user acceptance of robots was explored further, the residents were asked whether
they would trust the robot for making decision for them. The decisions were closely related
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to the residents’ health. Figure 5.3b reveals breakdown of responses, which is very similar
to the previous question.

(a) User acceptance of a robot at home (b) Trusting the robot for making decisions
Figure 5.3: User acceptance of a robot at home and trusting the robot for making
decisions

5.3.3 User Acceptance of Robots Based on Appearance
To explore the preferred robotic physical appearance, three main types of robots were in-
cluded in the question - mechanical humanoid, zoomorphic (animal-like), and mechanoid
(machine-like). As discussed in Section 2.6.2.1, Mori’s uncanny valley is an important con-
cept in field of robotics. More specifically, the uncanny valley shows a situation when a robot
resembles humans to a greater extent by possessing nails, skin, and hair. This can cause re-
pulsion and confusion and it is highly undesirable especially among the older populations.
Therefore, mechanical humanoid robots are included as examples in this study - NAO [194],
Pepper [195], and Romeo [196]. In terms of zoomorphic robots, three robots were presented
- AIBO (dog-like), MiRo (donkey-like) and Paro (seal-like). Machine-like robots were also
included although they are widely used in manufacturing. However, their functionalities can
still be applied in care homes for environments navigation and serving meals. The given
examples were Baxter and OSARO. It is important to note that none of the given examples
were familiar to the residents. Figure 5.4 demonstrates the given responses. Mechanical hu-
manoid robots were selected by the vast majority of residents (13), while zoomorphic robot
were slightly ahead (4) from machine-like robots (2). Considering machine-like robots, one
of the residents (a female) referred to Baxter as “It is awful! It looks like a spider”. Two of
the residents (a male and a female) stated no interest in robots and their physical appearance.

5.3.4 User Acceptance of Robots Based on Role and Functions
The user acceptance of robots is further explored by considering their activities based on
physical or social role. More specifically, the proposed activities included: (A1) cooking,
(A2) cleaning, (A3) medicines reminder, (A4) environments navigation, (A5) entertainment
such as singing and dancing, (A6) communication with the robot, and (A7) communication
provision with relatives. The social role includes activities A3, A5, A6, and A7, while the
physical role was related to activities A1, A2, and A4. Figure 5.5 shows the results for each
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Figure 5.4: User acceptance of robots based on physical appearance

activity considering the fact that the residents had the opportunity to select more than one
option. As observed, the most preferred activity was cleaning with more than half of the
residents regarding it as important. Perhaps surprisingly, communication with the robot was
the second most preferred activity. This result can be attributed to the fact that loneliness
is a major concern among older populations. Despite the fact that the residents were living
in a care home with peers, many of them preferred spending their time in their own rooms.
Communication provision with relatives and entertainment were the least preferred activities.
In terms of communication provision, many of the residents had their own mobile phone,
laptop or personal computer. Considering entertainment, the residents expressed feelings
that the robot cannot entertain them since they preferred old-fashioned activities such as
knitting and crafting.

Figure 5.5: User acceptance of robots based on functions

The final two questions in the survey were linked to the previous question of preferred
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activities. More specifically, the residents were asked whether these activities can improve
their (1) physical health and well-being, and (2) mental health and well-being. Figure 5.6a
and Figure 5.6b reveal the results for both types of health respectively.

(a) Physical well-being (b) Mental well-being
Figure 5.6: Health and well-being improvement based on robot’s activities

5.3.5 User Acceptance of Robots Based on Cost
As discussed in Section 2.6.1, cost was regarded as an important constraint for home resi-
dents. However, considering the current study, the residents were living in a care home, and
expressed feelings that as long as they do not pay, they consider the price unimportant. To
conclude, cost was regarded as important as physical appearance and functionalities.

5.3.6 Open-Ended Question
An open-ended question was included in the questionnaire by allowing the participants to list
any additional activities they wish to be performed by the robot. The majority of the residents
(14) decided to leave the question blank while the remaining seven responses were mostly
focused on cleaning activities, including a smart vacuum cleaner. This further stresses on
the fact that the activity cleaning was the most preferred activity among the residents. In
addition, one residents who experienced navigation problems left the comment “Help me
walk”.

5.3.7 Comparison Between User Acceptance of Sensors and Robots
Considering the fact that the user acceptance of both (1) sensors, and (2) robots is evalu-
ated in this study, a comparison between the two intelligent agents can be achieved. Both
agents were evaluated in terms of health improvement considering physical health and men-
tal health. In terms of sensor systems, Figure 5.1a showed a strong acceptance based on
physical health. However, in terms of mental health, Figure 5.1b showed mixed results.
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The user acceptance of robots was very mixed considering both physical health shown in
Figure 5.6a and mental health in Figure 5.6b. The reasons can be attributed to the fact that
the work “robot” can engender feelings of unease and fear as described in a previous study
[197]. Further discussion and conclusion of the findings are provided in Chapter 6.

5.3.8 Participants’ Responses Based on Age
To explore any statistically significant differences between the responses of the two age-
based groups, ANOVA was used initially. The null hypothesis showing no differences was
accepted for the majority of answers (p value > 0.05) as shown in Table 5.2. However, it
was rejected for Question 7 (p = 0.001) exploring the preferred robotic activities, Question 8
(p = 0.01) and Question 9 (p = 0.01) exploring whether robots can enhance physical health
and mental health respectively based on these activities.

Table 5.2: One-way ANOVA statistics for the two age-based groups described in
Table 5.1

Question f-score p-value
Q1 1.16 0.3
Q2 2.5 0.13
Q3 3.08 0.11
Q4 4.41 0.057
Q5 4.37 0.06
Q6 0.47 0.52
Q7 16.5 0.001**
Q8 9.52 0.01**
Q9 9.52 0.01**

To strengthen to findings extracted from the ANOVA, two additional statistical methods
are applied - Spearman’s rank correlation coefficient and Kendall’s rank correlation coeffi-
cient. Considering the fact that the p-values derived from both methods are in the range of
(-1, 1), a closer value to -1 or 1 shows a negative or positive correlation respectively. On
the other hand, closer values to 0 show weak correlation. As observed in Table 5.3, both
methods discover weak correlation regarding Question 7, Question 8, and Question 9. This
closely matches the findings derived from ANOVA. In addition, the values for Q6 are none
due to a constant input, where one of the groups achieved the same distribution of responses.

Considering Question 7, both age groups demonstrated the same preferences for activities
(A1) cooking, (A2) cleaning, and (A7) communication provision with relatives. However,
physical health-related activities such as (A3) medicines reminders, and (A4) environments
navigation were more preferred by the younger group (aged 81-89). In addition, (A5) enter-
tainment found stronger sympathies among the older group (aged 90-99), but still, not very
strongly.
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Table 5.3: Spearman’s rank correlation coefficient and Kendall’s rank correlation
coefficient for the two age-based groups

Spearman’s correlation Kendall’s tau
correlation p-value tau p-value

Q1 0.93 0.002 0.88 0.01
Q2 0.65 011 0.57 0.1
Q3 0.54 0.34 0.47 0.28
Q4 0.42 0.34 0.37 0.3
Q5 0.91 0.02 0.88 0.04
Q6 None None None None
Q7 0.16** 0.72 0.11** 0.74
Q8 0.18** 0.76 0.17** 0.7
Q9 0.18** 0.76 0.17** 0.7

In terms of enhancing physical well-being (Q8), very similar result were achieved in
overall agreement and disagreement with robots activities. More specifically, a larger group
of younger adults selected “definitely agree” compared to the older adults who have chosen
“probably agree”. Also, the latter selected more “definitely disagree” compared to the former
that preferred to “probably disagree”.

Considering the perceived enhancement of mental well-being (Q9), a slightly larger
group of the younger adults have selected “might or might not” compared with the remain-
ing answers, where an equal distribution is observed. In terms of the older group, four have
selected “definitely agree” along with other four who have selected “definitely disagree”.

5.4 Chapter Conclusion
This chapter has provided the much needed evidence for user acceptance of non-intrusive
sensing technologies and robots among the extremely older, frail population living in LTC
facilities. Sensors appeared to be more acceptable among older adults compared to robots.
In addition, the approach presented an enriched TAM framework for the acceptance of both
sensors and robots, also seen from the perspective of health improvement. Both physical
health and mental health were considered for evaluation with interesting findings showing
that older adults had reservations in regard to their mental health and well-being. Mechan-
ical humanoid robots were selected by most of the residents compared to zoomorphic and
mechanoid robots. Cleaning, as a physical activity, was determined as the most preferred
robotic activity by the participants.

The novelty of the work should be seen from the perspective of very limited studies ex-
amining the user acceptance of sensors and robots among the population living in LTC. More
specifically, the current literature lacks such diverse evaluation of both (1) sensors, and (2)
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robots including health improvement, extended TAM framework, trust, physical appearance,
and functions of the robot.

This work provides interesting findings regarding the attitudes and thoughts of older
adults in regards to the two types of technology. Shortcomings of the study include the
limited number of older adults in this experiment, which can be improved in future studies.
In addition, the participant’s prior experience of information technology and robots can be
considered for future work. The following chapter discusses the findings of this chapter as
well as Chapter 3, and Chapter 4. Strengths and limitations are presented as well as areas for
future work.



Chapter 6

Discussion

6.1 Introduction
This chapter is aimed at discussing the findings of the three proposed sets of contributions:
(1) LRIR data analysis, (2) micro-Doppler radar data analysis, and (3) user acceptance of
sensors and robots among older people. Strengths and limitations of the proposed methods
and frameworks will be considered as well as areas for future study.

The next section of this chapter begins with IR data discussion considering the presented
holistic understanding of such solutions for human activity recognition as described in Chap-
ter 3. More specifically, limitations of the extrapolation method along with the most optimum
recognition models will be evaluated by attributing factors for their success.

6.2 Discussions on the Analysis of IR Data

6.2.1 Limitations of the Extrapolation Method
Considering the fact that the durations of sensor recordings are not identical due to activ-
ities differences, two methods for frames equalisation were proposed in Section 3.4.1.1.1.
In terms of the extrapolation method (described in Algorithm 2) aimed at removing frames
from recordings larger than 40 frames, specific limitations were observed. More precisely,
the method was shown to favour earlier frames for deletion in some cases. This can be re-
garded as biased. As discussed earlier in Section 3.3.3.2, the sparse methods for dimension-
ality reduction showed that central frames contributed to classification more significantly
compared to the two extremes. Hence, it is expected that the essence of activities is dis-
tributed in the central frames. In future work, sampling techniques for extrapolation method
including Gaussian sampling, uniform sampling, smooth fractionator, and variation analysis
can be researched for finding the optimum strategy.
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6.2.2 Optimum Model for Activity Recognition
The obtained results from the analysis of Coventry-2018 data in Section 3.4.2 demonstrated
that SVD was the most successful feature extraction method for activity detection using LR,
RF, k-NN, and SVM classifiers. That means the most discriminating features lie along the di-
rections with highest variance in orthogonal subspace. SVD uses the whole training samples
of all classes to find the eigenvectors. That is 75% of the total 450 number of samples (of the
Coventry 15-class problem) .75*450=337. However, considering the other used feature ex-
traction technique, Fisher’s method requires computing the within-class covariances. Since
there are only 30 samples in each of the 15 classes, then 0.75*30=22 training samples are
used for computation of the within-class covariance matrix W. That is very low compared to
the large number of variables 2560. This probably puts SVD in a better rank condition refer-
ring to the achieved accuracies. Another successful architecture was the CNN-LSTM model,
where features were automatically extracted from the CNN layers, while the LSTM layers
learned the temporal variations of the sequences. While SVD showed success with different
classifiers, the particular combination of SVD+LR achieved 100% average testing accuracy.
K-NN showed lower accuracies due to the fact that it computes Euclidean distances, but in
some cases two or more classes can be very close, which explains the poorer performance.
LR assumes a hypothesis for binomial distribution of the data. In addition, it tries to find the
parameters of the model based on generative solution. Finally, LR finds a boundary between
classes based on the likelihood maximisation. To conclude, these constraints could be the
potential reason for its superior performance.

6.2.3 The Effect of Changes in Sensing Layout and Model Generaliza-
tion

GLCM showed some level of success for model generalisation, when a model trained on
small layout data was used to classify samples of large layout. That is due to the nature
of GLCM in quantifying image texture patterns. In regards to SVD, the main directions
of variations found in orthogonal subspaces might not match between the small and large
layout. In addition, due to the changes in spectral variations of 2D arrays in the small and
large layouts, a previously trained model on the compressed DCT coefficients of small lay-
out does not work on large layout data. However, a model trained on the texture patterns
captured by GLCM for small layout, identifies the same patterns in large layout data and
shows generalisation capability.

6.3 Discussions on the Analysis of Doppler Radar Data

6.3.1 Analysis of Local Patching Strategy
The proposed method for local patching combined with DCT presents a simplistic and in-
tuitive strategy, while providing accurate clustering results. More specifically, the method’s
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parameters were selected using the unsupervised Dunn’s index, which provided effective re-
sults for the unsupervised framework of the study. The method can be further applied to
supervised projects, where the classification accuracy can be used for providing even more
accurate results in the selection of the model’s parameters.

6.3.2 The Effect of the Clustering Strategy
The clustering results of extracted features with CVAE, DCT-based method, and entropy-
based method, were implemented with K-Means and K-Medoids. Both methods can be im-
plemented as distance-based: Euclidean distance was used with K-Means, while K-Medoids
was incorporated with Manhattan distance. The results showed that K-Medoids provides bet-
ter clustering for the local DCT-based features, while CVAE encoded features revealed better
incorporation with K-Means. For the case of the local entropy-based extracted features, both
clustering techniques showed similar results, which is attributed to the much lower number
of extracted features.

6.3.3 Optimum Models for Doppler Radar Data
The clustering results in Section 4.3.4 showed that the most superior feature extraction ar-
chitecture was CVAE. On the other hand, the two proposed local patching strategies also
provided accurate clustering results, especially the local DCT-based method. While accu-
racy is only one factor, it is important to consider computational complexity between the
three methods. Table 6.1 reveals the total computational time over 4 × 150 = 600 sam-
ples of the four folds. As observed, the deep CVAE architecture exhibits significantly more
expensive computational time in comparison with the two proposed methods.

Table 6.1: Total computational time over 600 samples of the four folds for the
two proposed feature extraction methods as well as CVAE.

DCT-Based
Method

Entropy-Based
Method CVAE

Time 0.58 s 1.1074 s 698.39 s

While CVAE is a deep NN architecture, the features derived from the two proposed
methods are extracted from local patches. The considered local patches in both proposed
techniques are smaller than the original 2D maps. Considering the CVAE architecture, the
three-dimensional 2 × 100 × 32 cube was used, where a number of different convolutional
filter weights were learnt. Unsurprisingly, this leads to a significantly more complex model.
The two proposed methods will be able to learn faster on new data in comparison with
CVAE. It can be concluded that CVAE, and the two proposed methods both have advantages
and disadvantages. Hence, they can be applied to other unsupervised architectures or even
supervised architectures, where the accuracy can be used for model parameters selection.
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6.3.4 Fusion of Different Methods
A potential idea is to fuse the features derived from different feature extraction techniques
in order to improve the clustering results. However, this would result in a higher number of
features, which is undesirable given the context of a small dataset in this study. Fusion of
the DCT-based features and entropy-based features was implemented, which did not result
in improved clustering results. This result can be attributed to the fact that the nature of the
features extracted from the two methods is extremely different. In these terms, normalisation
of the features can also be incorporated, which can also produce weak clustering results.

6.3.5 Analysis of Higher Standard Deviation
As described, LOOCV was implemented for the clustering results in order to strengthen the
findings in the study. This, on the other hand, led to higher standard deviation in some case.
The higher standard deviation can be attributed to the fact that the subjects who volunteered
for capturing the dataset, differed in gender and body size. For future work, a higher number
of subjects can be applied for capturing datasets.

6.3.6 High-Dimensional Data Projection and Visualisation
Manifold learning methods can be useful for visualising high-dimensional dataset by pro-
jecting it a 2- or 3-dimensional space. The three used methods, t-SNE, MDS, and LLE, are
known to preserve the similarity patterns of the high-dimensional data when projecting it to
a much smaller dimension. The idea to use these manifold learning methods in this study is
also linked to extracting interesting insights for the different classes in the dataset. T-SNE,
MDS, and LLE were first applied to the raw data by projecting it to 2-dimensional feature
space. The visualisation results revealed high similarities and overlapping between data sam-
ples belonging to different classes. To improve this, the CVAE encoded features were used
as an input of the methods for a similar projection. The subsequent results showed improve-
ments for the three manifold learning techniques. More specifically, the intra-cluster distance
was shown to be improved considering the fact that data samples from the same class were
more closely projected. On the other hand, classes such as walking (1) and jumping (3) had
overlapping classes, which was also evident in the confusion matrices. The running (2) class
was the most accurately clustered activity, and the visualisation results proved this result.

6.3.7 Results Comparison with Supervised Strategies
The same micro-Doppler radar dataset was used in a supervised study [60]. Considering
the dataset’s high-dimensionality, feature extraction was achieved using off-the-shelf tech-
niques. More specifically, SVD, PCA, and physical features were applied in the previous
study despite the close similarity of the first two methods. SVM was used for classification,
while different sizes of the training set were proposed for comparison. The testing accuracies
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reveal more than 80% performance for different sizes of the training/testing sets. The fea-
tures in our work based on local DCT and CVAE were used in a supervised fashion, where
similar results were observed over 4-subject LOOCV.

6.4 User Acceptance Analysis
The user acceptance of sensors and robots study provided findings on the views, attitudes,
and perceptions among the older population. In terms of sensors, such systems are now
widely researched and introduced in care home [16, 18, 21] for the purpose of human activity
recognition. Such systems are often non-intrusive (excluding wearable technologies) and
users do not have a direct contact with them. Considering robots, the applications are usually
more complex, but still find applications in care homes [132].

6.4.1 User Acceptance of Non-Intrusive Sensing Technology
The older participants in our study showed strong acceptance of non-intrusive monitoring
technology. Many of the residents commented that as long as the technology is beneficial,
they are supportive. Sensor systems were further favoured based on their non-intrusive and
indirect contact with the residents. Researchers have discovered that older adults valued the
“felt need” and “product quality” for assistive technology [198], which is highly consistent
with the current study. As discussed previously, the residents had reservations in terms of
their mental health enhancement based on sensor systems. This can be attributed to the fact
that older adults wish to portray themselves as independent and capable instead of frail and
vulnerable [199]. In addition, the mental health topic may have been a taboo topic in the past
considering the age of the participants [200].

6.4.2 Older People’s Acceptance of Robots
The classical TAM framework including perceived ease-of-use and usefulness only con-
firmed in our study that these two factors were the most favoured. However, additional char-
acteristics such as physical appearance, role and functions, and cost also found sympathy
among some of the residents.

In terms of robot’s physical appearance, our research discovered that mechanical hu-
manoid appearance was the most preferred among the residents. The selected humanoid
examples for inclusion in the questionnaire resembled humans, but not to a great extent, so
they could not “fall” in Mori’s uncanny valley. In addition, animal-like robots were the sec-
ond most preferred category followed by machine-like robots. The same preference has been
observed in an earlier study [30].

Considering the preferred robotic role and activities, physical role with cleaning found
the most sympathy among the residents. This can be attributed to the fact that many older
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adults who move to LTC facilities have physical problems affecting their mobility and ability
to perform daily tasks including cleaning and cooking. Communication with the robot was
a highly favoured activity, which is explained by the major loneliness affecting older adults
including residents in care homes [201].

By analysing the two age-based groups, three statistical methods discovered stronger
preferences by the younger group (aged 81 to 89) towards more health-related activities
such as medicine reminder and environments navigation. This was also confirmed by the
responses of the subsequent related question for perceived physical health improvement.
Entertainment was only preferred by some of the residents in the older group, but not as
significantly.

In conclusion, the robot’s cost was regarded as less important than usefulness and ease-
of-use, but as important as physical appearance and functionalities. The literature review
covering the importance of cost among care home residents is vastly limited, however, our
finding corresponds to the findings derived from private households [202].

6.4.3 Acceptance and Trust of Robot in Own Home
Studies have discovered that trust is an important factor for user acceptance of robots [203]
and home monitoring systems [204]. Residents in this research were largely cautious in their
responses to the questions of trust and accepting a robot in their home (i.e. the care home
where they were living), with the most common response being to not accept a robot at
home and probably not to trust it to make decisions. This contradicts with previous research
[149] where 21 older adults (Age=80.25±7.19) were identified as generally willing to accept
robots at home. However, it is worth noting that the mean age (90.42±4.46) in the current
research is higher, which potentially affects the acceptance of robots.

6.4.4 Comparison Between User Acceptance of Sensors and Robots
The findings of the study have shown that non-intrusive sensor systems are more accepted
compared to robots with a physical presence. This corresponds to previous research, where
interaction-free sensor systems were preferred by the participants [25]. In addition, physical
robots with cleaning capabilities were preferred by the majority of residents. On the other
hand, social robots were mostly dismissed as the findings are again in line with interaction-
free agents.

It is important to consider the concept of dignity for both physical and social roles. There
exists an emerging concept of “weak” and “vulnerable” robots, which aims to address the
issue of losing dignity in the care home sector [205, 206, 207]. To respond to this, “vulner-
able” robots aim to retain the self-esteem and dignity of residents. For example, the most
preferred activity in our study, cleaning, can reduce the human contact of the residents [208].
In this situation, “vulnerable” robots can provoke the user’s participation by moving objects
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[209]. In addition, this can allow the residents to feel that they have a useful role in the so-
ciety, which is crucial for their self-esteem [210]. The human carers can then focus on more
social and meaningful activities while being “replaced” by the robot [207].

6.4.5 Comparison Between Age Groups
The two age-based groups including 81-89 and 90-99 year old showed correlation in their
responses for the majority of questions. However, a weak correlation was discovered for the
preferred robotic activities along with the following perceived physical health and mental
health improvement based on these activities. More specifically, the younger group preferred
more health-related activities as well as showed higher perceived physical health improve-
ment based on these activities. Considering mental health improvement, the younger group
was uncertain by selecting “might or might not” more strongly compared to the older group.

6.4.6 Strengths and Limitations of Study
In terms of strengths, the study achieved comparison in the user acceptance of (1) sensors,
and (2) robots, which has not been evaluated in previous studies. Additionally, user accep-
tance factors beyond the ones incorporated in the classical TAM framework were included
(physical appearance, cost, functionalities), which played an important role. The likely im-
pact on the physical health and mental health was analysed including comparison between
the two types of health. Acceptance and trust of robots with a physical presence was also
researched along with preferred physical appearance, and role and functions of the robot.
Considering limitations, these can be viewed by the relatively small study sample, which
included 21 residents living in one LTC facility. In addition, the number of male residents
was extremely small, which did not allow for a similar comparison between the responses as
with the two age-based groups. This is due to the fact that the number of healthy (excluding
neurological diseases) individuals in care homes is very small. Still, the study showed inter-
esting findings derived from the extremely old population, which can be confirmed in further
studied incorporating a greater number of participants.

6.5 Overall Discussions on the Use of Non-Intrusive Sens-
ing Technologies for Health Monitoring of Aged Popu-
lation

The overall aim of this thesis was linked to the possibility of the use of non-intrusive sensing
strategies for monitoring healthcare of aged populations. Both LRIR data and Doppler radar
data were analysed with the application of different AI methods for them. In addition, a
number of methods for pre-processing and feature extraction were proposed specifically for
these two types of data.
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Considering the fact that both IR sensor and Doppler radar sensor will potentially have
application in healthcare and eldercare, the privacy of the care home residents is a major
concern. Both methods have proven to be non-intrusive since subjects identification from
LRIR data and Doppler spectrogram is avoided. The field of view of the utilised IR sensor
in this study is 60°, while the claimed coverage is 7 metres. While the coverage range of the
Doppler radar is much higher, both devices are ideal for living area dimensions and settings.
In regards to the economical challenge, IR sensors are considered relatively inexpensive. A
concern would be the need for more IR sensors as their coverage range is not substantial. As
such, the overall economical challenge would be increased. The Doppler radars have shown
to be considerably more expensive, but on the other side offer higher coverage range.

In regards to complexity, the Doppler radar’s refresh rate is slower in comparison with
the IR sensors. As discussed in Chapter 3, the IR sensor can have a refresh rate of 10 FPS.
This advantage places the IR sensor in a better position compared with the more sensitive
Doppler radar. IR sensors are sensitive in terms of heat sources, which can pose an issue if
positioned in the sensor’s field of view. Considering Doppler radars, the devices have shown
sensitivity toward small fractions of the body or even the heart beat of a person. This ability
can be seen as an advantage towards the detection of more sensitive activities. The more
specific activities involving smaller fractions of the human body can be extremely difficult
for detection with IR sensors. The currently existing datasets along with the proposed dataset
cover only non-specific activities such as standing, sitting, walking, etc.

In terms of accuracy, which is a crucial factor, IR sensors have shown to have better
recognition. As outlined in this thesis, the accuracy can be increased even to 100% using
the correct combination of AI strategies for pre-processing, feature extraction, and classifi-
cation. While unsupervised strategies were used for Doppler radar data in this thesis, it is
expected that their results would not be comparable with supervised strategies. However, the
same Doppler radar dataset has been used with supervised strategies by fellow researchers
[60]. The achieved results were above 80% for different sizes of the testing set. Consider-
ing this finding, it can be concluded that IR sensors provide better recognition in terms of
classification accuracies.

Unsupervised learning is a very important field of machine learning. Using unsupervised
strategies for IR sensor data and Doppler radar data can have benefits for improving the
model by purely providing new data captured by the devices. Hence, the burden of manually
labelling the data can be eased.

6.6 Chapter Conclusion
This chapter provided discussion of the main findings for all three proposed areas of contri-
butions. Initially, extrapolation limitations were presented. The most optimum classification
modelling strategy for the LRIR data was considered with results interpretations. In addition,
the modelling strategy with GLCM+LR was described for its model generalisation abilities.
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In terms of micro-Doppler radar data, the two proposed methods for unsupervised fea-
ture extraction were compared with the state-of-the-art techniques. Both advantages and
disadvantages were provided to strengthen the analysis. In addition, data visualisation with
manifold learning methods in the two scenarios was analysed. Potential fusion of meth-
ods was discussed as well as the higher standard deviation in the average results. Finally,
comparison of the proposed architectures with supervised strategies was made.

The proposed user acceptance framework was analysed in regards to comparison be-
tween the acceptance of sensors and robots. In addition, the extended factors in the TAM
framework were discussed for their role in the acceptance of new technologies. The two-age
based groups’ responses were analysed in cases where they differed statistically significantly.
Finally, strengths and limitations of the work were provided.

The next chapter will conclude the thesis by providing the final outcomes and remarks
of the findings. More specifically, the research questions will be discussed as well as thesis
limitations and areas for future work.



Chapter 7

Conclusion

This thesis has addressed the development of machine learning and data analysis approaches
for the efficient classification of human activity data derived from non-intrusive sensors such
as IR sensors and micro-Doppler radar sensors. It has also explored the important factors
influencing the user acceptance for using non-intrusive sensing technology and robots for
health monitoring of aged population.

The current literature for human activity recognition with IR sensors is very limited. The
majority of the studies provided an introductory analysis, which was not researched deeper.
Considering IR data, a number of studies have proposed analyses [16, 17, 19, 20, 21]. These
studies lacked holistic evaluation of LRIR data including optimum feature extraction and
classification selection, noise analysis, sensor position, multiple layouts, model generalisa-
tion, and multi-subject activities. In this thesis, two LRIR datasets were employed with
diverse capabilities in Chapter 3 in order to address the aforementioned shortcomings of the
previous studies. In addition, a number of feature extraction and classification combinations
were used to discover the most optimum model for this data. More precisely, novel methods
for interpolation, extrapolation, and periodic noise reduction were proposed. All proposed
methods were verified, which proved their success for application to LRIR data.

Micro-Doppler radar for human activity recognition is used predominantly in supervised
applications. The current literature identified only two studies concerned with unsupervised
learning based human activity recognition with such radars [23, 24]. The first study [23]
only used existing feature extraction and clustering techniques for the purpose. Regarding
the second study [24], a novel feature extraction architecture was proposed, but still the
accuracy was intermediate. In this thesis, two unsupervised feature extraction methods for
2D Doppler radar images were proposed in Chapter 4. Additionally, a holistic evaluation
and understanding of Doppler radar data was achieved based on unsupervised strategies.

Besides the technical work, a general user acceptance framework for sensors and robots
among the older population was proposed in Chapter 5. The current literature mostly in-
cluded user acceptance of sensors and robots following short to long term interaction [30,
31, 32, 33, 34, 35, 39, 189, 190]. In addition, user acceptance comparison between sensors
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and robots was not observed in the literature. In this thesis, a number of additional character-
istics were included. These included health improvement, extended TAM framework, trust,
and robot’s physical appearance and functionalities.

The thesis was designed to address the shortcomings of previous literature. In the fol-
lowing section, the answers of the research questions will be given.

7.1 Research Questions and Thesis Contributions
The main goal of this research was to provide answers to the following research questions:

1. “Is it possible to develop novel approaches for machine learning and data analysis to
correctly classify human activities derived from non-intrusive remotely sensed data?”

In this thesis, the research question is addressed based on the following research work:

• Acquisition and preparation of human activity data using two types of non-intrusive
sensing technologies: (a) LRIR sensors (Coventry-2018 dataset was generated and
Infra-ADL2018 dataset was used); (b) the previously acquired dataset based on Doppler
radar sensing systems.

• Pre-processing of data such as frame equalisation for LRIR data using interpolation
and extrapolation, and denoising of 2D spatio-temporal maps of LRIR data by devel-
oping a new method.

• Interpretation of 2D Doppler maps for human activity recognition by developing two
novel methods for unsupervised feature extraction.

• Comparing different supervised and unsupervised feature extraction and classification
methods as well as deep NN techniques for LRIR data and Doppler radar data.

2. “What factors influence the user acceptance of non-intrusive sensing technology and
robots with a physical presence by older adults?”

In this thesis, the research question is addressed based on a proposed user acceptance
framework for non-intrusive sensing technologies and robots with a physical presence among
aged populations. The results of the analysis, covering the acceptance of 21 older adults,
revealed the original factors incorporated in TAM framework as the most influential for user
acceptance of robots. Other factors included in the analysis such as cost, functionalities, and
physical appearance played a less important role for the user acceptance. Physical health
improvement was highly valued by the participants in the study, while the factor of mental
health improvement was met with mixed feelings for both sensors and robots. In addition,
mechanical humanoid robots were valued by the majority of the participants compared with
mechanical zoomorphic robots and machine-like robots. Finally, the participants preferred
physical robots with cleaning as the most valued robotic activity.
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7.2 Human Activity Recognition Using IR Sensors
The thesis firstly explored the use of IR sensors for human activity recognition. The main
advantages of using IR sensors are their non-intrusiveness, cost-effectiveness, and ease-of-
use. Additionally, the IR sensors are capable of providing extremely low resolution images,
which correspond to cheap processing time. As a whole, a limited number of studies were
identified from the literature for the purpose of human activity recognition with potential
applications in healthcare and eldercare. In addition, the studies lacked deeper insights in
regards to the aforementioned constraints.

A holistic analysis was undertaken, which initially included pre-processing. More pre-
cisely, two novel methods for interpolation and extrapolation were proposed for frames
equalisation. The frames equalisation issue was discussed only in a single study [21] mod-
erately with no further details. As such, in our analysis the two proposed methods were
compared with random methods for adding / deleting frames with improved recognition ca-
pabilities. However, the extrapolation method used for deleting frames favours earlier frames
in the sensors recordings in some cases. As such, it can be further improved by using a more
sophisticated technique, using some sampling strategies that follow standard distributions,
such as Gaussian or uniform or based on analysing the frames variations. Then, periodic-
ity in spatio-temporal maps of IR data was addressed, which was formed by vectorisation
of the low resolution images over 40 frames of each activity. This periodic noise negatively
influenced the human activity recognition accuracy. A novel supervised periodic noise reduc-
tion technique was proposed to address the periodicity issue, which exhibited up to 13.28%
recognition improvement in the conducted tests.

Secondly, the feature extraction and classification were considered for analysis. While
previous studies were based on a single method for feature extraction and classification,
this thesis explored a number of methods for both purposes to discover the most optimum
model. Following a number of tests with machine learning and deep learning approaches,
the SVD+LR model was discovered as the most successful by obtaining an average testing
accuracy of 100%. The deep learning architecture in the face of CNN-LSTM also obtained
a high accuracy recognition rate, but the model training can be considered computationally
expensive compared to the traditional machine learning architectures. The achieved robust
accuracies over the datasets with a limited number of activities and subjects increase the
expectations for having very high accuracy in real settings with more subjects and activities.

The Coventry-2018 dataset included two layouts: (1) small layout, and (2) large layout.
Tests were conducted to discover the models’ sensitivity towards distance change. It was
then observed that all models performed better when the small layout was used compared to
the large layout. This is due to the fact that the Grid-EYE sensors have a sensitivity range of
5 to 7 metres and perform poorly when the distance increases.

Optimum sensor position and layout are crucially important considering the increasing
cost of the system with an increasing number of sensors. As such, the goal is to use fewer
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resources. By using the Coventry-2018 dataset, it was discovered that Sensor-1, which was
a side sensor, had the most optimum performance. Similarly, in Infra-ADL2018 dataset it
discovered that Sensor-2, again a side sensor, provided the most optimum performance. By
having this knowledge, unnecessary sensors can be removed from the scenario, which would
only require the most successful sensors or a set of sensors.

Finally, model generalisation was researched in two perspectives. Firstly, model gen-
eralisation in terms of layout was undertaken in two scenarios. In the first scenario, the
model was trained on the small layout and tested on the large layout, and vice versa. All
models were deployed for this purpose and it was discovered that GLCM+LR was the most
optimum modelling strategy. This can be extremely useful in situations where sensor dis-
placement might happen in practical settings. In addition, model generalisation including
mixing small layout data and large layout data was achieved. For this purpose, CNN-LSTM
was discovered as the most optimum architecture. Secondly, model generalisation in terms
of unseen subjects for the Infra-ADL2018 was conducted as this dataset was composed of
nine subjects for single-subject activities and eight subject combinations for double-subject
activities. Results revealed stable performances, while some activities for specific subjects
or subject pairs were not recognised in any of the trials. Therefore, analysis was undertaken
to solve the issue. It was discovered that the patterns of these activities greatly differed from
the patterns of the same activities performed by the other subjects or subject pairs. This re-
veals the need for a larger number of subjects with diverse age, body behavior and shape to
generalise the models further for real settings. In addition, it is required to arrange different
experimental settings by making them more realistic. These include the number and type of
furniture in the room and different heating sources such as kettles, heaters, and others. As
discussed in Chapter 3, a higher number of sensors might be required to capture information
in cases where one or more sensors become occluded as well as covering more space in the
room.

7.3 Human Activity Recognition Using Doppler Radars
Micro-Doppler radars have been used for human activity recognition with significant results
and findings. However, the current literature is focused mainly on supervised learning ap-
plications. On the other hand, unsupervised learning is of crucial importance in cases of
unlabelled or poorly labelled projects considering the fact that labelling is time-consuming
and expensive. There were only two existing papers that addressed unsupervised learning
for Doppler radar based human activity recognition. However, they suffered from interme-
diate accuracies and lack of holistic understanding of such data for the aim of unsupervised
learning.

In Chapter 4, two unsupervised feature extraction methods for 2D micro-Doppler images
were proposed. Both methods were based on local feature extraction based on different
filtering methods for feature quantification. More precisely, the first method was based on
applying 2D DCT on local patches of the image. The second method was based on entropy
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analysis of local patches extracted from certain image patterns. Both methods were verified
with the unsupervised metric based on Dunn’s index.

In addition to the proposed two methods for unsupervised feature extraction, deep CVAE
architecture was considered for the same purpose. The CVAE architecture exhibited im-
proved recognition capabilities compared to the two proposed methods. However, the train-
ing time for the CVAE architecture was much higher compared with the two proposed meth-
ods. As such, despite the slightly lower performance of the proposed methods, they represent
an interesting finding by allowing faster updates of the previously trained models on new
data.

Besides the aforementioned three methods for unsupervised feature extraction, state-of-
the-art techniques were considered including CAE, PCA, and 2DPCA,. The two proposed
methods and CVAE performed noticeably better compared to these methods. In addition, a
number of heuristic techniques were used for identifying the correct number of clusters K.
These included Elbow method, Silhouette coefficient, Davies-Bouldin index, Dunn score,
and Calinski-Harabasz index.

In addition to these contributions, visual learning enhancement with manifold learning
methods was considered. More precisely, the extremely high-dimensional data was trans-
formed to a 2-dimensional space. This was achieved by firstly, transforming the raw data
to a 2-dimensional space, and by transforming the CVAE encoded data to a 2-dimensional
space. The visualisation results revealed better class separability when the CVAE encoded
data was used.

7.4 User Acceptance of Sensors and Robots By Older Adults
In Chapter 5, the social aspect of the work was outlined. The acceptance of sensors and
robots is a crucial factor since current research identified the social stigma and negative
preconceptions as major challenges. In this work, the user acceptance was observed from a
number of perspectives, which were not covered in previous literature.

A user acceptance questionnaire was administered in care home settings by assessing the
willingness of 21 older adults to accept sensors and robots. The TAM framework, which is a
model of extreme importance in the literature, was enriched to cover beyond perceived use-
fulness and ease-of-use. In addition, health improvement, considering both physical health
and mental health, were assessed. Trust and physical appearance with preferred role and
capabilities for robots were included as well.

The findings revealed the high user acceptance of remote sensors for monitoring activi-
ties. The user acceptance in this sense was seen from both physical health and mental health
improvement. Results showed that the physical health improvement was praised by the par-
ticipants, while they had some reservations in terms of mental health improvement. On the
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other hand, the acceptance of robots uncovered mixed feelings and preconceptions. Mechan-
ical humanoid physical appearance was mostly preferred by the residents, while cleaning
was identifying as the most important activity to be conducted by a robot. Finally, perceived
usefulness and perceived ease-of-use were identified as the most important robotic charac-
teristics, while physical appearance, cost and functionalities also played an important role.

7.5 Research Limitations
One of the main limitations of this research was the fact that datasets were built by using
younger participants, whose patterns of gestures and activities may not resemble the ones
of the older population. This is due to the difficulties of recruiting older participants as it
was observed in the user acceptance survey in Chapter 5. The number of participants for the
datasets can be regarded as limited, which will be part of future work. In addition, the current
activities included standing, sitting, walking, but more precise activities indicating subjects’
healthy or unhealthy mode and behavior such as drinking, immobility, etc were missing from
the analysis. While these activities are more difficult for recognition, they represent a bigger
challenge.

In addition to dataset design, the currently used datasets in this thesis were collected in
university and laboratory settings. Hence, they may not be very representative in real world
scenarios such as care homes. The care home settings may include a number of furniture,
other subjects, or different sources of heat. These constraints represent a great challenge,
which can lead to the development of novel methods.

An aspect, which was not considered in this work, was the real time application of the
analysis of human activity recognition. This analysis would lead to stronger conclusions for
the suitability of the proposed frameworks.

The user acceptance questionnaire had a limitation corresponding to the limited number
of participants. More precisely, the questionnaire was administered only in a single care
home, where 21 older adults agreed to participate. Hence, the expressed views and ex-
pectations towards the research technologies may not be representative of the whole older
population. In addition, only a limited number of male participants was recruited, which did
not allow for gender-based analysis of the responses.

7.6 Future Directions
Human activity recognition is an important field of computer vision, which can have appli-
cation in healthcare, eldercare, security, gaming, and others. Future work will consider the
application of the current findings in real world scenarios in order to test their suitability.
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The datasets can be expanded to include more activities such as the aforementioned ac-
tivities and beyond. In addition, older adults can be recruited for participation in dataset
creation, which would be more realistic for applications in real world scenarios. Even more
realistically, a dataset can be derived from the daily activities of older adults in their normal
settings. Hence, the performance of the activities will be considerably more realistic, which
will improve the potential applications.

The questionnaire can be deployed in a number of care homes to assess a more repre-
sentative view of the researched questions. More male participants, which were a few in this
experiment, can be recruited. Hence, gender-based analysis of the responses can be further
employed to discover the presence or absence of significant differences in the responses.

Sensor fusion, which is an emerging topic in machine learning and signal processing,
can be incorporated considering that IR sensors and micro-Doppler radars were used in this
thesis individually. By having two or more sensors, the fusion can ideally provide better
results for some activities compared to the results from the individual sensors.

Inspired by the CVAE architecture that was used for unsupervised analysis, it is possible
to develop a new NN architecture for unsupervised clustering of image data. Such NN model,
is expected to have both automated unsupervised feature extraction as well as unsupervised
clustering steps embedded in its structure using an appropriate objective function and training
strategy.

The supervised periodic noise reduction technique can be applied to other projects, which
suffer from the presence of similar vertical and horizontal periodic noise. The other projects
might not be limited to LRIR sensing data, but can also include camera images. Hence, the
proposed method can be evaluated and verified on data derived from different sources.

The local DCT-based method and local entropy-based method were both used for 2D
images derived from micro-Doppler radars for unsupervised learning. The robustness of both
methods was evaluated with the unsupervised metric Dunn’s index. The methods can also
be applied in other applications including supervised learning. Then, classification accuracy
can be used as a supervised model evaluation metric.

7.7 Chapter Conclusion
This thesis proposed a number of machine learning and data analysis architectures for hu-
man activity recognition using non-intrusive sensors with potential applications in healthcare
and eldercare. The proposed methods were verified and compared with other methods in or-
der to stress on their effectiveness. Additionally, these contributions are important in the
field of human activity recognition for eldercare, but can be applied for a number of other
applications.
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The thesis has explored the periodicity in the 2D spatio-temporal maps derived from
LRIR data, which posed a significant problem for the data recognition. As such, the proposed
novel method for periodic noise reduction represents an important finding in the field.

The findings of this thesis bring us closer to the application of human activity recognition
using non-intrusive sensors in real world scenarios. To the best of the author’s knowledge,
this work presented the first holistic understanding and evaluation or LRIR data for human
activity recognition, and unsupervised Doppler radar based human activity recognition. As
such, the discoveries and analyses outlined in this thesis bring us ahead in the path of effec-
tively addressing the problem of an ageing population.



Bibliography

[1] United Nations. World Population Ageing 2020, 2020.

[2] United Nations. World Population Ageing 2015, 2015.

[3] D. Laar, J. Edwards, and S. Easton. The Work-Related Quality of Life (WRQoL)
scale for healthcare workers. Journal of advanced nursing, 60:325–33, 12 2007. doi:
10.1111/j.1365-2648.2007.04409.x.

[4] Office for National Statistics. Living longer: how our population is changing and why
it matters, 2018.

[5] Mayo Clinic. Dementia - symptoms and causes, 2021. URL https:
//www.mayoclinic.org/diseases-conditions/dementia/
symptoms-causes/syc-20352013.

[6] Alzheimer’s Society. Dementia UK report, 2014. URL https:
//www.alzheimers.org.uk/about-us/policy-and-influencing/
dementia-uk-report.

[7] Social care institute for excellence. Eearly signs and diagnosis of de-
mentia, 2020. URL https://www.scie.org.uk/dementia/symptoms/
diagnosis/early-signs-of-dementia.asp.

[8] Epilepsy Action. Epilepsy facts and terminology, 2018. URL https://
www.epilepsy.org.uk/press/facts.

[9] Mayo Foundation for Medical Education and Research (MFMER). Epilepsy - symp-
topms and causes, 2021. URL https://www.mayoclinic.org/diseases-
conditions/epilepsy/symptoms-causes/syc-20350093.

[10] Chegg Inc. Learn about epilepsy, 2022. URL https://www.chegg.com/
learn/biology/introduction-to-biology/epilepsy-in-
introduction-to-biology.

[11] NHS. Parkinson’s disease - NHS, 2019. URL https://www.nhs.uk/
conditions/parkinsons-disease/.

125

https://www.mayoclinic.org/diseases-conditions/dementia/symptoms-causes/syc-20352013
https://www.mayoclinic.org/diseases-conditions/dementia/symptoms-causes/syc-20352013
https://www.mayoclinic.org/diseases-conditions/dementia/symptoms-causes/syc-20352013
https://www.alzheimers.org.uk/about-us/policy-and-influencing/dementia-uk-report
https://www.alzheimers.org.uk/about-us/policy-and-influencing/dementia-uk-report
https://www.alzheimers.org.uk/about-us/policy-and-influencing/dementia-uk-report
https://www.scie.org.uk/dementia/symptoms/diagnosis/early-signs-of-dementia.asp
https://www.scie.org.uk/dementia/symptoms/diagnosis/early-signs-of-dementia.asp
https://www.epilepsy.org.uk/press/facts
https://www.epilepsy.org.uk/press/facts
https://www.mayoclinic.org/diseases-conditions/epilepsy/symptoms-causes/syc-20350093
https://www.mayoclinic.org/diseases-conditions/epilepsy/symptoms-causes/syc-20350093
https://www.chegg.com/learn/biology/introduction-to-biology/epilepsy-in-introduction-to-biology
https://www.chegg.com/learn/biology/introduction-to-biology/epilepsy-in-introduction-to-biology
https://www.chegg.com/learn/biology/introduction-to-biology/epilepsy-in-introduction-to-biology
https://www.nhs.uk/conditions/parkinsons-disease/
https://www.nhs.uk/conditions/parkinsons-disease/


BIBLIOGRAPHY 126

[12] National Institute on Aging. Parkinson’s disease, 2017. URL https://
www.nia.nih.gov/health/parkinsons-disease.

[13] Parkinson’s UK. The incidence and prevalence of Parkinson’s in the UK, 2017.

[14] VeryWell Health. 10+ Facts About Parkinson’s Disease, 2021. URL
https://www.verywellhealth.com/facts-about-parkinsons-
disease-5200700.

[15] Brain Research UK. Motor neurone disease, 2021. URL https:
//www.brainresearchuk.org.uk/neurological-conditions/
motor-neurone-disease.

[16] S. Mashiyama, J. Hong, and T. Ohtsuki. A fall detection system using low resolution
infrared array sensor. In 2014 IEEE 25th Annual International Symposium on Per-
sonal, Indoor, and Mobile Radio Communication (PIMRC), pages 2109–2113, 2014.
doi: 10.1109/PIMRC.2014.7136520.

[17] S. Mashiyama, J. Hong, and T. Ohtsuki. Activity recognition using low resolution
infrared array sensor. In 2015 IEEE International Conference on Communications
(ICC), pages 495–500, 2015. doi: 10.1109/ICC.2015.7248370.

[18] T. Hosono, T. Takahashi, D. Deguchi, I. Ide, H. Murase, T. Aizawa, and M. Kawade.
Human tracking using a far-infrared sensor array and a thermo-spatial sensitive his-
togram. In Computer Vision - ACCV 2014 Workshops, pages 262–274, 11 2014. ISBN
978-3-319-16630-8. doi: 10.1007/978-3-319-16631-5 20.

[19] C. Basu and A. Rowe. Tracking motion and proxemics using thermal-sensor array,
2015.

[20] A. Trofimova, A. Masciadri, F. Veronese, and F. Salice. Indoor human detection
based on thermal array sensor data and adaptive background estimation. Journal of
Computer and Communications, 5:16–28, 2017.

[21] L. Tao, T. Volonakis, B. Tan, Y. Jing, K. Chetty, and M. Smith. Home activity moni-
toring using low resolution infrared sensor, 2018.

[22] L. Tao, T. Volonakis, B. Tan, Z. Zhang, Y. Jing, and M. Smith. 3D convolutional neural
network for home monitoring using low resolution thermal-sensor array. In 3rd IET
International Conference on Technologies for Active and Assisted Living (TechAAL
2019), pages 1–6, 2019. doi: 10.1049/cp.2019.0100.

[23] W. Li, Y. Xu, B. Tan, and R. Piechocki. Passive wireless sensing for unsupervised
human activity recognition in healthcare. In 2017 13th International Wireless Com-
munications and Mobile Computing Conference (IWCMC), pages 1528–1533, 2017.
doi: 10.1109/IWCMC.2017.7986511.

https://www.nia.nih.gov/health/parkinsons-disease
https://www.nia.nih.gov/health/parkinsons-disease
https://www.verywellhealth.com/facts-about-parkinsons-disease-5200700
https://www.verywellhealth.com/facts-about-parkinsons-disease-5200700
https://www.brainresearchuk.org.uk/neurological-conditions/motor-neurone-disease
https://www.brainresearchuk.org.uk/neurological-conditions/motor-neurone-disease
https://www.brainresearchuk.org.uk/neurological-conditions/motor-neurone-disease


BIBLIOGRAPHY 127

[24] W. Li, B. Tan, Y. Xu, and R. Piechocki. Log-likelihood clustering-enabled passive RF
sensing for residential activity recognition. IEEE Sensors Journal, 18(13):5413–5421,
2018. doi: 10.1109/JSEN.2018.2834739.

[25] R. Steele, A. Lo, C. Secombe, and Y. Kuen Wong. Elderly persons’ perception and ac-
ceptance of using wireless sensor networks to assist healthcare. International Journal
of Medical Informatics, 78(12):788–801, 2009.

[26] M. Pol, F. van Nes, M. van Hartingveldt, B. Buurman, S. de Rooij, and B. Kröse.
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Appendix A

User Acceptance Questionnaire

Age: Gender: Male / Female

Q1 How far do you agree that non-intrusive sensing technology can improve your phys-
ical well-being?

Examples include a device attached to the wall which will call for help if you fall on the
ground.

Thus, we can detect falls immediately and call a member of staff for help. [211]

• Strongly agree

• Agree

• Somewhat agree

• Neither agree nor disagree

• Somewhat disagree

• Disagree

• Strongly disagree
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Q2 How far do you agree that non-intrusive sensing technology can improve your
mental well-being?

For example, it can remind you when your favourite TV show starts.

• Strongly agree

• Agree

• Somewhat agree

• Neither agree nor disagree

• Somewhat disagree

• Disagree

• Strongly disagree

Q3 What characteristics of the robot do you consider the most important?

You can select more than one characteristic.

• Ease of use

• Cost

• Physical appearance

• Functionalities

• Usefulness

Q4 How much do you agree with the statement – “I am likely to use robots in my
home”?

• Strongly agree

• Agree

• Somewhat agree

• Neither agree nor disagree

• Somewhat disagree

• Disagree

• Strongly disagree
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Q5 Can you trust the robot for making decisions?

• Definitely yes

• Probably yes

• Might or might not

• Probably not

• Definitely not

Q6 What robots do you prefer based on their physical appearance?

• Humanoid robots [212]-[214]

• Animal-like robots [215]-[217]

• Machine-like robots [218, 219]
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Q7 What activities do you prefer to be performed by the robot?

You can select more than one activity.

• Cooking [220]

• Cleaning [221]

• Medicines reminder [222]

• Environments navigation [223]
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• Entertainment such as dancing and singing [224]

• Communication with the robot [225]

• Communications provision with relatives [223]

Q8 Based on the activities in the pictures, do you consider that the robot can help you
have a better physical well-being?

• Definitely yes

• Probably yes

• Might or might not

• Probably not

• Definitely not
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Q9 Based on the activities in the pictures, do you consider that the robot can help you
have a better mood and mental well-being?

• Definitely yes

• Probably yes

• Might or might not

• Probably not

• Definitely not

Q10 Please state any additional activities that you wish to be performed by the robot.
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