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Modern cars host numerous special-purpose computing and connectivity devices facilitating the correct 
functioning of various in-vehicle systems. These devices host complex software systems with over 100-
million lines of code, requiring regular and timely updates for functional and security improvements. 
Addressing the shortcomings of the legacy update system, over-the-air (OTA) software update system 
has emerged as an efficient, cost-effective, and convenient solution for delivering updates to automobiles 
remotely. While OTA offers several benefits, it introduces new security challenges requiring immediate 
attention, as attackers can abuse these update systems to undermine the vehicle security and safety. 
There are numerous studies investigating various aspects of the automotive cybersecurity; however, 
security testing of automotive OTA has not been covered adequately, with most of the prior work 
primarily focusing on proposing improved techniques for securing automotive OTA updates. In order to 
ensure these update systems are effectively secure, thorough security assessment needs to be performed. 
To the best of our knowledge, there is currently no study that proposes or employs a systematic security 
testing approach for evaluating the security of automotive OTA update systems. This study closes this gap 
by presenting an in-depth security evaluation of Uptane framework, by employing a structured threat 
analysis approach to constructing attack trees and applying a model-based security testing approach for 
generating effective security test cases. We implement a software tool that generates the security test 
cases by analysing the structure of the attack trees and ultimately executing those test cases against the 
target system. We carry out several experimental attacks on the Uptane reference implementation. While 
many of the experimental results showed that the reference implementation is secure against different 
threats and cyberattacks, some findings suggest that the implementation is vulnerable to the denial-of-
service and eavesdropping attacks.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

Modern vehicles are equipped with numerous sophisticated 
computing (i.e., ECUs) and connectivity capabilities that enable and 
support correct functioning of various types of in-vehicle systems. 
With an increasing number of ECUs installed, today’s luxury cars 
host complex software systems with more than 100 million lines 
of code [60,18]. With that huge amount of code, regular and timely 
updates are inevitable for functional enhancements and most im-
portantly for fixing bugs related to security issues that could po-
tentially be exploited by adversaries to compromise the security of 
the vehicle [85].
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For the deployment of these updates, vehicles had traditionally 
been required to visit a service centre or dealership where a me-
chanic had to install the updates. This old mechanism for updating 
in-vehicle software is not only expensive and inefficient for car-
makers, it is inconvenient for the customers as well. For example, 
General Motors had to spend $4.1 billion on vehicle recalls in 2014 
while their total net income for that particular year was $4 billion 
[40]. Another interesting related example is the work from Koscher 
et al. [47], which caused a recall of 1.4 million cars by automak-
ers. Numerous vehicles were recalled for updates recently incur-
ring huge financial costs for the automakers. Over-the-air software 
update system is emerging as an efficient, cost-effective and conve-
nient way for delivering software updates to automobiles remotely 
allowing hassle-free delivery of critical updates in an economical 
and timely manner.
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Fig. 1. Contribution 1: Overview of the threat analysis approach leading to the construction of an attack tree systematically.
1.1. Motivation, novelty and contributions

Undoubtedly, OTA offers several benefits, but it also introduces 
new security challenges that must be considered seriously, as at-
tackers can compromise the software update system [62,9,71] to 
compromise the vehicle security.

Unlike other devices that receive OTA updates, security of auto-
motive updates is a huge concern, because a malicious or corrupt 
update can never be as devastating as it can be in the case of 
a connected car, which could potentially lead to loss of human 
life [48,36]. While protection of the OTA updates is vital for any 
IoT device, update security in connected cars should be even a 
greater concern [24]. OEMs must adopt effective security measures 
for the detection and mitigation/prevention of any potential secu-
rity breaches in OTA updates. This means security testing of these 
systems is crucial for evaluating security measures in place and 
what further actions are required for strengthening the protection 
against potential cyberattacks. While there are numerous existing 
studies [47,57,68,42,58,15,59,61,67,39,49,3] that have extensively 
investigated cybersecurity testing of automotive systems explor-
ing challenges, testing approaches, testing environments, security 
threats, vulnerabilities, relevant solutions and defensive mecha-
nisms, security testing of automotive OTA updates has not been 
investigated adequately. In order to ensure these update systems 
are secure and have adequate protection in place against various 
cyberattacks and threats, thorough security analysis and evalua-
tions must be performed. To the best of our knowledge, there is 
currently no study that employs a disciplined security testing ap-
proach for evaluating the security posture of automotive software 
over-the-air update systems. We attempt to close this gap by con-
ducting systematic threat assessment and security testing of the 
automotive OTA updates by using a combination of model-based 
security testing techniques and penetration testing.

This research contributes to:

Contribution 1: A systematic threat analysis approach for con-
structing attack trees

Demonstrated by an in-depth analysis of OTA/Uptane, we show 
how our step-by-step threat analysis approach helps enumerate 
security threats and construct attack trees, which are validated 
through the system testing (a graphical overview of this contri-
bution can be viewed in Fig. 1).

Contribution 2: A model-based security testing approach based on 
attack tree to derive security test cases

Our model-based security testing approach uses attack trees to 
derive effective security test cases by analysing the structure of 
these attack trees. In order to validate the approach, we demon-
strate a number of cyberattacks using the generated security test 
cases.

Contribution 3: An in-depth experimental security analysis of the 
reference implementation of the Uptane Framework

A comprehensive security analysis of the Uptane Framework’s 
reference implementation, including a complete threat analysis; 
2

attack-tree construction and various security test cases derived 
from the constructed attack trees as well as the security testing; 
highlighting the strengths and weaknesses of the reference imple-
mentation.

Contribution 4: The automation of the test-case generation and ex-
ecution by devising a software tool

The security test case generation and execution have been au-
tomated by designing and implementing a custom software tool, 
which is capable of deriving appropriate security test cases by 
leveraging the attack-tree structure analysis approach we briefly 
introduced above. The tool executes all the generated test cases 
against the target system and generates a report showing the num-
ber of test cases executed and whether they succeeded.

1.2. Structure of the paper

The rest of this paper is organised as follows. In Section 2, 
we present background information by providing an overview of 
the automotive cybersecurity testing, an introduction of the Up-
tane Framework along with related solutions, and threat modeling, 
including STRIDE classification model and attack trees. Section 3
gives an overview of the related work, highlighting some of the ex-
isting model-based and systematic security testing studies with a 
particular focus on automotive domain. We introduce our system-
atic threat assessment and security testing approach in Section 4, 
detailing its different phases, associated steps, tools and techniques 
to support different activities. Experiments, demonstrating the ap-
plication of the testing approach are presented in Section 5, pro-
viding details of various security tests conducted on the reference 
implementation of the Uptane Framework along with the test re-
sults. A discussion on the approach, experiments and the results is 
presented in Section 6. Finally, Section 7 concludes this paper.

2. Background

This section provides background information pertaining to se-
curity testing of automotive systems.

2.1. Automotive security testing

While the aim of software testing is to detect bugs, to validate 
if it satisfies specified requirements, and to verify it is fit for pur-
pose, software security testing is concerned with the verification 
of the system whether it meets specified security requirements 
(i.e., information confidentiality, privacy, integrity, availability, au-
thenticity, access control, misuse prevention, etc.) [27]. Several 
software security approaches have been proposed, including for-
mal methods that use formal specification language and rely on 
mathematical model of the software; fault injection-based secu-
rity testing is another approach that focuses on the application 
interaction points, network interfaces, user input, file systems, and 
environment variables; risk-based security testing involves finding 
high-risk vulnerabilities in the software as early as possible [83]. 



S. Mahmood, H.N. Nguyen and S.A. Shaikh Vehicular Communications 35 (2022) 100468
However, as opposed to software security testing in general, au-
tomotive security testing is perhaps more important due to the 
nature of catastrophic consequences involving loss of human life 
in some cases. Modern automobiles are exposed to numerous cy-
bersecurity threats due to their built-in powerful computing and 
communication capabilities. Identifying vulnerabilities and secu-
rity flaws in the communication and other onboard technologies 
in connected cars is critical, as cybercriminals can exploit those 
weaknesses for gaining access to the safety-critical systems of the 
vehicle [19].

Most cars today host many computing devices, known as Elec-
tronic Control Units (ECUs). Each ECU has specific responsibilities, 
and they may need to communicate with each other and with the 
external world for successful completion of their tasks. For local 
communication, they rely on one or more of the in-vehicle com-
munication networks, such as Controller Area Network (CAN), Local 
Interconnect Network (LIN), FlexRay, and Media-Oriented Systems 
Transport (MOST). Each type of network has been designed to 
support applications with different needs. For example, while LIN 
is mostly used for low-speed applications, applications requiring 
high-speed data-transfers use MOST [35]. Legally mandated On-
board Diagnostic (OBD) ports in the modern vehicles are used for 
ECU firmware updates, repairing and inspections of the vehicle. 
They are also used for reporting the data gathered by various sen-
sors in the car to the outside world, providing information on the 
health status of the vehicle [82].

There are several entry points that attackers can take advan-
tage of for breaking into a vehicle’s internal system, which have 
been extensively explored and presented by previous studies. For 
example, [8,39,70] explore CAN exploitation, [65] reports attacks 
leveraging OBD port, and security issues related to in-vehicle info-
tainment are presented in [45]. Over-the-air software update sys-
tems for automobiles can also be targeted by hackers in several 
different ways, as described in [48] for compromising the security 
and safety of the connected vehicles.

While automotive OTA offers numerous benefits (e.g., seamless 
delivery of software updates remotely), presence of security flaws 
and vulnerabilities in such systems can be exploited by adver-
saries to undermine the security of connected cars. For example, 
attackers can compromise the repositories that host the software 
updates, as described by Kuppusamy et al. in [48]. Various testing 
methods (for example, [31,14,74,12,29,6,5,38,63,13]) and testing 
environments (e.g., [26,84,97,96,30]) have been proposed for the 
security testing of automotive systems. These testbeds and tech-
niques have been designed primarily for discovering security flaws 
in vehicular networks (e.g., CAN, MOST, LIN, etc.), ECUs, and in-
fotainment systems. Cybersecurity testing of the automotive OTA 
software update systems has not been considered by these works.

2.2. Automotive over the air (OTA) updates: an overview

The phrase over the air (OTA) or software over the air (SOTA) refers 
to the method of delivering software updates using a WiFi, Blue-
tooth, or cellular network link remotely. While the acronym SOTA
is generally used for referring to all types of software updates, 
the phrase firmware over the air (FOTA) is used specifically to re-
fer to the deployment of a firmware to the target device [37]. In 
most cases, the FOTA is used to deliver an update that involves 
replacing the existing firmware on the device. (more precisely, an 
ECU). The three main components of the OTA update system gen-
erally include: backend cloud servers, ECU or other similar devices 
in the vehicle and a suitable communication link. OTA updates 
have been around for several years in the software industry for 
the deployment of critical bug fixes and functional enhancements 
to both the operating systems and application programs in laptops 
and other handheld computing and communication devices [17]. 
3

In the automotive industry, OEMs are increasingly embracing the 
OTA technology for delivering updates to embedded devices in the 
connected vehicle [20]. Car manufacturers are predicted to save 
$35 billion in year 2022 by relying on OTA technology for sending 
updates remotely [46].

2.2.1. Use cases
Some of the major use cases for automotive updates are out-

lined below [72]:

• Bug fixing: In order to comply with legal and regulatory re-
quirements, automakers can leverage SOTA technology for de-
livering updates addressing safety and/or security issues in an 
economical and speedy way, eliminating the need for vehicle 
recalls. This type of SOTA update often involves fixing safety-
critical faults.

• Quality improvements: SOTA updates can be used by automo-
bile manufacturers for quality enhancements, such as improv-
ing fuel efficiency.

• Research and development: SOTA technology can also be 
utilised for collecting useful information about various aspects 
of the vehicle which could be highly useful for future develop-
ments. This may include gathering data about performance or 
other technical issues.

2.2.2. Vulnerabilities and threats
Software update systems have been attacked and compromised 

by cybercriminals (for example, [92,95,73,32,21]), for delivering 
and installing malware on computer and mobile systems. The 
World Forum for Harmonization of Vehicle Regulations (WP.29) -
an international regulatory forum within the institutional Frame-
work of the United Nations Economic Commission for Europe (UN-
ECE) - has introduced new regulations to be implemented by the 
member states from January 2021. These regulations are concerned 
with regulating the automotive cybersecurity, automotive cyber-
security management systems, automotive OTA updates and au-
tomotive OTA updates management systems [7]. A revised draft 
proposal for these regulations has recently been published by UN-
ECE [2], which identifies major threats to automotive update pro-
cedures along with relevant vulnerabilities and attack methods.

Safety standards, such as ISO 26262 and IEC 61508 for road ve-
hicles provide recommendations for the interaction between the 
safety and security. Automotive security engineering standards, in-
cluding SAE J3061 and ISO-SAE 21434, include recommendations 
for threat and risk assessments (i.e., threat analysis and risk as-
sessment or TARA) in order to establish if there are cybersecurity 
threats that can affect the safety. In particular, ISO-SAE 21434 de-
fines a structured approach for ensuring cybersecurity engineering 
of in-vehicle systems, reducing the likelihood of security attacks. 
While not directly concerned with the automotive systems, ISO 
27000 series and IEC 62443 standards may be relevant for the au-
tomotive production and back-end systems [77].

A more comprehensive threat model has been presented in [48]
that identifies various security threats to the OTA system that can 
potentially be used by malicious entities for compromising the se-
curity of connected vehicles. Each threat has one or more types of 
related attacks, ranging from reading the contents of an update to 
gaining the vehicle control. Attackers can have one or more attack 
goals, as described in [48] and [87]. A summary of these goals is 
presented below:

• Read the contents of updates to discover confidential infor-
mation, reverse-engineer firmware, or compare two firmware 
images to identify security fixes and hence determine the fixed 
security vulnerability

• Deny installation of updates to prevent vehicles from fixing 
software problems
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• Cause one or more ECUs in the vehicle to fail, denying use of 
the vehicle or of certain functions

• Control ECUs within the vehicle, and possibly the vehicle itself

2.3. Secure OTA update methods and techniques

There is no doubt that in the future all or most updates to the 
connected cars will be delivered using OTA technology [48]; thus, 
the security of these updates is paramount. A number of studies 
have been published proposing different solutions for securing OTA 
updates. We provide an overview of some of these solutions in the 
following subsections.

2.3.1. AiroDiag: an OTA diagnostics and updates system
Mansour et al. [54] propose AiroDiag - an over-the-air system 

- for performing automotive diagnostics and software updates. The 
AiroDiag client monitors and sends the diagnostics (e.g., faults and 
performance) information to the OEM, which can be used to ad-
vise the customer of any detected issues or new updates to be 
installed. The database on the OEM backend holds both the vehi-
cle information (such as, vehicle manifests detailing what updates 
are already installed on the vehicle) as well as the authentication 
communication keys for each car (tagged with a unique manufac-
turer ID) which has AiroDiag installed on it. This authentication 
key is supplied to the server when the client requests to establish 
a connection for verifying the client is a trusted entity. ECUs may 
either use CAN or serial communication for communicating with 
the AiroDiag component on the vehicle. Once connected with the 
server, the client sends a list of all the currently installed software 
on each ECU. The server compares the received list with the one 
it contains in the database and informs the client of the new up-
dates if applicable. The driver is shown an alert to ask whether to 
proceed with the downloading and installation of the updates. The 
AiroDiag client on the vehicle side will proceed with downloading 
the software updates if the driver allows it to do so and stores all 
the updates on a non-volatile memory (such as an SD card), and 
flashes them on corresponding ECUs once download is complete. 
In order to ensure the customer’s privacy is not compromised, an 
encrypted channel is used between the vehicle and OEM system 
as well as all the features offered by AiroDiag must obtain driver’s 
approval before proceeding with any action.

The authors of the AiroDiag implement it to simulate the up-
date process and share the results showing the time taken by the 
OTA update procedure. AES is used for all the communication be-
tween the server and client sides. Some of the key considerations 
highlighted about some limitations include the long boot time (due 
to the Ubuntu OS installed) taken by the AiroDiag client, and po-
tential of cyberattacks.

2.3.2. An integrated approach for securing the OTA software updates
A method using a combination of enhanced cryptography and 

image stenography techniques for securing automotive OTA soft-
ware updates has been proposed by Mayilsamy et al. [56]. The 
authors use the customised RSA cryptographic algorithm for en-
crypting the update data, which in turn is embedded along the 
edge of the image using the Least Significant Bit technique. They 
use fuzzy logic for the detection of the edges. For the verification 
of the authenticity of the source of the software update, they lever-
age Hash algorithm. The proposed method provides two levels of 
security for secure OTA updates for automobiles: while the mod-
ified RSA algorithm is used to provide the first level of security; 
second level of security is achieved by using image stenography 
technique (using fuzzy logic for the edge detection). Based on 
the evaluation results of their proposed method, the authors con-
clude that their proposed method showed better results in terms 
4

of the security as compared to conventional cryptographic tech-
niques. However, a major limitation of their proposed method is 
the performance when it comes to encryption/decryption time.

2.3.3. OTA update security using blockchain techniques
For effective security protection of OTA updates for connected 

vehicles, Steger et al. [81] propose a secure architecture employ-
ing Blockchain (BC) technology. The proposed architecture ensures 
the confidentiality and integrity of the software updates as well as 
privacy of all the entities involved in the system by providing a se-
cure and trustworthy interconnection between them, which relies 
on a Lightweight Scalable Blockchain for addressing the inherent 
limitations (i.e., high resource consumption and high latency) of 
traditional underpinning consensus algorithm in order to meet the 
special requirements of the intrinsically resource-constrained em-
bedded systems. Instead of relying on a network model involving 
central management, this BC-based architecture uses a distributed 
environment where each participating stakeholder forms a cluster, 
which constitutes a cluster head and a number of cluster mem-
bers. A network overlay is used to interconnect all the cluster 
heads. The software provider distributes the new software and/or 
updates to the OEM which forwards them to the local software 
update providers, and ultimately to the target vehicles for installa-
tion on the target ECUs. Cloud storage acts as a secure repository 
to hold the updates received from the software providers or OEMs. 
These cloud repositories are secured by advanced authentication 
mechanisms to ensure only authorized entities are able to access, 
modify, and download software images. The authors evaluate their 
proposed architecture by means of a proof-of-concept implementa-
tion of the OTA update system, comparing it with certificate-based 
system. The results demonstrate the proposed BC-based architec-
ture for OTA updates is better than the traditional certificate-based 
systems in terms of performance.

Although Blockchain technology can effectively be used to guar-
antee the integrity, authenticity, and confidentiality aspects of the 
OTA updates, increased complexity stemming from its inherent 
distributed architecture and redundancy/replication requirements 
raise cost, time, and effort concerns. Moreover, more advanced, up-
date repository-related attacks, such as slow retrieval attack, freeze 
update attack, endless data attack, etc. need further attention, in-
troducing more complexities. Finally, this particular solution does 
not consider customization requirements for delivering required 
updates to the vehicle based on previously installed updates.

The solutions described above focus on the confidentiality and 
integrity of the update contents by using cryptography and Hash 
functions. While such techniques have their own merits, they do 
not provide a comprehensive coverage of all the threat types that 
can compromise the security of such systems.

2.4. The uptane framework

Uptane [87], developed by US researchers in collaboration with 
automotive industry stakeholders, is an automotive software up-
date framework, which is claimed to address automotive-specific 
security flaws, and provide protection against a wide range of se-
curity attacks, offering both the security and customisability of 
updates for different vehicles depending on their particular needs. 
As shown in Fig. 2, Uptane Framework has three core components: 
the Image repository, the Director repository, and the Time Server. 
A brief description of each is presented below:

2.4.1. Image repository
The Image repository holds all the images deployed by the OEM 

along with metadata files for proving the authenticity of the hosted 
images. OEMs use offline keys for signing metadata stored on the 
repository as a protective measure against any attempt from at-
tackers to tamper with this metadata.
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Fig. 2. An overview of the Uptane Framework, illustrating the interconnections and flow of information among the Time Server, Image repository, Director repository, Primary 
ECU and Secondary ECU.
2.4.2. Director Repository
The Director repository is responsible for tracking and deter-

mining what updates to deliver to each ECU based on the current 
status of the repository and currently installed updates. Based on 
the information contained in the signed manifest provided by the 
vehicle, Director repository determines and prepares appropriate 
update packages for the vehicle. A vehicle manifest informs the 
Director of its previously installed versions of the updates. Unlike 
Image repository, Director repository uses online keys for signing 
metadata.

2.4.3. Time server
As time is a critical aspect in automotive software updates, 

knowledge of current, accurate time is crucial for ECUs to provide 
protection against freeze attacks, which involves sending the same 
update indefinitely even when new updates are available. Many 
ECUs are unaware of current time because they do not have built-
in clocks, this is where the Time Server plays an important role in 
providing accurate time to the vehicle in a cryptographically secure 
manner, which helps ECUs defend time-related attacks.

2.4.4. Primary and secondary ECUs
A Primary ECU is typically the one that is more capable in 

terms of storage capacity and connectivity as compared to a Sec-
ondary ECU which needs help from the Primary ECU for receiving 
and installing software updates. A Primary ECU directly communi-
cates with the Director repository in order to download metadata 
and firmware images, carry out verification to verify the authentic-
ity and integrity of updates, and finally distribute the downloaded 
updates to the Secondary ECU. A Secondary ECU, depending on 
its capabilities, performs full or partial verification of the image 
against the metadata, and installs it if the verification succeeds.

2.4.5. Roles
Uptane Framework relies on different roles, each responsible for 

signing different type of metadata as explained below: Root Role is 
responsible for signing metadata, used for distributing and revok-
ing public keys for the verification of the Root, Targets, Timestamp 
and Snapshot metadata. Snapshot Role is concerned with signing 
metadata indicating the images released by the repository at the 
same time. Targets Roles has the responsibility of signing meta-
data (e.g., cryptographic hashes and file size etc.) that verifies the 
image. Timestamp Role is used to sign metadata to indicate the 
availability of new metadata or images on the repository. More 
comprehensive introduction of the Framework can be found in 
[87]. In what follows we present an overview of the threat model-
ing approaches.

2.5. Threat modeling

Threat modeling is a security analysis technique that helps 
identify risks by using abstractions [80]. It plays a vital role in au-
tomotive security engineering by facilitating in the identification of 
5

potential threats and relevant defensive mechanisms. In particular, 
threat modeling helps model the system and its trust assumptions 
as well as aids in modeling adversaries in order to understand 
their motivations, capabilities, tactics, techniques, and procedures 
[52]. Several threat modeling methods and techniques have been 
proposed, some of which are briefly described below:

2.5.1. CORAS
CORAS [22] - based on Australian Risk Management Standard 

AS/NZS 4360:2004 - is a threat modeling and specification lan-
guage, comprising of five main activities: 1) establishing the con-
text, 2) identifying risks, 3) analysing risks, 4) evaluating risks, and 
5) treating those risks. It uses specialized UML use case diagrams 
for modeling threats and undesirable behaviours.

2.5.2. PASTA
PASTA or Process for Attack Simulation and Threat Analysis [86]

is a seven-stage threat modeling framework aiming at providing an 
attacker-centric view of the system, which can aid in developing 
relevant, effective mitigation strategies against cyber threats and 
attacks. The seven stages of the PASTA include: 1) define the objec-
tives, 2) define the technical scope, 3) decompose the application, 
4) analyse the threats, 5) analyse vulnerabilities and weaknesses, 
6) model the attacks, and 7) analyse risk and its impact.

2.5.3. T-MAP
T-MAP [16] is an attack-path-analysis based threat model-

ing method for the quantification of the security threats based 
on the total severity weights of the relevant security paths for 
commercial-off-the-shelf (COTS) systems. UML class diagrams are 
used for developing the attack path models. Four different class 
diagrams are generated for each step: access class diagram, vul-
nerability class diagram, target asset class diagram, and affected 
value class diagram.

2.5.4. STRIDE
STRIDE is a cybersecurity threat identification and classifica-

tion model providing a structured approach for grouping threats 
into six threat categories: Spoofing identity, Tampering with data, 
Repudiation, Information disclosure, Denial of service, and Eleva-
tion of privilege [79], as summarised in Table 1. While the threat 
modeling methodologies/systems introduced above have their own 
merits, in this study we use STRIDE for the following key reasons: 
Firstly, STRIDE is a mature, well-known threat modeling tool that 
is extensively used in both automotive industry and research set-
tings. Secondly, it is an extension of the familiar and widely used 
CIA triad (Confidentiality, Integrity, Availability). Finally, STRIDE has 
an associated threat-modeling tool that we leverage in this study 
for threat enumeration, which contributes to our attack-tree con-
struction process.



S. Mahmood, H.N. Nguyen and S.A. Shaikh Vehicular Communications 35 (2022) 100468

Table 1
An overview of the STRIDE model summarising threat categories and relevant affected security proprieties.

Threat Definition Property

Spoofing identity S Assuming the identity of a human or non-human system entity for achieving a malicious goal Authentication
Tampering of data T Making unauthorized changes to data or code Integrity
Repudiation R Refusing to accept the responsibility of a performed action Nonrepudiation
Information disclosure I Disclosing confidential information to unauthorized parties Confidentiality
Denial of service D Causing disruption to a system service so users cannot access or use it Availability
Elevation of privileges E Obtaining higher level of privileges than originally granted Authorization
Fig. 3. Example Attack Tree: This example attack tree depicts a root, two child, and 
four different leaf nodes. Annotations indicate the type of role that is assumed by 
each of the node types.

2.5.5. Threat modeling tool
Microsoft’s Threat Modeling Tool (TMT), which was originally 

developed for supporting its well-known Security Development 
Lifecycle (SDL) process for a systematic identification of various 
security threats during the initial phases of the software devel-
opment lifecycle [91]. TMT, as its name implies, allows security 
analysts to model the target system by employing one of the stan-
dard notations, known as data flow diagrams (DFD), for visualising 
system components, information flows and trust boundaries for 
the identification and classification of various threats using the 
STRIDE threat classification model. The threat modeling tool has 
been around for several years, and its adoption and application has 
not been confined to secure software engineering only, it is also 
widely used to support security assessments in other domains, in-
cluding automotive cybersecurity testing, such as [52,44,66,17].

2.5.6. Attack trees
Attack trees are used to represent attacks against a system in 

a tree structure, with root node as the attack goal and leaf nodes 
as different ways to achieve that goal [78]. They can help in the 
identification of various potential threats to a system from the per-
spective of an attacker. Being a structured approach, attack trees 
enable systematic security evaluation by focusing on threats and 
associated actions that can be performed by malicious actors for 
mounting attacks on the target system. An attack tree (as shown 
in Fig. 3) contains a goal (the root of the tree), a set of sub-goals, 
structured using the operators conjunction (AND) and disjunction 
(OR), and leaf nodes, which represent atomic attacker actions. The
AND nodes are complete when all child nodes are carried out and 
the OR nodes are complete when at least one child node is com-
plete.

Extensions have been proposed using Sequential AND (or
SAND) [43]. We follow the formalisation of attack trees given in 
[43,55]. If A is the set of possible atomic attacker actions, the ele-
ments of the attack tree T are A ∪{OR, AND, SAND}, and an attack 
tree is generated by the following grammar, where a ∈A:

t:: = a | OR(t, . . . , t) | AND(t, . . . , t) | SAND(t, . . . , t)
6

Attack tree semantics have been defined by interpreting the at-
tack tree as a set of series-parallel (SP) graphs [43].

3. Related work

In this section we provide an overview of the related studies 
focusing on penetration and model-based security testing of auto-
mobiles.

3.1. Model-based-security testing

Model-based security testing is concerned with specifying, doc-
umenting and generating security test objectives, test cases, and 
test suites (where a test case involves validating whether the sys-
tem is working as expected, and a test suite is simply a set of 
such test cases grouped together for execution purposes [1]) in a 
systematic and efficient manner [76]. MBST primarily uses models 
to verify if the target system meets its security requirements (as 
specified in Section 2.1 above) [28]. Although, MBST is relatively a 
new area of research, there are few studies employing it for the 
security testing of embedded and concurrent systems (involving 
cyber-physical components), a couple of which are presented be-
low:

Santos et al. [74] propose their automotive cybersecurity testing 
framework, which uses Communicating Sequential Processes (CSP) 
for representing the models of the vehicle’s bus systems as well as 
a set of attacks against these systems. CSP - a language with its 
own syntax and semantics - is a process-algebraic formalism used 
to model and analyse concurrent systems. Using CSP, they create 
architectures of the vehicle’s network and bus systems along with 
the attack models. One of the key challenges that authors claim to 
address in their work is the scalability of the testing in distributed 
environments. Their system model is comprised of networks, bus 
systems connected to each network, and the gateways. Addition-
ally, network parameters, such as latency can also be modeled. 
An attack model is also created, defining the attackers’ capabili-
ties as channels. An attacker’s capabilities may include command 
spoofing, communication disruption, eavesdropping and influenc-
ing behaviours of the system. According to the authors, the ability 
for a detailed definition of the scope of the attack and test cases is 
a key advantage of using these models for security testing.

Wasicek et al. [90] present aspect-oriented programming as a 
powerful technique for security evaluation of cyberphysical sys-
tems, especially focusing on safety-critical elements in automo-
tive control systems. Aspect-oriented modeling (AOM) is based on 
the ideas inspired by aspect-oriented programming, which is con-
cerned with crosscutting aspects being expressed as concerns (e.g., 
security, quality of service, caching etc.) [25]. Aspect-oriented mod-
eling is used to express crosscutting concerns at a higher level of 
abstraction by means of modeling elements [11]. The technique 
presented by [64] models attacks as aspects, and aims at discover-
ing and fixing potential security flaws and vulnerabilities at design 
time, because it becomes highly costly to find and fix the bugs 
if they are discovered later in the development life-cycle stages 
for automotive systems. Some of the main benefits that can be 



S. Mahmood, H.N. Nguyen and S.A. Shaikh Vehicular Communications 35 (2022) 100468

Fig. 4. An overview of the threat assessment and security testing approach used for automotive OTA update system, showing key stages, inputs and outputs of each phase.
achieved by using AOM for security assessment of automotive sys-
tems include: separation of functional and attack models into as-
pects allows domain experts to work on different aspects without 
any interference; real-world attack scenarios involving high de-
gree of risks can be modeled easily; general models can be reused 
in other systems. An automotive case study is presented by the 
authors, involving the adaptive cruise control system as an exam-
ple. They use a special modeling and simulation framework, called 
Ptolemy II, for developing their models. The authors intended to 
explore the effects of attacks on the communication between two 
vehicles. A discussion of four different attacks (i.e., man-in-the-
middle, fuzzing, interruption, and replay) is presented.

Both of the works presented above rely on the models of the 
systems rather than performing any practical testing involving test 
scripts to be executed against the target systems, providing no 
observable insights on any behavioural/functional changes in the 
system under test. The approach applied in this study, on the other 
hand, uses threat models for automated derivation and execution 
of security test cases by combining the MBST with penetration 
testing.

3.2. Automotive penetration testing

Penetration testing, in general, is a security assessment ap-
proach which is usually adopted by security testing professionals 
to carry out security testing from the perspective of an attacker to 
discover security weaknesses in a system.

Durrwang et al. [23] introduce their approach that combines 
safety (Hazard Analysis and Risk Assessment) and threat (Threat 
Analysis and Risk Assessment) analyses for supporting penetra-
tion tests for the enhancement of automotive security evaluation. 
They introduce a method that uses attack trees for deriving secu-
rity test cases. Their test-case derivation approach relies mainly on 
safety and threat analyses. Experiments involving penetration test-
ing against an automotive safety-critical, airbag ECU are conducted 
by the authors for demonstrating and evaluating their testing ap-
proach. As the test cases are derived from threat and safety anal-
yses, adequacy and effectiveness of the derived test cases rely on 
the quality of these analyses. Furthermore, the main focus of the 
approach is on the identification and testing of the security threats 
affecting the safety of automobiles. Lastly, the experimentation has 
been limited to threats targeting a single ECU in the vehicle.

A Framework for systematic security testing of automotive Blue-
tooth interfaces is proposed by Cheah et al. [14], which relies 
on a proof-of-concept tool, threat modeling (using attack trees), 
and a penetration testing approach. While the testing approach 
helped the authors discover various vulnerabilities in the auto-
motive Bluetooth interface, security evaluation was confined to a 
single scenario with the goal of data extraction from the vehicle. 
Additionally, authors did not use or explain a systematic approach 
for constructing the attack tree they used, they relied on a prede-

fined attack tree.
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4. Threat assessment and security testing approach

Our work diverges from the approaches discussed above in 
many ways: the approach we use carries out systematic secu-
rity testing of automotive OTA updates. We use a structured 
threat enumeration approach along with threat trees for systematic 
derivation of executable security test cases by using the custom 
software tool capable of automatic test-case derivation and execu-
tion.

In this section, we present details of our testing approach (ini-
tially introduced in [53]1 that incorporates a software tool for gen-
erating and executing test cases automatically.

The testing approach we employ in this study is inspired by the 
Penetration Testing and Execution Standard (PTES) [69] and some 
of the ideas presented in [14,89,44,93]. A key feature of the PTES 
testing methodology is the use of threat modeling techniques. We 
combine model-based security testing techniques with penetration 
testing for better threat identification, systematic derivation of se-
curity test cases, and automated test-case generation and execution 
against automotive OTA update system. A graphical overview of 
our approach is presented in Fig. 4. The first phase Information 
Gathering is concerned with gathering information about the tar-
get system insofar as possible. System decomposition in this phase 
refers to the process of identifying major components and their in-
ternal and external interfaces and interactions. Description of the 
system is the output from this phase, which is then used by the 
next phase Threat Assessment for examining the system in order to 
determine what potential threats/vulnerabilities can be leveraged 
by cybercriminals for compromising system security. Based on the 
information received from the preceding phase, the step Threat 
Enumeration generates a Threat List, which in turn helps Threat 
Modeling step in the same phase. Since the threat list only pro-
vides high-level descriptions of the potential threats, specific attack 
actions/steps can be identified by creating Attack Trees. Next steps 
in the following phase (i.e., Security Testing) use these attack trees 
for deriving test cases, preparing test scripts, and finally executing 
them against target system. Our prototype software tool analyses 
the structure of each attack tree to identify and extract executable 
test cases/scripts. The final output of this systematic process is a 
Test Report providing a brief summary of the executed test cases. 
We describe all the phases/steps with more details in following 
subsections.

4.1. Information gathering

Effective testing necessitates a very good understanding and 
technical details of the system under test. However, in most cases, 

1 The source code for the test-case generation/execution tool and Uptane refer-
ence implementation along with a guide for setting up hardware/software environ-
ment can be downloaded from https://tinyurl .com /rydjmqa.

https://tinyurl.com/rydjmqa


S. Mahmood, H.N. Nguyen and S.A. Shaikh Vehicular Communications 35 (2022) 100468
design specifications and implementation details of the in-vehicle 
digital systems are not readily available due to commercial reasons 
and the obscurity of subsystems; therefore, such information needs 
to be gathered from other sources, including publicly available 
documentation, technical manuals, and often by directly observing 
(and, if practicable, sometimes reverse engineering) the system.

System Decomposition - As stated above, one of the key elements 
and prerequisites to effective security testing is the knowledge and 
understanding of the target system, this step is, therefore, con-
cerned with finding and collecting as much information about the 
system as possible. In particular, identification of core hardware 
and software system components, any interfaces, interrelationships 
among these components, communication technologies, protocols, 
and key processes can be highly useful. All the information gath-
ered in this step should help build a model of the system. The 
system model should depict both architectural and behavioural as-
pects of the system. To achieve this, we decide to rely on the 
standard and widely used modeling technique: Unified Modeling 
Language (UML). An alternative to this is SysML. With the system 
model created in this phase, we are now able to proceed with the 
next most important step: identification of the threats.

4.2. Threat assessment

This phase is comprised of two major steps: threat enumeration 
and threat modeling. Threat enumeration involves identifying any 
potential threats to the system by using the widely utilised, stan-
dard approach STRIDE supported by an associated threat modeling 
tool, which is capable of enumerating various types of threats in a 
structured way.

4.2.1. Threat enumeration
As we indicated earlier, for structured threat identification, we 

employ Microsoft’s Threat Modeling Tool. The dynamic system 
model produced in the Systems Decomposition step of Information 
Gathering phase (as shown in Fig. 4), serves as an input for draw-
ing the DFD of the system. Once the DFD drawing is complete, a 
report of the potential threats associated with each element of the 
system can be generated. Potential threats identified in the gener-
ated report are categorized into different threat groups by the tool 
using Microsoft’s threat classification system STRIDE.

4.2.2. Threat modeling
While the threat report generated using the TMT enumerates 

all identified threats that can potentially be leveraged by the ad-
versary to compromise the system security, it is often limited to 
a high-level description of the threat, providing no information 
about the specific steps/actions performed for compromising the 
system security [75]. Effective security testing requires a good un-
derstanding of the different ways employed by the adversary to 
carry out these attacks. Attack trees can effectively assist with 
identifying specific methods used and actions performed by an 
attacker. Attack tree construction process requires a clear identi-
fication of the attacker’s goal, which serves as the root node of the 
attack tree. This is then followed by identifying subgoals and spe-
cific attack techniques that can help achieve the overall goal.

4.3. Security testing

This phase is concerned with deriving the test cases and as-
sociated test scripts for executing them in order to evaluate the 
security protection effectiveness. We automate the test-case gener-
ation and execution process by developing a software tool. Details 
of this tool are presented in the following subsections.
8

Algorithm 1: A test-case generation algorithm that derives 
test cases by analysing the structure and based on the for-
mal semantics of the attack tree. It accepts an attack tree 
as input, generates all possible test cases, and provides a 
set of concrete test.

4.3.1. Test case generation and execution
Traditional security test-case derivation process tends to be un-

structured, irreproducible, reliant on the expertise and experience 
of the tester, undocumented, and having no or inadequate ratio-
nales for the test design. In order to address these shortcomings 
or minimize their impact, model-based security testing approaches 
rely on the explicit model of the system-under-test for systematic 
(and often automated) specification, derivation, and execution of 
the security test cases [88,28].

Since this study adopts a model-based security testing ap-
proach, a software tool has been designed and implemented (pre-
viously introduced in [53]) for automating the test case derivation 
and execution process. This tool has been completely redesigned 
and rewritten by eliminating its dependencies on third-party tools 
and libraries for the performance and efficiency improvements. The 
tool, written in Python programming language, has a command-
line based user interface and consists of two main modules, one of 
which is responsible for the test case generation and the other one 
for executing those test cases against the system under test. The 
test case generator module accepts an XML-based attack tree, anal-
yses its structure, derives test cases based on the semantics of the 
input attack tree, and writes the derived test cases to a plain text 
file. The executor module uses that file for executing the test cases 
against the target system. All test cases have their corresponding 
test scripts stored in a separate file. The test executor uses that 
file for loading the test scripts to be executed against the target 
corresponding to the security test case being executed.

4.3.2. The algorithm
Algorithm 1 outlines the main logic and major steps for deriv-

ing security test cases by analysing the structure of the attack tree. 
The function GenerateTestCases (for convenience, we will hence-
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Table 2
An attack tree represented in XML format.

XML representation of the Attack Tree as displayed in Fig. 3.
forth refer to GenerateTestCases as GTC) accepts an attack tree as 
input. For this purpose, the tool requires the attack tree to be in 
the XML representation as an example shown in the Table 2. The 
conversion can be accomplished by using the built-in feature of 
the ADTool, allowing the attack tree to be exported in XML format. 
As can be observed, GTC has a number of if-else blocks for deter-
mining the refinement type of the input attack tree and processes 
the attack tree/node accordingly.

The first case (beginning on line three of the algorithm) de-
termines whether the input attack tree/node is a leaf node. This is 
determined by establishing whether the current node has a subtree 
or a child node, if none of these is true, this node will be consid-
ered a leaf node and appended to the set TC. Rationale for using 
the set data structure here is motivated by the unique characteris-
tics of this data structure (i.e., sets are unordered, their elements 
are unique with no duplicates allowed, and the elements are im-
mutable) that make them an appropriate choice for holding test 
cases derived from OR and AND trees, as the preservation of order-
ing is only applicable and required in the sequential AND (SAND) 
trees.

The second case (from line six to line 11) is applicable where 
the attack tree/node is an OR tree. Since this type of attack tree 
is assumed to have one or more children nodes, a recursive call is 
made to the function GTC by supplying the current (i.e., ith) child 
node as input, which goes through the same process and the resul-
tant return value (that is, a test case) of this function call is added 
to the set TC as a subset. This process is repeated for n number 
of times where n is the number of children nodes for a given at-
tack tree/subtree. Once all the children nodes have been processed, 
union of all the test cases (i.e., T C0 to T Ci ) is appended to the set 
TC. It is important to note that each leaf node of an OR represents 
one complete test case. That is, if a given OR has n leaf nodes, the 
number of derived test cases will be equal to n. However, remem-
ber that in the case of a complex attack tree with the root node 
9

being OR, which contains other types of (i.e., AND or SAND) at-
tack trees as subtrees, the number of test cases will unlikely to 
equate the number of leaf nodes of that OR tree. Starting on line 
12 of the algorithm, the third case is applicable to the AND attack 
trees/nodes. Similar to the OR tree case explained above, children 
nodes are recursively processed and returned values are appended 
to an intermediate variable T Ci one by one. Once all the children 
nodes have been processed, Cartesian product of all the elements 
is computed followed by performing a union of all these products, 
which is finally appended to the TC. An additional step here is the 
function permutations, which computes all the valid permutations 
of the test cases contained in the TC and reassigns the resultant 
output to the TC. The last two steps help achieve the interleaving
of leaf nodes. A single test case derived from an AND attack tree 
can constitute more than one action steps. That is, multiple leaf 
nodes can be part of one test case. In general, the number of test 
cases derived from an AND attack tree will be n! where n repre-
sents the total number of leaf nodes of a given AND attack tree.

The last case deals with the SAND attack tree/node. This case is 
very similar to the AND trees with a couple of differences. Firstly, 
since maintaining the sequential order of the test steps is crucial, a 
compatible data structure (e.g., lists) should be used that can pre-
serve the order of the test steps. Secondly, unlike the AND attack 
trees/nodes, permutations are not generated. All children nodes are 
processed one-by-one by leveraging the recursion. An ordered list 
of elements returned is contained in the TC. A test case derived 
from a SAND attack tree is composed of all the action steps con-
catenated together. However, please keep in mind that a SAND
attack tree consisting of other types of attack trees as its subtrees 
will yield a number of test cases based on the combined semantics 
of the parent and subtrees involved.
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Table 3
A list of various assumptions that have been made for various security test cases.

Assumption Justification

A1: Attackers either had privileged access to the Uptane 
repositories or the repositories were being spoofed.

There are numerous techniques used by adversaries for gaining privileged access. For example, it could be 
a disgruntled employee (i.e., insider threat), facilitating the attacker to gain access (by providing admin 
credentials); it can also be achieved by social engineering techniques (for instance, phishing attacks); 
exploitation of vulnerabilities arising from configuration flaws can also lead to privilege escalation (such 
as default/blank admin or root passwords). An extensive coverage of various privilege escalation attack 
vectors/techniques (including dictionary attacks, Pass-the-Hash, credential stuffing, password spraying, 
etc.) is presented in [33].

A2: The secret cryptographic keys for signing software or 
metadata were compromised.

This could be accomplished by social engineering techniques, such as pretexting (see [34,41,51,4] for more 
information) and/or bribing an employee, for example.

A3: Attackers were able to break into the system. Firstly, since the primary goal of this study has been to demonstrate what the adversaries would be able 
to accomplish if they could compromise the update servers, rather than showing how would they break 
into the system. Furthermore, since the production environment would have its own specific dynamics 
(such as type of the hardware equipment, operating systems etc.), which would be depending on the very 
nature of OEM’s (or service provider’s) IT infrastructure, it is therefore reasonably impracticable to 
demonstrate or simulate the attacks (without any knowledge of the hardware/software vulnerabilities) on 
such environments when the details of such actual target setups are unknown.
Fig. 5. OTA testbed schematic, providing a graphical overview of the major compo-
nents and communication links.

5. Experiments and results

In this section, experimentation and associated results of the 
automotive OTA security testing are presented. Additionally, as 
shown in Table 3, we have listed some important assumptions that 
have been made while performing the security testing. For each 
assumption, appropriate justifications have also been provided. We 
indicate in the relevant subsequent sections (see Tables 9 to 13) 
where one or more of these assumptions are applicable.

Each attack tree was analysed by the bespoke software tool to 
derive test cases and generate appropriate test scripts to be ex-
ecuted against the reference implementation. The tool derived a 
total of 15 different test cases and generated relevant test scripts. 
Seven of these security test cases failed after successful execu-
tion of the test scripts. While the reference implementation was 
able to defend different attacks, some attacks suggest that effec-
tive security controls need to be applied to the production system 
in order to protect both the information exchange between ECUs 
and Uptane repositories and backend-server infrastructure to en-
sure timely and uninterrupted delivery of updates.

Experimental Setup
This section details the testing environment (see Fig. 5) used 

for security evaluation of the automotive over-the-air updates sys-
tem. The testbed has been constructed using readily available, in-
expensive hardware components, providing a safe, adaptable, and 
portable testing setup for automotive security testing. Core com-
ponents of the testbed are shown in the Fig. 6, and a description 
of all its hardware/software components has been summarised in 
Table 4. We use Raspberry Pi microcontrollers for simulating the 
Primary and Secondary ECUs, representing Uptane clients. The lap-
top computer hosts the Uptane repositories of the reference imple-
10
mentation. A standard network switch has been used to facilitate 
connectivity between the server and client devices.

5.1. Information gathering

In this first phase (consisting of the System Decomposition 
step) of the process, information about the Uptane Framework is 
gathered, as detailed below.

5.1.1. System decomposition
Recall that to identify core system components/external inter-

faces that attackers can potentially target as intrusion points, infor-
mation about the target system needs to be gathered. Ideally, both 
architectural and functional models of the system should be pro-
duced in order to determine the potential attack surface. Uptane 
Framework’s reference implementation along with detailed design 
documentation is available on the internet, these resources pro-
vided useful starting point for our investigations. By reviewing this 
information about the framework on the internet, we reproduced 
the architecture diagram of Uptane as shown in Fig. 2.

Having identified the major entities of the OTA update sys-
tem, the next step is to identify and understand the interactions 
between these entities. Based on the analysis of the information 
gathered, a UML sequence diagram (as shown in Fig. 7) was pro-
duced, representing a variety of interactions between server-side 
and in-vehicle components. As can be clearly noticed, this diagram 
presents more meaningful insights about the key processes and the 
information exchange taking place between them. This leads to the 
next steps in the test process, that is, threat assessment.

5.2. Threat assessment

Threat assessment (as depicted in Fig. 4) has two steps, how 
each step is performed against Uptane Framework xplained in the 
following subsections separately.

5.2.1. Threat enumeration
While the sequence diagram in Fig. 7 captures key system pro-

cesses and interactions, it does not provide any information about 
the security threats. Therefore, with the help of the two diagrams 
(i.e., Fig. 2 and Fig. 7), the DFD shown in Fig. 8 was constructed. 
Note that the data flow diagram (Fig. 8) includes the major compo-
nents of the Uptane OTA update system from both the server and 
the vehicle side.

As can be observed from the DFD in Fig. 8, both the server-
side and the client-side components are surrounded by rectangles, 
signifying the trust boundaries. Three different types of data flows 



S. Mahmood, H.N. Nguyen and S.A. Shaikh Vehicular Communications 35 (2022) 100468

Fig. 6. The Testbed for OTA Updates Security Testing.
Table 4
A summary of the hardware and software components used for building the secu-
rity testing environment shown in the Fig. 6.

Component Machine Type Operating System

Uptane Servers Laptop Computer Ubuntu 18.04
Uptane Primary ECU Raspberry Pi Microcontroller Raspberry Pi Desktop
Uptane Secondary ECU Raspberry Pi Microcontroller Raspberry Pi Desktop
Attacker Machine Laptop Computer Kali Linux
Communication Device Switch –

have been used to indicate the communication types used between 
different components. Communication between update server and 
Telematics Control Unit (TCU) uses HTTP protocol, while CAN pro-
tocol has been used between in-vehicle components. The third 
type of data flow is command, depicting communication flows 
between server-side components (i.e., Image repository, Director 
repository, Inventory Database etc.), assuming they reside on the 
same physical system.

The report generated by the TMT tool identifies 53 different 
types of threats (a summary is presented in the Table 5) that could 
potentially be used to compromise the security of OTA update sys-
tem in a number of different ways. In addition to the title of the 
threat, Table 5 also shows relevant STRIDE category and a count 
of the occurrences of each threat. For example, the first threat 
Data Flow Sniffing has a count value of nine, which means there 
are nine different data flows that can potentially be sniffed by at-
tackers. Similarly, TMT identified at least seven different vulnerable 
points that can be used for unauthorised download of updates. The 
pie chart in Fig. 9 provides an overview of the threats identified, 
showing the total number of threats in each category of STRIDE.

5.2.2. Threat modeling
Potential threats identified by the TMT in preceding step, do 

not provide a complete picture of how the attacker would actually 
materialize those threats. Therefore, in order to identify different 
ways the attackers can employ, attack trees are constructed, as de-
tailed below.

5.2.3. Attack-tree construction
This subsection deals with the process of constructing attack 

trees based on the threats identified in prior steps. Only a subset 
of the threats is included in the experiments, as this strategy facil-
11
itates the effective demonstration of the application of systematic 
security testing approach with appropriate level of details.

The attack trees for various selected threats enumerated by 
TMT (see Table 5) are constructed, followed by some known 
threats as published in the literature. Recall that the step-by-step 
approach for constructing the attack trees that includes identify-
ing a goal that an attacker would like to achieve by compromising 
the system security, followed by identifying one or more ways that 
can assist in achieving the goal. That high-level goal becomes the 
root node of the attack tree. Also recall that each of the threats 
listed in Table 5 represents a potential high-level goal (root node). 
The threat report generated by TMT provides suggestions about 
what attack methods/techniques could be used by the attackers 
for each type of threat. Brainstorming along with expert discussion 
sessions were held for identifying subgoals (intermediate nodes) 
and action steps (leaf nodes). Where necessary and applicable, on-
line resources for the identification of relevant attack techniques 
used by malicious entities were also consulted. For constructing 
each attack tree, each selected threat scenario was assigned as the 
root node of the attack tree. Each attack tree was refined and pop-
ulated by taking into consideration the attack method suggested 
by TMT followed by brainstorming sessions to determine what 
could be the possible steps/actions that could potentially be car-
ried out by cybercriminals. The attack trees constructed following 
the steps outlined above are presented in the subsequent section 
(see Figs. 10 to 12). As can be noticed that only three of the total 
of 15 attack trees are presented in the article, whereas a summary 
of the other relevant threats have been provided. Once these at-
tack trees for the selected threats had been constructed, they were 
combined to construct an overall attack tree for the reference im-
plementation of the Uptane Framework as displayed in Fig. 13.

As explained earlier, test case generation and execution are au-
tomated processes, carried out by our bespoke software tool. At-
tack trees are an integral and crucial part of our automated test 
case generation and execution process. By analysing the structure 
of each of the attack trees, the tool successfully derived security 
test cases, generated and executed test scripts against the refer-
ence implementation, in a step-by-step manner. The execution of 
all the test scripts was carried out using the testbed as detailed 
earlier. Results of each experimental attack performed along with 
the test case details are given in a separate section later in the ar-
ticle. In addition to the test scripts, each test result outlines the 
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Fig. 7. Uptane Framework Sequence Diagram depicting Over-The-Air Update interactions between Uptane OTA Server- Side and In-Vehicle Primary and Secondary ECUs.
outcome of the test (i.e., the impact of the attack on the system) 
and resultant system behaviour. In what follows, the process for 
constructing the attack trees is outlined.

Threat 6 - Updates Could Be Downloaded
The main objective of this attack is to download firmware 

images from Uptane repositories directly in order to read sensi-
tive/confidential and proprietary information (this threat belongs 
to the category Read Updates), which can later be used to craft 
and launch destructive attacks against connected cars. As shown 
in the Fig. 10, in addition to the main goal, the attack tree shows 
two different ways (subgoals) for downloading the images from the 
Uptane servers: either downloading them from Image repository or 
from Director repository.

However, the two steps for downloading the firmware image 
from either of the repositories are identical. This OR attack tree has 
two SAND (recall that a sequential AND or a SAND tree is the one 
each action of which must be carried out in the order as depicted 
by the arrow) subtrees, each depicting a possible way used by the 
intruder for downloading the image from the servers.

Threat 7 - Data Flow Sniffing
After assigning the title of the threat 7 to the root node of 

the tree, it was straightforward to identify the specific actions 
12
for materializing the threat. The AND subtree for determining the 
network information of the Director Repo has two steps: one for 
determining the IP address and the other for port number. Since 
both actions can be executed in any order; hence, AND conjunc-
tion was chosen as the refinement operator.

In contrast, all other leaf nodes belonging to the root node 
must be carried out in the order shown, otherwise attack would 
not succeed or would not produce the desired result. This particu-
lar threat aims at intercepting network communication between 
Uptane repositories and the client ECUs. As can be seen in the 
Table 5, there are total nine occurrences of this threat, each cor-
responding to one of the data flows in the DFD in Fig. 8. This 
indicates that the TMT identifies all these data flows vulnerable 
to this threat. Only one instance of this threat has been included 
in the testing, since the process and the end results will be identi-
cal - providing no further insights. The SAND attack tree in Fig. 11
provides a graphical overview of the threat and associated actions. 
Notice that Data Flow Sniffing represents the main goal of the attack 
tree, with four different actions (leaf nodes) identified for accom-
plishing the main goal: The first and the last actions are performed 
manually while other two are carried out by the tool. Note that 
this threat corresponds to the Eavesdrop Attack under the Read 
Updates category. This and the preceding threats both have the 
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Fig. 8. Data Flow Diagram (created using Threat Modeling Tool and a template from NCC Group) of the Uptane Framework Backend Servers (reference implementation) and 
in-vehicle components.

Fig. 9. Graphical overview of the number of identified threats to OTA update system in each category of STRIDE threat classification model.
same ultimate goal of reading/downloading restricted/confidential 
content for malicious purposes. As mentioned earlier, such content 
can be used for creating more powerful and sophisticated attacks.

Threat 9 - Cause the Director Repository to Crash or Stop Remotely
There are numerous ways that adversaries can potentially em-

ploy to adversely influence the delivery and/or installation of cru-
cial software updates. For instance, attackers can cause disruptions 
to the delivery of important firmware/software updates by mount-
ing denial-of-service attacks on update servers. Denying or block-
ing updates is one of the strategies that hackers can adopt for 
13
stopping the removal or correction of software bugs or security 
loopholes in the software/firmware currently installed.

The attack tree depicted in the Fig. 12, represents Threat 9 that 
involves performing a DoS attack against the Director repository, 
by overwhelming it with a huge number of communication re-
quests, causing it to stop responding to legitimate requests from 
clients. The main goal of the attack is to block update delivery to 
the ECUs in the vehicle.

In order to begin performing the attack, essential informa-
tion regarding the target (that is, OTA update servers) is required. 
Hence, the first step (leaf node) involves determining the IP ad-
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Fig. 10. Attack Tree - Updates Could be Downloaded: This attack tree represents Threat 6 enlisted in Table 5 that involves downloading firmware images from Uptane 
repositories without any authentication.

Table 5
A summary of the threats identified by the tool. Threats marked with * have been included in the experimentation, 
whereas ** indicates that more than one variants of the threat have been considered.

Category # Threat Count

Tampering 1 Modify Data Being Sent to the TCU (Primary) While in Transit 3

Repudiation 2 Director Repo Denies Writing Data 1
3 Image Repo Denies Writing Data 1
4 TCU (Primary) Denies Writing Data 3
5 Time Server Denies Writing Data 1

Information Disclosure 6 *Updates Could be Downloaded 7
7 *Data Flow Sniffing 9
8 Car Could be Tracked 3

Denial of Service 9 *Cause the Director Repo to Crash or Stop Remotely 1
10 *Cause Image Repo to Crash or Stop Remotely 1
11 *Cause the TCU (Primary) to Crash or Stop Remotely 1
12 *Cause the Time Server to Crash or Stop Remotely 1
13 Take the Director Repo Offline 1
14 Take the Image Repo Offline 1
15 Take the TCU (Primary) Offline 3
16 Take the Time Server Offline 1
17 Flood Director Repo with Invalid Data 1
18 Flood Image Repo with Invalid Data 1
19 Flood TCU (Primary) with Invalid Data 3
20 Flood Time Server with Invalid Data 1

Elevation of Privilege 21 **Compromise Director Repo in order to Send Malicious Updates 1
22 **Compromise Image Repo in order to Send Malicious Updates 1
23 Compromise TCU (Primary) in order to Send Malicious Updates 3
24 Compromise Time Server in order to send Malicious Updates 1
25 Reflash TCU (Primary) in order to Send Arbitrary CAN Messages 3

Other Known Attacks 26 **Endless Data Attack N/A
27 *Rollback Attack N/A
28 *Mix and Match Attack N/A

Fig. 11. Attack Tree - Data Flow Sniffing: This attack tree represents Threat 7 as enlisted in Table 5 that involves monitoring and capturing information exchange between 
Uptane servers and clients.
14
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Fig. 12. Attack Tree - Cause Director Repo to Crash or Stop Remotely: This attack tree 
represents the Threat 9 as enlisted in Table 5 that involves blocking the delivery of 
updates to the ECUs.

dress and port number of the Director repository. As this exper-
imentation relies on the reference implementation of the Uptane 
Framework, this information was obtained by running the refer-
ence implementation in the local setup. In a real-world scenario, 
this information may need to be obtained by performing net-
work/port scanning on the server or extracting it from an ECU 
(e.g., TCU in the vehicle). The second step, as can be seen from 
the attack tree in Fig. 12, involves establishing a network connec-
tion with the Director repository. The main purpose of this step 
is to determine whether the target system is available on the net-
work and that there are no connectivity issues before executing 
the DoS attack. Finally the attack is launched, which sends a large 
number of HTTP requests to the Director repository at port 30401.

In a similar way, attack trees involving DoS attacks on Image 
Repo (Threat 10), Primary ECU (Threat 11), Time Server (Threat 
12) as well as others involving compromising Uptane reposito-
ries/components (i.e., Threats 21.1 - 3, 22.1 - 2, 26.1 - 2, 27, and 
28) were constructed (however, in order to conserve space, those 
attack trees have not been presented in the article) for the experi-
mental attacks.

The Overall Attack Tree
Once all the attack trees for the selected threats were con-

structed, they were combined into an overall attack tree for the 
reference implementation of the Uptane Framework. This overall 
tree is presented in the Fig. 13. Subtrees have been organised into 
the STRIDE threat categories.

It is worth mentioning here that only the main goals of the 
trees have been included, excluding the leaf nodes/child nodes to 
build the overall attack tree. The overall goal of this tree becomes 
Compromise Uptane Framework, and the subtrees are different ways 
to accomplish this. Since this overall attack tree is an OR tree, 
smaller subtrees can be individually used in the experiments. Addi-
tionally, as the Uptane Framework is a distributed system, running 
all the tests at once is challenging. This is because when one ex-
periment with one or more test cases is executed, it affects the 
system configurations that require a system reset for the other 
tests to run effectively. Furthermore, some tests need human in-
tervention/observation at the client side for the attack actions to 
take effect, which is not possible when all tests are executed in a 
single session.

5.3. Results

In this section, results of the automotive OTA security-testing 
experimentation are presented. Each attack tree was analysed by 
the bespoke software tool to derive test cases and generate ap-
propriate test scripts to be executed against the reference imple-
mentation. The tool derived a total of 15 different test cases and 
generated relevant test scripts. Seven of these security test cases 
15
Fi
g.

13
.

A
tt

ac
k 

Tr
ee

 -
Co

m
pr

om
is

e 
U

pt
an

e 
Fr

am
ew

or
k:

 T
hi

s fi
gu

re
 p

re
se

nt
s a

 co
m

pr
eh

en
si

ve
 o

ve
rv

ie
w
 o

f a
ll 

th
e 

th
re

at
s (

co
m

pr
om

is
in

g 
U

pt
an

e 
Fr

am
ew

or
k)

 in
cl

ud
ed

 in
 th

e 
ex

pe
ri

m
en

ta
ti

on
 b

y 
co

m
bi

ni
ng

 a
ll 

at
ta

ck
 tr

ee
s.
 N

ot
e 

th
at

 
th

e a
tt

ac
k 

tr
ee

s h
av

e b
ee

n 
or

ga
ni

se
d 

in
to

 d
if

fe
re

nt
 ST

RI
D

E 
th

re
at

 ca
te

go
ri

es
. L

ea
f n

od
es

 ar
e n

od
 in

cl
ud

ed
 in

 th
is
 d

ia
gr

am
.



S. Mahmood, H.N. Nguyen and S.A. Shaikh Vehicular Communications 35 (2022) 100468

Table 6
The results of the analysis of Threats 6 and 7.

Threat 6 - Updates Could Be Downloaded Threat 7 - Data Flow Sniffing

Applicable Assumptions: None. Applicable Assumptions: None.

Actions:
(Subgoal: Download Firmware from Image Repo)

1. Determine Firmware Image URL on Image Repo
2. Establish Network Connection
3. Download Firmware

(Subgoal: Download Firmware from Director Repo)

1. Determine Firmware Image URL on Director Repo
2. Establish Network Connection
3. Download Firmware

Actions:

1. Determine Director Repo IP Address and Port
2. Establish Network Connection
3. Intercept Network Traffic Between Uptane Servers and Clients
4. Analyse Captured Network Traffic

Test Outcome:
The firmware images were successfully downloaded from both the Image 
repository and Director repository using simple HTTP calls without any 
authentication/authorization.

Test Outcome:
Data exchange between Uptane repositories and Primary ECU was successfully 
captured. This included RPC calls, corresponding responses, and the firmware 
image file contents in plain text.

Status: FAIL Status: FAIL

Table 7
The results of the analysis of Threats 9 and 10.

Threat 9 - Cause the Director Repository to Crash or Stop Remotely Threat 10 - Cause Image Repository to Crash or Stop Remotely

Applicable Assumptions: None. Applicable Assumptions: None.

Actions:

1. Determine the IP Address and Port Number of the Director Repo
2. Establish Network Connection
3. Flood Director Repo

Actions:

1. Determine the IP Address and Port Number of the Image Repo
2. Establish Network Connection
3. Flood Image Repo

Test Outcome: The Director Repository failed to respond to legitimate requests 
from the Primary ECU after successful DoS attack. The Primary ECU displayed 
URLError and timed out error messages (stating it was unable to download 
metadata when it attempted to request update from the Director Repository).

Test Outcome: The Image Repository failed to respond to legitimate requests from 
the Primary ECU after successful DoS attack. The Primary ECU displayed URLError 
and timed out error messages when it attempted to request update from the Image 
repository.

Status: FAIL Status: FAIL
failed after successful execution of the test scripts; detailed results 
of these tests are presented in the following subsections.

Threat 6: Updates Could Be Downloaded
As indicated in the Table 6 (left column), we were able to di-

rectly download the firmware image files from both the Director 
and Image repositories, showing lack of any authentication/access 
control mechanism at the server-side to restrict the download to 
only legitimate clients.

Threat 7: Data Flow Sniffing
Table 6 (right column) provides a summary of the sniffing at-

tack, listing the steps and outlining the outcome. As can be seen 
in the table, information exchange between Uptane servers and 
clients is not encrypted. All the Remote Procedure Calls (RPCs) 
from the Primary and responses from the Repositories are read-
able. This particular interception session was also able to capture 
the firmware image contents.

Threat 9: Cause Director Repo to Crash or Stop Remotely
Table 7 (left column) shows the result of failed attempts from 

Primary ECU to receive any response from Director repository af-
ter it was affected by the DoS attack. As Director repository is 
responsible for direct communication with the Primary ECU, its un-
availability will have an impact on the normal functioning of the 
entire update process, as no further actions will succeed. In order 
to restore the normal operation, the servers had to be rebooted.

Threat 10: Cause Image Repository to Crash or Stop Remotely
As shown in the Table 7 (right column), DoS attack on Image 

repository caused it to stop responding to requests from the client. 
However, Director repository was not affected by the attack and 
16
continued to respond to client requests. The result shows that the 
Primary ECU succeeded with downloading the metadata from Di-
rector repository.

Threat 11: Cause the Primary ECU to Crash or Stop Remotely
After successful DoS attacks on Uptane repositories, we mounted 

a DoS attack on the Primary ECU, which succeeded in causing 
the Primary to stop working properly. As can be seen in Table 8
(left column), the Secondary ECU was presented with the error 
messages indicating connection could not be established with the 
Primary ECU. Therefore, any new updates for the Secondary ECU 
could not be delivered. This DoS attack is less severe as opposed to 
the ones launched against Uptane servers, as its impact is limited 
to one vehicle only.

Threat 12: Cause the Time Server to Crash or Stop Remotely
The results displayed in Table 8 (right column) the DoS attack 

on the Time Server disrupted its functionality, resulting in undesir-
able behaviour from the Primary, as it seemed to wait forever for 
a response containing validated time from the Time Server. It was 
observed that there was no set timeout limit for preventing such 
situations where clients await a response indefinitely. In order to 
verify whether Director repository responds to other requests from 
clients, a request for registering the ECU with the Director reposi-
tory, which was successfully processed by the Director repository, 
demonstrating the correct operation of all other server compo-
nents/services.

Threat 21.1: Compromise Director Repository for Sending Malicious 
Updates

The Table 9 (left column) presents the outcome of the attack 
aiming at sending a malicious firmware image to the client. The 
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Table 8
The results of the analysis of Threats 11 and 12.

Threat 11 - Cause the Primary ECU (TCU) to Crash or Stop Remotely Threat 12 - Cause the Time Server to Crash or Stop Remotely

Applicable Assumptions: None. Applicable Assumptions: None.

Actions:

1. Determine the IP Address and Port Number of the Primary ECU
2. Establish Network Connection
3. Flood Primary ECU

Actions:

1. Determine the IP Address and Port Number of the Time Server
2. Establish Network Connection
3. Flood Time Server

Test Outcome: Following the DoS attack on Primary ECU, the Secondary ECU made 
several attempts to connect to the Primary ECU, the Primary ECU did not respond 
to any of the requests from Secondary ECU. Secondary ECU seemed to wait 
forever, and the process had to be manually interrupted to resume normal 
operation, which resulted in displaying error messages stating unsuccessful 
connection attempts.

Test Outcome: Following the DoS attack, the Time Server failed to respond to 
legitimate requests for validated time from the Primary ECU. The Primary ECU 
begins waiting indefinitely for a valid response from the Time Server after calling 
the method get_time_attestation from within the method update_cycle. All the 
other components on the server-side were found to be responsive and operational 
when tested. For instance, the Director responded as usual when the Primary 
invoked the method clean_slate after the DoS attack on Time Server. This clearly 
indicates that the DoS attack successfully causes the Time Server to crash. It also 
indicates that there is no timeout and/or exception handling mechanisms in place 
that can deal with such circumstances.

Status: FAIL Status: FAIL

Table 9
The results of the analysis of Threats 21.1 and 21.2.

Threat 21.1 - Compromise Director Repository in Order to Deliver Malicious 
Update (without compromised keys)

Threat 21.2 - Compromise Director Repository in Order to Deliver Malicious 
Update (with compromised keys)

Applicable Assumptions: A1 and A3 - See Table 3 Applicable Assumptions: A1, A2, and A3 - See Table 3

Actions:

1. Add Malicious Contents to the Firmware Image
2. Add Firmware Image to Director Repo

Actions:

1. Add Malicious Contents to the Firmware Image
2. Add Firmware Image to Director Repo
3. Generate Signed Metadata for the Firmware

Test Outcome:
Primary ECU did not download the firmware image from the Director Repository, 
since the hash values did not match, a BadHashError error occurred. In contrast, 
the Primary was able to successfully download firmware image from Image 
Repository, because the hash values were correct.

Test Outcome: The Primary ECU refused to download the update from the Director 
and displayed the following error message:
Director has instructed us to download a target (/firmware1.img) that is not validated by 
the combination of Image + Director Repositories. That update IS BEING SKIPPED. It may 
be that files have changed in the last few moments on the repositories. Try again, but if 
this happens often, you may be connecting to an untrustworthy Director, or there may be 
an untrustworthy Image repository, or the Director and Image repository may be out of 
sync.

Status: PASS Status: PASS
Primary ECU did not download the compromised firmware im-
age from Director repository after it found a bad hash value while 
performing the verification. On the other hand, it proceeded with 
downloading the firmware file from Image repository, because no 
issues were found with the metadata sent by Image Repository. 
The update was not presented to the Secondary by the Primary 
after it detected the anomaly.

Threat 21.2: Compromise Director Repository (with valid Keys) to 
Send Malicious Updates

As shown in the Table 9 (right column), the Primary ECU re-
jected to download the image from the server after it detected an 
anomaly in the metadata from Director and Image repositories. Un-
like the previous attempt, the firmware metadata was signed with 
valid keys. Even though the metadata, received from both reposi-
tories, were correct; however, since inconsistent hash values were 
received from each of the repositories, Primary ECU discarded the 
update.

Threat 21.3: Compromise both Image and Director Repositories with 
Compromised Keys to Send Malicious Updates

The information presented in Table 10 (left column) shows the 
result of the most dangerous attack, wherein the attackers were 
able to add malicious contents to the firmware image, sign it and 
its associated metadata with valid keys both by Image and Direc-
tor repositories. As both the update itself and associated metadata 
were valid and correct, the Primary proceeded with downloading 
17
the malicious image file and passing it to the Secondary for instal-
lation.

Threat 22.1: Compromise Image Repository to Send Malicious Up-
dates

Table 10 (right column) summarises the results of an attack in-
volving modifying a firmware image on the Image repository to 
include malicious contents in order to send to the Primary. This at-
tack was carried out without having access to the keys for signing 
the update and metadata, which could not succeed, as additional 
data would not be downloaded by the Primary. Moreover, as the 
changes were only made to the firmware at Image repository, the 
verification will not be successful when the Primary ECU tries to 
validate the image with both Image and Director repositories.

Threat 22.2: Compromise Image Repository (with Valid Keys) to 
Send Malicious Updates

The Primary ECU did not accept the update (as shown in Ta-
ble 11 (left column), as it found an anomaly in the metadata while 
validating it with the Director and Image repositories. The meta-
data sent by the Director was different from the one sent by Image 
repository, even though valid keys were used for signing the mali-
cious update by Image repository.

Threats 26.1 and 26.2: Endless Data Attack
Table 11 (right column) and Table 12 (column left) show the 

results of two variations of Endless Data Attack, with the goal 
to inundate the Primary ECU with large amount of data to af-
fect its functionality. In the first scenario, we appended additional 
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Table 10
The results of the analysis of Threats 21.3 and 22.1.

Threat 21.3 - Compromise Image and Director Repositories in Order to Deliver 
Malicious Updates (with compromised keys)

Threat 22.1 - Compromise Image Repository in Order to Deliver Malicious Update 
(without compromised keys)

Applicable Assumptions: A1, A2, and A3 - See Table 3. Applicable Assumptions: A1 and A3 - See Table 3.

Actions:

1. Add Malicious Contents to the Firmware Image
2. Add Firmware Image to Image Repo
3. Generate Signed Image Repo Metadata
4. Add Firmware Image to Director Repo
5. Generate Signed Director Repo Metadata

Actions:

1. Add Malicious Contents to the Firmware Image
2. Add Firmware Image to Director Repo

Test Outcome: The Primary ECU successfully downloaded and forwarded the 
malicious firmware image to the Secondary ECU. Both clients could not detect the 
presence of any malicious contents, as can be seen from the following messages:
Metadata for the following Targets has been validated by both the Director and the Image 
repository. They will now be downloaded:[’/firmware1.img’]; Successfully downloaded 
trustworthy ’firmware1.img’ image.

Test Outcome: The Primary ECU did not detect any changes made at the server to 
the Firmware image on Image Repository. This is because the metadata generated 
by both repositories was still intact; hence, Primary ECU assumed the original file 
was still there without any changes. Therefore, only original firmware image 
would be downloaded by the client, the one with valid metadata, ignoring any 
modifications made. This happens because the metadata contains information 
about the size of the firmware image file.

Status: FAIL Status: PASS

Table 11
The results of the analysis of Threats 22.2 and 26.1.

Threat 22.2 - Compromise Image Repository in Order to Deliver Malicious Updates 
(with compromised keys)

Threat 26.1 - Endless Data Attack (with appended contents)

Applicable Assumptions: A1, A2, and A3 - See Table 3. Applicable Assumptions: A1 and A3 - See Table 3.

Actions:

1. Add Malicious Contents to the Firmware Image
2. Add Firmware Image to Image Repo
3. Generate Signed Metadata for Firmware Image

Actions:

1. Append Additional Contents to Firmware on Image Repo
2. Add Image to Image Repo
3. Add Firmware to Director Repo

Test Outcome: The Primary did not proceed with the download and showed the 
following error message: Director has instructed us to download a target 
(firmware1.img) that is not validated by the combination of Image + Director Repositories. 
That update IS BEING SKIPPED. It may be that files have changed in the last few moments 
on the repositories. Try again, but if this happens often, you may be connecting to an 
untrustworthy Director, or there may be an untrustworthy Image repository, or the 
Director and Image repository may be out of sync.

Test Outcome: The attack was defended by the Uptane Framework by accepting 
and downloading exactly the same amount of data as specified in the trusted 
metadata file. The appended contents were ignored by both the Primary and 
Secondary ECUs.

Status: PASS Status: PASS

Table 12
The results of the analysis of Threats 26.2 and 27.

Threat 26.2 - Endless Data Attack (with overwritten or inserted contents) Threat 27 - Rollback Attack

Applicable Assumptions: A1 and A3 - See Table 3. Applicable Assumptions: A1 and A3 - See Table 3.

Actions:

1. Locate and Open the Target Image File
2. Insert Additional Data into the File
3. Save the Changes and Close the Target File

Actions:

1. Delete the Currently Trusted Timestamp on the Image Repo
2. Place the Outdated Timestamp on the Image Repo
3. Delete the Currently Trusted Timestamp on the Director Repo
4. Place the Outdated Timestamp on the Director Repo

Test Outcome: This attack was detected and defended by the Uptane Framework; 
consequently, the entire update was rejected due to the inconsistent hash values. 
The Primary ECU refused to download the update file by showing Bad-HashError
error messages.

Test Outcome: The Primary ECU refused to proceed with the update process with 
the following error message:
The Director has instructed us to download a Timestamp that is older than the currently 
trusted version. This instruction has been rejected. As the Primary has rejected the update, 
the Secondary was not presented with the update by the Primary ECU.

Status: PASS Status: PASS
contents to a firmware image and re-added it to both Director 
and Image repositories. As expected, the Primary only downloaded 
the original image ignoring additional appended data. The Primary 
reads the associated metadata and downloads the amount of up-
date data as specified in the metadata file. We then decided to 
add additional data to the firmware by replacing existing contents 
or inserting the data in the image file at a location other than the 
end of file. This is done to observe the response of the Primary if 
this occurs. Primary ECU detected the changes made to the original 
firmware file by discovering anomalies in the metadata. It is worth 
18
noting that both variations of this test were carried out without 
generating and signing metadata/updates.

Threat 27: Rollback Attack
As its name implies, the objective of this attack was to cause 

the ECU to uninstall the newest installed version of an image and 
install an older one instead by replacing the timestamp on both Di-
rector and Image repositories. Table 12 (column right), summarises 
the key steps (actions) and the result of the test. The Primary 
detected that it was sent an older version of the timestamp; there-
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Table 13
The results of the analysis of Threat 28 - Mix and Match Attack.

Results: Mix and Match Attack

Applicable Assumptions: A1 and A3 - See Table 3.

Actions:

1. Delete Currently Valid Firmware File on the Image Repo
2. Add an Outdated Version of the Firmware to the Image Repo
3. Delete Currently Valid Firmware File on the Director Repo
4. Add an Outdated Version of the Firmware to Director Repo

Test Outcome:
The Primary ECU refused to proceed with the update process by showing 
BadHashError message.
Status: PASS

fore, it rejected it and thus the latest version of the update was not 
rolled back.

Threat 28: Mix and Match Attack
As shown in the Table 13, the older firmware image sent to the 

Primary was rejected as the accompanied metadata did not contain 
the correct attributes for this image. Hence, the attack could not be 
succeeded. This attack intended to install an incompatible version 
of the firmware in an update package containing other images as 
well.

6. Discussion

The systematic threat assessment and security testing approach 
we employed in this study showed promising results by reveal-
ing unmitigated threats/vulnerabilities in the reference implemen-
tation of Uptane Framework by applying a structured approach 
for threat identification, step-by-step derivation of test cases, and 
the automation of security test-case generation and execution. As, 
derivation of appropriate and effective security test cases is often 
considered a challenging task, because in addition to the knowl-
edge of potential threats, it requires a clear idea of what to test 
and where to start [50]. Threat modeling techniques and tools we 
used allowed us to identify several security threats targeting auto-
motive OTA updates in a systematic and repeatable manner.

6.1. Key findings

While threat enumeration using STRIDE model allowed us to 
identify a number of threats that could affect the security of au-
tomotive OTA update processes and procedures in a variety of 
ways, we also included some of the known attacks that have been 
performed on the update systems/repositories in the past, which 
include: mix-and-match attack, rollback attack, and endless data 
attack. Experimental results of these attacks have shown that the 
Uptane Framework has strong mechanisms to effectively combat 
threats involving tampering of updates.

On the other hand, some of our testing results suggest that 
a production-quality, real-world implementation of the Uptane 
Framework would require effective measures against common 
threats, such as denial of service and information disclosure. For 
example, we showed how firmware images could be easily down-
loaded from Uptane servers without going through any access-
control/authentication restrictions. Additionally, the results demon-
strated how the information exchange between the servers and 
clients could be easily intercepted. In order to ensure and main-
tain confidentiality of the sensitive information, state-of-the art 
technologies need to be applied for providing adequate protec-
tion against information disclosure threats. Similarly, the denial-
of-service attacks mounted against the Uptane repositories and 
Primary ECU demonstrated how the timely delivery of critical up-
19
dates can be hampered, affecting the availability of crucial update 
services.

While the Uptane Framework offers solutions to various ma-
jor threats to the update process by introducing effective mecha-
nisms, our experimental results show the reference implementa-
tion is vulnerable to eavesdropping and denial-of-service attacks. 
Exploitation of these vulnerabilities in the production environment 
can cause serious disruptions to the distribution of important up-
dates to connected vehicles.

6.2. Limitations

While the approach we have used enabled us to systemati-
cally identify various threats and derive security test cases, we did 
not include all those threats in the experimentation for different 
reasons. First of all, we mainly concentrated on the threats com-
promising the OTA update procedures at the server-side, rather 
than considering the vehicle-side exploits (e.g., Reflash the TCU 
(Primary) Firmware in Order to Send Arbitrary CAN Messages), as 
they have been extensively explored in prior studies [94,10,47]. 
Second, we did not consider threats from the Repudiation category 
of STRIDE model, as these threats independently are not capable 
of causing any harm/disruption to the Update procedures or sys-
tem. Third, the threat Car Could be Tracked has not been included 
in the experimentation, since it is not directly relevant/exclusive to 
OTA update system, and it does not impact the delivery or instal-
lation of the updates. Finally, we excluded those threats from the 
experimentation that have very similar attack steps, affects, and/or 
results to the ones investigated. For instance, Take the Director Repo 
Offline, Flood Director Repo with Invalid Data, and Cause the Director 
Repo to Crash or Stop Remotely have similar attack method (i.e., DoS 
attack) and the same effect: that is, causing the Director repository 
to become unresponsive to legitimate request from clients.

Some attack trees we constructed could be further elaborated 
to include more attack steps; however, since our primary goal has 
been to demonstrate what the attacker would be able to do if they 
succeeded in compromising the update system, we intentionally 
did not focus on the tactics and methods that attackers can poten-
tially use for breaking into the OTA servers. Moreover, since our 
investigations relied on automated test-case generation and exe-
cution process, social engineering techniques (e.g., stealing offline 
cryptographic keys for signing updates and metadata on Uptane 
Image repository or the credentials of a system administrator) and 
other manual steps were not feasible to be included in the attack 
trees and test scripts.

Although, Threat Modeling Tool identified various threats in dif-
ferent categories of STRIDE, (as can be seen in Table 5 and 9) it 
reported no Spoofing threats to the Uptane repositories and clients. 
It is perfectly possible that the attackers may use spoofing as one 
of the strategies to compromise the updates. In fact, in many of 
our experiments we assumed that the attackers were spoofing/im-
personating Uptane servers.

7. Conclusion

The Uptane framework is being adopted by many major OEMs 
for the delivery of all types of software and firmware updates 
to the in-vehicle components found in the connected cars. These 
modern cars host sophisticated computing systems running soft-
ware applications with millions of lines of code, requiring frequent 
and regular updates for functional enhancements, maintenance, 
and security fixes. Thus, remotely-delivered updates and associated 
procedures must be secure, as malicious or compromised updates 
can undermine the security and safety of the vehicle and its oc-
cupants. Most importantly, taking into consideration its potential 
future widespread adoption (affecting millions of cars), in-depth 
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security analysis of this solution is crucial. In order to provide a 
comprehensive security testing/analysis, this study has showcased 
the application of a systematic threat assessment and model-based 
security testing approach for automotive OTA update system (using 
the reference implementation of the Uptane Framework).

Our testing approach included systematic threat enumeration 
of major threats to the OTA update system by using the stan-
dard threat classification system STRIDE and associated tool called 
Threat Modeling Tool. Since the quality of the generated test cases 
is largely determined by the quality of approach used (which is 
attack-tree based threat modeling in this study), a well-defined 
and structured approach could make a big difference in construct-
ing effective attack trees and security test cases.

Core scientific and technical contributions of this work are out-
lined below:

1. A systematic threat analysis approach for constructing attack 
trees;

2. A test-derivation approach using model-based security testing 
approach based on attack trees;

3. An in-depth, experimental security analysis of the Uptane 
Framework by applying the systematic threat assessment and 
security testing approach;

4. The automation of the test case generation and execution by 
implementing a special-purpose software tool. This powerful 
software tool is capable of generating and executing security 
test cases by performing intelligent analysis of the attack-tree 
structure.

In-depth security analysis and system testing of the Uptane 
Framework carried out in this study, demonstrating the validity 
of our approach by enumerating various threats by examining the 
system model, constructing attack trees from the results of threat 
enumeration, deriving effective security cases by analysing the 
structure of the constructed attack trees, and finally running those 
test cases against the implementation. Detailed results and findings 
of the security evaluation presented in the preceding section show 
the effectiveness of our approach by revealing unmitigated threats 
and vulnerabilities of the system. The experimental security attacks 
crafted from the attack trees, helped us evaluate the security con-
trols and mechanisms built into the framework. The findings from 
the experimental results of this study show that while in gen-
eral the Uptane is an effective solution providing protection against 
numerous security threats, the reference implementation is vulner-
able to information disclosure and denial-of-service threats, which 
must be given serious consideration in the production environment 
to protect the updates from cyberattacks.

For future work, we aim to automate the attack-tree construc-
tion process, which is currently a manual step in our approach. 
We also plan to evaluate the testing approach on other automotive 
OTA update systems.
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