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ABSTRACT 

 

Urbanisation and the consequent loss of permeable surfaces, is influencing the likelihood and 

severity of flood events. This, coupled with recent climate change predictions which suggest 

that sea levels will rise and that extreme weather events will become more frequent, has pushed 

the issue of flooding up the public agenda, encouraging the relevant authorities to more robustly 

target the challenges of increased flood risk. 

Tree planting is gaining momentum as a potential method of natural flood management (NFM) 

due to its capacity to break up soil and increase infiltration and water storage. Consequently, 

the aims of this study were to simulate the influences of woodland planting on infiltration and 

area hydrology through use of empirical observations and hydrological modelling, and 

extrapolate data to predict the likely hydrological changes across the area in the future, 

considering climate change. The infiltration characteristics throughout defined Heart of 

England (HofE) Forest owned areas of Warwickshire (England), planted with woodland 

between 2006 and 2020, were sampled using a Mini Disk infiltrometer (MDI). In total, 1686 

measurements were taken at both proximities between November 2019 and August 2021. Two 

individual hydrological models were built, calibrated and validated using the US Hydrologic 

Engineering Centre’s Hydrological Modelling System (HEC-HMS). In total 448 HEC-HMS 

simulations were undertaken.  

Infiltration was found to be 75.87% higher at 10 cm proximity compared with the 200 cm 

proximity in winter, and 25.19% higher in summer. The mean 10 cm infiltration was 192% 

higher in summer compared with winter, and mean 200 cm infiltration is 310% higher in 

summer compared with winter. Regarding the hydrological simulations, woodland planting 

reduced peak flow intensity compared to impermeable land cover by an average of 6%, 2%, 

and 1% for 6-, 24-, and 96-hour winter storms respectively, and 48%, 18%, and 3% for 6-, 24-

, and 96-hour summer storms respectively. Grassland simulations show the greatest reduction 

in peak flows, being 32%, 21%, and 10%, lower than woodland for 6-, 24-, and 96-hour winter 

storms respectively, and 6%, 3%, and 0.5% lower than woodland for 6-, 24-, and 96-hour 

summer storms respectively. Model projections show that woodland planting is unlikely to 

mitigate future projected peak flow and total discharge from the HofE site throughout the 

winter, however it is more likely to have an impact throughout summer. This is primarily due 

to soil texture characteristics across the site, the influence of hydrological model parameters, 

and the inclusion of interception throughout the summer. 
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Overall, tree planting does influence infiltration on a case-by-case basis, however ‘present-day’ 

hydrological simulations show grassland to reduce peak and total discharge from the site to a 

greater extent than woodland. Projections show that this will likely change as woodland 

matures, however further research will have to be conducted to further solidify this finding. It 

is concluded that woodland is beneficial as a method of NFM, however should not be relied 

upon to mitigate against larger storm events. 

The outcomes of this study are contextualised, and recommendations posed, with regards to 

the construction and forestry industry, and current and future water policy; namely, the 

Department of Food and Rural Affairs (DEFRA) policies, the Agricultural Act, the 25-year 

plan, the England trees action plan, and additional international policy. The overarching 

conclusions are that tree planting is featuring more prominently in recent and upcoming policy, 

however the main motivation being the ability of woodland to sequester carbon. It is 

recommended that more emphasis be targeted towards the hydrological benefits of trees, to  

further justify the planting of large-scale woodland, and encourage researchers to investigate 

the hydrological benefits of woodland planting, as has been done throughout this study. This, 

in turn, would aid in the current knowledge gap regarding woodland planting as a method of 

NFM.  
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Chapter 1 Introduction  

 

Flooding is the most frequently occurring natural hazard resulting in the loss of life, damages 

to public infrastructure, and personal property (Bosseler et al., 2021; The World Health 

Organisation, 2021). Urbanisation and the replacement of permeable and vegetated surfaces to 

impermeable surfaces, such as asphalt and concrete, is reducing lag times to and increasing 

peak flows in receiving watercourses, influencing the likelihood and severity of high-flow or 

flooding events (Ferguson and Fenner, 2020a; Ellis et al., 2021). In the UK, flooding frequently 

draws public attention, more-so in recent years due to increased public interest and 

understanding regarding the influences of climate change, and the likely changes in the 

frequency and severity of heavy rainfall and flooding (Taylor et al., 2014; Lamond et al., 2015; 

Beddoes et al., 2018; Whitmarsh and Capstick, 2018; Hasan and Kumar, 2019; Lowe et al., 

2019).  

The global climate is predicted to change in ways unseen in recorded history (Lowe et al., 

2019). In the UK, sea levels will rise, extreme weather events will become more frequent, 

winters will become warmer and wetter and summers will become hotter and drier (Lowe et 

al., 2019; Murphy et al., 2021). The effects of a changing climate are increasingly observed  

across the world. Studies show that in the US, an average of 6520 floods have occurred per 

year from 1996–2016, totalling mean economic losses of 3986 million US dollars (Zhou et al., 

2018b; Bosseler et al., 2021). Furthermore, widespread flooding occurred in Western Germany 

throughout the summer of 2021 as a result of heavy rainfall, causing loss of life and affecting 

the livelihoods of 40,000 people (Bosseler et al., 2021). In the UK, areas of London 

experienced severe flooding throughout July 2021. On the 12th, close to 76 mm of rain fell in 

90 minutes in Kensington and Chelsea and Kew (south-west London) received nearly 48 mm 

in one hour (the average monthly rainfall is 44.5mm) (JBA Risk Management, 2021). On the 

17th, Portobello Road received 76 mm of rainfall in 90 minutes, and on the 25th July, southern 



1-2 
 

areas of England were severely affected by rainfall; where 48.5 mm of rain fell on areas of 

Kent in one hour, and the Isle of Wight, received around 38.5 mm (JBA Risk Management, 

2021). The London floods were heavily publicised in comparison to previous UK floods, 

bringing both climate change and flooding to the forefront of the public agenda; prompting 

both the Mayor of London and the UK Government to target the challenges of increased flood 

risk (Mayor of London, 2021).  

 

1.1 The UK and Flood Risk Management 

The 2007 UK summer floods, which killed 13 people, caused an estimated £3.2 billion in 

damages and flooded 55,000 properties, prompted the drafting of the Pitt Review (Pitt, 2008; 

Chatterton et al., 2010). The review investigated the shortfalls of flood response at the time, 

and made 92 recommendations to be implemented over a 25-year period focusing on improving 

the way flood risk is mitigated and managed (HM Government, 2009; Warwick, 2017). 

Recommendation 27 and sections 7.101 – 7.127 of the review suggested that responsible 

authorities should seek to work with nature wherever possible, emphasising the benefits that 

this can have considering climate change and in comparison with conventional methods 

(section 2.1) (Pitt, 2008). The review acknowledged that flood risk cannot be managed by 

simply building ever bigger concrete defences, and softer approaches, such as flood storage 

and land management, can offer more sustainable ways of mitigating flood risk (Defra, 2010; 

McLean et al., 2013). Consequently, the UK pledged to increased investment in alternative, 

more sustainable methods of mitigating and managing flood risk (Metcalfe et al., 2018; 

Shuttleworth et al., 2019; Ferguson and Fenner, 2020a); commonly referred to as Natural Flood 

Management, or NFM methods (Burgess-Gamble et al., 2018). 

At present (2022), the UK is 14 years into the 25-year implementation time of Pitt Review 

recommendations. Granted, more recent ‘NFM relevant’ documentation has been published by 

the EA and UK Government, such as the ‘Working with Natural Processes: Evidence Directory 
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and Literature review (Ngai et al., 2017; Burgess-Gamble et al., 2018) (see section 2.2); 

however, NFM uptake and implementation has generally been slow (Waylen et al., 2018; Wells 

et al., 2020) (see section 2.4). One method of NFM that is often considered beneficial is tree 

planting - trees can enhance soil macro-porosity, connect flow pathways, reduce compaction 

and improve soil structure which increases infiltration and water storage capacity (see section 

2.3) (Chandler et al., 2018; Leung et al., 2018; Malik et al., 2019; Zhang et al., 2019a; Xie et 

al., 2020; Guo et al., 2021). There has been a recent policy push towards increasing UK 

woodland cover – the ’25-year Environmental Plan’ was introduced in 2018, recommending 

the increase in woodland planting; and the ‘England Trees Action Plan 2021 – 2024’ was 

introduced in 2021 to increase woodland cover for the benefit of CO2 sequestration, flood risk 

and biodiversity (HM Government, 2018; UK Government, 2021a). These policies interlink 

with the scope and outcomes of the most recent (2021) Conference of the Parties (COP26) 

meeting and are discussed in greater detail throughout section 2.4. 

However, regardless of the general push towards woodland planting, particularly for the benefit 

of CO2 sequestration and biodiversity, little research has been undertaken to quantify the 

benefits of tree planting and their influence on infiltration dependent on tree proximity and 

maturity (Waylen et al., 2018; Kay et al., 2019; Cooper et al., 2021; Murphy et al., 2021; Xiao 

et al., 2021). Developing an understanding of the influences of tree planting on infiltration and 

applying such findings in the context of the wider implementation of NFM and existing policy, 

would aid in the justification and subsequent uptake of NFM methods (McLean et al., 2013; 

Burgess-Gamble et al., 2018). This would allow for enhanced flood risk reduction both at 

present, and in the future, considering the predicted impacts of climate change and continued 

urbanisation. 
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1.2 Flood Modelling 

Advancements in computing have allowed for the development and refinement of flood 

modelling software, and such software is commonly utilised by practitioners and academics 

alike to simulate the likely response of an area to varying input data (Barthélémy et al., 2018; 

Li et al., 2020). Flood models can be hydraulic, where flow is simulated in 1 dimension (1-D), 

2 dimensions (2-D), or both (1-D/2-D); or hydrological, where the portrayal of many other 

‘process models’ can be applied to a whole catchment, accounting for hydrological losses 

(section 3.2) (Barthélémy et al., 2018; Patil et al., 2019).  

It is identified in section 1.1 that tree planting and the influence of infiltration depending on 

proximity and maturity is scarcely investigated, as is the case with NFM in general (Wells et 

al., 2020). Both hydraulic and hydrological models have been used to simulate the impacts of 

NFM instillations (Ferguson and Fenner, 2020a; Cooper et al., 2021; Lo et al., 2021), however, 

no studies have attempted to simulate the influence of tree planting on infiltration using a 

hydrological model, based on empirical infiltration data (Revell et al., 2021). This gap in 

literature (discussed in greater detail throughout section 2.4), combined with the pressures of 

climate change and continued urbanisation, form the aims and objectives of this study outlined 

below. 

 

1.3 Aims & Objectives  

Following the (above) discussed changes in flood frequency and flood severity, the lack of 

empirical hydrological modelling studies, the push towards woodland planting, and the current 

lack of supporting literature regarding NFM implementation, the aims and objectives of this 

work are: 

Aim 1: Through field investigation, determine to what extent tree planting by the 

Heart of England Forest has influenced infiltration, with reference to tree proximity 

and tree maturity. 
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Whilst it is understood that tree planting can increase soil porosity, increasing infiltration and 

water storage capacity (sections 2.3 and 2.4); few long-term studies have been undertaken to 

record the influence of tree planting on infiltration dependent on tree proximity and maturity. 

UK tree planting studies exist (section 2.4), however the influence of infiltration is inferred 

through other means (telemetry, rainfall/runoff analysis). This aim intends to target this 

literature gap and contribute to what is understood about tree planting and infiltration and 

maturity using the Heart of England Forest (HofE) Spernal site. 

Objective 1a: Define suitable sampling locations and methods for infiltration data 

collection and gather data. 

The objective intended to use spatial data to define a suitable sample site wherein infiltration 

data could be collected continually for the duration of the study. 

Objective 1b: Using data collected in objective 1a, derive any relationships between 

infiltration and tree proximity and maturity. 

Upon the definition of infiltration sample locations (objective 1a), the collected data was 

statistically analysed to determine any relationships between infiltration relative to tree 

proximity and tree maturity.  

 

Aim 2: Using HEC-HMS, build, calibrate, and validate two-separate hydrological 

models using spatial and hydrometric data collected from the study site. 

Following infiltration data collection (objective 1b), a hydrological model was built, calibrated, 

and validated to simulate the hydrological response from the study site. The goal of the model 

was to identify the impact of tree planting, when compared to simulating an impermeable study 

or grassland area. This aim allowed the application of the collected long-term infiltration data, 

allowing for a better interpretation of the benefits of tree planting. 

Objective 2a: Build, calibrate and validate two hydrological models in HEC-HMS. 
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Two hydrological models were built, one to represent summer infiltration and one to represent 

winter infiltration; this was due to the collected data showing large fluctuations between the 

seasons. Representing these changes in one model would inaccurately portray the hydrology 

of the site. Both models were individually calibrated and validated using the Nash and Sutcliffe 

Efficiency (NSE) indicator. 

 

Aim 3: Using the HEC-HMS model, simulate outflow hydrology from the study site 

dependent on changing storm intensity, duration, land cover, tree maturity and 

climate change; and determine to what extent HofE woodland planting has 

influenced infiltration, runoff and river flows. 

Aim 3 required the combination of both aim 1 and aim 2 to produce hydrological outputs from 

the site as a result of varying storm scenarios, tree maturity and climate change. The aim 

intended to conclude the overall applicability of woodland planting as a method of natural flood 

management (NFM) and determine the longevity of impact considering recent climate change 

predictions. 

Objective 3a: Using both field data collected in aim 1a, and the HEC-HMS model, 

simulate the hydrological responses of the HofE study site to varying land cover, tree 

maturity, storm duration and intensity.  

This objective combined the collected infiltration data and the two hydrological models to 

simulate the hydrological response from the study site at present. Infiltration data was used to 

simulate the hydrological response form the HofE site: with the current level of woodland 

cover, if the site was comprised of only grassland, and if the site was developed into 

impermeable surfaces. 

Objective 3b: Use recent Environment Agency climate change allowances, in 

conjunction with the HEC-HMS model, to predict the likely future changes to site 

hydrology considering developing tree maturity and climate change. 
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This objective used published literature regarding root spread and sample tree species growth 

trends to extrapolate the collected infiltration data into the future. The hydrological models 

were then used to simulate precipitation and baseflow changes as a result of climate change, 

and the hydrological output of the site was analysed. 

Objective 3c: Using the empirical and simulated results of this study, evaluate the 

hydrological effects of tree planting as a method of NFM. 

This objective combined objectives 1b, 3a and 3b to contextualise their findings, and draw 

conclusions regarding the wider applicability of woodland planting as a method of NFM, both 

at present and into the future. 

 

Aim 4: Assess the implications of study findings, and provide recommendations and 

suggestions for relevant stakeholders and future policy. 

This aim combines the findings of both aim 1 and aim 3 to assess the implications of study 

results with regards to flood risk management policy, both past and future. The aim also intends 

to make suggestions to stakeholders, and suggest potential areas of exploration for NFM in the 

future, regarding climate change. 

Objective 4a: Using the findings of both aim 1 and aim 3, provide recommendations 

and suggestions for relevant stakeholders and future policy. 

This objective uses the findings derived throughout the field data collection stages and 

hydrological simulation stages of this study to assess their implications, and provide any 

recommendations for relevant stakeholders regarding future flood risk management policy. 
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1.4 Structure of Thesis 

The thesis is organised as follows: 

Chapter one, introduction, introduces the subject area, along with the key overarching 

background, themes, and motivations for this work. The aims and objectives are defined in the 

is section. 

Chapter two, literature review, reviews the current level of understanding regarding 

conventional flood risk management, natural flood management, tree planting, tree planting as 

a method of natural flood management, and the influences of varying soil characteristics on 

infiltration. 

Chapter three, review of previous studies methods and tools, discusses commonly used 

methods of infiltration data collection and hydraulic and hydrological modelling software; 

model calibration and validation are discussed, and modelling limitations are outlined. 

Chapter four, Study Site, discusses the rationale for study site selection, highlights the desired 

requirements, and explains the reasoning for choosing the selected site. further study site 

investigation is undertaken including watershed delineation, topographical analysis, 

hydrological analysis and geological analysis. 

Chapter five, research design and methodology, introduces and evaluates the study 

methodology. Research philosophy is introduced as are the study hypotheses, in addition to the 

sampling methodology and the processes used in sample site design, the processes involved in 

hydrological model build, and the processes and results of model calibration, validation and 

simulation.  

Chapter six, pilot results and reflection for infiltration tests, describes the process of adjusting 

the MDI user manual’s suggestion of 30-40 ml of infiltrated water per measurement. Also 

discussed here is how this pilot was upscaled to the whole catchment.  

Chapter seven, results and analysis, presents and interprets the results of the study. Filed 

infiltration results are statistically analysed with regard to proximity and maturity, and results 
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from both the present-day and projected hydrological models and interpreted for both summer 

and winter. 

Chapter eight, discussion, contextualises the results presented throughout chapter seven 

considering the wider literature and the aims of this project, emphasising the findings and 

applications of this work. 

Chapter nine, implications and recommendations for stakeholders, discusses the implications 

of the study results with regards to the HofE forest, the forestry industry, the construction 

industry, and DEFRA policy. 

Chapter ten, conclusion, summarises the main research findings and reviews how and where 

the aims and objectives (section 1.3) were met. The contributions to knowledge are identified, 

as are any sources of error and opportunities for future work. 

Chapter eleven, references, presents the reference list of citations referred to throughout the 

main body. 

Chapter twelve, appendices, contains additional explanations, technical information, figures, 

and graphs in support/addition to the work included throughout the main body. 

 



2-1 
 

Chapter 2 Literature Review 

 

This section reviews the current level of understanding regarding conventional flood risk 

management (section 2.1), natural flood management (section 2.2), tree planting (section 2.3), 

tree planting as a method of natural flood management (section 2.4) and the influences of 

varying soil characteristics on infiltration (section 2.5). 

 

2.1 Conventional Flood Management 

As outlined in section 1.1, changes to flood frequency severity, in conjunction with the uptake 

of Pitt Review (2008) recommendations, are changing the way flood risk is managed in the UK 

(Putro et al., 2016; Miller and Hess, 2017). Natural and more sustainable methods of fluvial 

flood risk management (FRM) should now be considered by responsible authorities for 

implementation whenever possible, to encourage a movement away from conventional 

methods due to their decreasing sustainability (Environment Agency, 2007; Ngai et al., 2017; 

Warwick, 2017). 

Historically, the priority of conventional FRM methods has been to convey excess water  

downstream and away from urban areas as quickly as possible to prevent flooding (Cooper et 

al., 2021). However, methods of this focus are problematic and are becoming increasingly 

unfeasible considering climate change - rainfall events are becoming more frequent and more 

severe, pushing conventional FRM methods beyond their designed capabilities (Lowe et al., 

2019; Murphy et al., 2021). Conventional methods of FRM are designed to mitigate flood risk 

based on designed storm scenarios, meaning they become less effective over time (Lacob et 

al., 2014). Therefore, infrastructure that was designed to mitigate (e.g.) 2% AEP (annual 

exceedance probability) storms (such as dams, levees and flood walls) are seeing more frequent 

strain than accounted for when designed (Lacob et al., 2014; Ferguson and Fenner, 2020a). 

Common examples of conventional FRM include straightening river channels (channelisation) 
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(Figure 2.1), constructing higher levees and flood walls (Figure 2.2), and culverting long 

reaches of a watercourse (Figure 2.3). 

Figure 2.1. Channelisation of the River Ravensbourne at Cornmill Gardens, Lewisham, 

London (European Centre for River Restoration, 2022). 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
found in the Lanchester Library, Coventry University. 
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Figure 2.2. Flood walls installed along the River Don, Sheffield (BBC News, 2019). 

Figure 2.3. River Medlock, Manchester, flowing into a culverted section of watercourse 

(Geograph, 2015). 

All of the aforementioned methods increase the velocity of contained water, increase erosion, 

and culverts reduce the capacity of a watercourse resulting in backflow during flood events 

(Butler and Davies, 2011; Hohensinner et al., 2018; Cooper et al., 2021). Additionally, they 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
found in the Lanchester Library, Coventry University. 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
found in the Lanchester Library, Coventry University. 
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are expensive to install and maintain, and are only implemented at a few targeted locations 

throughout a catchment (i.e. around urban areas or high-value assets), meaning flood protection 

varies from location to location based on asset value and local priorities (Merz et al., 2010; 

Bracken et al., 2016; Ngai et al., 2017). 

 

2.2 Natural Flood Management 

Increasing flood frequency and a general increase in public awareness has prompted a 

literature-wide shift towards alternative methods of managing and mitigating flood risk 

(Chapter 1)(Lavers and Charlesworth, 2016, 2018). The emerging method of alternative flood 

risk management in the UK is most commonly referred to as NFM, however several acronyms 

are used interchangeably within the literature (Forbes et al., 2016; Lavers and Charlesworth, 

2016, 2018; Environment Agency, 2017; West Cumbria Rivers Trust, 2018). See Table 2.1. 
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Table 2.1. Common and alternative acronyms for NFM. 

Acronym Definition  References 

CaBA Catchment Based Approach (Dadson et al., 2017; CaBA, 2022) 

GI Green Infrastructure (European Commission, 2022; Lashford et al., 2022) 

NNBF Natural and Nature Based Features (Bridges et al., 2021) 

NFM Natural Flood Management (Forbes et al., 2016; CBEC and Environment Agency, 2017) 

NFRM Natural Flood Risk Management  (Lavers and Charlesworth, 2016) 

NWRM Natural Water Retention Measures (European Commission, 2014; Collentine and Futter, 2018) 

NBS Nature Based Solutions (Short et al., 2019; Bark et al., 2021; Norbury et al., 2021) 

RSuDS Rural Sustainable Drainage Systems (Avery, 2012) 

WwNP Working with Natural Processes (Ngai et al., 2017; Burgess-Gamble et al., 2018; Hankin et 

al., 2018) 
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NFM methods aim to alter specific hydrological processes (e.g. interception, infiltration, 

evaporation, evapotranspiration and surface roughness) to store precipitation throughout the 

catchment, reducing the speed and intensity at which runoff can enter the receiving watercourse 

(Lavers and Charlesworth, 2018; Shuttleworth et al., 2019; Ferguson and Fenner, 2020b; Ellis 

et al., 2021). In addition to the ‘catchment’ methods discussed, in-channel methods of NFM 

aid in slowing watercourse flow. Debris (leaky) dams consist of wood and other vegetation 

placed adjacent to the flow direction of a watercourse to naturally impede flow, store water and 

restore rivers (Burgess-Gamble et al., 2018; Hankin et al., 2018; Ellis et al., 2021) (Figure 2.4). 

Watercourse channels and floodplains can also be ‘roughened’ to slow the flow of flood waters 

to downstream areas during flood events (Shuttleworth et al., 2019). Roughening involves 

planting trees, grasses, shrubs and hedgerows in floodplain areas to increase friction 

(Manning’s n) and create more turbulent flow throughout flood waters, leading to a slowing of 

the flow downstream (Kim et al., 2012; Shuttleworth et al., 2019) (Figure 2.5). Furthermore, 

river flow path length can be slowly reinstated naturally, through placing obstructions in 

defined locations of the flow path to develop meanders (re-meandering), which has additional 

benefits regarding wildlife (Burgess-Gamble et al., 2018; Dittrich et al., 2019). Whilst this 

method could be seen as human-induced, the processes that influence the lengthening process 

are natural and representative of the rives geomorphology before human influence (Brookes, 

1987; Glińska-Lewczuk and Burandt, 2011) (Figure 2.6). 
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Figure 2.4. Leaky/debris dam installed in the Cairn Beck River (Eden Rivers Trust, 2021). 

Figure 2.5. Example vegetation planting (saplings in the this example) (Suffolk Wildlife 

Trust, 2020) 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can 
be found in the Lanchester Library, Coventry University. 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
found in the Lanchester Library, Coventry University. 
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Figure 2.6. The re-meandering 200 m section of the Cairn Beck River (Eden Rivers Trust, 

2021). 

The design and operation of any NFM feature is based primarily on emulating the natural 

environment. Methods focus on slowing water using sustainable catchment wide interventions 

and in-channel obstructions, to reproduce the watercourses natural hydrology as it was prior to 

human interaction (Environment Agency, 2010; Hankin et al., 2017; Ferguson, 2020). Table 

2.2 (adapted from Dadson et al., (2017)) outlines further methods of NFM commonly 

implemented across a catchment. 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in 
the Lanchester Library, Coventry University. 
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Table 2.2. Definitions and examples of NFM methods implemented across a catchment 

(adapted from Dadson et al., (2017)). 

Flood Risk Management Theme Specific Method Examples 

Catchment water retention through 

infiltration and overland flow 

management 

Land-use changes 

Arable to grassland conversion, 

afforestation, restrictions on 

hillslope cropping, peatland 

restoration 

Arable land-use practices 

Spring cropping Vs. winter 

cropping, cover crops, 

extensification, set aside 

Livestock land practices 
Lower stocking rates, grazing 

restrictions 

Tillage practices 
Conservation tillage, 

contour/cross-slope ploughing 

Field drainage 
Deep cultivations to reduce 

permeability 

Buffer zones 
Contour grass planting, hedges, 

shelterbelts 

Machinery management 
Low ground pressure, avoid wet 

conditions, 

Urban land use 
Reduce impermeable land-cover 

and increase storage 

Catchment water retention through 

managing connectivity and 

conveyance 

Management of hillslope 

connectivity 
Blockage of farm ditches and grips 

Buffer strips 

Contour grass strips, hedges, 

shelterbelts, bunds, field margins, 

riparian buffer strips 

Channel maintenance 
Modifications to maintenance of 

farm ditches 

Drainage and pumping operation 
Modifications to drainage and 

pumping regimes 

Field and farm structures 
Modifications to gates, yards, 

tracks and culverts 

On-farm retention  Retention ponds and ditches 
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River restoration 

Restoration of river profile and 

cross sections, channel realignment 

and changes to planform pattern 

Upland water retention Farm ponds, ditches, wetlands 

Making space for water through 

floodplain conveyance and storage 

Water storage areas 
On or off-line storage, washlands, 

polders, impoundment reservoir 

Wetlands 

Wetland creation, engineered 

storage scrapes, controlled water 

levels 

River restoration / retraining 
River re-profiling, channel works, 

riparian works 

River and watercourse 

management 

Vegetation clearance, channel 

maintenance and riparian works 

Floodplain restoration 
Setback of embankments, 

reconnection rivers and floodplains 

 

The hydrological influence of NFM methods compared with FRM methods on a catchments 

hydrologic response is clearly demonstrated through use of a unit hydrograph. The shape of a 

hydrograph is influenced by the physical characteristics of the catchment- its size, topography, 

geology, land cover type, and features linked to the climate (Butler and Davies, 2011; 

Hornberger et al., 2014). A hydrograph representing a catchment that was inclusive of the 

conventional FRM methods discussed would exhibit steep rising and falling limbs, a short lag 

time and a quick return to baseflow (Shaw, 1988; Hornberger et al., 2014), representing that 

precipitation is falling on the area but quickly being conveyed to the watercourse. Conversely, 

the introduction of NFM methods across a catchment gradually reinstates the ‘pre-urbanised’ 

hydrology of the catchment, modifying the discharge hydrograph (Wingfield et al., 2019; 

Stamataki and Kjeldsen, 2021). A hydrograph representing an area inclusive of NFM would 

exhibit a lower peak flow and shallower rising and falling limbs, showing that precipitation 

slowly moves through the catchment, contrary to that of conventional methods (Thomas and 

Nisbet, 2016; Janes et al., 2017). See Figure 2.7. 
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Figure 2.7. Example hydrograph representing pre and post NFM discharge (Adapted from 

Güçlü and Şen 2016). 

Whilst NFM instillations can positively influence catchment hydrology through increasing 

catchment storage, infiltration, interception and evapotranspiration; there is reference in the 

literature to the potential for hydrograph synchronisation (Dixon et al., 2016; Forbes et al., 

2016; Metcalfe et al., 2017a; Hankin et al., 2019; Shuttleworth et al., 2019). Synchronisation 

refers to slowing catchment flow such that the post-intervention lag time matches that of the 

receiving watercourse, subsequently adding to the leading to the passing flood wave. See 

Figure 2.8 
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Figure 2.8. Example hydrograph demonstrating the cumulative effects of hydrograph 

synchronicity on a receiving watercourse (Adapted from Singer and Dunne 2004, Dixon et al. 

2016, Rachelle Ngai et al. 2017) 

Whilst there is a general acknowledgement to the process of synchronisation, the process is not 

well understood (Dixon et al., 2016), nor are there any existing empirical studies to prove that 

NFM interventions cause synchronisation, rather it is cited as something to be aware of 

(Metcalfe et al., 2017a, 2018; Ferguson and Fenner, 2020b). Conversely, it is also suggested 

that NFM implementation could lead to hydrograph de-synchronisation, where existing 

synchronised flood waves are actually reduced through the staggered timing of flood waves. 

See Figure 2.9 
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Figure 2.9. The effect of hydrograph peak de-synchronisation. Peak time of inflowing 

watercourses is staggered and overall flow of the receiving watercourse is lower, however 

over a longer duration (Adapted from Singer and Dunne 2004, Dixon et al. 2016, Rachelle 

Ngai et al. 2017). 

Dixon et al. (2016) suggests that peak discharge could be reduced by as much as 19% over 25 

years by afforestation in the Lymington catchment, Hampshire. Shuttleworth et al., (2019) 

found that peatland re-vegetation (as a method of NFM) could reduce peak flows by 27% and 

increase lag times by 106%; and Nutt and Perfect (2011) explained that moorland restoration 

could lead to hydrograph de-synchronisation downstream over time.  

Whilst synchronicity can impede the effectiveness of NFM, there is very little empirical 

literature proving that this phenomena can happen in real-world instances (Odoni and Lane, 

2010; Lacob et al., 2014; Burgess-Gamble et al., 2018). Forbes et al., (2016) makes reference 

to large scale woodland requiring careful planning before implementation; but Shuttleworth et 

al., (2019) suggests that extreme upper-reach NFM instillations (peat moorland restoration) is 

not likely to influence synchronicity downstream. It is concluded that synchronicity varies on 

a case-by-case basis, and NFM implementation requires field work and modelling to assess all 

potential outcomes for both the short and long term (Pattison et al., 2014; Forbes et al., 2016; 

Hankin et al., 2018; Shuttleworth et al., 2019).  

 

2.2.1 Scale 

NFM methods differ from conventional fluvial flood risk methods, not only by the methods 

employed, but also in scale and location (Hankin et al., 2017; West Cumbria Rivers Trust, 

2018; Ferguson and Fenner, 2020a). Dissimilar to conventional methods, which are often 

implemented in and around urban areas, NFM measures are found to have the most positive 

impact on downstream flood risk when installed at different locations and scales throughout a 

catchment (Lacob et al., 2014, 2017; West Cumbria Rivers Trust, 2018). See Figure 2.10.
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Figure 2.10. NFM methods and their varying locations throughout the upper, middle and 

lower reaches of a river (Burgess-Gamble et al., 2018) 

As initially presented in Table 2.2 and further demonstrated (with regard to their scale) in 

Figure 2.10, NFM methods in the upland reaches can include: cross-slope tree planting, grip 

blocking a peat restoration, woodland creation and management, in-channel leaky barriers and 

runoff pathways. In the middle reaches, can include: short rotation crops, soil and crop 

management, ponds and swales, river restoration and reprofiling, flow-path lengthening, 

floodplain woodland and riparian buffers. And in the lower reaches/estuaries, can include: salt 

marsh creation, beach management, managed realignment and controlled retreat (Forbes et al., 

2016; Dadson et al., 2017; Ngai et al., 2017; Burgess-Gamble et al., 2018; West Cumbria 

Rivers Trust, 2018). The scale and location of NFM methods vary dependent on the availability 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the 
Lanchester Library, Coventry University. 
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and suitability of land, particularly throughout the upland reaches (Figure 2.10) where soil 

texture, climate and topography have more of an influence (Ngai et al., 2017; Burgess-Gamble 

et al., 2018). The soil texture and structure, existing vegetation, infiltration rate, infiltration 

capacity and land-take play an important role in determining which NFM method is best suited 

(Archer et al., 2013; Forbes et al., 2016).  

One example of where NFM has been specifically tailored to local hydrological characteristics 

is the Hills to Levels project, Somerset (Peukert et al., 2017; Farming and Wildlife Advisory 

Group, 2020). The catchments geology had very low permeability, meaning precipitation 

entered nearby watercourses rapidly during rainfall events (discussed in section 2.3). See 

Figure 2.11. 

Figure 2.11. Hills to levels area map outlining the permeability and stroage of soil 

throughout the catchment (Peukert et al., 2017). 

Freely draining soils cover 30% of the catchment, and it was determined that improving soil 

structure across the catchment could significantly improve infiltration, adding 150–300 mm of 

precipitation storage (over a 24-hour period) (Peukert et al., 2017). The methods employed 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found 
in the Lanchester Library, Coventry University. 
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across the catchment involved: advising farmers on crop rotation to improve soil water storage; 

installing filter socks, filter fences, soil bunds, swales, banked hedges, silt traps; floodplain 

storage, leaky ponds; and implementing in-channel methods such as leaky woody dams, brash 

dams and leaky barriers (Peukert et al., 2017). To date, attenuation features have created almost 

15,000 m³ of floodwater storage alone, and 130 NFM structures have been constructed, with 

another 105 under construction and a further 85 proposed (Peukert et al., 2017; Farming and 

Wildlife Advisory Group, 2020).  

 

2.2.2 Natural Flood Management and Climate Change 

The anthropogenic drivers of climate change are increased carbon dioxide (CO2) and other 

greenhouse gasses; the predicted impacts of climate change are increased precipitation, storm 

frequency and storm severity (Dittrich et al., 2019; Kay et al., 2019; Lowe et al., 2019; Cooper 

et al., 2021; Murphy et al., 2021). NFM methods can reduce CO2 emissions through 

sequestration, and methods involving vegetation planting can not only store CO2, but convert 

some of it to oxygen (O2) in the process (Hankin et al., 2017; Limpert et al., 2020).  For 

example, regarding the influence of trees on CO2 reduction, Field et al., (2020) estimate that 

0.08 Gt of CO2 is currently stored in UK woodland, and Hale et al., (2019) discuss that older 

woodland areas contain double the CO2 of younger trees (~60% stored in biomass). Coniferous 

woodlands can sequester between 14 and 24 tonnes of CO2 per Ha/yr. and oak woodlands can 

sequester between 7 and 15 tonnes of CO2 per Ha/yr. (Burgess-Gamble et al., 2018). The 

hydrological implications of woodland are discussed in greater detail throughout section 2.3. 

In addition to the aforementioned CO2 reductions, NFM methods are advantageous as they also 

act to mitigate flood risk; however, an advantage of conventional FRM methods is that that 

flood risk reduction begins as soon as installation is complete (Lacob et al., 2014). Whilst some 

methods of NFM can being mitigating flood risk from the day of instillation (e.g. leaky dams 

and marshlands), methods that involve vegetation planting and land management are often not 
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immediately effective (Forbes et al., 2016; Ngai et al., 2017). Figure 2.12 demonstrates the 

differing hydrological impact of conventional FRM methods compared with NFM methods 

over time.  

Figure 2.12. Projected impact of conventional fluvial flood risk mitigation measures (left) 

and NFM methods (right) in response to climate change after installation (Lacob et al., 

2014). 

Conventional FRM methods can reduce flood risk from the day of instillation installation, 

whereas NFM methods cannot. However, whilst there is a lag before the impacts of NFM 

methods can be observed; once established, they offer a greater range of potential to mitigate 

the adversities faced due to climate change (Figure 2.12)  (Cooper et al., 2021; Murphy et al., 

2021). Quantifying the exact abilities of NFM methods to counter the projected adverse effects 

of climate change is an ongoing challenge, primarily due to there being a general lack of long-

term empirically monitored data and hydrological modelling studies (see section 2.2.3) (Lacob 

et al., 2014; Lavers and Charlesworth, 2016; Connelly et al., 2020; Murphy et al., 2021). This 

lack of data is further complicated by future UK climate projections showing precipitation and 

temperature to be heterogeneous (Lowe et al., 2019).  

The United Kingdom Climate Predictions 2018 (UKCP18) are a set of tools used for assessing 

how the climate is likely to change in the UK, both in-land and the surrounding waters (Lowe 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the 
Lanchester Library, Coventry University. 
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et al., 2019; Kay et al., 2020). Figure 2.13 and Figure 2.14 show the projected changes to mean 

temperature, and Figure 2.15 and Figure 2.16 show the projected changes to mean precipitation 

in the 2080’s under different representative concentration pathways (RCPs). RCPs (in W m-2) 

are based on the concentrations of greenhouse gases that would result in radiative forcing 

increasing by 2.6 W (+1.6°C), 4.5 W (+2.4°C), 6.0 W (+2.8°C) and 8.5 W (+4.3°C) by 2100, 

relative to pre-industrial levels (UK Met Office, 2018; Lowe et al., 2019; The Met Office, 

2019). Here, the 10th, 50th and 90th percentile outputs for RCP 2.6 and RCP 8.5 simulations are 

presented to demonstrate the heterogeneity of climate projections (Lowe et al., 2019; The Met 

Office, 2019; Kay et al., 2020). 
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Figure 2.13. Changes in winter mean temperature for 2080 for RCP 2.6 (upper row) and 

RCP 8.5 (lower row) across 10% (column 1), 50% (column2) and 90% (column 3) 

percentiles (adapted from Lowe et al., 2019). 

Temperature (°C) 
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Figure 2.14. Changes in summer mean temperature for 2080 for RCP 2.6 (upper row) and 

RCP 8.5 (lower row) across 10% (column 1), 50% (column2) and 90% (column 3) 

percentiles (adapted from Lowe et al., 2019). 

Temperature (°C) 
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Figure 2.15. Changes in winter mean precipitation for 2080 for RCP 2.6 (upper row) and 

RCP 8.5 (lower row) across 10% (column 1), 50% (column2) and 90% (column 3) 

percentiles (adapted from Lowe et al., 2019). 

Precipitation (%) 
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Figure 2.16. Changes in summer mean precipitation for 2080 for RCP 2.6 (upper row) and 

RCP 8.5 (lower row) across 10% (column 1), 50% (column2) and 90% (column 3) 

percentiles (adapted from Lowe et al., 2019). 

Figure 2.13 to Figure 2.16 are chosen to demonstrate the heterogeneity of precipitation and 

temperature changes due to climate change. For further information regarding regional, 

National, European and global UKCP18 projections, see UK Met Office, (2018); Lowe et al., 

(2019); The Met Office, (2019) and Kay et al., (2020, 2021). 

Precipitation (%) 
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It is shown (Figure 2.13 to Figure 2.16) that across all presented scenarios, the extent and 

severity of seasonal temperature and precipitation will vary across the UK. Referring back to 

Figure 2.12, it can be seen that NFM (due to the observed ‘range’ of mitigative capabilities) is  

likely able to cope with the projected changes to a better extent than conventional methods 

(Lacob et al., 2014, 2017; Dittrich et al., 2019). This is due to the ability of NFM to be 

addressed on a case-by-case basis, and differing types can be installed across differing areas of 

the catchment to better counteract the adversities of climate change (Dittrich et al., 2019; Kay 

et al., 2019; Connelly et al., 2020). Recent FRM policies supporting the implementation of 

NFM methods (Defra 25-Year Environment Plan, England Tree Action Plan 2021 – 2024 (see 

Chapter 9)) are primarily driven by the ability of NFM to potentially mitigate the turbidity of 

future climate projections. However, further research is needed to quantify and investigate 

(both empirically and through modelling) the potential for NFM methods to mitigate 

precipitation and temperature changes in future (Wells et al., 2020; Bark et al., 2021). 

 

2.2.3 Current Barriers of Natural Flood Management 

Current methods of FRM are rapidly becoming unsuitable in light of a changing climate (see 

sections 2.1 and 2.2.2), which has enabled a literature ‘push’ towards increased investigation 

into the useability and applicability of NFM methods (Wingfield et al., 2019). However, there 

are still limitations regarding NFM and the impact of such methods. The first fundamental 

limitation is the lack of supporting literature and long-term empirically monitored field data 

regarding the applicability of NFM compared with conventional methods (Kay et al., 2019; 

Wells et al., 2020; Ellis et al., 2021). The design and operation of conventional FRM methods 

are well documented, and they are designed to withstand pre-determined water volumes base 

on the maximum expected flow and AEP. However it is suggested by Waylen et al., (2018) 

that the current methods of assessing conventional FRM have influenced the way that NFM is 

judged, i.e., NFM is always assessed in comparison to conventional FRM, whereas their 
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premise of operation is often different (Kay et al., 2019; Wilkinson et al., 2019; Xiao et al., 

2021). Moreover, public perception of NFM compared with conventional FRM can be a 

disadvantage (Lavers and Charlesworth, 2018). Conventional FRM methods are often more 

visible to the public and methods such as flood wall, weir and dam construction can be blatantly 

observed, which validates the public perception that the methods are working (because they 

are visible) (Lacob et al., 2014; Waylen et al., 2018). However, as discussed throughout section 

2.2.2, NFM methods often involve tree planting and other vegetation across the entire 

catchment/floodplain; and in-channel methods of NFM are often installed in the upper/middle 

reaches of catchment, sometimes on riparian or private land, often designed to ‘blend in’ (Ngai 

et al., 2017; Burgess-Gamble et al., 2018; Ferguson and Fenner, 2020a). This removes the 

obviousness of the FRM method implementation, which fails to validate public perception to 

the extent of conventional methods (Environment Agency et al., 2017; Ngai et al., 2017). 

Furthermore, available funding for NFM projects is limited, and NFM implementation often 

struggles with justifying the benefits to stakeholders compared with other land uses over NFM 

(Waylen et al., 2018). For example, a farm located in the rural upper reaches of a catchment is 

more profitable and desirable to a landowner compared with selling the land to establish an 

area of woodland (Wells et al., 2020; Ellis et al., 2021). Additionally, quantifying an exact 

cost/benefit value of any NFM scheme is difficult; partially due to the variety of factors at play 

when dealing with NFM, and partially due to the lack of literature focussing solely on this issue 

(Dittrich et al., 2019; Short et al., 2019; Seddon et al., 2020). 

 

2.3 Tree Planting 

It is already understood that woodlands are beneficial to the oxygen cycle, store carbon, are 

amenable and create new habitat for fauna and flora (Lacob et al., 2014; Ellison et al., 2017; 

Forestry Commission, 2018). However, the UK is one of the least densely wooded countries in 

Europe, with coverage being 3.21 million hectares (13%) (Forest Research, 2020), 22% less 
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than the 35% European average (Food and Agriculture Organisation of the United Nations 

(FAO), 2020). Discussed in section 2.2, NFM methods that involve vegetation planting can 

increase interception, evapotranspiration, infiltration, soil storage capacity and surface 

roughness (Burgess-Gamble et al., 2018; Hankin et al., 2018; Ellis et al., 2021). Tree planting 

is known to influence surrounding hydrology (Lacob et al., 2014; Dittrich et al., 2019; Murphy 

et al., 2021); however there is a lack of evidence based long-term projects and/or research 

surrounding the use of trees as a source control measure, and the hydrological implications of 

tree planting remain largely unquantified (Forbes et al., 2016; Rahman and Ennos, 2016; 

Dadson et al., 2017). The schematic in Figure 2.17 demonstrates the key processes and methods 

in which trees can influence the surrounding hydrological processes. 
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Figure 2.17. Schematic diagram of the interaction between trees and hydrological processes 

(Adapted from Fazio 2012) 

When outlining the natural impacts that trees can have on their surrounding hydrology, and 

considering the effectiveness of tree planting as a potential method of NFM: tree roots break 

up the surrounding soil, increasing porosity and subsequent water storage and infiltration 

(Chandler et al., 2018; Zhang et al., 2019a, 2020) (see section 2.3.1). Tree litter improves soil 

health, encouraging biological activity in the soil which further enhances macro-porosity and 

soil structure (worm tunnels and animal burrows) (Dollinger et al., 2019; Lozano-Baez et al., 

2019) (see section 2.3.2). Precipitation is intercepted by the canopy of the tree before reaching 

the soil surface, prolonging the time that the soil takes to reach saturation and/or runoff 

(Klamerus-Iwan, 2014; Lunka and Patil, 2016; Cooper et al., 2021) (see section 2.3.3); and tree 

roots and litter can increase the surface roughness of an area, slowing and resisting overland 

flow (Ngai et al., 2017; Zhu et al., 2020a, 2020b) (see section  2.3.4). These features are 

discussed in further detail throughout the following sections, the current understanding of each 

is outlined and assessed, and a summary of the potential use of trees as a method of NFM will 

be outlined in section 2.4. 

 

2.3.1 Tree Root Growth and Infiltration  

Tree roots influence the porosity and soil structure of an area, increasing permeability and 

subsequent infiltration and storage; tree roots break up soils, increasing macro-porosity and 

connect flow pathways, reduce compaction and improve soil structure, which increases 

infiltration and water storage capacity (Jarvis, 2007; Zhang et al., 2017b, 2019a; Chandler et 

al., 2018; Leung et al., 2018; Malik et al., 2019; Xie et al., 2020; Guo et al., 2021). 

Additionally, precipitation is seen to follow tree roots, using them as conduits to infiltrate to 

deeper soil depths (Graham and Lin, 2012); and infiltrating water can travel via the ‘root 
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tunnels’ left after a tree dies, indicating that the impacts of tree establishment on infiltration 

can outlive the tree (Zhang et al., 2020; Cui et al., 2021; Wu et al., 2021).  

The extent to which tree roots can influence infiltration is dependent on numerous external 

factors, such as soil moisture, pH, structure and organic matter (Dobson, 1995; Crow, 2005). 

This complicates that predictability of the impact of root spread on infiltration, which may 

result in some woodland areas influencing infiltration more than others (Jarvis, 2007; Guo et 

al., 2021) – this in addition to the influences of soil texture, discussed throughout section 2.5. 

Regarding native British broadleaf woodland species, Perry (1982) discusses that mature Oak 

(Quercus) roots can spread up to 65 m in any given direction, however highlights that roots 

paths in general are hard to predict due to their opportunistic nature and local variations in 

topography and soil conditions. A study into 180 root systems and trunks of 15 and 20 year old 

Birch trees by Mauer and Palátová  (2003) found that the average root spread was 6 m radially, 

which is supported by literature suggesting methods of deriving root growth through trunk size 

(Dobson, 1995; Crow, 2005). Regarding Aspen, Hepner et al., (2020) suggest that lateral root 

spread is on average 15 m but can be up to 49 m, however it should be noted that this is only 

under hybrid-sucker conditions (where roots and trunks can encourage the growth of new tree-

stands due to re-establishment (Landhäusser et al., 2019)). Tree roots are difficult to survey in 

situ, particularly for projects investigating infiltration, as their locations are hard to detect 

without the use of expensive ground penetrating radar (GPR) methods (Alani and Lantini, 

2020; Zou et al., 2020; Aboudourib et al., 2021). Example long-term woodland planting and 

infiltration case studies to date are introduced in section 2.4. 

 

2.3.2 Biological activity  

The introduction of trees to an area brings more opportunity for biological activity – flora and 

fauna on both the macro and micro scales (Dollinger et al., 2019; Lozano-Baez et al., 2019). 

When (deciduous) trees lose their leaves throughout autumn, micro-biota and other wildlife are 
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attracted to the surrounds of the tree to forage for food. This process is also combined with the 

microscopic breaking down of tree leaves, converting them into nutrients, that are incorporated 

into the soil (Li et al., 2018). The increase in soil biological health attracts more biological 

activity from smaller animals (worms) that both enrich the soil and increase porosity at the 

same time (Anderson et al., 2020). The presence of small-scale biological activity attracts 

larger scale animals, that begin to burrow (rabbits, badgers, and rodents), further increasing the 

porosity and subsequent infiltration of the surrounding soil. These biological processes, 

combined with the increased porosity as a result of root spread (section 2.3.1), initiates a cycle 

wherein porosity is continually improved, as is infiltration (Burgess-Gamble et al., 2018; Jačka 

et al., 2021). It is noted that soil biological activity is dependent on the soil texture (section 

2.5), and sandier soils often see less biological activity due to their low organic matter content 

(Lozano-Baez et al., 2019). However, sandier soils inherit more pore space so infiltration is 

already increased over less permeable geology types (Folorunso and Aribisala, 2018) (further 

discussed in section 2.5).  

 

2.3.3 Interception 

Labelled in Figure 2.17, interception refers to the process of precipitation accumulating on 

above-surface vegetation before reaching the soil surface (Lunka and Patil, 2016; Ngai et al., 

2017). Regarding tree species, precipitation is intercepted by the canopy before reaching the 

soil surface, where it will either infiltrate, pool in an area of low micro-topography, or runoff 

(Rahman and Ennos, 2016; Rahman et al., 2019). Interception is dependent on several factors: 

the size and shape of the leaves, the density of leaves in the canopy (this is variable with 

seasonality if a deciduous tree), the antecedent conditions of the canopy and wind speed 

(Dohnal et al., 2014; Klamerus-Iwan, 2014). 

Quantifying the exact amount of precipitation stored as interception is challenging due to the 

need for specialised equipment or continuous monitoring, and few studies have focussed solely 
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on this parameter (Komatsu et al., 2011; Klamerus-Iwan, 2014; Rahman and Ennos, 2016). 

Referring to native UK broadleaf species (see section 5.2.1.1 ), interception loss as a percentage 

of total precipitation is estimated to be between 10–34% (mean 24.25 %) (Calder, 2003; Lunka 

and Patil, 2016). As a comparison, interception loss for grassland is negligible, being <1% 

(Nisbet, 2005; Ngai et al., 2017). The values presented differ for coniferous trees, as they retain 

their leaves throughout the winter seasons (Komatsu et al., 2011; Klamerus-Iwan, 2015). 

It should be noted that interception allows for the process of evapotranspiration (the 

combination of evaporation and vegetation transpiration (Huntington et al., 2018; Rahman et 

al., 2019)). A detailed knowledge of evapotranspiration can aid in the understanding of ‘big-

picture’ area hydrology (i.e., atmospheric water-cycle analysis); but from a hydrological 

modelling perspective (such as this study), a knowledge of interception is of greater value 

(Ficchì et al., 2019; Iida et al., 2020). Interception can be quantified as a loss throughout 

hydrological modelling, enabling a more accurate representation of rainfall-runoff processes 

(discussed in greater detail in section 5.6.2) (Ficchì et al., 2019; Iida et al., 2020; Cooper et al., 

2021). 

 

2.3.4 Tree Planting and Surface Roughness 

It is acknowledged that tree butts, surface roots, deadwood and leaf litter associated with trees 

can increase the surrounding surface roughness through creating areas of micro-topography 

and slowing the speed of overland flow (Marshall, 2016; Ngai et al., 2017; Rossi et al., 2018; 

Tzioutzios and Kastridis, 2020). However, this is difficult to quantify due to limited evidence-

based and the complexity of involved parameters (Zhu et al., 2020b). Few studies quantify the 

exact impacts of surface roughness on overland flow, meaning an actual numerical value (i.e., 

a Manning’s n value) is difficult to quantify (e.g., for use in hydrological modelling) (Hessel 

et al., 2003; Sarkar et al., 2008; Zhou et al., 2018a; Annis et al., 2020). Whilst the value of 

surface roughness has not been accurately quantified, it is seen as a method in which trees can 
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slow runoff and act as FRM, and ‘shelterbelts’ are a method of NFM that takes advantage of 

this known phenomena (Burgess-Gamble et al., 2018; Li et al., 2018). The following section 

will apply what has been reviewed throughout this section and evaluate the uses of tree planting 

as a method of NFM. 

 

2.4 Tree Planting as a Method of NFM 

Discussed in section 2.2, NFM methods commonly revolve around improving soil porosity and 

health, with the intention of improving soil infiltration and water storage potential (Ferguson 

and Fenner, 2020b). Section 2.3 discusses how tree planting can improve porosity, interception 

and surface roughness, which are all common goals of NFM, indicating that tree planting has 

potential as a method of NFM (Xiao et al., 2021).  

As outlined in section 1.1, the value of tree planting has been acknowledged, and is now being 

actively encouraged, by the UK Government. The ‘25-year Environment Plan’, which suggests 

increased woodland planting as a method of working towards a greener environment was 

introduced in 2018 (HM Government, 2018). Additionally, in 2021, the UK Government also 

announced the ‘England Trees Action Plan 2021 – 2024’, which aims to increase woodland 

cover for the benefits of CO2 sequestration, flood risk and biodiversity (UK Government, 

2021a). Further to this, the UK Government have allocated £4 million to organizations aiming 

to increase UK woodland coverage; and £1.4 million to the Environment Agency (England) 

for the same purpose (GOV.UK, 2020). Government grants have been introduced to encourage 

farmers to convert arable land to woodland via the ‘Woodland for Water’ scheme, run in 

coalition with the Environment Agency and the Forestry Commission (GOV.UK et al., 2019). 

Furthermore, the UK Government have pledged to plant 30,000 ha of trees per year until 2024 

(the end of the current Government (UK Government, 2021a). There were also additional 

protections warranted to trees in the Environment Act (UK Government, 2021b), stating that 

the unnecessary or illegal felling of trees could result in prosecution or fines. All the above 
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policy indicates that the appropriate authorities are aware of the potential benefits of tree 

planting. 

Murphy et al., (2021) examined the impact of tree planting on infiltration, porosity and 

compaction in Dartmoor National Park, SW England; finding that trees doubled the saturated 

hydraulic conductivity (infiltration capacity), and improved soil health and porosity. Xiao et 

al., (2021) removed varying quantities of coniferous woodland from three experimental 

catchments in the UK and compared the results against an adjoined control catchment. Results 

of the study showed an 8% - 41% change in baseflow and demonstrated an elevation in small 

event peak flows – indicating afforestation could supress such changes. The study concluded 

that whilst afforestation may reduce baseflow and peak flow, woodlands should not be assumed 

to protect against larger flood events. Cooper et al., (2021) undertook a review of the ability of 

catchment, cross-slope, floodplain, and riparian woodland to determine the effectiveness of 

each in mitigating flood risk. The study found that planned and managed woodland can mitigate 

flood risk, however the literature base for this subject is sparse, and more research is needed to 

improve the current state of knowledge regarding tree planting as a method of mitigating flood 

risk (Hankin et al., 2018; Kay et al., 2019; Ellis et al., 2021). Spatial identification studies have 

also been undertaken; for example Tzioutzios and Kastridis, (2020) devised a method of 

combining GIS techniques with true/false statements to identify suitable areas for tree planting 

across Scotland. 

In addition to the purely hydrological benefits of tree planting, trees and woodlands are of value 

when considering public amenity, biodiversity, habitat creation, and CO2 entrapment and 

conversion (section 2.3). Therefore, increasing investigations into tree planting as a method of 

NFM would be beneficial for both reducing fluvial flood risk, and increasing national 

woodland coverage for the benefit of the discussed (Hankin et al., 2018; Kay et al., 2019; Ellis 

et al., 2021). However, regardless of funding allocations and the increased investment in tree 

planting, the uptake of NFM in general is slow (Xiao et al., 2021). Whilst some studies have 
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attempted to investigate the link between tree planting and soil infiltration characteristics 

(Chandler et al., 2018; Murphy, 2021; Murphy et al., 2021), overall, there is a current lack of 

evidence based long-term research surrounding the use of tree planting as a source control 

measure, and the hydrological benefits of tree planting remain largely unquantified (Forbes et 

al., 2016; Dadson et al., 2017; Cooper et al., 2021; Murphy et al., 2021).  

 

2.4.1 Long-Term Tree Planting and Infiltration Case Studies  

Two long-term continuous studies in the UK have attempted to monitor and quantify the effect 

of woodland planting on infiltration; Pontbren and the Cefn Brwyn and Plynlimon catchments. 

The Pontbren (Powys, south Wales) study was established in 1997, and afforestation, 

shelterbelt planting and the improvement of existing woodlands and hedges began in 2001 

(Woodland Trust et al., 2013; Marshall et al., 2014). Results from the catchment show that 

infiltration in woodland areas were 67 times higher than that of grazed pasture, and runoff-

volumes from these areas were reduced by 78% compared with grassland (Marshall et al., 

2014; Ngai et al., 2017). Additionally, the hydraulic conductivity woodland areas were 2.4 

times that of grazed pasture, indicating that tree planting had increased and reconnected pore 

space (Solloway, 2012; Ngai et al., 2017). These results were deemed a combined result of 

increased interception and evapotranspiration from the canopies of trees, and increased 

porosity and subsequent infiltration as a result of root spread (Marshall et al., 2014).  

Monitoring began at the Cefn Brwyn (10.55 km2, grassland) and Plynlimon (8.70 km2, 70% 

wooded) catchments (west Wales) in 1967 to investigate the impacts of conifer planting and 

clear-felling on surrounding hydrological processes (Kirby et al., 1991; Centre for Ecology and 

Hydrology, 2014). The ages of trees ranged from 40 – 60 years. Results from the study show 

that the woodland catchment reduced runoff in compassion to the grassland catchment, and 

extrapolations have indicated that a completely wooded catchment could reduce runoff by 15% 

compared to a similarly sized grassland catchment (Kirby et al., 1991). However, it must be 
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acknowledged that during both extreme low and extreme high-flow events, there was very little 

variation in runoff between the two catchments (Robinson and Newson, 1986; Kirby et al., 

1991), and this was attributed to the woodland catchment consisting of only a small amount of 

canopy storage, and generally drier soils beneath woodland stands compared with grassland. 

(Dadson et al., 2017). 

Both studies contribute to what is otherwise a sparse literature base, regarding the changes in 

infiltration over a longer time period, which is advantageous over most recent studies 

conducted over a shorter duration (Chandler et al., 2018; Rahman et al., 2019; Zhang et al., 

2020; Murphy et al., 2021). However, whilst these studies focus on the impact of changing 

infiltration due to tree planting, neither has continually measured infiltration, nor analyse 

infiltration variation dependent on tree proximity and maturity. Instead, information regarding 

infiltration change is estimated based on input/output measurements of the catchment. This is 

a common limitation of similar studies due to the amount of time and resources required in 

continual infiltration data collection (Archer et al., 2016; Lunka and Patil, 2016; Vergani and 

Graf, 2016; Guo et al., 2021; Murphy et al., 2021). 

 

2.5 Infiltration, Soil Texture, Soil Structure and Compaction 

Discussed throughout sections 2.2, 2.3 and 2.4 is the common reliability of NFM methods on 

soil infiltration; however, infiltration is governed primarily by soil characteristics, which are 

outlined throughout this section. The permeability of a soil influences infiltration rate (speed, 

in mm/hr) and capacity (total volume, in mm), and is governed by the soil texture (the 

percentiles of sand, silt and clay), the soil structure (the distribution of sediments, pore and 

pore size) and the hydraulic conductivity (the connectivity of pore space) (Rabot et al., 2018; 

Sun et al., 2018; Silber, 2019; Bátková et al., 2020; Ren et al., 2020). From initial saturation, 

infiltration continues at a constant rate until reaching the soils capacity and overland flow 
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(surface runoff) will occur if saturation continues beyond this point (Lili et al., 2008; 

Hornberger et al., 2014).  

Soils comprise of varying quantities of sand (0.06 mm – 2.0 mm), silt (0.002 mm – 0.06 mm) 

and clay (<0.002mm), referred to as separates, and the infiltration characteristics (permeability) 

of a soil can vary depending on the quantity and distribution of each (Folorunso and Aribisala, 

2018). In the UK, 11 subcategories are used to define and classify soil texture dependent on 

the percentile of each separate in a sample, and the soil texture triangle (Figure 2.18) can be 

used to identify each after the sand/silt/clay percentiles of the sample soil has been identified. 

See Figure 2.18.  
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Figure 2.18. UK Soil Texture Triangle and tabulated soil texture classifications. Note ‘loam’ 

refers to the matrix comprising of equal parts of each specified separate (adapted from 

Avery, 1973 and LandIS, 2020). 

In addition to soil texture, soil structure – referring to the distribution of particles, particle sizes, 

pores, and pore sizes within a soil matrix – also influences infiltration (Archer et al., 2013). If 

particles throughout a soil matrix are well sorted (all particles are a similar size and distribution) 

and are larger in size, such as sand, they do not fit tightly together which increases the size and 

frequency of pore space within the matrix (Chesworth et al., 2008; Archer et al., 2013; Gee 

and Or, 2018). This pore space allows for the greater connectivity of hydraulic pathways 

meaning that as water infiltrates, it can transmit more quickly through the soil. In a poorly 

sorted soil such as a sandy-clay (Figure 2.18), the small clay particles will fill the pores between 

the sand particles, decreasing permeability and reducing infiltration rate and capacity 

(Chesworth et al., 2008; Archer et al., 2013). It is also worth noting that infiltration through a 

well-sorted clay soil is slow due to the clay particles fitting tightly together, representing the 

characteristics of an impermeable surface (Revell et al., 2021). 

Compaction can influence soil structure and infiltration characteristics (Marcotullio et al., 

2008; Yang and Zhang, 2011). Internally, a soil can become compacted due to a lack of organic 

matter, a breakdown of structure and pore space and a lack of water content in the soil 

(Franzluebbers, 2002; Sun et al., 2018). Externally, soil can be compacted through wildlife 

grazing and trampling, heavy machinery, and repetitive vehicle and foot traffic (Al-Dousari et 

al., 2019; Jordon, 2021). Figure 2.19 shows the impact of compaction on a soil column.
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Figure 2.19. Exaggerated a) highly permeable soil comprising of frequent, large, 

interconnected pore spaces, b) a compressed soil with low permeability comprising of 

infrequent, smaller, disconnected pores (Adapted from Hornberger et al., 2014). 

Although permeability and pore storage can be reduced through compaction, the opposite is 

seen in areas that are biologically active; in areas that are inhabited by wildlife and other micro-

biota, pore space can be increased and soil structure made more pervious (Graham and Lin, 

2012). Biological activity such as worm holes, root channels (which can act as conduits for 

infiltrating water (see section 2.3.1), or animal burrows can increase the frequency of 

macropores and increase pore connectivity increasing permeability (Blok et al., 2008; Osman, 

2013; Kirkham, 2014a).  

Regarding NFM, soil texture and structure can significantly influence the methods used. It is 

outlined in section 2.2 that NFM methods are not as consistent (in terms of flood risk reduction 

potential) as conventional methods (Lavers and Charlesworth, 2018; Wilkinson et al., 2019; 

Wingfield et al., 2019), and their effectiveness varies from catchment to catchment. Some NFM 

methods (vegetation and tree planting) rely on increasing porosity and infiltration to reduce 

overland flow and overall flood risk, so consideration must be given to the effectiveness of the 

NFM method used from area to area (Ngai et al., 2017; Burgess-Gamble et al., 2018; Xiao et 

al., 2021). 
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2.6 Chapter Summary 

This section has discussed the current understanding of areas of relevance to this study using 

academic theories and up-to-date research, and highlighted several areas where research is 

sparse, inconsistent, or outdated. The first observation is that there is a lack of evidence 

regarding tree planting as a method to address high river flows, and more specifically, there is 

a lack of long-term studies focussing solely on the influence of tree planting on infiltration 

change due to proximity, root spread, and tree maturity. Additionally, it is understood that tree 

planting is of benefit to surrounding hydrology (roots breaking up soils, leaves intercepting 

precipitation); however, there are few evidence-based studies to support their use as a method 

of NFM. Moreover, the lack of collected infiltration data from planted trees may be a result of 

the awkwardness of collecting infiltration data via traditional methods (personnel, water and 

time required), which is discussed in greater depth throughout section Chapter 3. 

The findings of this literature review, and the identified areas of literature scarcity, have 

informed the aims and objectives of study (section 1.3). The following chapter (Chapter 3) 

discusses commonly acknowledged (regarding relevant literature) methods of infiltration data 

collection and flood modelling in greater depth, and the findings of both chapters have 

informed the methodology of this study, which are outlined in Chapter 5.  
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Chapter 3 Review of Previous Studies, Methods, and Tools 

 

This chapter discusses commonly used methods of infiltration data collection and hydraulic 

and hydrological modelling software. The aims and objectives of this study (section 1.3) 

indicate that infiltration data will be collected, then subsequently modelled, so an 

understanding of what methods exist and other authors who have investigated or utilised these 

tools is important for building the study methodology (Chapter 5). Model calibration and 

validation is discussed in addition to the Nash and Sutcliffe (1970) Efficiency (NSE) tool 

throughout section 3.3, and modelling limitations are outlined in section 3.4. 

 

3.1 Infiltration Measurement 

Understanding infiltration is important to identify the response of an area to precipitation and 

has been investigated in the literature by several authors (Carroll et al., 2004; Thomas and 

Nisbet, 2016; Chandler et al., 2018) comparing the infiltration rate of woodland soils to that of 

other land cover (i.e. grasslands) to determine runoff reduction as a result of increasing 

woodland cover. Studies comparing the infiltration of urban land cover to rural land cover to 

better understand the implications of urbanisation (Yang and Zhang, 2011; Sun et al., 2018). 

Studies assessing hillslope hydrology to gain insight about how slope influences infiltration 

rates and runoff (Harden and Scruggs, 2003; Archer et al., 2013); and authors calibrating 

hydrological models to observed site conditions, i.e., infiltration rates need to be as accurate to 

the field as possible whilst building a hydrological model (Park and Parker, 2008).  

Field work is an important element of infiltration data collection, particularly when evaluating 

the effectiveness of NFM methods (Wingfield et al., 2019; Connelly et al., 2020; Cooper et al., 

2021). Therefore, the following sections will evaluate the common methods of measuring 

infiltration in further detail, critically evaluating each based-on portability, useability, 

measurement, water usage, and derived measurement.  
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3.1.1 Single and Double Ring Infiltrometers 

The single ring infiltrometer (SRI) is a metal tube, inserted into the soil surface to a depth of 

between 5 and 10 cm (Wahl et al., 2003; Carroll et al., 2004; Chandler et al., 2018). Water is 

added to the tube and the level is recorded at consistent time intervals, defined by the user 

(Bátková et al., 2020). Measurement continues until the water level remains constant for 

(commonly) three-time intervals, at which point the total and mean infiltration rate of the area 

can be calculated (Bagarello and Sgroi, 2004; Chandler et al., 2018). Total infiltration is the 

sum amount of water that enters the soil over the measurement duration, and the infiltration 

rate (in minutes) is a division of the total sum by the measurement duration. The primary 

limitation of the SRI, however, is the lateral leakage (seepage), whereby infiltrating water 

travels laterally instead of vertically, which can lead to an overestimation of the infiltration rate 

(Muneer et al., 2020). 

Double ring infiltrometers (DRI) consist of two cylindrical tubes, one larger than the other 

inserted 5-10 cm into the sample soil (Fatehnia et al., 2016; Folorunso and Aribisala, 2018). 

Whilst there is no guidance regarding the ratio of DRI ring sizes, it is common to use an outer 

ring with double the diameter of the inner (Lai and Ren, 2007; Zhang et al., 2017a; Nestingen 

et al., 2018). The outer ring of the DRI is filled and kept at a constant head throughout 

measurement, forming a ‘bulb’ around the infiltrating water from the inner-ring (Hornberger 

et al., 2014). This encourages the vertical infiltration of inner-ring water and minimises lateral 

seepage and measurement inaccuracy, which is often inherent with SRI measurement 

(Folorunso and Aribisala, 2018; Rönnqvist, 2018; Zhang et al., 2019b; Muneer et al., 2020). 

The method of recording and deriving infiltration rate and capacity when using the DRI is the 

same as the SRI. The infiltration process of the SRI and the DRI are shown in Figure 3.1. 
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Figure 3.1. The infiltration processes of both a) SRI’s and b) DRI’s. 

It is agreed within the literature that the size of SRI’s and DRI’s should be as large as possible 

to minimise lateral seepage and reduce edge effects (Bagarello and Sgroi, 2004; Lai and Ren, 

2007; Khodaverdiloo et al., 2017; Nestingen et al., 2018). Lateral seepage refers to water 

travelling laterally instead of vertically, leading to an overestimation of the infiltration rate 

(Muneer et al., 2020); and edge effect is the phenomena of an external factor, or change in 

sampling consistency, influencing the process of consistent data collection or replication (Woo, 

2004; Dai et al., 2017). However, this is not always possible if transportation, personnel and 

water availability is limited in the field (Milla and Kish, 2006; Chen and Hsu, 2012; Kirkham, 

2014b; Nestingen et al., 2018). See Table 3.1.
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Table 3.1. Studies utilising single and double ring infiltrometers with application and size 

noted. 

Single-Ring Infiltrometers 

Author  Overview of study Size (cm) 

Murphy et al., (2021) Woodland establishment and soil hydrological functioning 10 

Xu et al., (2012) Comparing methods of deriving infiltration from SRI data 14 

Hu et al., (2020) Field Assessment of the maintenance of permeable paving 30 

Di Prima et al., (2018) transient and steady-state single-ring infiltrometer analysis 100 

Double-Ring Infiltrometers 

Nestingen et al., (2018) Laboratory comparison of field infiltrometers 20, 40 

Mahapatra et al., (2020) Assessing Variability of Infiltration Characteristics in India 30, 60 

Vand et al., (2018) Comparative Evaluation of Infiltration Models 30, 60 

Zhang et al., (2019b) Method to partition preferential flow in forest soil 30, 60 

 

One significant limitation associated with both the SRI and DRI is that they disrupt the soil 

(Bagarello et al., 2014; Zhang et al., 2019b). The intrusive insertion of the rings in to the soil 

can create macropores, leakage passages and distort the natural homogeneity of the soil making 

replication difficult and increasing measurement error (Bagarello and Sgroi, 2004; Zhang et 

al., 2017a). Additionally, measurement of infiltration can be a time consuming process (in 

some cases up to six hours (Johnson, 1963)) dependent on desired result and soil type, making 

multiple site sampling challenging (Alagna et al., 2016). Often, such equipment (SRI/DRI) is 

cumbersome to transport around the study site, and can require vast amounts of water for 

measurement and replication (which is not always easily attainable ‘in the field’); furthermore, 

they are expensive and outside the budgetary constraints for some projects (~£2000 for a DRI 

(Eijkelkamp, 2015)). These limitations can become more prominent depending on the desired 

outcome of SRI and DRI usage. If replication and time-on-site are not confining factors of the 
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study, then the SRI and DRI methods are appropriate; however, if access to the study site, 

water, personnel and budget are limited, then another method of deriving infiltration 

characteristics may be advisable (Milla and Kish, 2006; Chen and Hsu, 2012; Kirkham, 2014b; 

Nestingen et al., 2018). 

 

3.1.2 Minidisk Infiltrometer (MDI) 

The Minidisk Infiltrometer (MDI), developed by METER® Group Inc., (2020), can measure 

the infiltration characteristics of a soil under a user-specified tension setting (Burguet et al., 

2016; Nestingen et al., 2018; Bátková et al., 2020; METER® Group Inc., 2020). See Figure 

3.2.
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Figure 3.2. The Mini disk infiltrometer with parts labelled (Decagon Devices, 2006; 

Robichaud et al., 2008) 

The MDI has a measuring (soil contact) diameter of 4.5 cm and holds a total of 135 ml of water; 

95 ml of which is for infiltration (the bubble chamber accounts for the additional 40 ml), 500% 

less than what is required by small SRI’s or DRI’s. The MDI is significantly smaller and is 

easier and quicker to operate in the field than the SRI and DRI (Kirkham, 2014b; Nestingen et 

al., 2018). Furthermore, the method is non-intrusive - meaning measurements are taken from 

the soil surface which aids in measurement replication over time (Bagarello and Sgroi, 2004; 

Zhang et al., 2019b). However, vegetation cover does have to be removed from the soil surface 

around the area of measurement before the MDI can be used, as full contact with the soil is 

This item has been removed due to 3rd Party Copyright. The unabridged version of 
the thesis can be found in the Lanchester Library, Coventry University. 
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required (Robichaud et al., 2008; Nestingen et al., 2018; Naik et al., 2019; METER® Group 

Inc., 2020).  

The force that must be exerted on the base of the MDI by the soil to break the surface tension 

is controlled using the tension regulation tube. The user can select a desired tension, ranging 

from 0.5 cm (0.5 kPa) to 7 cm (7 kPa), in increments of 0.5 cm. The user manual suggests 

applying a higher tension when sampling more permeable soils and a lower tension when the 

soil is more compact (Naik et al., 2019; METER® Group Inc., 2020). Despite these indications, 

there is limited guidance on the influence that different suction settings have on deriving 

infiltration, and therefore the impact of selecting dissimilar settings for various soil textures 

when calculating the infiltration (Fatehnia et al., 2016; Nestingen et al., 2018; Naik et al., 

2019). Furthermore, these values are typically not considered in studies that have used the MDI 

(Table 3.2). 
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Table 3.2. Mini Disk Infiltrometer application, objective, and selected suction. 

Author and Reference Overview of Study Tension 

Nestingen et al. (2018)  A laboratory comparison of field infiltrometers 6 

Robichaud et al. (2008)  A field assessment of post-fire soil infiltration using the MDI 1 

Fatehnia et al. (2014) A comparison of equations used to determine K 1, 2, 3 

Matula et al. (2015) A field comparison of K measurements from infiltrometers 0.5, 1, 3 

 

Being a tension infiltrometer, the MDI allows the user to select the desired tension, which will 

act on infiltrating water to define the size of pores allowed to participate in infiltration. The 

higher tensions (closer to 7 cm) only allow infiltration via micro-pores, whereas lower tensions 

(closer to 0.5 cm) allow infiltration via macro-pores. The MDI user manual suggests a suction 

setting of 2 cm will sufficiently derive the infiltration characteristics of most geology textures 

(METER® Group Inc., 2020).  

Compared with the SRI and DRI, the MDI is significantly smaller, uses less water, is easier 

and quicker to operate in the field and facilitates non-disruptive measurements, allowing for 

replication (Kirkham, 2014b; Nestingen et al., 2018). Ring-infiltrometer methods require 

insertion of between 5 and 10 cm into the sample soil to allow for the determination of 

infiltration characteristics (Bagarello et al., 2014; Chandler et al., 2018). This is a fundamental 

disadvantage of ring infiltrometers as the soil is not only disturbed when the ring is inserted, 

but also when the infiltrometer is removed; over time, the disturbance caused renders 

replication at the same location inaccurate as the soils structure is altered significantly 

(Bagarello and Sgroi, 2004; Zhang et al., 2019b). Damage to the soil structure through this 

method renders all future infiltration measurements unreliable as they no longer represent the 

wider sample area (Zhang et al., 2019b). This is an issue that is avoided by the MDI as the 

device does not need to be inserted into the soil, meaning replication can be undertaken multiple 

times from the sample location. A disadvantage of the MDI, however, is that repetitive 
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measurement with the MDI in the same location can result in soil compaction from the pressure 

of the MDI’s base on the soil. Additionally, the MDI has a small measuring diameter, meaning 

lateral seepage and edge effect could influence MDI results in the same manner as the SRI. 

Furthermore, the sintered steel disk can clog when taking measurements from fine-textured 

sample areas (Kirkham, 2014b).  

 

3.1.3 Chosen Method for Study 

Based on what has been discussed with reference to SRI/DRI and MDI methods (sections 3.1.1 

and 3.1.2), it is concluded that the MDI will be used to collect infiltration data for this study 

(in line with objective 1a); providing some validation is carried out (this is further described in 

Chapter 6). It is highlighted in section 3.1.1 that SRI and DRI methods are commonly employed 

by other studies (Di Prima et al., 2018a; Nestingen et al., 2018; Mahapatra et al., 2020; Murphy 

et al., 2021), however the intrusive method of measurement, the water requirements, the 

personnel requirements and their cost make these methods impractical for the objectives and 

desired outcomes of this study (Milla and Kish, 2006; Chen and Hsu, 2012; Kirkham, 2014b; 

Nestingen et al., 2018). Replication is an imperative element of the infiltration data collection, 

as replication adds reliability to collected data (Prieksat et al., 1994; Logsdon and Jaynes, 1996; 

Khodaverdiloo et al., 2017), and it is discussed in section 3.1.1 that replication is not possible 

with SRI/DRI methods as the homogeneity of the soil core is disrupted with every 

measurement. Additionally, the equipment required to carry out SRI/DRI measurements across 

multiple sample areas whilst solo-working can pose a safety risk, in addition to the common 

constraints of access to water whilst in the field. 

Use of the MDI will mitigate the key issues posed by the use of SRI/DRI methods. The MDI 

is significantly smaller than SRI/DRI methods, meaning it can be carried and operated across 

a study site by one person; uses less water, meaning the potential constraint of re-filling is 

mostly avoided (if re-filling is required, a large water bottle is often sufficient); is easier and 
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quicker to operate in the field; and facilitates non-disruptive measurements, allowing for 

replication (Kirkham, 2014b; Nestingen et al., 2018). As discussed, SRI/DRI methods require 

5 and 10 cm of insertion into the soil for measurement (Bagarello et al., 2014; Chandler et al., 

2018), which is highly disruptive and ruins future replication; however this is avoided by the 

MDI as the device does not need to be inserted into the soil.   

The MDI user manual suggests that 30-40ml of water needs to be infiltrated to collect an 

accurate and representative infiltration measurement, however it is unlikely that there will be 

enough time on site to allow this volume of water to infiltrate (inclusive of replication 

measurements). Therefore, a validation pilot study will need to be undertaken to validate MDI 

measurements over time, and a methodology devised to collected equally representative data 

over a shorter duration. This is described in Chapter 6. 

 

3.2 Flood Modelling  

Simplistic methods of flood modelling were developed in the 1850’s by Mulvany (1850), who 

founded the rational method; a mathematical equation was used to determine peak discharge 

from small catchment areas, useful for assisting with the design of sewer and drainage systems 

(Todini, 2007; Mai and De Smedt, 2017). Advances in computing allowed for the development 

of more complex flood modelling software, able to comprehensively simulate the hydraulic 

processes (in-conduit), hydrological processes (loss mechanics of the whole catchment), or 

both (Barthélémy et al., 2018; Li et al., 2020). Hydraulic models can be categorised as 1-

dimensional, 2-dimensional or linked (where both the 1-D and 2-D domains are utilized); 

hydrological (or rainfall-runoff) models often facilitate many other ‘process models’ that can 

be applied to a whole catchment, accounting for hydrological losses (Barthélémy et al., 2018; 

Patil et al., 2019). Hydrological models usually accommodate 1-D modelling, but the 2-D 

domain is less common. 
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3.2.1 Hydraulic Modelling 

3.2.1.1 1-Dimensional (1-D) 

One-dimensional models (or routing models) assess water flowing in one directional plane 

(Pasquier et al., 2019). They are normally constructed using a series of user-defined cross 

sections or pipes and can calculate in-channel flow level from a given rainfall event (Ng et al., 

2018; Pasquier et al., 2019). Depending on the complexity of the modelling software, in-

channel features and obstructions such as weirs, bridges or culvers can be added to test the 1-

D response of a watercourse (Teng et al., 2017; Stamataki and Kjeldsen, 2021). 1-D models 

are more simplistic compared with 2-D or linked models, require less input information to run 

effectively, complete simulations quickly and require less computing power (Moya Quiroga et 

al., 2016; Barthélémy et al., 2018). However, 1-D models lack the ability to compute overbank 

flow (as flow onto the floodplain is 2-dimensional), consider momentum or compute complex 

interactions between the floodplain and river channel – which are often of primary interest to 

the user (Kong et al., 2017; Ngai et al., 2017; Lea et al., 2019). 

 

3.2.1.2 2-Dimensional (2-D) 

Two-dimensional models simulate water flowing across two directional planes (watercourse 

and floodplain), making them naturally more complex however enabling both the input and 

resultant output to more comprehensive than that of a 1-D model (Brunner, 2016; Pasquier et 

al., 2019). 2-D models are (most often) used to simulate water pooling, levee breach and 

flooding through (commonly urban) areas of interest to the study (Crispino et al., 2015; Gharbi 

et al., 2016; Pasquier et al., 2019). Whereas 1-D river models require cross sectional data for 

topographical calibration, 2-D models require a continuous representation of surrounding 

topography which is commonly achieved using a user-defined active area (Betsholtz and 

Nordlöf 2017, Finaud-Guyot et al. 2011). To maximise the topographical accuracy of a 2-D 
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model, most offer the ability to import compatible (e.g. .ASCII or .TIF) GIS elevation files, 

meaning the model can automatically detect topography (Shahiriparsa et al., 2016; Pinos and 

Timbe, 2019). Compared with 1-D models, where flow is confined to the user-defined 

watercourse, a 2-D model will ‘fill up’ with water from a defined control point, highlighting 

any areas of flooding and often (depending on software capability) providing a visual 

representation of where, when and to what extent the area simulated will flood.  

 

3.2.1.3 Linked Modelling (1-D/2-D) 

Linked hydraulic modelling offers an improved understanding of interactions between the 1-D 

and 2-D domains due to the representation of both 1-D and 2-D modelling domains, 

representing interactions between topography and hydraulic features and urban (e.g., buildings, 

walls, sewers) (Noh et al., 2018; Cardoso et al., 2020). Linked modelling is complex and 

computationally demanding, as are the equations involved in computing linkages, which vary 

in complexity and required/assumed data depending on user requirements (linked model 

equations are comprehensively detailed by (Lin et al., 2006; Finaud-Guyot et al., 2011a, 2011b; 

Aricò et al., 2016; Morales-Hernández et al., 2016; Geng and Wang, 2020; Yang et al., 2020). 

Liked modelling can be of value (depending on study requirements) due to its ability to 

represent flows both in the river channel, and on the floodplain (Pasquier et al., 2019; Li et al., 

2020), and have been used in academic studies (Barthélémy et al., 2018; Lea et al., 2019; 

Pasquier et al., 2019; Cardoso et al., 2020). However linked modelling remains a relatively 

unexplored area (Lea et al., 2019; Pasquier et al., 2019). 
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3.2.1.4 Selected Hydraulic Models 

3.2.1.4.1 MicroDrainage 

MicroDrainage is a hydraulic modelling software commonly used by practitioners to design 

and simulate hydraulic features (storm-water sewers, foul-water sewers, culverted 

watercourses)  (Innovyze, 2021). The software allows for the integration of GIS software, 

allowing the user to visualise the design process, compare with solely relying on spread-sheet 

outputs (Innovyze, 2021); MicroDrainage has been used to design and test SuDS for new-build 

and retrofit developments. Sañudo-Fontaneda et al., (2017) compared the predictive ability of 

MicroDrainage to simulate discharge from highway filter drains when compared with 

laboratory testing under multiple rainfall scenarios, finding the simulated results to correlate 

closely from both methods. Lashford et al., (2020) used MicroDrainage to simulate the 

reductions in discharge from multiple SuDS methods, finding results from all simulated 

methods to positively reduce flows over 720-minute duration storms of varying intensity. 

Literature involving the use of MicroDrainage is sparse, primarily due to the cost of licensing 

the software and stipulations from the developer regarding the publication of methods and 

processes. Regarding the scope of the aims and objectives of this study (section 1.3), 

MicroDrainage is outside the budgetary constraints, and only computes the 1-D domain, 

whereas this study intends to model the catchment scale.  

 

3.2.1.4.2 Hydrologic Engineering Centre’s River Analysis System (HEC-RAS) 

HEC-RAS is a freely available hydraulic modelling software capable of modelling 1-D and 2-

D flow (US Army Corps of Engineers, 2021). The software supports GIS integration, and 

allows for river profile cross-sections to be created and imported from Arc-Map through a plug-

in, HEC-GeoRAS (Zhou et al., 2018a; Joshi et al., 2019). Abdessamed and Abderrazak (2019) 

used HEC-RAS to analyse the flood extent of Ain Sefra city, Algeria, both with and without 

the implementation of concrete retaining walls, finding that the retaining walls decreased flood 
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extent, but could not mitigate against higher intensity storms. Lea et al., (2019) test the 

efficiency of HEC-RAS to simulate 1-D/2-D linked models using the Baeksan river levee 

breach event in South Korea in 2011; result show a good correlation between aerial 

photography of the event and simulated flood extent, showing HEC-RAS to be effective when 

simulating flood inundation. Malik and Pal (2020) used HEC-RAS to generate ratings curves 

for limited observed telemetry points in an effort to predict the early signs of flooding in data-

sparce areas of West Bengal, concluding that HEC-RAS was capable of simulating the ratings. 

Whilst HEC-RAS is capable of 1-D/2-D simulation, its predominant focus in in-channel 

geomorphology and obstruction, and there is no capability to inputting catchment hydrological 

data such as infiltration, interception and evapotranspiration. Thus, the use of HEC-HMS is 

infeasible when considering the aims and objectives and desired outcomes of this project 

(section 1.3). 

 

3.2.2 Hydrological (Rainfall-Runoff) Modelling 

Hydrological (or hydrologic/rainfall-runoff) models differ from hydraulic models as their 

primary objective is to account for hydrological processes throughout the catchment, compared 

with only assessing in-channel or floodplain flow (Ficchì et al., 2019; Annis et al., 2020). 

Rainfall is considered the primary component of the hydrological cycle (Tikhamarine et al., 

2020), and the hydrological process that can effect rainfall on its way to the receiving 

watercourse are where a hydrological model is of value (Sahraei et al., 2020). Hydrological 

models are valuable when assessing the modelled impacts of land use change (infiltration 

change, vegetation planting) (Asadi et al., 2019), and investigating the hydrological changes 

throughout a catchment as a result of changing precipitation and/or weather patterns (which is 

of value considering climate change) (Rubinato et al., 2019).  
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3.2.2.1 Selected Hydrological Models 

3.2.2.1.1 HYSIM 

HYSIM is a hydrological model owned and licensed by Water Resource Associates (2021), 

and is capable of simulating interception, surfacer runoff, infiltration, soil-water exchange, 

baseflow, groundwater abstraction, and in-channel flow. HYSIM does not incorporate common 

methods of simulating (i.e.) precipitation, infiltration, surface roughness or evapotranspiration; 

instead, the total loss from all selected features are subtracted from the total precipitation to 

predict an outflow from the study site (Water Resource Associates, 2021). This makes the 

model less comprehensive than others (e.g.) HEC-HMS, due to the rigidity of parameter 

selection and output. Adeloye and Dau (2019) utilised a calibrated HYSIM model to simulate 

the hydrological and hydraulic impact of nearby hedging operations on the reliability of 

irrigation water supply on the Pong reservoir, India. Remesan et al. (2019) built and calibrated 

two contrasting HYSIM models to determine the impact of model perimeter selection on 

output, using the River Beas catchment in the western Himalayan region of India. However, 

the use of the model in academic studies (and publication of its use) is sparse due to its common 

use in industry, licensing agreements, and the cost of licensing and using the software.  

 

3.2.2.1.2 Hydrologic Engineering Centre’s Hydrological Modelling System, HEC-HMS 

HEC-HMS can simulate multiple hydrological processes throughout the rainfall-runoff 

process, and is commonly used in the literature to assess the impacts of catchment changes 

(land used, climate, weather) on overall hydrology (Derdour et al., 2018; Al-Mukhtar and Al-

Yaseen, 2019; Joshi et al., 2019; Nkwunonwo et al., 2020; Rangari et al., 2020). HEC-HMS 

allows the application of various numerical ‘process models’ to be applied to each stage of the 

rainfall-runoff process, meaning a model can be tailored to serve a very specific purpose 

dependent on the required output. On the hydrological side, HMS supports 10 infiltration/loss 

models, 7 transform methods and 5 baseflow methods (Scharffenberg, 2016). Additionally, 
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HEC-HMS supports hydraulic element simulation allowing watercourses to be inputted as 

either user-defined open channels, or various shaped culvers/pipes. Six routing methods can be 

applied to the hydraulic elements to reflect either open-channel flow, or pipe flow. appendix 

A.1 outlines the specific process models supported by HEC-HMS. Table 3.3 shows the element 

selection of authors who have undertaken projects using HEC-HMS.  
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Table 3.3. Literature uses of HEC-HMS with selected loss (L), transform (T), baseflow (B) and routing (R) models specified. 

Author Study Purpose L T B R 

Zelelew and 

Melesse, (2018) 

The applicability of a spatially semi-distributed hydrological 

model for runoff estimation in Northwest Ethiopia 

Initial and Constant / 

SCS Curve Number 

SCS Unit Hydrograph / 

Clark Unit Hydrograph 

Constant 

Monthly 

Muskingum 

Koneti et al., 

(2018) 

Modelling land-use and land-cover change runoff dynamics in 

the Godavari River basin  

SCS Curve Number SCS Unit Hydrograph Constant 

Monthly 

Muskingum 

Cunge 

Derdour et al., 

(2018) 

Rainfall runoff modelling using HEC-HMS in Ain Sefra 

watershed, Ksour Mountains  

SCS Curve Number SCS Unit Hydrograph - - 

Kafle, (2019) Rainfall-runoff modelling of the Koshi River basin using HEC-

HMS 

Deficit and Constant Clark Unit Hydrograph Constant 

Monthly 

Muskingum 

Joshi et al., 

(2019) 

Simulating rainfall-runoff characteristics in the Cache River 

Basin, Illinois 

SCS Curve Number SCS Unit Hydrograph - Muskingum 

Cunge 

Cahyono and 

Adidarma, 

(2019) 

Influence analysis of peak rate factor in the event calibration 

process using HEC-HMS 

SCS Curve Number SCS Unit Hydrograph Recession - 

Al-Mukhtar and 

Al-Yaseen, 

(2019) 

Testing the ability of HEC-HMS to simulate flow in the Gilgel 

Abay Catchment, Upper Blue Nile Basin, Ethiopia. 

SCS Curve Number SCS Unit Hydrograph - Muskingum 
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Rangari et al., 

(2020) 

Urban area rainfall-runoff modelling of Hyderabad City using 

HEC-HMS 

Green and Ampt SCS Unit Hydrograph - Muskingum 

Cunge 

Ramly et al., 

(2020) 

Evaluating the performance of the Stormwater Management and 

Road Tunnel (SMART) in Kuala Lumpur 

SCS Curve Number SCS Unit Hydrograph - Muskingum 

Hamdan et al., 

(2021) 

Rainfall-Runoff Modelling Using the HEC-HMS Model for the 

Al-Adhaim River Catchment, Northern Iraq 

SCS Curve Number SCS Unit Hydrograph - Muskingum 

Hussain et al., 

(2021) 

Application of Physically Based Semi-Distributed HEC-HMS 

Model for Flow Simulation in Tributary Catchments of 

Kaohsiung Area Taiwan 

SCS Curve Number SCS Unit Hydrograph - Muskingum 
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Studies have been undertaken to validate the accuracy of HEC-HMS and the included process 

models. Halwatura and Najim (2013) undertook a validation of the accuracy of HMS and the 

included ‘process models’, finding that HMS can be reliably used to simulate flow providing 

prior calibration and validation has been performed (section 0). Gumindoga et al. (2017) used 

HMS to simulate flows from ten ungauged catchments in Zimbabwe, concluding that HMS can 

be accurately used to simulate flows from multiple subbasins and reaches over large areas. 

Oleyiblo and Li (2010) concluded that HEC-HMS is suitable for the simulation of study 

catchments, and added that whilst the structure of HEC-HMS is simple, it is a powerful tool 

for flood forecasting. Overall, the process models avaiable in HEC-HMS, combined with the 

free to use ethos and abundance of technical and applied support makes it a desireable software 

for hydrological study, as has been prsented in Table 3.3. 

 

3.2.3 Chosen Flood Model for Study 

As discussed regarding both MicroDrainage and HEC-RAS, they are hydraulic models 

focussing on 1-D and 1-D/2-D in-channel and floodplain simulations. Whilst they are powerful 

tools and have been used in the literature for a variety of applications, they will not be able to 

provide results of value in the scope of the aims and objectives of this study, as this study aims 

to investigate hydrological processes (section 1.3). Therefore, the modelling elements of this 

study, and the representation of the collected infiltration data, will be done-so using a 

hydrological model. HYSIM is discussed to be a powerful tool, with various add-ons that can 

aid in varying geomorphological and hydrological applications, however published literature 

using the software is scarce primarily due to the cost of attaining a licence and the stipulations 

on what can and cannot be published. HEC-HMS is discussed to be capable of simulating 

whole-catchment hydrology, inclusive of infiltration, runoff, interception and 

evapotranspiration; and is therefore chosen to build the hydrological rainfall-runoff model for 

this study (Derdour et al., 2018; Al-Mukhtar and Al-Yaseen, 2019; Joshi et al., 2019; Rangari 
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et al., 2020). This study focusses on catchment-based woodland-influenced hydrological 

processes and is less concerned with mapping in-channel features and the resulting flood 

events. The process models avaiable in HEC-HMS, combined with it being free to use with 

freely avaiable technical support, combine with  its abundant use in the literature (Gunathilake 

et al., 2020; Sahoo et al., 2020; Sharu, 2020; Hussain et al., 2021), make the software the most 

viable modelling software for this study. 

 

3.3 Flood Model Calibration and Validation 

Model calibration is the process of gradually and methodologically adjusting model parameter 

values so the simulated output of the model matches the observed output as closely as possible 

across multiple events (Sahraei et al., 2020; Othman et al., 2021). Models are commonly 

calibrated using observed and simulated streamflow or stage data (Kumarasamy and Belmont, 

2018; Al-Mukhtar and Al-Yaseen, 2019; Cahyono and Adidarma, 2019). The end goal of 

model calibration is to produce a set of model parameters that will consistently produce the 

best possible outputs over any simulated event (Othman et al., 2021). The number of 

parameters available for adjustment during calibration depends on both the complexity of the 

model, and the number of observed parameters across the study area (Kumar and Sherring, 

2021). The more observed hydrological parameters of an area, the fewer parameters that will 

be available for calibration. Models should be calibrated such that the modelled output best 

represents the observed output, however model parameters must only be adjusted to within a 

tolerance that still represents the hydrological characteristics of an area (Al-Mukhtar and Al-

Yaseen, 2019; Sharu, 2020). For example, adjusting the infiltration of a single sub-catchment 

to reduce the output of the model is a poor representation, even if infiltration data is ungauged; 

a more acceptable method is to spread infiltration over the ‘most realistic’ areas (Gholami and 

Khaleghi, 2021). 
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Hydrological models should be calibrated to the highest possible standard to ensure that future 

outputs are of a representative consistency (Othman et al., 2021). However, this is sometimes 

a difficult constraint to overcome, as good calibration is dependent on model complexity, 

observed and unobserved data, the methods used within the modelling software to determine 

hydrology, and the desired output and intended use of the model.  

Model validation is the process of analysing a model’s performance when simulating and 

forecasting events to within a pre-determined scope (Gumindoga et al., 2017; Patil et al., 2019). 

Model validation follows model calibration, and the (now) calibrated model is given new input 

parameters differing from those used in calibration (infiltration, precipitation, storm duration);  

the correlation is measured statistically to demine an overall accuracy of the calibrated model 

(Patil et al., 2019; Sahoo et al., 2020). Separate datasets from the same catchment are often 

used for calibration and validation, as validating a model using the same event as was used in 

calibration would show an identical relationship, and not achieve the aim of testing the models 

capability to simulate independent events without user interference (Al-Mukhtar and Al-

Yaseen, 2019; Sharu, 2020; Kumar and Sherring, 2021). No parameters are changed during 

validation (as this is done throughout the calibration stage), and once complete, validation 

indicates the final ability of the model to simulate events, both observed and unobserved.  

 

3.3.1 Nash and Sutcliffe Efficiency (NSE)  

To assess the ability of the model to simulate observed flow, the Nash and Sutcliffe Efficiency 

(1970) (NSE) method was used. The NSE method is a statistical method of comparing the mean 

variance, per specified timestep, of two comparable sets of continuous data; and is commonly 

used in the calibration and validation of hydrological modelling to indicate ‘goodness of fit’ 

(Derdour et al., 2018; Al-Mukhtar and Al-Yaseen, 2019; Cahyono and Adidarma, 2019; Paul 

et al., 2019). The NSE equation shows: 
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𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠 − 𝑌𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

] EQ 3.1 

Where 𝑌𝑖
𝑜𝑏𝑠 is the observed discharge, 𝑌𝑖

𝑠𝑖𝑚 is the simulated discharge and 𝑌𝑚𝑒𝑎𝑛 is the mean 

of observed discharge. 

The NSE method produces a value between 0 and 1, as an indication of how well the simulated 

dataset (𝑌𝑖
𝑠𝑖𝑚) fits the observed dataset (𝑌𝑖

𝑜𝑏𝑠). A value of 1 indicates a perfect fit between the 

two datasets, whereas a value of 0 (or a negative value) indicates a poor fit. The accuracy of 

the NSE method has been tested in the literature, concluding that if interpreted correctly, the 

method can be a reliable indication of model goodness-of-fit (McCuen et al., 2006). Model 

calibration and validation, play a crucial role in reducing model output ambiguity, reducing 

uncertainty and acting as indicators for the reliability of modelled results (Sharu, 2020). When 

statistical methods of correlation have been undertaken and shown results of an acceptable 

tolerance, it is fair to presume that any future modelled outputs are an acceptable representation 

of site hydrology (Othman et al., 2021). 

 

3.4 Limitations and Uncertainties of Flood Modelling  

Whilst flood modelling software is commonly used to detect, analyse and predict the hydraulic 

and hydrological response of a catchment to changes in input, there are limitations with 

modelling methods (Nkwunonwo et al., 2020). Hydrology is complex (Sy et al., 2019), and a 

large majority of it is unobserved and/or difficult to monitor without the use of expensive and 

extensive (and often intrusive) monitoring methods (Sy et al., 2019; Zhu et al., 2020c). To 

account for this complexity and lack of observed data, modelling software (such as those 

introduced throughout sections 3.2.1.4 and 3.2.2) utilises equations and simplifications of 

movement processes (routing methods, transform methods, baseflow method) to simulate a 

‘most likely’ response (Li et al., 2010; Beven, 2019). Additionally, modelling is often limited 

by the quality and quantity of collected field data (infiltration, flow data, cross sectional 
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measurement), however the collection of such data is commonly sparse due to time/budgetary 

constraints (Sy et al., 2019). The accuracy and availability of remotely sensed data can also 

influence the accuracy of flood modelling; the misrepresentation, availability and resolution of 

DTM data used in model build can distort or impede the final result, making results from the 

model less-reliable (Sy et al., 2019). Moreover, the cost of modelling software and the 

expenditure that can be attributed to collecting and processing field data can have an impact on 

overall model output (David and Schmalz, 2020; Rampinelli et al., 2020). However, regardless 

of the limitations highlighted, hydrological modelling is abundantly used in both academic and 

industry settings to investigate and assess the implications of (i.e.) development, land use 

change and flood intervention methods to a catchment, and the resulting hydrological changes 

as a result; and many authors have conducted studies relying on flood modelling software 

(Ahmadian et al., 2018; Zelelew and Melesse, 2018; David and Schmalz, 2020; Deng et al., 

2020). Flood modelling should not be interpreted as an exact representation of what will happen 

across a catchment, however it is a vital tool in using what is known and observed, to 

mathematically produce a ‘most likely’ response (Rampinelli et al., 2020; Kumar and Sherring, 

2021).  

 

3.5 Chapter Summary 

This chapter has identified the primary differences in commonly utilised methods of infiltration 

data collection, and assessed them in line with the aims and objectives of this study. The 

primary observations are that the SRI/DRI methods of infiltration data collection require large 

amounts of water during operation, are expensive, cumbersome to carry across large areas, and 

measurements are non-replicable due to the disruption caused to the soil column. The MDI, 

however compensates for the primary issues with the SRI/DRI methods; the MDI is 

lightweight, portable, requires less water in comparison, and allows for measurement 
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replication due to its non-intrusive nature. The MDI has been chosen to collect infiltration data 

for this study.  

Different hydraulic and hydrological modelling software has been discussed, and appropriate 

literature regarding each has been identified. MicroDrainage and HEC-RAS are used as 

example hydraulic modelling software, and HYSIM and HEC-HMS are used as example 

hydrological modelling software. It is discussed in sections 3.2.1.4.1 and 3.2.1.4.2 that 

hydraulic modelling software is not appropriate for the desired study outcomes as they are only 

capable of simulating flow in one domain. Therefore, hydrological software should be used to 

best represent both the input data and desired outputs of the study, namely HEC-HMS (this is 

discussed in greater detail throughout section 5.3).  

Model calibration and validation are valuable processes that can assist in improving the 

predictive output of flood models, and the NSE method of deriving a numerical figure is useful 

throughout this process for a numerical indication of model performance. The HEC-HMS 

model is calibrated and validated, the process of which are outlined in sections 5.4 and 5.5. 
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Chapter 4 Study Site 

 

This section discusses the rationale for study site selection, highlights the desired requirements, 

and explains the reasoning for choosing the selected site. Section 4.1 outlines the desired 

requirements of any potential study site based on the desired outcomes of this project, section 

4.2 explains the reasons for study site selection, which is followed by further study site 

investigation in sections 4.2.1 (watershed delineation), section 4.2.2 (topographical analysis), 

section 4.2.3 (hydrological analysis) and section 4.2.4 (geological analysis).  

 

4.1 Characterising the Study Site 

Both aim 1 and aim 3 focus on the collection and simulation of infiltration data, meaning a 

study site needed to be identified for study. It is discussed in section (3.1) that the MDI would 

be used for infiltration data collection, and the MDI is further explored throughout Chapter 6. 

As per the requirements of objective 1a (section 1.3), the sampling of the chosen study site 

would need to be achievable in a single day to keep weather conditions as constant as possible 

- if data collection was to be split across several days, issues would arise regarding the changing 

antecedent conditions of the sample plots, particularly if there was rainfall between days (Chen 

et al., 2015; Bois et al., 2020). Accommodating data collection over a single day was also a 

requirement of the health and safety and ethical agreements of this project (see Appendix B.9). 

As data collection was to continue throughout summer and winter, it was unsafe to sample the 

site alone during the shorter and darker winter days. Furthermore, the study site would also 

need to be safely navigable by foot, i.e., not be obscured by fences / private land / impassable 

areas (wetlands etc.). This is both for the benefit of the health and safety requirements of this 

project regarding lone working (see Appendix B.9), but also due to the lack of access to 

vehicular travel whilst on site. In addition, the chosen study site would ideally contain plots of 

woodland planted in different (known) years, which would accommodate objective 1b of this 
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project, which is to sample the effects of woodland planting due to both tree proximity and 

maturity. In addition, the study site would include an area of grassland (as a control and for 

hydrological modelling), and an area of mature woodland, for comparison against newer 

planted trees. Finally, the chosen study site would ideally contain a watercourse, which is 

accessible enough to install monitoring equipment and take cross-sectional measurements for 

the benefit of hydrological modelling. A rain gauge in close proximity to the site would also 

be beneficial for the purposes of model calibration and validation. 

Upon identifying the desirable requirements of any potential study site, the Heart of England 

Forest (HofE) charity were approached to see if any sites matching these criteria were under 

their ownership. The HofE forest are introduced below (section 4.1.1). 

 

4.1.1 The Heart of England Forest and Planted Tree Species 

The Heart of England (HofE) Forest’s owned areas primarily fall within the catchment area of 

the Arrow and Alne Rivers in Warwickshire. Figure 4.1 shows the Arrow and Alne catchment 

area with reference to the UK as a whole. 
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Figure 4.1. The catchment area of the Arrow and Alne rivers, shown in reference to the UK 

(Data from Ordnance Survey, 2021, 2022). 

 To date, the HofE Forest have planted 1,883,928 trees across 2832 hectares of Warwickshire 

and Worcestershire, and aim to eventually plant and maintain 12,140 hectares of forest across 

the English Midlands for the benefit CO2 mitigation, public amenity, habitat creation, wildlife 

and biodiversity (The Heart of England Forest Charity, 2020, 2021). The HofE forest plant new 

areas of woodland in a random pattern, the only stipulation being trees be planted between 1 

and 6 meters from the next, with occasional 10 – 15 m wide walkways left unplanted to aid 

visitors access (Felix Dennis Trust, 2019; Heart of England Forest, 2020; The Heart of England 

Forest Charity, 2021). Grasslands areas are only mown twice throughout the summer, but are 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the 
Lanchester Library, Coventry University. 
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left mostly untouched with the intention of the areas gradually becoming more suitable for wild 

flower and small shrub species (Felix Dennis Trust, 2019; The Heart of England Forest Charity, 

2021) (Figure 4.3 and Figure 4.2) 

 

Figure 4.2. Newly planted area of HofE woodland showing planting populations and 

walkways. 
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Figure 4.3. HofE owned grassland area 

Planted tree species is dictated by the National Vegetation Classification (NVC), developed in 

1991 by the Joint Nature Conservation Committee (2003), defining the suggested distribution 

of vegetation species throughout the UK (JNCC, 2003; Rodwell, 2006). The HofE forests fall 

in to the NVC category ‘mature lowland broadleaved woodland’; the exact permissible species 

included under this classification are listed in appendix B.1. The HofE forest do not intent to 

replicate every aspect of mature broadleaved woodland, but to instead plant the key species to 

allow the woodlands to develop naturally (Felix Dennis Trust, 2019).  

To further characterise and understand the topography and hydrology of the Arrow-Alne 

catchment boundary (Figure 4.1), a 2m resolution digital terrain model (DTM) was generated 

using data from the Environment Agency et al., (2020) (see appendix Table B.16). This DTM 

was used to perform a flow direction analysis (Li et al., 2019) as a precursor to a watershed 

delineation, which would define the study site (Brunda and Nyamathi, 2015; Li et al., 2019). 

These processes are described in detail in Appendix B.2. 
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4.2 Spernal Study Site 

Discussions were held with the head forester of the HofE forest, in which the study site 

requirements (section 4.1) were outlined. The intention here was to find an area of HofE owned 

land that best matched the requirements study, and would best facilitate the aims and objectives 

of study (section 1.3). Outcomes of these discussions led to a HofE owned area at Spernal 

Farm; Spernal Farm and the surrounding area is shown in Figure 4.4.  

Figure 4.4. HofE Spernal site, tributary and river Arrow (aerial photography courtesy of 

Ordnance Survey, 2020). 

The HofE forest were in full support of the collection of continuous data from their Spernal 

study site, and allowed for the private car park to be used when collecting data from the study 

site. In addition to this, the Spernal site is entirely navigable by foot, as the HofE forest aim to 

promote woodland walks. This meant that there are signposted footpaths and no boundary 

fences throughout the site, meaning getting from sample area to sample area is direct and 

efficient. This is an advantage from the point of view of the health and safety of this project 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found 
in the Lanchester Library, Coventry University. 
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(lone working and uneven terrain), but also from the perspective of keeping antecedent ground 

and weather conditions as constant as possible (Chen et al., 2015; Bois et al., 2020). 

Furthermore, the ease and efficiency of traversing the site allowed more time on site to collect 

data, as opposed to having to travel long distances from site-to-site. Moreover, the Spernal site 

was the first (formerly agricultural) area purchased by the HofE forest, and the first area to host 

multiple plots planted in sequential years from 2006 to 2012. It being the first planted area, 

combined with trees being planted sequentially, means that collected data will be representative 

of the most mature and the most recently planted woodland, which would allow for trends 

between infiltration and maturity to be detected, as per objective 1b. The Spernal site also hosts 

an area of woodland planted ca.1900 site, which was in-situ before the HofE forest owned the 

site, and can be sampled as an indication of the ability of more mature trees to influence 

infiltration. Additionally, the site contains grassland areas that pre-exists the HofE forest, and 

can be sampled for comparison against woodland areas, these areas will also be valuable 

throughout hydrological modelling to compare woodland infiltration and grassland infiltration 

(section 7.2) (Leung et al., 2018). Further to this, Figure 4.4 (and later Figure 4.5) shows that 

the Spernal site is intersected by a tributary flowing from east-to-west, discharging into the 

river Arrow (see section 4.2.3). This was an additional benefit of sampling at the Spernal site; 

as discussed in section 4.1, access to a tributary would allow for monitoring equipment to be 

installed (section 5.3.1) which could be used in the calibration and validation of the 

hydrological model (sections 5.4 and 5.5), as required for objective 2a. Furthermore, the 

tributary was accessible from the banks and had several bridges, which allowed for cross 

sectional data to be collected (for the benefit of hydrological modelling) and also allowed for 

the watercourse to be crossed (allowing for easier site navigation). In addition to the tributary, 

a rain gauge was also accessible at the nearby NextGen (2020) water treatment plant; again, 

this was for use throughout the hydrological modelling phase of the study (see section 5.3.1).  
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Upon the selection of the study site (Spernal), further spatial analysis was required to define 

the boundary of the study area through watershed delineation (section 4.2.1), and investigate 

the topography (section 4.2.2), hydrology (section 4.2.3) and geology of the study site (section 

4.2.4). This information would be used to develop a sampling method for infiltration data 

collection (section 5.2), and also form the basis for hydrological modelling (section 5.3). 

 

4.2.1 Watershed Delineation 

In order to define a hydrological boundary for infiltration data collection (section 5.2) and 

hydrological modelling (section 5.3), the tributary running through the Spernal site was 

digitised using OS data (Ordnance Survey, 2021), and a flow direction raster was generated 

using the Arrow-Alne catchment DTM (section B.2.1). After digitisation, the Arrow-Alne 

catchments DTM and flow direction raster (Figure B.1 and Figure B.4) were used in 

conjunction with the watershed delineation tool in ArcMap, which defined the extent of the 

study site catchment using the digitised tributary polyline (ESRI, 2020) (Dixon and Uddameri, 

2016; Bajjali, 2018). Figure 4.5 presents the output extent for the Spernal study site, and Figure 

4.6 shows the Spernal study site in proximity to Alcester and Redditch. 
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Figure 4.5. Output catchment following watershed delineation. The study site area is 220 Ha 

(2.2 km2) (aerial photography courtesy of Ordnance Survey, 2020). 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found 
in the Lanchester Library, Coventry University. 
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Figure 4.6. The Arrow-Alne catchment area, with Spernal study site highlighted (in red), in 

proximity to Alcester and Redditch (Data from Ordnance Survey, 2021, 2022). 

Defining the study area based on the watershed delineation method is beneficial as it defines a 

justified area in which a sampling method for field work can be undertaken and will act as the 

bounds for hydrological modelling (Dixon and Uddameri, 2016; Bajjali, 2018; Li et al., 2019). 

The output from the watershed delineation will be used as the study site boundary throughout 

this study, and all field data collection and hydrological modelling will be undertaken within 

the confines of the area defined.  

 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found 
in the Lanchester Library, Coventry University. 
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4.2.2 Study Area: Topography  

Upon definition of the hydrological catchment boundary, more specific topographical analysis 

of the study area was undertaken in addition to the DTM shown in Figure B.1. An 

understanding of the study site at a higher resolution would enable the production of the flow 

direction analysis (section 4.2.3), which would aid in the definition of flow pathways and 

hydrological node allocation throughout hydrological modelling (section 5.3.2) (Annis et al.; 

Jeziorska, 2019; Deng et al., 2020). The area was surveyed using a drone capable of capturing 

LiDAR data at 14cm resolution (in comparison to the EA DTM of 2m resolution). See Figure 

4.7. 

Figure 4.7. Extent of LiDAR data collected by the drone (Boundary data from Ordnance 

Survey, 2021, 2022).. 

Only 156Ha (70%) of the 220Ha study area could be surveyed by the drone due to permissive 

issues; to in-fill the remaining 30%, the 2 m DTM (Figure B.1) was mosaiced to the drone 

DTM using ArcMap. It was specified when using the mosaic tool that as much of the high-

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
found in the Lanchester Library, Coventry University. 
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resolution drone data should be used as possible, ensuring that the lower resolution data was 

used only in areas where higher resolution was not available. Figure 4.8 shows the final 

mosaiced output DTM for the study area.  

Figure 4.8. Elevation model of the study catchment as a result of merging drone and prior 

topographical (2 m) data (Data from Environment Agency et al., 2020; Ordnance Survey, 

2021, 2022). 

Whilst this method allowed for the creation of an elevation model for the whole study area, 

which would be of use in later hydrological modelling, there are limitations caused by the 

inconsistency of data resolution and the time between the collection dates of both datasets. The 

coarser resolution is less descriptive of small changes in topography, meaning that the higher 

resolution areas could represent overland flow more accurately, possibly leading to 

overestimation in the model (Liu et al., 2019). However, only 30% of the catchment is 

comprised of coarser imagery, 50% of which is not owned or maintained by the HofE forest – 

meaning that little hydrological information would be derived from these areas to inform the 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found 
in the Lanchester Library, Coventry University. 
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model, regardless of the impact of coarser imagery (Ng et al., 2018; Li et al., 2019; Pinos and 

Timbe, 2019). Additionally, the EA 2m resolution data was collected in 2017 and the drone 

data was collected in 2019 – this discrepancy in datasets may lead to changes in detectable 

topography over time (differences in field cover, development, cover from larger trees) (Lopes 

Bento et al., 2022). However, the discrepancies in data collection periods were a constraint of 

using secondary data, and the less of the 2m resolution data was used (30%), meaning the more 

consistent, high resolution data could be used to inform the hydrological model with little 

impact (Li et al., 2019; Lopes Bento et al., 2022).  

 

4.2.3 Study Area: Hydrology  

An additional flow direction analysis was undertaken on the defined study site using the newly 

created elevation model (Figure 4.8) to better understand hydrological details of the study site, 

such as overland flow pathways and water-flow directions, in preparation for the hydrological 

modelling. See Figure 4.9 and Figure 4.10. 

 

 Figure 4.9. Process of creating the study site flow direction analysis vector overlay 

Resampling the raster output to 30 m (trial and error 

had determined this resolution to best suit the desired 

outcome) and converting it to a vector point file. 

The 8 classes represent that of the D8 model (Jenson 

and Domingue, 1988), and the arrow icon of each 

class represents the flow direction for that 30 m2 cell. 

Modify the symbology of the point file to represent a 

specific field of the attribute table, from 1 – 8, each 

representing a colour of the raster flow direction. 
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Figure 4.10. The resultant output of the flow direction analysis described (aerial 

photography courtesy of Ordnance Survey, 2020). 

To generate Figure 4.10, the output arrow point file was overlain with the study catchment 

elevation model to produce a clear representation of overland flow direction across the 

catchment. This step was particularly beneficial for reference during the hydrological 

modelling stage of the project, as the output allowed for a thorough, high-resolution 

interpretation of the overland flow pathways (Mockler et al., 2016; Metcalfe et al., 2018). 

 

4.2.4 Study Area: Geology 

To develop a deeper understanding of the study site in preparation for hydrological modelling, 

the bedrock and superficial geology of the study area was determined in addition to the 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the 
Lanchester Library, Coventry University. 
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topographical and hydrological information (Archer et al., 2013; Folorunso and Aribisala, 

2018). 1:10,000 resolution geology data for the study catchment was downloaded under special 

permission from the British Geological Survey (BGS), seen in Figure 4.11. 

Figure 4.11. Bedrock and superficial geology of the study area (Geology data from British 

Geological Survey, 2019). 

The bedrock geology of the study area is primarily mudstone with small areas of siltstone, the 

superficial deposits include clay and silt with localised areas of sand and gravel (broadly 

following the tributary), with an area of diamicton to the north. Whilst the 1:10,000 geology 

data is valuable, it important to note that this is still a coarse resolution and the smaller, 

localised geology types may vary more frequently than shown in Figure 4.11 (Lovat et al., 

2019; Ding et al., 2020). Additionally, the BGS map does not represent surface soil texture or 

soil type, only underlying superficial and bedrock geology. The specific determination of 

sample site soil texture is discussed in section 5.2.1.1. 

 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found 
in the Lanchester Library, Coventry University. 
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4.3 Chapter Summary 

This section has introduced the desired characteristics of any chosen study site, in addition to 

introducing and describing the characteristics of the chosen HofE owned site at Spernal. The 

Spernal study site has been presented in reference to the wider Arrow/Alne catchment (Figure 

4.6) and additional spatial analysis has been undertaken to further investigate the study site, 

namely; a watershed delineation (section 4.2.1), a topographical evaluation (section 4.2.2), a 

hydrological evaluation (flow direction analysis) (section 4.2.3) and a geological evaluation. 

In addition to these processes providing further information about the study site, this 

information will be used to develop a sampling method for infiltration data collection (section 

5.2), and inform the build of the HEC-HMS model (section 5.3). 
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Chapter 5 Research Design and Methodology 

 

This chapter introduces and evaluates the study methodology. Section 5.1 introduces the 

research philosophy and hypotheses of study; section 5.2 introduces the sampling methodology 

and the processes used in sample site design, section 5.3 introduces the processes involved in 

hydrological model build, and sections 5.4 and 5.5 present the processes and results of model 

calibration and validation. Section 5.6 introduces the methods involved in present-day study 

site simulations, and section 5.7 presents the data and methods used in projecting future 

hydrological outputs.  

Table 5.1 below presents a summary table indicating where, in the following chapters and 

sections, the aims and objectives of this study are met. Figure 5.1 to Figure 5.4 below present 

several conceptual methods frameworks outlining how this chapter is structured, and how 

elements interlink. 

Table 5.1. Sections in which the primary requirements of the aims and objectives are met. 

Aim 1: 

Through field investigation, determine to what extent woodland planting by the Heart of England Forest 

has influenced infiltration, with reference to tree proximity and tree maturity. 

Objectives 
Methods 

section(s) 

Results 

section(s) 

Discussion 

Section(s) 

1a: Define suitable sampling locations and methods for infiltration 

data collection and gather data. 
3.1; 4.2; 5.2 6.1 - 

1b: Using data collected in objective 1a, derive any relationships 

between infiltration and tree proximity and maturity. 
- 7.1 8.1 

Aim 2: 

 

Using HEC-HMS, build, calibrate, and validate two-separate hydrological models using spatial and 

hydrometric data collected from the study site. 
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Objective 
Methods 

section(s) 

Results 

section(s) 

Discussion 

Section(s) 

2a: Build, calibrate and validate two hydrological models in HEC-

HMS 
5.3; 5.4; 5.5 - - 

Aim 3: 

Using the HEC-HMS model, simulate outflow hydrology from the study site dependent on changing storm 

intensity, duration, land cover, tree maturity and climate change; and determine to what extent HofE 

woodland planting has influenced infiltration, runoff and river flows. 

Objectives 
Methods 

section(s) 

Results 

section(s) 

Discussion 

Section(s) 

3a: Using both field data collected in aim 1a, and the HEC-HMS 

model, simulate the hydrological responses of the HofE study site 

to varying land cover, tree maturity, storm duration and intensity. 

5.6 7.2 8.2.1 

3b: Use recent Environment Agency climate change allowances, in 

conjunction with the HEC-HMS model, to predict the likely future 

changes to site hydrology considering developing tree maturity and 

climate change. 

5.7 7.3 8.2.2 

3c: Using the empirical and simulated results of this study, evaluate 

the hydrological effects of tree planting as a method of NFM. 
- - 8.2.3 

Aim 4: 

Assess the implications of study findings, and provide recommendations and suggestions for relevant 

stakeholders and future policy. 

4a: Using the findings of both aim 1 and aim 3, provide 

recommendations and suggestions for relevant stakeholders and 

future policy. 

- - 9.1 
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Figure 5.1. Conceptual methods framework outlining how previous chapters, and the upcoming 

methodology interlink with the aims and objectives of study. This Figure describes Aim 1 of this 

stud. Green boxes indicate aims/objectives, and red boxes indicate key processes.

The literature review (Chapter 2) 

identified the current research gaps 

regarding tree planting, infiltration data 

collection, empirical data longevity, NFM 

and hydrological modelling 

Chapter 3 identified existing methods of 

infiltration data collection and flood 

modelling software, and explained the 

reasoning for selecting the MDI and HEC-

HMS. 

Chapter 2 and Chapter 3 aided in forming 

the aims and objectives of this study 

(section 1.3) 

Aim 1: 

Determine how HofE 

tree planting has 

influenced infiltration 

regarding tree 

proximity and maturity. 
Aim 2 

See Figure 

5.2 

Aim 3 

See  

Figure 5.3 

Aim 4 

See Figure 

5.4 

Objective 1a: 

Define suitable 

sampling locations and 

methods for infiltration 

data collection and 

gather data. 

Objective 1b: 

Using data collected in 

objective 1a, derive any 

relationships between 

infiltration and tree 

proximity and maturity. 

Identify tool for 

collection 

(section 3.1.2) 

Identify study 

site (Chapter 4) 

Discussions with 

HofE 

Watershed 

delineation 

Study site spatial, 

hydrological, 

topographical and 

geological data  

Devise sampling 

methodology 

(section 5.2) 

HofE plot info 

(section 5.2) 

Species 

Year planted 

Size 

Location 
MDI validation 

(pilot study, 

Chapter 6)  

Collection 

method 
Soil texture Time required 

on site 

Health and 

Safety 

Results 

interpretation 

and display 

(section 7.1) 

Kolmogorov-

Smirnoff 

normality test 

(section C.1.1) 

Mann-Whitney 

U Test (section 

C.1.2) 

Graphical 

displays, tables 

and graphs 
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Figure 5.2. Conceptual methods framework outlining how previous chapters, and the upcoming 

methodology interlink with the aims and objectives of study. This Figure describes Aim 2 of this 

study. Green boxes indicate aims/objectives, and red boxes indicate key processes. 

Aim 2: 

Build, calibrate, and 

validate two-separate 

hydrological models 

using spatial and 

hydrometric data 

collected from the 

study site. 

Objective 2a: 

Build, calibrate and 

validate two 

hydrological models in 

HEC-HMS. 

Study site 

identification and 

information 

(section Chapter 4) 

Collected 

infiltration data 

(section 7.1) 

HEC-HMS 

justification 

(section 

3.2.2.1.2) 

Topography 
(section 4.2.2) 

Geology 
(section 4.2.4) 

Flow direction 
(section 4.2.3) 

Watershed 
delineation 

(section 4.2.1) 

Collected 

hydrometric data 

(section 5.3.1) 

Flow data Rain data 

Calibration 

(section 5.4) 

Validation 

(section 5.5) 

NSE 

Simulations 

(section 5.6) 

AEP 

Duration 

Baseflow 

See Figure 5.14 for much 

more comprehensive 

information regarding the 

processes involved in 

model construction, 

calibration and validation.  

Simulation results 

(section 7.2) 
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Figure 5.3. Conceptual methods framework outlining how previous chapters, and the upcoming 

methodology interlink with the aims and objectives of study. This Figure describes Aim 3 of this 

study. Green boxes indicate aims/objectives, and red boxes indicate key processes. 

Aim 3: 

Simulate site outflow 

and determine to what 

extent woodland 

planting has influenced 

infiltration and runoff 

Objective 3a: 

Using field data and the 

model to simulate the 

hydrological responses 

of the HofE study site 

to varying conditions 

Objective 3b: 

Use climate change 

allowances to predict 

the likely future 

changes to site 

hydrology 

Objective 3c: 

Using 3a and 3b 

results, evaluate the 

hydrological effects of 

tree planting as a 

method of NFM. 

Simulation runs (section 
5.6) 

Model output analysis and 
interpretation (section 7.2) 

See Figure 5.14 for greater 
descriptions of modelling 

processes 

Projected infiltration data 
(section 5.7.2) 

Projected rainfall data 
(section 5.7.1 

Projected baseflow data 
(section 5.7.3) 

Projected results for 
projected future years (see 

sections 5.7, 7.3) 

Existing literature and 
identified gaps (Chapter 2) 

Current perceptions and 
future work 

Future recommendations 
(leading to aim 4) 

Results of objectives 1a, 3a 
and 3b 
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Figure 5.4. Conceptual methods framework outlining how previous chapters, and the upcoming 

methodology interlink with the aims and objectives of study. This Figure describes Aim 4 of this 

study. Green boxes indicate aims/objectives, and red boxes indicate key processes. 

Aim 4: 

Assess study 

implications and 

provide 

recommendations for 

stakeholders and policy 

Objective 4a: 

Using findings of both 

aims 1 and 3, provide 

recommendations and 

suggestions for relevant 

stakeholders and policy 

Modelled hydrology both 

current and projected 

(sections 7.2 and 7.3) 

Collected and analysed 

infiltration data (section 

7.1) 

Current standing in relevant 

literature (Chapter 2) 

Outputs of study for policy 

and stakeholders (section 

9.1) 

DEFRA 

EA 

Construction 

Forestry  
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5.1 Research Philosophy and Hypotheses 

Research philosophy refers to a system of approaches and beliefs about the way in which data 

should be gathered, analysed, and used (Saunders et al., 2019). All research is prone to some 

form of philosophical assumption (Burrell and Morgan, 2016), namely, ontological 

(assumptions about reality), epistemological (assumptions about human knowledge), and 

axiological (assumptions about personal belief) (Alvesson and Skoldberg, 2009; Saunders et 

al., 2019). An acknowledgement of both assumptions and research philosophy, and the 

influence they can have on research methods and results interpretation, is important when 

evaluating the impact of a contribution to the wider subject area (Crotty, 1998; Johnson and 

Clark, 2006; Saunders et al., 2019). 

The research onion was presented by (Saunders et al., 2019) as a model to demonstrate the 

different stages of organising and constructing a methodology, symbolically illustrating the 

ways in which elements of the research could be examined to inform the final research design. 

The research onion is presented in Figure 5.5. 
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Figure 5.5. The research onion model by (Saunders et al., 2019) outlining the layered 

approach to study design and data collection. 

Shown in Figure 5.5, the research onion consists of six ‘layers’ demonstrating the scales at 

which principles should be considered, from right-to-left; philosophy, approach to theory 

development, methodological choice, strategy(ies), time horizon and techniques and 

procedures (Saunders et al., 2019). Much deeper explanation and analysis into the details of 

each layer of the research onion are discussed by (Melnikovas, 2018; Saunders et al., 2019); 

however, for the purposes of this study, Table 5.2 presents the approaches adopted for use 

throughout this study methodology. 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the 
Lanchester Library, Coventry University. 
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Table 5.2. Categories of the research onion with regard to the philosophy, hypothesis and 

methodology of this study. 

Onion ‘layer’ 
Relevant classification/ 

category for this project 
Additional Information 

Philosophy Positivism 

Positivism bases its ideologies around working with an 

observable reality to produce law-like generalisations 

(Melnikovas, 2018). The philosophy aims to deliver and 

interpret unambiguous and accurate knowledge, 

focussing solely on scientifically observed parameters, 

uninfluenced by human interpretation or bias (Crotty, 

1998; Saunders et al., 2019). 

Philosophical 

Assumption 
Epistemology 

Scientific method, favours observable and measurable 

facts, provides law-like generalisations, involvement of 

numbers, contributions are commonly causal 

explanations and predictions 

Approach Deduction 

Deductive research starts with an existing theory based 

on observation and data collection, then intends to form, 

accept, or reject a hypothesis to form a theory after 

conducting deeper analysis (Crotty, 1998; Burrell and 

Morgan, 2016). The deductive approach is usually 

applied to the testing of existing theories – in this case, 

infiltration testing and hydrological modelling (sections 

5.2 and 5.3). The study hypotheses are introduced below 

this table. 

Methodological 

choice 
Quantitative 

Data collected and expressed as a measurable quantity, 

common for measurements units to be associated with 

the data.  

Strategies Case study 

Referring to a defined area in which a sampling method 

will be structured, and data will be collected. The case 

study for this project is introduced in Chapter 4. 
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Time horizon Longitudinal 

Data will be collected for the maximum possible 

duration for this study (multiple years). It is discussed in 

section 5.2.2.1 that data was collected over a 2-year 

period. 

Techniques and 

procedures 

Infiltration data 

collection 

Infiltration data will be collected following the sampling 

method discussed in section 5.2. The infiltration data 

will be statistically analysed (section 7.1) and inform a 

hydrological model (section 7.2). 

Hydrological modelling 

Hydrological data will be collected (section 5.3), which 

will, alongside the infiltration data, inform a 

hydrological model (section 5.6) to produce results in 

line with the aims and objectives of this study (section 

1.3). 

 

As outlined in Table 5.2, hypotheses are required for deductive study approaches, therefore 

this study methodology is designed to test the following hypotheses: 

1) If woodland planting can influence infiltration, dependent on tree proximity and tree 

maturity. 

2) If woodland planting can reduce river flows compared to grassland and impermeable 

surfaces. 

3) If woodland planting has the potential to mitigate future river flows considering the 

predicted increase in precipitation expected due to climate change. 

 

5.2 Field Sample Plots, Sampling Methods, Data Collection and Data Recording  

Once the study site had been identified, and the boundary defined (section 4.2), a sampling 

method for infiltration data collection (objective 1a) could be devised. Any sampling method 

would need to ensure that the collected data would be replicable and representative of the wider 

study area to produce accurate results (Prieksat et al., 1994; Logsdon and Jaynes, 1996; 

Khodaverdiloo et al., 2017) and inform the hydrological modelling phase of study (section 

5.6). Outlined in section 4.1: 
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1. The sampling of the site needed to be achievable in a single day to keep weather 

conditions as constant as possible (Chen et al., 2015; Bois et al., 2020), but also as a 

pre-requisite of the health and safety and ethical agreements of this project (see 

Appendix B.9).  

2. Methods and equipment used in the field could not be too expensive due to budgetary 

constraints; and any equipment for measuring infiltration needed to be lightweight, 

portable and require reasonable amounts of water to operate as the study site could only 

be navigated on foot, and water was not available on the site.  

3. Infiltration testing needed to be replicable on a week-by-week basis, so intrusive 

methods of infiltration data collection were ruled out. Replication was an important 

requirement for the data collected throughout this study, as the aim of infiltration data 

collection was to detect any change in infiltration due to proximity over time. This ruled 

out SRI and DRI methods due to their use requiring the insertion of the ring into the 

soil core, and then the subsequent destruction of the soil core upon removal (Bagarello 

and Sgroi, 2004; Zhang et al., 2017a). 

Considering the criteria discussed and the sampling methods employed by other authors 

conducting similar research (Chandler et al. 2018, Marshall et al. 2013 and Sanou et al. 2010), 

a sampling method was devised and is discussed throughout the following sections. 

 

5.2.1 Infiltration Sampling Sites (Spernal) 

The first phase of designing a sampling method was to identify the maturity and species of 

wooded areas at Spernal. See Figure 5.6. 
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Figure 5.6. Study area showing the tributary, owned HofE woodland and the year areas were 

planted (plot data was provided by the HofE Forest Charity, aerial photography courtesy of 

Ordnance Survey, 2020). 

Figure 5.6 shows the oldest trees at the study site were planted ca.1900, before the Heart of 

England Forest purchased the Spernal site, the oldest trees planted by the HofE forest were 

planted in 2006, and the youngest trees were planted in 2012. The unrecorded categories 

represent areas of grassland that were in-situ prior to the HofE Forest moving to the site. Whilst 

there is only a six-year difference between the youngest and oldest (HofE planted) trees across 

the site, this will still allow for an analysis of the influence of maturity and proximity on 

infiltration over time. Additionally, the sample areas being in close proximity and situated 

throughout the same watershed, allowed for the trees to be sampled in one day and results to 

be representative of hydrological processes throughout the catchment (compared with driving 

to different areas to collect data). Both of these factors were particularly advantageous when 

collecting results from the study site, and when contextualising the results of this study with 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the 
Lanchester Library, Coventry University. 
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existing literature and policy; also of use when extrapolating the study site characteristics to 

the whole study site for hydrological modelling and future climate projection. Species groups 

of the planted wooded areas are shown in Figure 5.7. 

Figure 5.7. Species group of wooded areas across the study area (aerial photography 

courtesy of Ordnance Survey, 2020). 

The trees planted by the HofE forest in 2006 were sampled as they would represent the oldest 

area of HofE planted woodland for comparison against more recently planted areas. To 

accommodate the sampling requirements discussed in (section 5.2), more specifically the 

restraints regarding the time on site required for sufficient data collection, areas planted in 

2008, 2010 and 2012 were sampled in addition to the 2006 plot. If woodland planted in every 

sequential year from 2006 were to be sampled, the time alone on site required to collect data 

(particularly when allowing time for measurement replication) would exceed the rules specified 

by the health and safety agreement of this project. In addition to measurements taken at plots 

planted in 2006, 2008, 2010 and 2012; a ca.1900 plot would be included in the sampling for a 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in 
the Lanchester Library, Coventry University. 
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comparison of the effect of an established (mature) tree on infiltration, as would a grassland 

control to represent the infiltration characteristics of land that had not been wooded (Hepner et 

al., 2020; Tinya et al., 2020; Zhu et al., 2020a). The largest plot-areas of each sample year 

were selected as to reduce edge effects - the process of an external factor, or change in sampling 

consistency, influencing the process of consistent data collection or replication (Baddeley, 

2019; Hatfield et al., 2020). Edge effects need to be carefully interpreted as failing to identify 

the process could lead to inaccurate data collection (Baddeley, 2019; Hatfield et al., 2020). 

Information provided by the HofE forest was used to determine the coordinates of the centre 

of the plots on ArcMap. The centre coordinates of each planting area were uploaded to a 

handheld GPS device to allow the same location to be identified in the field, and the tree closest 

to this location would be the sample tree for that area. However, after a site visit it was apparent 

that sampling the centre of the ca.1900 or control sites was not possible; the ca.1900 site has 

deer-fencing around the centre, and the middle of the control plot fell in the gravel car park. 

Therefore, the sampling locations of these plots were moved slightly to best represent plot 

infiltration, but still consider the sensitivity of edge effects (Razafindratsima et al., 2018; 

Baddeley, 2019; Hatfield et al., 2020). Whilst this may have slightly influenced the data 

collected from these sites, sampling parameters were considered (consistency and location 

representation) and relevant literature consulted (Bonell et al., 2010; Chandler et al., 2018) 

before finalising the new sampling locations. The final sampling locations would stay constant 

throughout the duration of data collection in the interests of measurement consistency and 

replication. Figure 5.8 shows the sample plots selected along with the exact locations of MDI 

measurement, further information regarding the specific sample trees can be seen in Appendix 

B.2. 
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Figure 5.8. Woodland areas, year planted and sample points for sampling (aerial 

photography courtesy of Ordnance Survey, 2020). 

 

5.2.1.1 Additional Infiltration Sampling Sites, Soil Texture and Sample Tree Species 

As all trees were planted at the Spernal site by 2012, two newer sites (also owned by the HofE 

forest) were included for infiltration sampling; one planted in 2014, and one in 2020. Data 

collected from these additional sites would represent the influence of more recently planted 

trees, and further determine how tree planting has affected local infiltration over time. The 

locations of the 2014/2020 sites are shown in proximity to Spernal in Figure 5.9. 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in 
the Lanchester Library, Coventry University. 
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Figure 5.9. Additional 2014 and 2020 sample areas. 2014 is to the southeast of Studley, 2.5 

km north of the Spernal site; and 2020 is to the south of Newnham, 6 km southeast of the 

Spernal (aerial photography courtesy of Ordnance Survey, 2020). 

Whilst the inclusion of the 2014 and 2020 sites was valuable for the comparison of newly 

planted woodland against woodland planted in earlier years (at Spernal), the main advantage 

of collecting infiltration data from these sites was for hydrological modelling (section 5.3). 

Information from 2014 and 2020 allowed for the projection of future infiltration changes, 

regarding tree growth and increased precipitation due to climate change. This is explained in 

greater detail in section 5.7.  

It should be noted that data collection from the 2014 and 2020 sample sites took place on 

alternate weeks to data collection at Spernal, which means considerations must be made when 

interpreting the data. Antecedent moisture and atmospheric temperatures varied between data 

collection at Spernal and the 2014 and 2020 sites (appendix C.2). This is a potential area of 

limitation as changing antecedent conditions can influence soil conditions and subsequent 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found 
in the Lanchester Library, Coventry University. 
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infiltration data collection (Chen et al., 2015; Bois et al., 2020) due to variations in hydraulic 

conductivity, soil saturation and (potential) frost cover (see section 5.2.2). However, soil 

texture classifications were the same between both 2014 and 2020, and most of the Spernal 

sites (aside from ca. 1900, 2010 and control), meaning that the sites were comparable from the 

perspective of infiltration data collection. To determine the soil texture of all infiltration sample 

locations, a LaMotte (2020) soil texture test kit was used. This required 1 ml of soil texture 

dispersing reagent and 45 ml of water to be added to a 15 ml soil sample, shaken, left to settle, 

and transferred to several different test tubes representing separate percentage. The LaMotte 

method was used over alternate methods of soil texture analysis (‘press-and-roll’ method, water 

suspension method) due to its use in other studies, and its increased reliability compared with 

methods involving only touch or water (Itoh et al., 2003; Rasmussen et al., 2018; Oliveira-Jr 

et al., 2020). The soil textures of all sample sites are shown in Table 5.3. 

Table 5.3. Separate percentiles and UK soil classification of sample site soil textures. 

Sample Site Sand % Silt % Clay % UK Soil Classification 

Control 53 20 27 SaCL Sandy clay loam 

ca.1900 47 40 13 SSL Sandy silt loam 

2006 20 20 60 C Clay 

2008 13 20 67 C Clay 

2010 53 33 14 SaL Sandy Loam 

2012 33 13 54 C Clay 

2014 7 13 80 C Clay 

2020 13 23 77 C Clay 

 

The control, cc.1900 and 2010 sites to consist of a slightly sandier geology compared with the 

other sample sites, consisting of primarily clay particles. Discussed in section 2.5, clay-heavy 

soil textures inherit lower infiltration, conductivity and porosity due to the smaller, more 
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rounded particles (<0.002 mm) fitting tightly together (Rabot et al., 2018). Sand particles are 

larger (0.06 mm – 2.0 mm) and more angular, meaning larger pores are left between the 

particles, allowing for greater infiltration and conductivity in sandier-textured soils (section 

2.5) (Rabot et al., 2018; Meyer et al., 2019; Bátková et al., 2020; Mahapatra et al., 2020). The 

difference in soil texture is acknowledged and accounted for throughout the analysis of study 

results (Chapter 7 and Chapter 8). In addition to soil texture, there were variations in sampled 

tree species, see  

Table 5.4. 

Table 5.4. Sample tree species and sample area for all plots. 

Year Planted Group Species Name Size (Ha) 

Unrecorded Grassland   8.6 

ca.1900 Mixed Broadleaf Sessile Oak Quercus Petraea 2.6 

2006 Native Mixed Broadleaf Silver Birch Betula Pendula 6.5 

2008 Native Mixed Broadleaf Aspen Populus Tremula 8.5 

2010 Native Mixed Broadleaf Silver Birch Betula Pendula 14.3 

2012 Native Mixed Broadleaf Aspen Populus Tremula 13.7 

2014 Native Mixed Broadleaf Aspen Populus Tremula 2.6 

2020 Native Mixed Broadleaf Aspen Populus Tremula 17.7 

  Total 70.5 

 

The variation in species is due to two factors: 1) the method of sampling from the closest tree 

to the centre of the sample site (discussed in section 5.2.1), and 2) the HofE forest planting 

following the NVC (see appendix B.1). The ca.1900 site was in-situ before the HofE forest 

owned the site and will be used as an indication of the ability of more mature trees to influence 

infiltration. The grassland site was used as a control, and will be valuable throughout 

hydrological modelling to compare woodland infiltration and grassland infiltration (section 
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7.2) (Leung et al., 2018). Whilst the ideal sample design would collect infiltration data from 

only one species of woodland throughout the duration of study, this was not possible due to the 

above reasons (the NVC and the decision to collect data from the centre of the sample plots). 

However, the collection of infiltration data from the selected study sites would allow for data 

analysis, and contribute to the identified research gap and justification of this study (sections 

1.3 and 2.6). Results from the Birch and Aspen sites will be analysed together, however their 

physical differences (expected age, growth rates, size) will be accounted for throughout the 

climatic projection methods (section 5.7). The collection of the 2014 and 2020 infiltration data 

added to the study robustness and acted as an additional empirical anchor point throughout 

hydrological modelling and results interpretation compared with if the values were to be 

derived from published values. Details of the locations used for sampling in this study are 

presented in appendix B.2. 

 

5.2.2 Field Sampling Methods and Data Collection 

As outlined above, the 2014/20 sites were sampled on alternate weeks to the Spernal sites. The 

sampling of Spernal and 2014/2020 took a day each. A day was allocated due to the amount of 

time required to sample each plot at both locations, in addition to allowing enough time to 

travel to every plot on foot, collect the required amount of data, and keep climate and weather 

conditions as consistent as possible between and during measurement. Variations in (e.g.) soil 

moisture, dew or frost between sample sites could influence the collected infiltration data for 

that sample, and skew the results during analysis (Harden and Scruggs, 2003; Baiamonte, 

2019). If data collection was to be split across several days, issues would arise regarding the 

changing antecedent conditions of the sample plots, particularly if there was rainfall between 

days (Chen et al., 2015; Bois et al., 2020). The chosen method was also advantageous from a 

health and safety point of view, concerned with being on uneven terrain, near a watercourse in 

the dark (during the winter months). To ensure the infiltration data collection was 
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representative of the issues that can arise due to varying weather (e.g., heavy dew, overnight 

rainfall site saturation and soil moisture), the sites were sampled in reverse order from week-

to-week (Harden and Scruggs, 2003; Miller and Hess, 2017; Baiamonte, 2019). Meaning at the 

start of a new sample week, the last site sampled on the previous visit would be the first sampled 

on the current visit, this is visualised and discussed in appendix B.4. 

 

5.2.2.1 Mini Disk Infiltrometer Measurement 

Regarding the equipment used to measure infiltration, it is discussed by Alagna et al. (2016) 

and Khodaverdiloo et al. (2017) that several factors should be considered; the accuracy of 

measurement, the speed and simplicity of measurement, the cost of the device, the portability 

of the equipment and the required recourses of each individual measurement (water, person-

power). SRI and DRI methods of infiltration data collection (section 3.1) were considered; 

however, these methods do not allow for consistent replication (due to the disruption of the soil 

core), they are cumbersome to transport around the study site, they require vast amounts of 

water for measurement (which was not easily attainable at any sample site), and they are 

expensive (~£2000 for a DRI). Therefore, the Mini Disk Infiltrometer (MDI) was used for all 

infiltration data collection throughout this project; due to its portability, low water 

requirements, speed of set up and ease of (solo) measurement and data recording. Both methods 

are discussed and evaluated in more detail throughout sections 3.1.1 and 3.1.2; the reasoning 

for selecting the MDI is discussed in section 3.1.3. 

Infiltration measurements were taken from both 10 cm and 200 cm away from the base of the 

tree. The 10 cm proximity was chosen during a pre-sampling visit to the study site where it was 

determined that 10 cm was as close as the MDI could get to the base of the tree without 

interference from the root system or growths around the base. Infiltration data collected from 

the 10 cm proximity would also act as a direct representation of the change in infiltration 

because of the tree – this would later be used in hydrological modelling to represent the closer 
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proximity in the model (section 5.6). The 200 cm proximity was chosen after assessing the 

exiting literature regarding tree lateral root spread (section 2.3.1), but also literature specifically 

regarding the tree species sampled (Perry, 1982; Mauer and Palátová, 2003; Hepner et al., 

2020), suggesting that the lateral root spread would surpass the 200 cm measuring distance 

(meaning a greater chance of collecting infiltration data in an area affected by roots). The 200 

cm would also be used for hydrological modelling but will act as a comparison to the 10 cm 

proximity in addition, allowing for the influence of tree proximity on infiltration to be 

delineated.  

It is well regarded in the literature that infiltration measurements taken in the field inherit high 

spatial variability, and replication is imperative for attaining accurate results (Prieksat et al., 

1994; Logsdon and Jaynes, 1996; Khodaverdiloo et al., 2017). There are no definitive 

suggestions regarding how many replicas are required, however the number of repetitions 

should best represent field conditions at the time of measurement. Thus, every measurement 

taken with the MDI was replicated twice (in addition to the first measurement) and all replicates 

were averaged to give a final averaged total for that site. The decision to replicate three times 

at each proximity was primarily driven by the time that would be required for each 

measurement, and the ability of three measurements to allow for a mean average to be 

calculated. Figure 5.10 shows the method in which infiltration measurements were taken in 

proximity to the tree.  
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Figure 5.10. MDI measurements in proximity to the sample tree. Black/red crosses indicate 

measurement location. 

Although the rationale for sampling infiltration at 10 and 200 cm was to determine the influence 

of tree planting on infiltration regarding proximity and tree root spread, determining where tree 

roots were at the 200 cm proximity was challenging. Measurements and replicas for the 10 cm 

proximity were simple - three measurements from 10 cm away in a triangular pattern (Figure 

5.11); however, the 200 cm proximity was more complex. Some authors have identified tree 

root locations through use of GPR (section 2.3.1) (Alani and Lantini, 2020; Zou et al., 2020; 

Aboudourib et al., 2021); however, this was outside the budgetary limitations of this project. 

An alternative method would be to dig around the tree until roots are found and mark their 

location, however this would spoil the in-situ soil core and deem all future infiltration 

measurements invaluable (Romero-Ruiz et al., 2018; Adekanmbi et al., 2020). Therefore, once 

the 10 cm datums had been marked, a line was measured 200 cm from the base of the tree in 

the direction of least obstruction (i.e., no other trees, undergrowth or shrubbery intruding the 

area). It was important that the 200 cm measurements did not fall within proximity to any other 

tree than the sample tree, as this may influence the collected measurements and roots from the 

other tree may influence the collected infiltration data. 50 cm was then measured both left and 

right of the end of the 200 cm line, which then became the locations for the 200 cm replica 

10 cm 

10 cm 

10 cm 

50 cm 

50 cm 

200 cm 



5-23 
 

measurements. Replication could not take place in the exact same location as the initial 

infiltration measurement as any measurements would be skewed due to previous saturation of 

the soil. Therefore 50 cm was chosen as it is far enough away from the previous measurement 

to avoid lateral seepage - where infiltrating water travels laterally instead of vertically often 

leading to the overestimation of vertical infiltration values - but close enough to the initial 

measurement to be representative of the sample area (Folorunso and Aribisala, 2018; 

Rönnqvist, 2018; Muneer et al., 2020).  

There are potential areas of limitation with this study design: additional infiltration samples 

could have been taken at differing intervals to solely the 10 cm and 200 cm proximities to 

portray a greater cross section of root spread; infiltration measurements could have been 

collected in a radius around the tree for the same effect as mentioned above; and infiltration 

could have been taken from different depths throughout the soil column (however not 

replicable) to further interrogate influence between root spread and infiltration. However, these 

methods would have required too much time on site than was allocated, and would have pushed 

the project slightly outside of the defined scope, presented in section 1.3. Whilst the chosen 

sampling method does not guarantee that the 200 cm proximity measurements will be recorded 

in areas affected by root spread, nor take into account the effected radius around the tree, it is 

a justified method based on the desired outcomes of this project and the difficulties in locating 

tree root spread non-intrusively. Additionally, this method of infiltration data collection, the 

study design, and the repetitive and prolonged use of the MDI had not been attempted in 

existing literature, so this design was partially designed to fill the gap in literature regarding 

infiltration data collection, within the confines of time and budget. See Figure 5.11 displaying 

an image of the sample method in the field. 
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Figure 5.11. Overview of MDI sampling locations at 10 and 200 cm proximities. 

The method of testing for the grassland control and the 2020 planting site (until it was planted 

in 24/03/2020) was slightly different due to the absence of trees. Therefore, infiltration at these 

sites was carried out in a triangular format, with every infiltration location being 50 cm apart 

from the last. See Figure 5.12. 
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Figure 5.12. Infiltration sampling method for the control and 2020 sample areas. 

Every MDI measurement was taken three times at each proximity, meaning six measurements 

for wooded sites, and three for the control (and 2020 until it was planted on 24/03/2020). 

Initially, MDI measurements were taken following the advice of the user guide (METER® 

Group Inc., 2020), however, it became apparent that this method was impractical for the study 

site and the longevity of the data collection period.  

Relevant literature indicates the tension setting of the MDI is altered from study-to-study in 

existing literature (Robichaud et al., 2008; Matula et al., 2015; Fatehnia et al., 2016; Nestingen 

et al., 2018) (see section 3.1.2), therefore a tension setting of 2 cm was selected following the 

suggestion of the MDI user manual (METER® Group Inc., 2020). However, the user manual 

suggests that at least 30 to 40 ml of water needs to infiltrate the soil to provide an accurate 

measure of infiltration. The soil texture of all sample sites, excluding ca.1900, 2010 and the 

control, is clay which inherently exhibits a low permeability (Folorunso and Aribisala, 2018). 

Additionally, site hydrology varies significantly from summer to winter and the clay textures 

are completely saturated in the winter, however dry and cracking in the summer, shown in 

Figure 5.13. 

50 cm 50 cm 

50 cm 
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Figure 5.13. a) and b) saturation of the 2006 sample site, c) and d) cracking of the 2006 and 

2008 sample sites. 

Replication was important to ensure field data collection was as representative of field 

conditions as possible (Khodaverdiloo et al., 2017), and the number of sample areas was 

required to gather enough data to evaluate the aims and objectives (section 1.3). Therefore, the 

MDI user manual’s suggestion of 30-40 ml of infiltrated water per measurement was adjusted 

for this project; primarily as the time required for volume is dependent on antecedent moisture 

conditions, rainfall, and soil saturation. This methodology was tested in the field as part of the 

pilot study, and the methodology and subsequent outputs of study are presented in Chapter 6. 

Infiltration sampling started on the 05th-November-2019 and continued every week at alternate 

sites until the 24th-March-2020, at which time the UK Government enforced the first national 

COVID-19 lockdown. Field work resumed on the 1st of July 2020 and data was collected until 

the 25th of August 2021. In total 1686 infiltration measurements were taken: 900 from the 10 

a b

c d
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cm proximity (including replicas and including the control) and 786 from the 200 cm 

proximity. Using the three consecutive/10-minute measurement methodology (adopted as a 

result of the pilot study, Chapter 6), data collection of wooded sample areas took one hour each 

(30 minutes at both the 10 and 200 cm proximities), and sampling at the control and 2020 (until 

it was planted in 24/03/2020) took 30 minutes each. 

 

5.2.2.2 Temperature Data Collection 

Air, ground (land surface) and soil temperatures were collected throughout the infiltration data 

collection period, to derive any relationships between temperature variables and infiltration and 

identify any effect that variations in temperature may have had on infiltration data collection: 

• Air temperature was recorded at each sample site using a Kestrel 5000 series handheld 

anemometer (accuracy ±0.40°C).  

• Land surface (ground) temperature was recorded at each sample site at both 10 and 200 

cm proximities using a Helect handheld infrared thermometer (accuracy ±2%℃). 

• Soil temperature was recorded at each sample site at both 10 and 200 cm proximities 

using a soil infiltrometer. 

These results are summarised in section 7.1.1 and analysed and discussed in greater detail 

throughout appendix C.2.  

 



5-28 
 

5.3 Hydrometric Data and HEC-HMS modelling  

This section describes the processes and methods used to build, calibrate, and validate the 

hydrological model used to generate the modelled results presented in sections 7.2 and 7.3. 

Figure 5.14 shows a flow diagram outlining the processes undertaken, and how these methods 

fit with previous and upcoming methodological processes. 
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Figure 5.14. The methods and processes undertaken to 

build the hydrological models, leading on from the spatial data collected throughout 
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aforementioned sections. The primary processes are outlined in red, processes relating to 

aims and objectives are outlined in green. *indicates accordance with Environment Agency 

(2008) guidance, which are most commonly followed and accepted by practitioners and 

academics alike.
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5.3.1 Collected Hydrometric Data for Modelling  

Rainfall data for the area (in mm) was collected in 5 minute intervals via a tipping bucket rain 

gauge (accuracy ±4% between 0.2 and 50 mm) located at the NextGen (2020) waste water 

treatment plant 1 km north of the HofE Spernal site (Figure 5.15). It is widely acknowledged 

that rainfall is highly heterogeneous over scale, time and space (Chen et al., 2015; Terink et 

al., 2018; Mazzoleni et al., 2019; Bois et al., 2020). However, the NextGen rain gauge is within 

visible distance of the study site, and the surrounding area is topographically similar, with no 

obtuse characteristics within proximity. For these reasons, the rain gauge was considered to be 

representative of rainfall effecting the HofE site, additionally it is the only nearby rain gauge 

in the area (Terink et al., 2018; Mazzoleni et al., 2019; Maier et al., 2020). The stage (in mm) 

and flow (in l/s) of the tributary that flows through the Spernal study site was recorded every 

15 minutes via a pressure transducer (accuracy ±0.05% FS) lain on the bed of the tributary at 

the downstream end, see Figure 5.15. 
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Figure 5.15. Locations of the downstream flow gauge and the rain gauge located at the 

NextGen (2020) waste treatment plant to the north of the study site (Data from Ordnance 

Survey, 2020, 2021). 

The transducer, being downstream of the tributary, represented the final outflow volume of the 

site, and always had continuous flow, meaning that baseflow and hydraulic variations could be 

identified and accounted for through calibration and validation. Upon instillation, the 

transducer was calibrated by Environmental Monitoring Solutions Ltd (2020) (EMS) to record 

the water stage based on the amount of pressure on the transducer. Additionally, the location 

of the transducer was fitted with a temporary flow gauge for 4-weeks to generate a ratings 

curve, allowing for the discharge flow of the river (in l/s) to be determined from the stage, 

recorded by the pressure transducers. A ratings curve is only an approximation of the 

relationship between stage and flow based on a (in this case) small quantity of observed data, 

therefore, rating curves are not always representative of the intricate variations in flow patterns 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
found in the Lanchester Library, Coventry University. 
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over time (Horner et al., 2018; Rampinelli et al., 2020). Additionally, in flood frequency 

analysis, rating curve uncertainty can be exaggerated as a larger proportion of the curve is 

extrapolated (Horner et al., 2018; Mansanarez et al., 2019; McMahon and Peel, 2019; 

Rampinelli et al., 2020). However, regardless of uncertainly, pressure transducers are more 

cost effective, easier to install and maintain, and have been widely used in hydrological and 

hydraulic studies (Shahiriparsa et al., 2016; Afshari et al., 2018; Dittrich et al., 2019; Malik 

and Pal, 2020; Rampinelli et al., 2020).  

Alternative streamflow monitoring methods are comprehensively described and assessed by 

Davids et al., (2019), namely; Bernoulli, current meter, deflection rod, float, Manning-

Strickler, pitot tube, salt dilution (constant-rate injection) and salt dilution (slug). Whilst these 

methods are all viable for the determination of streamflow, they are either expensive, derive 

discrete data, or require a constant presence at the sample site (meaning collecting streamflow 

for a 96-hour event would require multiple measurements to derive a comprehensive dataset). 

The pressure transducer method used in this project allowed for a cost effective, near real-time 

(15 minute) representation of streamflow, allowing for accurate calibration and validation (see 

sections 5.4 and 5.5). 

 

5.3.2 Model GIS Preparation and Cross Section Design 

As the aim of the model was to simulate the collected infiltration data and determine to what 

extent woodland planting by the HofE forest was influencing runoff from the site, it was 

important to create a hydrological model that represented the area scale, as accurately as 

possible. The HofE planted areas are not entirely comprised of dense woodland, this can be 

seen in Figure 5.16, instead the woodland areas comprise of grassland meadows and walkways, 

along with areas of grass between planted trees. Neglecting to represent the grassland and 

instead modelling the whole area as woodland would be a hydrological misrepresentation, and 

results from this model would inaccurately represent the variations in infiltration and land 
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cover. In addition to this, the infiltration data collected from 10 and 200 cm proximities would 

need to be separately inputted into the model, as infiltration varies. Therefore, a method of 

representing the infiltration data from the 10 cm proximity, the 200 cm proximity and the 

grassland walkways/meadows in each plot of HofE owned land across the defined watershed 

(study area) was required. Ordnance Survey (2020) aerial imagery of the site was digitised 

using ArcMap to identify ponds, watercourses, grassland, woodland, and impermeable areas. 

To account for both measured proximities (aim 1), the derived woodland area was further 

divided in two; this was so the 10 cm proximity (closest to the tree trunk), and the 200 cm 

proximity would represent 50% of the remaining woodland area each. This method was utilised 

as infiltration data was not collected between the two proximities, so dividing the area in-half 

and allocating a known infiltration value to each (for 10 cm and 200 cm proximity) represented 

all land cover (as was required for the modelling software). Figure 5.16 shows an example 

woodland plot before and after the digitisation process, and Figure 5.17 shows the watershed 

area after land cover digitisation.  
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 Total area: 0.140km2  Total area:  
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Figure 5.16. 2010_2 plot before woodland and grassland area calculation (left), and after 

woodland (10 and 200 cm) and grassland area calculation (right). Tables below indicate the 

difference in land cover area calculation. 

Figure 5.17 shows the complete digitised interpretation of the study site. This was used to 

define the land cover types of each planting plot across the study area and could be used in 

conjunction with the study site DTM and flow direction analysis (see section 4.2) to construct 

the spatial elements of the HEC-HMS model.  
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Figure 5.17. The study catchment area after land cover digitisation. Grey = impermeable 

surface, dark green = woodland, light green = grassland, and blue = water. 

After the land cover was manually classified (Figure 5.17) the hydrological model could be 

built. HEC-HMS version 4.6.1 was chosen to build the hydrological rainfall-runoff model due 

to reasonings discussed in sections 3.2.2.1.2 and 3.2.3. To build the model, the shapefiles of 

the individual plots were imported, along with the 14 cm / 2 m resolution study catchment 

DTM layer (see section 4.2.2). The tributary was added first, as all sub-catchments would 

connect to this, and the measurement tool on ArcGIS was used to ensure that the length and 

course of the watercourse was to scale (Ramly et al., 2020; Hamdan et al., 2021). The river 

reaches had to be connected to junctions to turn corners, and a junction was used to converge 

the two upstream tributaries into one watercourse in the middle of the site Figure 5.18. Cross-

sectional measurements of the tributary were collected in the field, which allowed the 

watercourse in the model to represent the real-dimension of the watercourse in the field 

(Stamataki and Kjeldsen, 2021). This was an important step as the accuracy of watercourse 

cross-sectional dimensions influences the modelled output of the river (i.e., the parameters of 

in-channel routing method, see section 5.3.3). Figure 5.18 shows the cross-sectional geometry 

for upstream and downstream watercourse profiles.  
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Figure 5.18. (top) upstream and (bottom) downstream river profile cross-sections in HEC-

HMS. 

The upstream profile is steeper than the downstream profile with a narrower bed, this profile 

was applied to the reaches above the converging of the two upstream tributaries. The 

downstream profile is wider and wider-bedded than the upstream profile, and this was applied 

to the watercourse after the convergence of the two upstream tributaries. The resolution of the 

cross-sectional measurements are relatively coarse (0.5 m), however, the empirical 

observations add reliability to model outputs as empirical cross-sectional data is often difficult 

to attain for modelling studies (Neal et al., 2015).  
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Once the tributary had been drawn to scale, the nodes (computational representations of 

hydrological model input parameters) to represent the area of each land cover type in each plot 

were added. There were as many as three nodes required by each plot, one to represent 

woodland at the 10 cm proximity, one to represent woodland at the 200 cm proximity, and one 

to represent the grassland – any impermeable area contained within the plot was deducted from 

the grassland area and inputted as ‘percentage impermeable’ in the model interface. To connect 

the nodes, the flow direction analysis (Figure 4.10) was manually assessed alongside the high 

resolution (14 / 200 cm) study site DTM (Figure 4.8) to identify both overland flow pathways, 

and obstructions between sample area plots and the tributary. It is a requirement within HEC-

HMS that nodes be connected to ‘junctions’, which are features in the model indicating the end 

of one ‘reach’ (watercourse section) and the start of another (junctions are also required for the 

watercourse to turn corners). Upon identifying where plots (nodes) would flow into the 

watercourse, a junction was created to allow a computational input. The watercourse already 

hosted junctions at each change in direction, however, more junctions were added when needed 

to allow all nodes to connect. The resultant hydrological model is shown in Figure 5.19. 
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Figure 5.19. Final HEC-HMS hydrological model. The brown areas indicate woodland plots, 

the green areas indicate grassland only plots, the grey areas indicate impermeable surfaces, 

and the cross-hatched areas represent infiltration sample areas.  denotes a node 

(subbasin node),  denotes a reach (watercourse reach), and denotes a junction. 

 

5.3.3 Selected Model Parameters 

The ‘process models’ available in HEC-HMS for each hydrological process are presented in 

appendix A.1. In the HEC-HMS model used for this project, the Muskingum-Cunge routing 

method was used for modelling tributary flow (Kafle, 2019; Ramly et al., 2020; Rangari et al., 

2020). The initial and constant loss method was used to simulate the collected infiltration data 

(section 5.2), the Snyder unit hydrograph transform was used to simulate the observed runoff 

and lag times of the catchment areas, and the constant monthly baseflow method was used to 
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simulate antecedent baseflow of the site (Koneti et al., 2018; Zelelew and Melesse, 2018; 

Kafle, 2019). These models are discussed in the following sections. 

 

5.3.3.1 Muskingum-Cunge Routing Method 

The Muskingum-Cunge routing method builds upon the Muskingum method, and is used for 

simulating in-channel flow based on cross-sectional geometry (Cunge, 1969; Ponce, 1991). 

The Muskingum-Cunge method combines a simplified form of the continuity equation and a 

simplified from of the momentum equation to determine the predictable propagation of flow 

waves based on cross-sectional dimensions (Cunge, 1969; Ponce, 1991). The Muskingum-

Cunge method can re-calculate flow at every timestep permeameters based on changing 

channel properties and flow depth.  

The Muskingum-Cunge method states: 

𝑄𝑗+1
𝑛+1 = 𝐶0𝑄𝑗

𝑛+1 + 𝐶2𝑄𝑗
𝑛 + 𝐶2𝑄𝑗+1

𝑛  EQ 5.1 

Where Q is discharge, j is a spatial index, n is time index. 𝐶0, 𝐶1𝑎𝑛𝑑 𝐶2 are calculated as follows 

(Cunge, 1969):
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𝐶0 =
∆𝑡 − 2𝐾𝑋

2𝐾(1 − 𝑋) + ∆𝑡
 EQ 5.2 

 

𝐶1 =
∆𝑡 + 2𝐾𝑋

2𝐾(1 − 𝑋) + ∆𝑡
 EQ 5.3 

𝐶2 =
2𝐾(1 − 𝑋) − ∆𝑡

2𝐾(1 − 𝑋) + ∆𝑡
 EQ 5.4 

and K and X are calculated as follows (Cunge, 1969): 

𝐾 =
∆𝑥

𝑐
 EQ 5.5 

𝑋 =
1

2
(1 −

𝑞

𝑆𝑜 𝑐 ∆𝑥
) EQ 5.6 

Where ∆𝑥 is reach length, c is flood wave celerity, q is unit width discharge, and 𝑆𝑜 is channel 

bed slope (Cunge, 1969) 

The Muskingum-Cunge method was chosen for use in the HEC-HMS model due to its 

inclusion of the data collected from the study site (cross sectional geometry). Additionally, it 

has been used in similar studies (Kafle, 2019; Ramly et al., 2020; Rangari et al., 2020) and 

produces an accurate representation of in-channel flow for analysis throughout Chapter 7 

(Ibrahim-Bathis and Ahmed, 2016).  

 

5.3.3.2 Initial and Constant Loss Method 

A loss model calculates the loss of total precipitation due to infiltration (and can also be used 

for evaporation/evapotranspiration loss). In the HEC-HMS model built for this project, the 

initial and constant loss method was used to simulate the collected infiltration data (section 

2.1), the constant rate element is calculated as follows:  

𝑝𝑒𝑡 = {
𝑝𝑡 − 𝑓𝑐
0

     𝑖𝑓 𝑝𝑡 > 𝑓𝑐
      𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 EQ 5.7 
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Where 𝑓𝑐 is the maximum potential rate of precipitation loss, 𝑝𝑡 is the mean arial precipitation 

depth during a time interval, and 𝑝𝑒𝑡 is the excess overland flow. The initial loss is calculated 

as follows:  

𝑝𝑒𝑡

{
 
 

 
 

0
𝑝1 − 𝑓𝑐   

0

𝑖𝑓 ∑𝑝𝑖 < 𝐼𝑎

𝑖𝑓 ∑𝑝𝑖 > 𝐼𝑎𝑎𝑛𝑑 𝑝𝑡 > 𝑓𝑐

𝑖𝑓 ∑𝑝𝑖 > 𝐼𝑎𝑎𝑛𝑑 𝑝𝑡 < 𝑓𝑐

     
      
    
  EQ 5.8 

Where 𝑝𝑒𝑡 is excess overland flow, 𝑝1 is precipitation depth, 𝑓𝑐 is the maximum potential rate 

of precipitation, and 𝐼𝑎 is initial loss. 

The requirements of the initial and constant loss model within HEC-HMS matched the data 

that had been collected from the study site, meaning no criteria had to be assumed, nor inferred 

from external data (Razmkhah, 2016). This was advantageous as all collected data from the 

HofE site could be included in the model, and the initial and loss method was chosen for use 

in the model due to this. Additionally, the initial and constant loss method has been used in 

other HEC-HMS models for similar applications to this project (Zelelew and Melesse, 2018; 

Sharu, 2020). It is worth considering, however, that whilst the initial and constant method was 

adopted here due to the requirements matching the collected data, it is a simplification of the 

infiltration process and cannot account for complex flows after the infiltration process has 

occurred. However, as discussed in section 3.4, hydrology is complex, and no hydrological 

model is capable of modelling exact hydrological and hydraulic processes with 100% accuracy, 

which is why calibration is valuable (see section 5.4).  

 

5.3.3.3 Snyder Unit Hydrograph Transform 

In HEC-HMS, the transform model dictates how sub-catchment precipitation is converted to 

(and from) overland flow, and then to in-channel flow  after all losses have been deducted from 

the input (precipitation) (Kafle, 2019; Ramly et al., 2020). The Snyder unit hydrograph 
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transform was used to simulate the observed runoff and lag times of the catchment areas, 

Snyder’s equation for lag time is (Fedorova et al., 2018):  

𝑇𝑙𝑎𝑔 = 𝐶𝑡(𝐿𝐿𝑐)
0.2 EQ 5.9 

Where 𝑇𝑙𝑎𝑔 is the catchment lag time (hours), 𝐶𝑡is the catchment gradient coefficient, L is flow 

path length (km) and 𝐿𝑐 is length of flow path from outlet to closest point of the catchment 

centroid (km). 

And for peak discharge is (Fedorova et al., 2018): 

𝑄𝑝 =
2.78 × 𝐶𝑝 × 𝐴

𝑇𝑙𝑎𝑔
 EQ 5.10 

Where 𝑄𝑝  is peak discharge related to 1cm of effective rainfall (m3/s), A is catchment area 

(km2) and 𝐶𝑝 is an empirical coefficient of peak intensity. 

Use of the Snyder unit hydrograph method was chosen for the models used in this project due 

the method requiring input information that could be derived through using the observed data 

from the site (the pressure transducer) (US Army Corps of Engineers, 2000; Gumindoga et al., 

2017; Fedorova et al., 2018). The method calculates the expected lag time based on the slope, 

observed lag and peaking coefficient of the watercourse. Discussed in section 5.4, empirical 

observations of in-channel flow were recorded, and these were used alongside a ‘trial-and-

error’ method to calculate the lag times and peaking coefficients of overland flow for each node 

during summer and winter. The discussed trial and error method involved using observed and 

simulated flows from the study site until a balance could be struck between both datasets; this 

was crucial for model calibration and is discussed in much more detail throughout section 5.4. 

Other methods of simulating hydrological transforms in HEC-HMS are outlined in appendix 

A.1, however the Snyder method required input information that could be extracted from site 

observations, and has been used in other studies (De Silva et al., 2014; Derdour et al., 2018; 

Ma et al., 2018). Alternative transform methods required data that had/could not be collected 

or required additional observations for equivalent outputs to the Snyder method. 
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5.3.3.4 Constant Monthly Baseflow 

The constant monthly baseflow method was used to simulate antecedent baseflow of the site, 

which applied a user-defined constant flow to all models as required. This method was chosen 

due the ability of the method to maintain a defined baseflow from the site (see section 5.6.4), 

and for its ability to allow an observed baseflow to be added to the model to account for changes 

both seasonally, and due to climate change (Koneti et al., 2018; Zelelew and Melesse, 2018; 

Kafle, 2019). Alternative methods of simulating baseflow can be seen in appendix A.1, 

however the constant monthly method was used as this study is less about baseflow value, and 

more about the influence of woodland planting on peak flows and total discharge. Additionally, 

using the constant monthly baseflow model meant that if baseflow was found to be different, 

it could be adjusted without changing the shape of the output hydrograph. HEC-HMS model 

parameter values are presented in appendix B.5. 

 

5.4  Model Calibration 

The end goal of model calibration is to produce a set of model parameters that will consistently 

produce the best possible outputs over any simulated event (section 0). It would be inaccurate 

to represent the site using one set of calibrated parameters as empirical observation of the site 

throughout the data collection highlighted the variability of study site conditions throughout 

the year (see section 5.2.2). The site varied hydrologically between summer and winter, during 

the summer, grass developed across the soil surface, the clay-heavy soil texture began to crack 

creating macropores, and the trees were blooming. This is the opposite to winter, where the 

soil was bare and saturated, and the trees had shed their leaves. These changes influence the 

lag times, infiltration rates, interception and surface roughness of the site (Chandler et al., 2018; 

Dittrich et al., 2019; Zhang et al., 2019a; Murphy et al., 2021). To accommodate these 

variations, separate winter and summer models were created to best represent likely response 
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of site soil conditions in both wet and cold, and warm and dry periods. Metrologically, 

December, January and February are defined as winter, and June, July and August are defined 

as summer by the UK met office (The Met Office, 2021a, 2021b). However, for this project, 

the winter model included data ranging from October to March, and the summer model 

included data ranging from April to September. This was decided based on preliminary data 

collection from the site, and mean (1990 – 2020) annual temperature and rainfall data from the 

Met Office (2021). This data is shown in Figure 5.20. 
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Figure 5.20. Average monthly rainfall and temperature, used to define the sample periods for 

winter and summer. 

 

Mean annual temperature and rainfall between October and March is 6.7°C and 55 mm 

respectively, mean annual temperature and rainfall between April and September is 14.4°C and 

54 mm respectively. Whilst mean winter and summer rainfall differs only slightly, the change 

in atmospheric temperature was a key driver in infiltration rate, and subsequently the 

development of two hydrological models. 

Model calibration involved setting the initial baseflow of the model to match that of the 

observed event (this was to account for antecedent flow already in the watercourse at the 

beginning of the calibration event), then systematically adjusting the unobserved model 

parameters (through process of trial-and-error). Empirically observed parameters could not be 

adjusted during calibration, these parameters were: 

• Infiltration - the key parameter for the hydrological model, and this parameter could 

not be changed during the calibration process as infiltration was a known parameter. 
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• Rainfall and baseflow - been observed through use of the rain gauge and in-channel 

telemetry (section 5.3.1). 

• In-channel hydraulics (including parameters used in the Muskingum-Cunge models) - 

these had been inputted using observed measurements from the study site. 

Thus meaning, the only adjustable parameters were the lag times and peaking coefficients of 

the Snyder unit hydrograph transform (EQ 5.9 and EQ 5.10). These parameters were adjusted 

until one set of Snyder values could be used across all events and produce a similar outcome 

to the observed flow. The NSE method (EQ 3.1) was used to determine the efficiency and 

predictability of both the calibration and validation events. The root mean squared error 

(RMSE) of each calibration and validation event was calculated in addition, to further indicate 

the efficiency and capability of the model – a RMSE value closer to 0 indicates a good-fit 

between the observed and simulated datasets at each timestep, whereas a value further from 0 

indicates a poor-fit between the datasets (Naik et al., 2019; O’Loughlin et al., 2020). This 

process was undertaken for both the summer and winter models. The variations in winter and 

summer calibration perimeters are shown throughout appendix B.5.2. An explanation of RMSE 

values for calibration and (validation) is presented in appendix B.5.3. 

To calibrate, the rainfall and flow data from the site (section 5.3.1) were combined and large 

rainfall events (identified through sorting data from the flow gauge) and the surrounding flow 

data were extracted and saved as individual events (either as a summer or a winter event 

depending on when they occurred). As infiltration is a key input to the model, and infiltration 

data at the HofE site has been collected since November 2019, the infiltration data collected 

from the HofE site at the closest date to the selected rainfall/flow event was used as the input 

for the sampled plots. Infiltration data for plots planted in years that were not sampled was 

extrapolated from the observed data, for example, infiltration data was collected from plots 

planted in 2008 and 2010, but not 2009 – so the 2009 infiltration value was determined from 

the median of the values collected in 2008 and 2010. This method is based on the mathematical 
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extrapolation of observed values and was adopted due to the lack of literature regarding how 

infiltration changes around trees, and how such data should be extrapolated. Four events were 

chosen for both summer and winter, the durations of which were 24 hours, 72 hours, 96 hours, 

and 120 hours. These calibration durations were chosen to test the ability of the model to 

represent flows from short duration to high duration events and based on the availability of 

continuous flow data from the site. However, it should be noted that the telemetry data became 

intermittent, and then unusable towards the end of this project due to the failure of data 

collection hardware and the hindered maintenance schedule of the installers due to the COVID-

19 pandemic. Table 5.5 shows the rainfall events and infiltration data collection dates used in 

calibration. 
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Table 5.5. Calibration event timeframes and rainfall volumes for winter and summer storms 

Calibration Simulation Event Timeframe Infiltration data collection date 

Event Duration  W/S Start Date Start Time End Date End Time Rainfall (mm) ca. 1900 - 2012 2014 - 2020 

1 24 hrs W 16 January 2021 04:00 17 January 2021 04:00 1.8 20 January 2021 14 January 2021 

2 72 hrs W 17 January 2021 16:00 20 January 2021 16:00 10.60 20 January 2021 14 January 2021 

3 96 hrs W 30 November 2019 04:00 04 December 2019 04:00 0.80 04 December 2019 26 November 2019 

4 120 hrs W 08 October 2020 07:00 13 October 2020 07:00 6.70 08 October 2020 14 October 2020 

5 24 hrs S 09 September 2020 03:00 10 September 2020 03:00 1.20 09 September 2020 02 September 2020 

6 72 hrs S 19 August 2020 07:00 22 August 2020 07:00 19.60 12 August 2020 19 August 2020 

7 96 hrs S 01 August 2020 01:00 05 August 2020 01:00 7.90 29 July2020 05 August 2020 

8 120 hrs S 28 August 2020 07:00 02 September 2020 07:00 13.40 26 August 2020 02 September 2020 
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5.4.1 Winter Calibration Events 

Output results from the winter model calibrations show the most accurate model outputs are 

achieved using Snyder values of 6 hours and 0.8 (lag time and peaking respectively) for 

impermeable surfaces; values of 18 hours and 0.5 (lag time and peaking respectively) all other 

catchments (see appendix B.5.2). Both a constant baseflow and a recession baseflow was 

applied and adjusted to each event, however the recession ratio was not adjusted – only the 

initial discharge was altered to account for varying antecedent flows between the calibration 

events. The results of the winter calibration are shown in Figure 5.21 to Figure 5.24, an 

explanation of RMSE values are shown in appendix B.5.3. 

 

 

 

Figure 5.21. Observed and simulated flow the 24-hour winter calibration event 
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Figure 5.22. Observed and simulated flow the 72-hour winter calibration event 

 

Figure 5.23. Observed and simulated flow the 96-hour winter calibration event 
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Figure 5.24. Observed and simulated flow the 120-hour winter calibration event 

The mean NSE of the winter calibration events is 0.65, and the mean RMSE is 0.0004. The 

winter model can simulate low flows and returns to base but does not peak as highly as the 

observed flows. The winter model is less responsive to sharp changes in observed flow, this is 

highlighted in both the 24 and 72-hour storm durations. The slow responsiveness of the model 

may be due to the antecedent conditions of the site (i.e., if the ground was wet, runoff would 

be significantly higher due to the clay-geology of the site) (Folorunso and Aribisala, 2018). 

The 96 and 120-hour duration events resulted in above-acceptable NSE values, and it was the 

under-prediction of the 24 and 72-hour duration that reduced the overall average. The RMSE 

values are not as reflective of the lower NSE’s as they are in the summer calibrations, all sites 

demonstrated a low RMSE, aside from the 24 and 72-hour durations, that were slightly higher. 

 

5.4.2 Summer Calibration Events 
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achieved using Snyder values of 4 hours and 0.8 (lag time and peaking respectively) for 

impermeable surfaces; values of 6 hours and 0.5 (lag time and peaking respectively) all other 

0.210

0.220

0.230

0.240

0.250

0.260

0.270

0.280

0.290

0 6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0
2

1
0
8

1
1
4

1
2
0

F
lo

w
 (

m
3
/s

)

Hours

NSE-   0.98 
RMSE-  0.0000 



5-53 
 

catchments (see appendix B.5.2). Both a constant baseflow and a recession baseflow was 

applied and adjusted to each event, however the recession ratio was not adjusted – only the 

initial discharge was altered to account for varying antecedent flows between the calibration 

events. The results of the winter calibration are shown in Figure 5.25 to Figure 5.28. 

 

 

 

Figure 5.25. Observed and simulated flow the 24-hour summer calibration event 
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Figure 5.26. Observed and simulated flow the 72-hour summer calibration event 

 

Figure 5.27. Observed and simulated flow the 96-hour summer calibration event 
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Figure 5.28. Observed and simulated flow the 120-hour summer calibration event 

The mean NSE of the summer calibration events is 0.65, and the mean RMSE is 1.39. The 

summer model can simulate low flows and returns to base but does not peak as highly as the 

observed flows. This could be due to hydrological inputs to the observed flows not being 

accounted for in the model; as discussed in section 3.4, catchment hydrology is complex and 

hydrological modelling is only a best representation and often a simplification of much more 

complex processes (Sy et al., 2019; Nkwunonwo et al., 2020; Zhu et al., 2020c). The 72 and 

120-hour durations resulted in above-acceptable NSE values, and it was the under-prediction 

of the 24 and 96-hour duration that reduced the overall average. The NSE is reflected in the 

RMSE values, the 96 and 120-hour durations demonstrated very low RMSE, however the 24 

and 96 hours were higher than 1, showing the error to be significant across all timesteps. 

 

5.5 Model Validation  

Model validation is undertaken after model calibration to determine the ability of the model to 

replicate observed parameters without further modifications from the user (Patil et al., 2019; 

Sahoo et al., 2020). Entirely new data was used in validation compared with calibration; it was 
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decided that using the same events as used in calibration would not be effective as the model 

is already calibrated to those events. Additionally, validating the model to other events tests 

the wider applicability of the model, reflecting its ability to simulate rainfall events 

independently (Al-Mukhtar and Al-Yaseen, 2019; Sharu, 2020; Kumar and Sherring, 2021). 

The validation event timeframes for winter and summer are shown in Table 5.6.  
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Table 5.6. Validation event timeframes and rainfall volumes for winter and summer storms 

Validation Simulation Event Timeframe Infiltration data collection date 

Event Duration  W/S Start Date Start Time End Date End Time Rainfall (mm) ca.1900 - 2012 2014 - 2020 

1 24 hrs W 14 January 2021 04:30 15 January 2021 04:30 1.10 06 January 2021 14 January 2021 

2 72 hrs W 06 December 2020 07:00 09 December 2020 07:00 2.70 09 December 2020 02 December 2020 

3 96 hrs W 02 November 2020  01:00 06 November 2020 01:00 6.70 28 October 2020 05 November 2020 

4 120 hrs W 13 October 2020 07:00 18 October 2020 07:00 4.50 8 October 2020 14 October 2020 

5 24 hrs S 04 September 2020 02:00 05 September 2020 02:00 0.70 10 September 2020 02 September 2020 

6 72 hrs S 09 September 2020 22:00 12 September 2020  22:00 1.00 10 September 2020 16 September 2020 

7 96 hrs S 04 September 2020 22:00 08 September 2020 22:00 4.20 10 September 2020 02 September 2020 

8 120 hrs S 30 August 2020 02:00 04 September 2020 02:00 8.00 26 August 2020 02 September 2020 
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5.5.1 Winter Validation Events 

Figure 5.29 to Figure 5.32 show the results of the winter model validation events. 

 

 

Figure 5.29. Observed and simulated flow the 24-hour winter validation event 

 

Figure 5.30. Observed and simulated flow the 72-hour winter validation event 
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Figure 5.31. Observed and simulated flow the 96-hour winter validation event 

 

Figure 5.32. Observed and simulated flow the 120-hour winter validation event 
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representations of the hydrological response of the site during a storm event. The mean RMSE 

of the winter validations is 0.0014, showing very little error between each timestep of both the 

observed and simulated data used in validation (Naik et al., 2019; O’Loughlin et al., 2020). 

 

5.5.2 Summer Validation Events 

Winter validation events are shown throughout Figure 5.33 to Figure 5.36. 

 

 

Figure 5.33. Observed and simulated flow the 24-hour summer validation event 
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Figure 5.34. Observed and simulated flow the 72-hour summer validation event 

 

Figure 5.35. Observed and simulated flow the 96-hour summer validation event 
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Figure 5.36. Observed and simulated flow the 120-hour summer validation event 

The mean NSE of the summer model after validation is 0.44. This value is significantly lower 

than the winter calibration, and 0.21 lower than the NSE that indicated a ‘good’ hydrological 
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model), however any alteration only seemed to worsen the NSE, therefore, the NSE of 0.44 

was accepted. The RMSE of the summer validation events, however, have a mean RMSE of 0 

(an explanation of RMSE values can be seen in Appendix B.5.3).  
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adopted by other researchers in the discipline aiming to simulate similar scenarios to those 

presented here. 

 

5.6 Post-Validation Model Parameters and Simulations 

This section describes the processes used to simulate design storm scenarios from the study 

site, and how collected field data was interpreted to simulate events across the study area.  

 

5.6.1 Simulation Durations and Intensities 

For every infiltration scenario, 50%, 10%, 2% and 1% annual exceedance probability (AEP) 

rainfall events were simulated over 6, 24 and 96-hour durations. 24 and 96-hour durations were 

chosen to test the short-to-medium scale impacts of tree planting on infiltration. The 6 hour 

duration was chosen due to the requirement of all sustainable drainage systems (SuDS) (Local 

Authority SuDS Officer Organisation (LASOO), 2016) to be tested to this level; it is hoped in 

the future that NFM and SuDS will be treated as a coherent entity, so consideration was given 

to this when planning the modelled storm scenarios (Dittrich et al., 2019; Cooper et al., 2021). 

The rainfall intensities were chosen for similar reasons: the modelled results would enable 

further understanding regarding the true ability of tree planting to mitigate runoff from low 

intensity (50% AEP) to very high intensity (1% AEP) events, offering insight in to its use as a 

method of NFM, and fulfil the partial requirements of aim 3 (objectives 3a and 3c) (Metcalfe 

et al., 2017b; Dittrich et al., 2019). 

Three scenarios were simulated using both the winter and summer models: (1) where the 

collected infiltration data was simulated to give a ‘current HofE land cover’ representation of 

site discharge; (2) where infiltration was altered to represent sites discharge if it was 

impermeable land cover (developed); and (3) where the control site infiltration value was used 

to represent the site if only grassland had been planted. For the impermeable cover, the 

‘impermeability’ criteria in HEC-HMS was set to 99% for every sub-catchment, as 
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impermeable cover is never 100% impermeable due to depression storage, cracks in the surface 

allowing infiltration into the sub-base (Hornberger et al., 2014; Elbasit et al., 2020; Grimm and 

Chu, 2020; Cieśliński, 2021). However, for the purpose of the hydrological model, 99% was a 

compromise as it was intended to simulate the site as if the entire area had just been developed, 

this would unlikely be the case in the real-world, but acted as a comparison for grassland and 

woodland values. 

The aforementioned scenarios were chosen for use throughout hydrological simulations due to 

the information the derived results would provide. The ‘current’ representation would provide 

an insight into the hydrological characteristics of the site at present, considering all collected 

infiltration data, and accounting for the variations in soil conditions and interception (see 

sections 5.4 and 5.6.2). The grassland simulations were undertaken using only the control 

sample site infiltration data, and these results would act as a comparison point when comparing 

the impacts of tree planting. Simulating the site as if it was completely developed acts as a 

comparison point for both ‘current’ and grassland simulations, indicating the variations in peak 

flow and total discharge as a result of developing the entire site. This was prompted as a result 

of the increase in urbanisation, as discussed throughout Chapter 1. 

 

5.6.2 Rainfall Data, Design Storms, and Interception 

The Flood Estimation Handbook (FEH) consists of five volumes containing information 

regarding the hydrological characteristics and predicted rainfall severity (relating to a given 

AEP) of every catchment across the UK (UK Centre for Ecology and Hydrology, 2021). The 

FEH provides the information needed to generate a design storm - a synthetic hyetograph that 

disperses total rainfall based on catchment descriptors (given by the FEH), in a way to test 

drainage infrastructure during hydrological modelling (Alfieri et al., 2008; Krvavica and 

Rubinić, 2020). To generate the design storms for the durations and intensities outlined in 0, 

the hydrology tools on Flood Modeller (Jacobs, 2021) were used; the FEH catchment 
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descriptors were imported, required storm duration and AEP specified, and the resulting design 

storm exported.  

As discussed in 5.4, two models were built to account for hydrological variations of the site 

throughout summer and winter. Interception and the influence it can have on reducing runoff 

is discussed in sections 2.3.3 and 2.4, with regards to its importance when considering NFM 

(Lunka and Patil, 2016; Ngai et al., 2017). In this study, interception needed to be considered 

as the sampled tree species are deciduous ( 

Table 5.4), meaning interception is variable throughout the year. Interception loss was not 

empirically monitored for this study due to the it falling beyond the scope; however, it was 

accounted for throughout the modelling phase using published values (Calder, 2003; Nisbet, 

2005; Lunka and Patil, 2016; Ngai et al., 2017). See Table 5.7. 

Table 5.7. Mean interception loss from grassland and broadleaf trees. 

Land cover Suggested loss Central loss (per annum) Reference 

Grassland Negligible < 0 % (Ngai et al., 2017) 

 Negligible < 0 % (Nisbet, 2005) 

Broadleaf 
28-34% 21 % (Lunka and Patil, 2016) 

10-25% 17.5 % (Calder, 2003) 

Mean Average 24.25 %  

 

The ranges (28-34%, 10-25%) of broadleaf interception loss were averaged to give a single 

figure (24.25%) to apply to FEH rainfall for the summer model, grassland interception values 

are shown in the literature to be negligible (<0%). It is acknowledged that there will be less 

precipitation entering the model throughout the summer simulations due to the discussed loss 

due to interception. This further supports the decision to create both summer and winter models 

and simulate separately.  

Table 5.8 shows the FEH values before (for winter) and after (for summer) interception loss. 
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Table 5.8. Total FEH values before (for winter) and after (for summer) interception loss. 

Duration 

(hours) 

AEP % Winter precipitation 

(mm) 

Summer precipitation (after 

interception loss) (mm) 

6 50 22.34 16.92 

6 10 35.37 26.79 

6 2 52.94 40.10 

6 1 62.77 47.55 

24 50 36.66 27.77 

24 10 54.37 41.18 

24 2 76.83 58.20 

24 1 88.91 67.35 

96 50 56.04 42.45 

96 10 77.74 58.89 

96 2 103.80 78.63 

96 1 117.16 88.75 

 

The FEH values shown were used to simulate rainfall in the winter and summer models 

respectively. This is a method accounts for interception loss without the use of specialised 

equipment or continuous monitoring, and was an important process as the influence of 

interception loss would vary seasonally across the site both at present and in the future (Iida et 

al., 2020). 

 

5.6.3 Simulating Infiltration 

The infiltration data collected as part of objective 1a needed to be interpreted and included as 

a critical part of the modelling process and needed to be sorted in to winter and summer (section 

5.4). The collected infiltration data from every sample site at 10 and 200 cm proximity was 

ordered by collection month over collection years, for example, winter infiltration data was 

collected in 2019/2020 and 2020/2021, so the total infiltration for the same sample sites over 

both winter durations were recorded. 
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To account for the infiltration values of sites that were not observed but were required in the 

hydrological model for an accurate representation of the site (1991, 1995, 2007, 2009, 2011, 

2013, 2015, 2016, 2017 2018 and 2019), the median value was calculated from the observed 

data. For example, the infiltration for 2007 was taken from the median value of 2006 and 2008, 

and the median value from 2008 and 2010 was used to produce the infiltration value for 2009 

(etc.). This method was simplistic for planting years that fell between observed years, however, 

became slightly more complicated between 2014 and 2020 as there was no observed infiltration 

data. Instead, the median between 2014 and 2020 was used as the 2017 value, and then these 

values used to calculate the median for 2015, 16, 18 and 19 respectively. Whilst the method of 

deriving the infiltration values for the unobserved sites is mathematically based on observed 

data, it is reasonable to assume that the infiltration would follow the trend due to similarities in 

soil texture and tree species (Jarvis, 2007; Folorunso and Aribisala, 2018; Rahman et al., 2019; 

Mahapatra et al., 2020). It is also advantageous that the only unobserved values between 2014 

and 2020 to be used in the model are two small plots planted in 2018, meaning the extrapolation 

did not have to be extensively employed.  

 

5.6.4 Baseflow and Antecedent River Conditions 

For any simulation to be representative of current site hydrology, baseflow had to be 

approximated (Schütte and Schulze, 2017; Onyutha, 2019). If baseflow was overlooked, then 

the total discharge from each simulated storm would neglect the water volume of the river 

before simulation, and therefore not represent true site conditions (Cahyono and Adidarma, 

2019; Gholami and Khaleghi, 2021). To calculate the baseflow, telemetry data collected via 

the pressure transducer (accuracy ±0.05% FS) (see section 5.3.1) starting at the date that the 

equipment was calibrated on-site (09/04/2019), was collected and split into summer and winter 

(Section 5.4). This data was then averaged, and the result was used as the baseflow input for 

the model when simulating the current flow at the study site. See Figure 5.37 
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Figure 5.37. Collected telemetry data for a) summer and b) winter, red line indicates mean 

flow (taken as baseflow for hydrological modelling) 

The winter mean baseflow was 0.284m3s and the summer mean baseflow is 0.239m3s. It should 

be noted that the summer mean was based only on data collected from April to September 2020 

as no data was available before these dates, and a fault with the pressure transducer meant that 

data after these dates could not be recovered. 

 

a) 

b) 0.284 m3s baseflow 

0.239 m3s baseflow 
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5.7 Precipitation, Infiltration and Baseflow Projections 

This section describes the processes of projecting precipitation, infiltration and baseflow to 

account for future climate change; and how these methods were utilised to fulfil objective 3b. 

5.7.1 Projected Variations in Precipitation due to Climate Change 

The UK Climate Projections 2018 (UKCP18) toolkit provides independently peer reviewed 

future climate change projections at 60 km sale globally, and at 12 and 2.2 km scale for the UK  

(The Met Office, 2019). Climate projections in the UKCP toolkit are used by the EA to 

anticipate change to hydrometric datasets due to climate change over the next century 

(Environment Agency, 2021a). Each data allowance is based on a percentile of climate data 

collected from 1961-1990; the central allowance based on the 50th percentile, the and the upper 

allowance based on the 90th percentile (Environment Agency, 2021a). Table 5.9 shows national 

precipitation increase allowances for catchments smaller than 5km2. 

Table 5.9. Percentage increase for total event rainfall for given timescales. 

 Anticipated Increase 

Allowance 2015 - 2039 2040 - 2069 2070 - 2115 

Upper end 10% 20% 40% 

Central 5% 10% 20% 

 

Percentage increase for the central 2071-2115 and the upper 2041-2070 are both 20%, and the 

upper 2015-2040 and the central 2040-2069 are both 10%. Simulating these individually would 

result in the same values being produced, contributing no additional information to the study. 

To comprehensively simulate all projected future changes to precipitation, FEH rainfall values 

were increased by 5, 10, 20 and 40% over each duration and AEP. This allowed for all likely 

precipitation increase scenarios to be accounted for, and eventually provide a range of output 

results shown throughout section 7.3. 
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As discussed in section 5.6.2, interception loss was subtracted from summer FEH values for 

the ‘current day’ models. To account for precipitation changes throughout the summer due to 

climate change, the post-interception loss rainfall values were multiplied by the values shown 

in Table 5.9.  

 

5.7.2 Projected Variation to Infiltration Values due to Climate Change 

Projecting infiltration for the purposes of modelling the hydrological characteristics of the site 

considering climate change posed a unique challenge to this study. As reflected in section 3.5, 

there are no past or ongoing projects that have collected infiltration data to the frequency or 

duration of what has been collected for this project; meaning literature and guidance is sparse 

for this area. Whilst authors acknowledge that tree planting increases infiltration over time 

(Chandler et al., 2018; Zhang et al., 2019a; Murphy et al., 2021) and is of benefit when 

reducing flood risk (Lacob et al., 2014; Dittrich et al., 2019; Murphy et al., 2021), very little 

data is available to project values in to the future. Due to the novelty of this attempt, and the 

lack of external data to use for justification, any method selected for the projection of data 

would need to be built on reasonable assumption and/or mathematics or statistics. In total, three 

methods of projecting infiltration data were tested; however, the method chosen utilised 

published information (maturity, growth rates) in addition to collected infiltration data to 

cumulatively increase the infiltration year-on-year until maturity. This would be applied to 

observed sites, and unobserved sites would be extrapolated from averaging observed values (in 

the same method discussed in section 5.6.3). The results of the alternative methods tested for 

infiltration projection are shown in appendix B.6. 

The first step was to find the ages at which the sample trees mature and reach their average 

maximum dimensions. Infiltration increases as a result of tree roots breaking up the 

surrounding soil; the larger the tree, the larger the roots and the larger the area for potential 

increased infiltration (Silber, 2019; Tzioutzios and Kastridis, 2020; Martinez et al., 2021). 
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When a tree reaches its maximum dimensions (and maturity), root growth slows to a quasi-

steady state, indicating infiltration would remain at a constant value until the decline and 

gradual death of the tree (Alvarez-Uria and Körner, 2007; Muller et al., 2019). The tree species 

of the sample sites (section 5.2.1) are shown again in Table 5.10. 

Table 5.10. Species of sampled woodland. 

Planting year Species Name 

Pre – 1900 Sessile Oak Quercus Petraea 

2006, 2010 Silver Birch Betula Pendula 

2008, 2012, 2014, 2020 Aspen Populus Tremula 

 

Regarding the ca.1900 site, Sessile Oak (Quercus Petraea) can live for 600 - 1000 years, and 

all Oak species are classed as ancient from 400 years onwards. A Sessile Oak reaches its 

ultimate height in 50 years, at which point growing slows (The Royal Horticultural Society, 

2021; Woodland Trust, 2021). Using this information and applying to the ca.1900 site at 

Spernal, it is reasonable to assume that infiltration will unlikely change significantly from now 

until the last simulated year (2120), so mean infiltration will be used for both the 10 and 200 

cm proximities for all projection years. The Silver Birch (Betula Pendula), planted at the 2006 

and 2010 sites, grows rapidly for the first 50-60 years (Hynynen et al., 2010), but usually 

reaches its maturity and ultimate height around 60 years (Kuparinen et al., 2010; Lee et al., 

2015; Zeltiņš et al., 2018). A Silver Birch can live for 60-70 years and usually become more 

susceptible to decay and other defects before reaching 100 (Hynynen et al., 2010). Aspen trees 

(Populus Tremula), planted at the 2008, 2012, 2014 and 2020, sites grow rapidly for the first 

25-30 years. Growth slows at around 30 years, and their mean lifespan is 100-120 years 

(MacKenzie, 2010; CAB International, 2013; Savill, 2019). Like the ca.1900 site, the 

infiltration rates collected from the grassland control are likely to stay the same through all 

projection years; aerial imagery (appendix Table B.16) shows that area has been grassland for 
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over 100 years, so is unlikely to change in infiltration unless provoked through 

development/agricultural practice, of which the HofE are not planning on undertaking for the 

foreseeable future (The Heart of England Forest Charity, 2021).  

Once information about the sample trees had been derived, it was used in conjunction will the 

mean infiltration data for both summer and winter to project future changes. The age of each 

tree was calculated based on the year it was planted (in 2021, the 2006 trees would be 15 years 

old), the mean infiltration value was then divided by this value, which would give the mean 

infiltration for the tree if it was 1 year old. This was then used to cumulatively increase the 

infiltration year-on-year, until the year that the tree would mature was reached. This is shown 

in EQ 5.11 

𝐼𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟 𝑦𝑒𝑎𝑟 = (
𝑀𝑒𝑎𝑛 𝑖𝑛𝑓𝑖𝑙𝑡𝑟𝑎𝑡𝑖𝑜𝑛

𝑌𝑒𝑎𝑟𝑠 𝑝𝑙𝑎𝑛𝑡𝑒𝑑
) × 𝑦𝑒𝑎𝑟𝑠 𝑢𝑛𝑡𝑖𝑙 𝑚𝑎𝑡𝑢𝑟𝑖𝑡𝑦 𝑎𝑔𝑒 EQ 5.11 

The results of this method are shown for 10 and 200 cm proximity winter and summer in 

appendix B.7. Figure B.32 to Figure B.39 (appendix B.7) show the projected values for 2014 

and 2020 to be higher than other values for the same proximity and season; this is due to the 

amount of observed data available for use in projections. This is a result of the projection 

method used; as the 2014 and 2020 planting areas are relatively new, there were less 

‘established years’ to divide the mean infiltration by. This meant that when infiltration was 

divided and multiplied to account for growth over time until maturity, the growth rate was 

faster for trees newer trees of younger maturity. As mentioned in section 5.6.3, the 2014 and 

2020 datasets were only used for the benefit of a small section of land (planted in 2017 and 

2018), not owned by the HofE forest, so the use of these infiltration projections in modelling 

will not influence results as substantially as they would if the entire site was reliant on the 2014 

and 2020 projections. The need for devising such methods further emphasises the novelty and 

uniqueness of this project, few other catchments in the UK has such comprehensive infiltration 

data, so this method was chosen based on trial and error, and the required outcome. After 
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projections had been extrapolated for the observed infiltration years, infiltration data for 

unobserved sites needed to be projected to account for likely future change. For this, the median 

values were derived (following the method explained in section 5.6.3), and this value was then 

calculated using EQ 5.11.  

Figure B.32 to Figure B.39 (appendix B.7) show a taper in infiltration as the trees reach their 

maturity. Whilst this is possibly not representative of infiltration trends observed in the field, 

it is important to remember that these projections have been extrapolated from observed data 

using statistical methods. Additionally, they are based on the tree growing consistently year-

on-year and in reality, trees are much more complicated. Tree growth is dependent on soil 

texture, soil nutrients, biological activity, resistance to illness, sunlight, rain patterns and 

atmospheric temperatures (Alvarez-Uria and Körner, 2007; Skovsgaard et al., 2018; Muller et 

al., 2019). However, as mentioned above, the presented infiltration projections are for the 

purpose of producing a likely peak flow and total discharge range based on the collected 

infiltration field data, and will contribute to the knowledge base regarding the role of woodland 

a method of NFM. 

 

5.7.3 Projected Variation to Baseflow due to Climate Change 

Projecting the changes to baseflow as a result of climate change is of significance to the 

hydrological modelling stage of this project. There is very little literature regarding baseflow 

changes for catchments across the UK due to its unpredictability and variability from catchment 

to catchment (Yusop et al., 2007; Onyutha, 2019). The method used in this study is based on 

the method used regularly by water practitioners and hydrological consultancies, and uses the 

EA’s peak flow projections, which are based on UKCP18 climate projection data (Lowe et al., 

2019; Environment Agency, 2021a, 2021b; JBA Personal Communication and PCC Personal 

Communication, 2021). Table 5.11 shows the peak flow uplifts for the study site tributary 

(Severn, Avon Warwickshire). 
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Table 5.11. Percentage increase for baseflow for specified future year range 

 

The conversion from the percentage uplifts in Table 5.11 to baseflow is shown in EQ 5.12. 

𝐵𝑎𝑠𝑒𝑓𝑙𝑜𝑤 𝑢𝑝𝑙𝑖𝑓𝑡 = 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑏𝑎𝑠𝑒𝑓𝑙𝑜𝑤 × 1. 𝑥 EQ 5.12 

Where x = the percentage increase as defined by the EA for the desired timescale (Table 5.11). 

The results of the uplifted baseflow for higher and central projections for each timeframe can 

be seen in Table 5.12.

 Anticipated Increase 

Allowance  2020 - 2049  2050 - 2079  2080 + 

Upper end 22% 31% 59% 

Central 7% 8% 21% 
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Table 5.12. Baseflow values after applying EA uplifts 

 

Upper end and central projections refer to the percentage of possible scenarios that fall above 

and below an allowance level. The central allowance is based on the 50th percentile, meaning 

50% of possible flow scenarios fall both above and below this point; and the upper end 

allowance is based on the 90th percentile, meaning 90% of likely flow events fall below this 

value, and 10% above (Environment Agency, 2021a). The EA also issue a H++ scenario for 

river flows, however these are based on there being no mitigative actions taken against climate 

change and are rarely used in hydrological modelling due to their speculative nature. Therefore, 

H++ was not included here, but central and upper were simulated to produce a range of possible 

outcomes for future flows from the study site based on EA data (see section 7.3). 

 

5.8 Summary of Simulations and Data Used 

Table 5.13 is a list of completed hydrological simulations, detailing the duration, AEP and data 

and information used for each. In total 448 simulations were undertaken, 324 in winter and 324 

in summer. 

  2020 - 2049  2050 - 2079  2080 + 

 Winter – Current mean baseflow: 0.284m3s 

Upper end 0.346 0.372 0.452 

Central 0.304 0.307 0.344 

 Summer– Current mean baseflow: 0.239m3s 

Upper end 0.292 0.313 0.380 

Central 0.256 0.258 0.289 
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Table 5.13. Simulations and data used for each. Each simulation was computed for both winter and summer. 

Duration (hours) 6, 24, 96 Notes 

AEP (%) 50 10 2 1  

HofE site ✓ ✓ ✓ ✓ Collected winter and summer infiltration data 

Impermeable ✓ ✓ ✓ ✓ 99% impermeable 

100% Grassland ✓ ✓ ✓ ✓ Control site (grassland) infiltration value winter and summer 

Site in 20 years (2040), 5% rainfall, central baseflow.  ✓ ✓ ✓ ✓ 

Current site in future years (defined in column 1), using 
precipitation, infiltration and baseflow projections (discussed 
throughout section 5.7) 

Site in 20 years (2040), 5% rainfall, upper baseflow. ✓ ✓ ✓ ✓ 

Site in 50 years (2070), 10% rainfall, central baseflow. ✓ ✓ ✓ ✓ 

Site in 50 years (2070), 10% rainfall, upper baseflow. ✓ ✓ ✓ ✓ 

Site in 100 years (2120), 20% rainfall, central baseflow. ✓ ✓ ✓ ✓ 

Site in 100 years (2120), 20% rainfall, upper baseflow. ✓ ✓ ✓ ✓ 

Site in 100 years (2120), 40% rainfall, central baseflow. ✓ ✓ ✓ ✓ 

Site in 100 years (2120), 40% rainfall, upper baseflow. ✓ ✓ ✓ ✓ 

Grassland site in 20 years (2040), 5% rainfall, central baseflow.  ✓ ✓ ✓ ✓ 

Grassland site in future years (defined in column 1), using 
precipitation, infiltration and baseflow projections (discussed 
throughout section 5.7) 

Grassland site in 20 years (2040), 5% rainfall, upper baseflow. ✓ ✓ ✓ ✓ 
Grassland site in 50 years (2070), 10% rainfall, central baseflow. ✓ ✓ ✓ ✓ 
Grassland site in 50 years (2070), 10% rainfall, upper baseflow. ✓ ✓ ✓ ✓ 
Grassland site in 100 years (2120), 20% rainfall, central baseflow. ✓ ✓ ✓ ✓ 
Grassland site in 100 years (2120), 20% rainfall, upper baseflow. ✓ ✓ ✓ ✓ 
Grassland site in 100 years (2120), 40% rainfall, central baseflow. ✓ ✓ ✓ ✓ 
Grassland site in 100 years (2120), 40% rainfall, upper baseflow. ✓ ✓ ✓ ✓ 

Impermeable site in 20 years (2040), 5% rainfall, central baseflow.  ✓ ✓ ✓ ✓ 

Impermeable site in future years (defined in column 1), using 
precipitation, infiltration and baseflow projections (discussed 
throughout section 5.7) 

Impermeable site in 20 years (2040), 5% rainfall, upper baseflow. ✓ ✓ ✓ ✓ 

Impermeable site in 50 years (2070), 10% rainfall, central baseflow. ✓ ✓ ✓ ✓ 

Impermeable site in 50 years (2070), 10% rainfall, upper baseflow. ✓ ✓ ✓ ✓ 

Impermeable site in 100 years (2120), 20% rainfall, central baseflow. ✓ ✓ ✓ ✓ 

Impermeable site in 100 years (2120), 20% rainfall, upper baseflow. ✓ ✓ ✓ ✓ 

Impermeable site in 100 years (2120), 40% rainfall, central baseflow. ✓ ✓ ✓ ✓ 

Impermeable site in 100 years (2120), 40% rainfall, upper baseflow ✓ ✓ ✓ ✓ 
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5.9 Chapter Summary 

This chapter has introduced the research philosophy and hypotheses of study (section 5.1), and 

described and critically assessed the methods selected for in producing study results in line 

with the study aims and objectives (section 1.3). Upon defining the study site in Chapter 4, 

infiltration sample plots were identified following the criteria outlined in section 5.2. 

Infiltration was collected with the MDI from plots planted in 2006, 2008, 2010, 2012 (in 

addition to a grassland control and area of woodland planted ca.1900) at Spernal; additional 

data was collected from 2014 and 2020 sites on alternate weeks to Spernal. This data is 

presented and analysed in section 7.1. 

Two hydrological models were built, calibrated, and validated using hydraulic data from the 

site, and the NSE method was used to determine the accuracy of the models. Two models were 

created to better represent study site conditions throughout winter and summer respectively, 

and these models were used to generate the present-day response of the site to varying rainfall 

events. The results are presented in section 7.2.  

The collected infiltration data, and the required hydrometric data (precipitation and baseflow) 

were projected using appropriate methods (comprehensively discussed in section 5.7) to project 

the influence of woodland planting in the future, considerate to the predicted changes due to 

climate change. These results are presented throughout section 7.3. 
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Chapter 6 Pilot Results and Reflection for Infiltration Tests 

 

It is outlined in section 5.2.2.1 that, due to the importance of infiltration measurement 

replication for this study, the MDI user manual’s suggestion of 30-40 ml of infiltrated water 

per measurement was adjusted. This methodology was tested at the HofE site as part of a 

preliminary pilot study, and the processes and results of this adaptation are discussed 

throughout this chapter, along with how this method was up scaled to the whole study site. 

 

6.1 Mini Disk Infiltrometer Testing and Validation 

A tension setting of 2 cm was selected following the suggestion of the MDI user manual 

(METER® Group Inc., 2020), however the manual also notes that 30 to 40 ml of water should 

infiltrate the soil for accurate measurement. The soil texture of most sample sites at Spernal is 

clay, which inherently exhibits a low permeability (Folorunso and Aribisala, 2018), thus 

indicating that allowing 30-40 ml of water to infiltrate would surpass the allotted time on site 

each week (accounting for replication, and the requirements of the health and safety 

agreement). Therefore, for further justification and to quantify the ‘time on site’ that would be 

required to collect the desired data (and replicates) from all sample sites using the suggested 

30-40 ml of water, a pilot study was undertaken. 

The MDI was filled and placed at the ca.1900, 2006, 2008, control and 2010 sites, and 

monitored until 40 ml of water infiltrated the soil, at which point, the measurement ended. 

Measurements took place over two days at the HofE Spernal study site, and the results are 

shown in Figure 6.1 and Table 6.1. 
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Figure 6.1. Graphical display of infiltration / duration results from the MDI validation. 

Table 6.1. Tabulated results of the MDI validation showing time to infiltrate, infiltration 

volume and reasons for measurement conclusion. 

Site Sample day Time Infiltration (ml) Note 
  Mins Hours   

ca.1900 1 80 01:20 40 40 ml infiltrated 

2006 1 480 08:00 22 Getting dark 

Control 2 100 01:40 40 40 ml infiltrated 

2010 2 120 02:00 40 40 ml infiltrated 

2008 2 180 03:00 8 Getting dark 

 

As seen, 40 ml of infiltration was reached at the ca.1900, control and 2010 sites in 1:20, 1:40 

and 2:00 hours respectively. The 2006 sample could not be completed due to the daylight 

fading and the sample having run for 8 hours (1:30 hours of which remaining at 22 ml). The 

2008 sample could not be completed as light was fading and infiltration had remained the same 

for 2:00 hours (8 ml). Results of Figure 6.1 and Table 6.1 show that collecting infiltration 

following the user manual’s suggestion is impractical for the overall aim of the infiltration data 

collection. For example, the measurement of both proximities including replication of the 

ca.1900 site (the quickest site to reach the 40 ml threshold) would take 8 hours; and the 
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collection of the same data at the slowest site (2006) would take 48 hours (it is also worth 

noting that the 2006 failed to reach the user manual 40 ml threshold). 

Using the above information, it was decided that the user manual recommendation not be 

followed, and instead measurement would end when consecutive infiltration measurements 

were recorded for three sequential timesteps (in line with Bagarello and Sgroi (2004) and 

Chandler et al., (2018)), or when measurement duration reached 10 minutes. To verify this 

method, an additional MDI measurement was recorded 50 cm away from the location of those 

shown in Table 6.1, however this measurement was limited to 10 minutes. The results in Table 

6.1 were then divided to show the infiltration per minute, and per 10 minutes (columns A), and 

compared to the 10-minute duration measurements, as shown in Table 6.2 (columns B).  

Table 6.2. 10-minute MDI measurement (columns B) compared to the data displayed in Table 

6.1 (columns A). 

A B 

Site 

Total 

Infiltration 

(ml) 

Infiltration per 

minute (ml) 

Infiltration per 

10- minutes 

(ml) 

Observed 10-

minute 

infiltration (ml) 

% -/+ 10-

minute value 

ca.1900 40 0.50 5.00 5.73 +14.60 

2006 22 0.05 0.46 1.08 +135.64 

Control 40 0.40 4.00 3.4 -15.00 

2010 40 0.33 3.33 3.28 -1.60 

2008 8 0.04 0.44 3.01 +100.67 

 

Results show that there is variation between the 10-minute values in infiltration at all sites, the 

2006 site shows the highest variation, followed by 2008, Control ca. 1900, and 2010. It is 

important to consider that whilst there is variation between columns A and B, the 10-minute 

infiltration in column A is a division of a larger dataset, whereas column B data was taken at 

one measurement over 10 minutes, therefore there is less data to be divisible by in column B. 

The findings presented as a result of the pilot study were valuable in the shaping of the sampling 

method used for infiltration data collection (in line with objective 1a) (section 1.3). The results 

show that the MDI user manual recommendation of 30-40 ml of infiltrated water could not be 
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followed for this study due to the amount of time that would be required on site, but also that 

comparable results could be collected over a 10-minute duration at all sites. Using the newly 

formed methodology of collecting infiltration data over a 10- minute period (or until 3 

consecutive measurements were collected, following Chandler et al., (2018) allowed for 

measurements to be collected and replicated at all Spernal sites, in one site visit. This was 

beneficial for allowing all sites to be sampled in one site visit (keeping external conditions as 

consistent as possible and for allowing replications to be collected, which further enforces the 

reliability of infiltration measurements (see section 4.1). The tension setting of 2 cm was used 

for all infiltration measurement in the field, following the suggestion of the MDI user manual 

(METER® Group Inc., 2020).  

 

6.2 Chapter Summary 

This chapter has introduced the pilot study, conducted to test both the suitability of the existing 

guidance regarding MDI measurement, and the effectiveness of upscaling the adapted method 

to the wider study site. Figure 6.1 and Table 6.1 show that following the MDI user manual 

guidance of allowing 30-40 ml of water to infiltrate is unfeasible at the study site due to both 

the inherently low permeability of clay soils, and the requirement of replication for this study, 

as defined in section 6.1, the alternative methodology of sampling infiltration for 10 minutes 

or until three consecutive measurements are recorded (whichever is first) could be extrapolated 

for sampling the whole study site, and was ultimately the method used to collect the infiltration 

data in line with objective 1a (section 1.3). 
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Chapter 7 Results and Analysis 

 

This section presents and interprets the results of the study, generated via the methods discussed 

throughout Chapter 5. Section 7.1 presents and statistically analyses the collected infiltration 

data collection, with regard to proximity and maturity. Section 7.2 presents the results of the 

hydrological modelling of the HofE site at present in both summer and winter. Section 7.3 

presents the simulated peak flow and total discharge projections from the site throughout both 

summer and winter. 

 

7.1 Tree Proximity, Infiltration and Maturity 

Objective 1b was to analyse the collected field data to identify a correlation between infiltration 

and tree proximity and maturity (section 1.3). Figure 7.1 and Table 7.1 show the mean 

infiltration values for each sample site throughout winter and summer 2019/20 and 2020/21. 

Note control has been excluded from figure and tables due to this section being a comparison 

of infiltration change due to proximity.  
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Figure 7.1 Comparison of mean infiltration data from 10 and 200 cm proximity throughout 

summer and winter in a) 2019/2020 and b) 2020/2021. 
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Table 7.1. Mean infiltration for 10 and 200 cm proximities throughout both winter and summer sample periods. The control site infiltration 

values are shown here for reference. S.D. refers to the standard deviation of infiltration values, and n indicates the values included in 

measurement.  

 
Control 

ca. 1900 2006 2008 2010 2012 2014 2020 

 (ml) S.D. (ml) S.D. (ml) S.D. (ml) S.D. (ml) S.D. (ml) S.D. (ml) S.D. 

2019/20 10 cm 

3.4 

(n=21) 

9.96 

(n=27) 
17.90 

0.67 

(n=27) 
1.05 

7.04 

(n=27) 
17.43 

4.85 

(n=27) 
11.62 

3.07 

(n=27) 
4.36 

9.11 

(n=27) 
18.68 

3.26 

(n=27) 
6.24 

2020/21 10 cm 
5.64 

(n=36) 
3.54 

2.17 

(n=36) 
1.71 

1.98 

(n=36) 
1.61 

2.80 

(n=36) 
3.36 

2.31 

(n=36) 
1.53 

2.81 

(n=36) 
1.94 

1.89 

(n=36) 
1.50 

2019/20 200 cm 
4.22 

(n=27) 
7.18 

0.37 

(n=27) 
0.89 

2.56 

(n=27) 
5.96 

4.70 

(n=27) 
11.20 

2.30 

(n=27) 
4.62 

1.67 

(n=27) 
4.07 

6.33 

(n=3) 
6.33 

2020/21 200 cm 
3.78 

(n=36) 
3.23 

0.83 

(n=36) 
1.28 

1.36 

(n=36) 
1.18 

1.50 

(n=36) 
1.34 

1.69 

(n=36) 
1.32 

0.81 

(n=36) 
0.72 

0.61 

(n=36) 
0.63 

2019/20 10 cm 

12.35 

(n=18) 

20.81 

(n=21) 
25.61 

14.62 

(n=21) 
14.94 

17.95 

(n=21) 
24.94 

17.62 

(n=21) 
28.45 

18.14 

(n=21) 
20.83 

17.38 

(n=21) 
33.55 

13.81 

(n=21) 
17.59 

2020/21 10 cm 
11.54 

(n=33) 
6.85 

5.06 

(n=33) 
3.25 

5.85 

(n=33) 
3.51 

9.73 

(n=33) 
6.34 

6.70 

(n=33) 
4.55 

4.73 

(n=30) 
2.47 

4.20 

(n=30) 
3.51 

2019/20 200 cm 
11.38 

(n=21) 
7.94 

9.48 

(n=21) 
8.20 

16.14 

(n=21) 
29.76 

15.19 

(n=21) 
23.34 

14.90 

(n=21) 
16.09 

17.48 

(n=21) 
29.70 

14.43 

(n=21) 
20.17 

2020/21 200 cm 
9.21 

(n=33) 
6.55 

3.27 

(n=33) 
2.67 

4.45 

(n=33) 
3.20 

6.45 

(n=33) 
4.70 

4.94 

(n=33) 
3.60 

3.57 

(n=30) 
2.33 

3.40 

(n=30) 
3.01 

 

Table 7.2 and Table 7.3 present the percent difference in infiltration varying by both proximity and seasonality.
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Table 7.2. Percent variation in infiltration measurement at 10 cm and 200 cm proximity 

varying by measurement period 

Season 

+/- 10 cm proximity infiltration higher than 

200 cm proximity infiltration 

Winter 2019/20 + 71.38 % 

Winter 2020/21 + 85.26 % 

Summer 2019/20 + 21.55 % 

Summer 2020/21 + 35.48 % 

Winter Mean + 75.87 % 

Summer Mean + 25.19 % 

 

Table 7.3. Overall mean percent difference in infiltration measurements at 10 cm and 200 cm 

proximity. 

Measurement 

Proximity 

+/- higher in summer compared with 

winter 

10 cm + 192 % 

200 cm + 310 % 

 

Table 7.2 shows that in winter, mean 10 cm infiltration was 75.87% higher than mean 200 cm 

infiltration over both sample years; and in summer, mean 10 cm infiltration was 25.19% higher 

than 200 cm. Table 7.3 shows that mean 10 cm infiltration is 192% higher in summer compared 

with winter, and mean 200 cm infiltration is 310% higher in summer compared with winter. 

There is more variation between the 10 and 200 cm proximities in winter compared with 

summer; however, summer 10 cm infiltration is still higher than 200 cm by 21.55% and 35.48% 

in 2019/20 and 2020/21 respectively. 
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To further test the significance of the difference in infiltration values collected at the same 

proximity in both winter and summer (i.e., 10 cm winter vs 10 cm summer and 200 cm winter 

vs 200 cm summer), statistical analysis was undertaken. A Kolmogorov-Smirnoff normality 

test was performed using all infiltration data (Gadian et al., 2018; Mishra et al., 2019) finding 

the data to be non-parametric (see appendix C.1.1); additionally, the collected infiltration data 

is unpaired data, as the relationship between the data is not related by any other relationship 

other than the nature of measurement, therefore a Mann-Whitney U test were undertaken 

(Mishra et al., 2019; Kamis et al., 2021). The Mann-Whitney U test was chosen over other 

nonparametric statistical tests (Kruskal-Wallis, Mood’s median, Wilcoxon signed rank) as it 

produces results equivalent to the (parametric) independent samples t-test (Fay and Proschan, 

2010; Mishra et al., 2019; Kamis et al., 2021). The methodology of the Mann-Whitney U test 

is presented in appendix C.1.2, and additional statistical information is shown in appendix 

C.1.3. Results of the Mann-Whitney U tests are shown in Table 7.4.
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Table 7.4. Mann-Whitney U test results from comparing equivalent infiltration proximity 

data from winter and summer 

Test Criteria  P-value 
Significant difference? 

(P≤0.05) 

All 10 cm winter vs 10 cm summer <0.00 YES 

All 200 cm winter vs 200 cm summer <0.00 YES 

ca. 1900 10 cm winter vs 10 cm summer 0.01 YES 

ca. 1900 200 cm winter vs 200 cm summer <0.00 YES 

2006 10 cm winter vs 10 cm summer <0.00 YES 

2006 200 cm winter vs 200 cm summer <0.00 YES 

2008 10 cm winter vs 10 cm summer <0.00 YES 

2008 200 cm winter vs 200 cm summer <0.00 YES 

2010 10 cm winter vs 10 cm summer <0.00 YES 

2010 200 cm winter vs 200 cm summer <0.00 YES 

2012 10 cm winter vs 10 cm summer <0.00 YES 

2012 200 cm winter vs 200 cm summer <0.00 YES 

2014 10 cm winter vs 10 cm summer 0.01 YES 

2014 200 cm winter vs 200 cm summer <0.00 YES 

2020 10 cm winter vs 10 cm summer 0.05 YES 

2020 200 cm winter vs 200 cm summer 1.00 NO 

 

Results of the Mann-Whitney U tests support the findings displayed in Table 7.1. There is a 

statistically significant difference in infiltration data collected from the same proximities 

between winter and summer. Most tests showed a p value <0.00 (alpha), some samples showed 

a higher p value of 0.01 – 0.05 (ca. 1900 10 cm, 2014 10 cm, 2020 10 cm); the only site to 

show a p-value significantly higher than 0.05 (indicating no significant difference between 

summer and winter) was 2020 200 cm. The results presented in Table 7.4 are a further 

indication of the variability of study site hydro-geological conditions throughout summer and 

winter, and further supports the decision to build, calibrate and simulate two models 

independently for more representative results (section 5.4). 
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Referring back to Table 7.1, when considering any correlations between tree maturity and 

infiltration, it would be expected that the discrepancy between infiltration at the 10 cm and 200 

cm proximity would become greater, as tree roots develop laterally, breaking up the 

surrounding soil matrix, reducing compaction and increasing porosity (Mölder et al., 2019; 

Zhang et al., 2019a; Xie et al., 2020; Martinez et al., 2021) (section 2.3.1). Considering this, it 

would be expected that the most recently planted trees (2020/2014), would show a lower mean 

infiltration at both proximities, and older (HofE) planted trees (2006/2008) would show higher 

mean infiltration values; however, this is not the case. Table 7.5 shows the mean infiltration of 

each sample site, sorted in ascending order, in winter and summer at both measured 

proximities.  

Table 7.5. Sample sites ordered in ascending order based on mean infiltration (ml) in winter 

and summer at both 10 and 200 cm proximity. n indicates the number of values used to 

calculate the mean. 

 Winter 10 cm 

ca. 1900 2014 2008 2010 2012 2020 2006 

7.80 

(n=63) 

5.96 

(n=63) 

4.51 

(n=63) 

3.83 

(n=63) 

2.69 

(n=63) 

2.58 

(n=63) 

1.42 

(n=63) 

Summer 10 cm 

ca. 1900 2010 2012 2008 2020 2014 2006 

16.18 

(n=42) 

13.68 

(n=42) 

12.42 

(n=42) 

11.90 

(n=42) 

11.06 

(n=21) 

9.84 

(n=42) 

9.01 

(n=42) 

 

 Winter 200 cm 

ca. 1900 2020 2010 2012 2008 2014 2006 

4.00 

(n=63) 

3.47 

(n=39) 

3.10 

(n=63) 

2.00 

(n=63) 

1.96 

(n=63) 

1.24 

(n=63) 

0.60 

(n=63) 

 Summer 200 cm 

2010 2014 ca. 1900 2008 2012 2020 2006 

10.82 

(n=54) 

10.53 

(n=51) 

10.30 

(n=54) 

10.30 

(n=54) 

9.92 

(n=54) 

8.92 

(n=51) 

6.38 

(n=54) 

 

Table 7.5 shows that the sorted mean infiltration data does not follow the chronological order 

expected (as discussed), aside from the 2006 site which consistently shows the lowest mean 

infiltration regardless of season or proximity. The ca. 1900 site shows the highest mean 
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infiltration for winter (10 and 200 cm) and summer 10 cm, however is displaced by 2010 at the 

summer 200 cm proximity. There is no obvious trend between the highest and lowest 

infiltration values, with no consistent chronology, as would be expected based on the existing 

literature (Mölder et al., 2019; Zhang et al., 2019a; Xie et al., 2020; Martinez et al., 2021).  

Whereas Table 7.5 displays mean infiltration change relative to proximity and maturity, this 

alone is not an accurate representation of the observed trends. As discussed (in section 5.2.1.1), 

the soil texture of the 2006 site is (almost) entirely clay, meaning infiltration is lower 

(Folorunso and Aribisala, 2018). However, this does not necessarily mean that the differences 

in infiltration due to proximity and maturity are less significant. To derive further trends 

required to fulfil objective 1b, Mann-Whitney U tests were undertaken to define the 

significance of relationships between infiltration relative to both woodland proximity and 

woodland maturity, following the criteria shown in Table 7.6.
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Table 7.6. Test criteria, P values and significance levels of Mann-Whitney U testing. Green 

indicates a significant difference; red indicates a significance level higher than 0.05. 

Test Criteria P-value 
Significant difference? 

(P≤0.05) 

All 10 cm vs 200 cm <0.00 YES 

All winter 10 cm vs 200 cm <0.00 YES 

All summer 10 cm vs 200 cm 0.02 YES 

ca. 1900 10 cm vs 200 cm winter 0.03 YES 

2006 10 cm vs 200 cm winter 0.02 YES 

2008 10 cm vs 200 cm winter 0.15 NO 

2010 10 cm vs 200 cm winter 0.23 NO 

2012 10 cm vs 200 cm winter 0.07 NO 

2014 10 cm vs 200 cm winter 0.01 YES 

2020 10 cm vs 200 cm winter 0.09 NO 

ca. 1900 10 cm vs 200 cm summer 0.26 NO 

2006 10 cm vs 200 cm summer 0.07 NO 

2008 10 cm vs 200 cm summer 0.08 NO 

2010 10 cm vs 200 cm summer 0.17 NO 

2012 10 cm vs 200 cm summer 0.17 NO 

2014 10 cm vs 200 cm summer 0.25 NO 

2020 10 cm vs 200 cm summer 0.31 NO 

 

It is seen in Table 7.6 that there is a significant difference between all combined infiltration 

data at 10 cm and 200 cm, with the 10 cm showing higher mean infiltration rates across all 

sampled sites, regardless of age or sampling season. Additionally, there is still a significant 

difference between 10 cm and 200 cm proximity infiltration values when all sample sites are 

separated into winter and summer; replicating the visual trends displayed in Figure 7.1. 

However, whilst the overall trends from proximity infiltration data show that 10 cm is 

significantly different compared with 200 cm, this trend is not seen to be significant on the 

individual site-by-site basis. The only sites to show a p-value lower than the 0.05 threshold are 

the ca. 1900, 2006 and 2014 sites in winter; no sites show a significant difference between 10 



7-10 
 

cm and 200 cm infiltration data in the summer. The results seen here highlight the importance 

of this testing, as based on mean infiltration, the 2006 and 2014 sites showed no obvious trends. 

Whilst only a few values are below that significant threshold (0.05), the p-values can still be 

used as an indication of how woodland maturity may be influencing infiltration. As discussed, 

it would be expected that the more recently planted trees (2020/2014), would show less 

discrepancy (higher p-values) between infiltration at both proximities, and older (HofE) 

planted trees (2006/2008) would show more discrepancy (lower p-values). The sample sites 

sorted (in ascending order) by infiltration p-values are shown in Table 7.7. 

Table 7.7. Sample sites sorted in ascending order of the relationship between infiltration 

change at 10 cm and 200 cm for winter and summer 

Winter P-value Summer P-value 

2014 0.01 2006 0.07 

2006 0.02 2008 0.08 

ca. 1900 0.03 2010 0.17 

2012 0.07 2012 0.17 

2020 0.09 2014 0.25 

2008 0.15 ca. 1900 0.26 

2010 0.23 2020 0.31 

 

The values in Table 7.7 do not follow the expected chronological increase of 10 cm and 200 

cm infiltration data, as would be expected based on existing literature, however this trend may 

be due to varying soil textures, sample days and antecedent atmospheric conditions. This is 

discussed in more detail in sections 8.1 and 8.2. 
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7.1.1 Summary of Collected Field Data 

Objective 1b (section 1.3) is to analyse the collected data to derive any relationships between 

infiltration and tree proximity and maturity. Sections 7.1 to 7.3 have demonstrated that overall, 

infiltration at the 10 cm proximity is higher than the 200 cm proximity in both summer and 

winter. In winter, mean infiltration at the 10 cm proximity is on average 76% higher than the 

200 cm proximity, and in summer, infiltration at the 10 cm proximity is on average 25% higher 

than the 200 cm proximity. This therefore indicates that the presence of the tree is overall 

influencing infiltration and is an indication that the tree is making the soil more porous, 

allowing for soil-water storage and faster infiltration (see section 2.5). Regarding seasonality, 

infiltration is on average 235% higher thought the site in summer compared with winter, with 

summer infiltration being 180% and 290% higher in summer than winter at the 10 cm and 200 

cm proximities respectively. This highlights the seasonal variability of the study site, indicating 

that soil texture and antecedent moisture conditions may be influencing seasonal infiltration; 

this discovery also further supports the decision to build and calibrate two hydrological models 

to best represent the study site (see section 5.4).  

Regarding maturity, there is no evidence to suggest a correlation between tree maturity and 

increase infiltration at this stage in the lifecycle of the sample trees. Whilst Table 7.1 shows 

that the ca. 1900 sample site demonstrated the highest infiltration at the 200 cm proximity in 

the winter, and the 10 cm proximity in both winter and summer (somewhat  supporting the 

literature suggesting that maturity results in greater infiltration (Birkinshaw et al., 2014; Lacob 

et al., 2017; Chandler et al., 2018; Xiao et al., 2021)); infiltration is lowest at the 2006 site, 

which is the oldest (HofE planted) sample area. According to chronology, it would be expected 

that 2006 site would inherit the next highest infiltration (after ca. 1900). This is not the case 

and may be an indication that external conditions are influencing the collected infiltration data, 

which is discussed in greater detail throughout sections 8.1 and 8.2. 
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Additional analysis was undertaken regarding the influence of atmospheric, soil and land 

surface temperature on the collected infiltration data. These results are presented in appendix 

C.2. Results show that there is a positive correlation between all measured temperatures and 

infiltration, however it is important to note that none of the derived correlation coefficients are 

particularly strong – the highest being 0.58 (for soil temperature at the ca. 1900 site). Mean 

average correlation was higher for all measured temperatures at the 200 cm proximity than the 

10 cm proximity, being 0.31 (+0.02), 0.35 (+0.05) and 0.37 (+0.06) for air, soil, and ground 

respectively. Regarding the results of the regression analysis, ground temperature at the ca. 

1900 site (at both proximities) is demonstrated to be directly influencing infiltration (10 cm = 

p- 0.04%, 200 cm = p-0.03%). However, ca. 1900 is the exception, and all p-values for other 

sample areas are significantly higher than 0.05%, indicating temperature does not directly 

influence infiltration overall.  
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7.2 Modelled Results 

Objective 3a was to use the calibrated the HEC-HMS model to simulate the hydrological 

response of the HofE study site to varying land cover, tree maturity and storm duration and 

intensity. The methods of the model creation and simulated storm duration and intensity are 

described in section 5.6, and this section will present and analyse the results of each. The 

following sections present the results of both summer and winter hydrological modelling. 

7.2.1 6-hour storm Duration 

Figure 7.2 shows the peak discharge and total flow of the 6-hour summer and winter simulation, 

Table 7.8 shows the tabulated data with the discrepancy between land cover types shown in 

comparison to the current HofE site as a percentage. 

 

Figure 7.2. Peak flow and total discharge values for winter and summer 6-hour 50%, 10%, 

2% and 1% AEP events over each landcover type
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Table 7.8. Peak flow, time to peak and total discharge for winter and summer 6-hour 50%, 

10%, 2% and 1% AEP events over HofE, impermeable and grassland land cover. 

6-hour AEP (%) HofE Imperm. 
% +/- 

Current 
Grassland 

% +/- 

Current 

 Winter 

Time to peak (mins) 

50 1200 1185 -1.25 570.00 -52.50 

10 1205 1210 0.41 1245.00 3.32 

2 1210 1200 -0.83 1250.00 3.31 

1 1210 1205 -0.41 1235.00 2.07 

Peak volume (m3/s) 

50 0.61 0.67 9.84 0.32 -47.54 

10 0.84 0.89 5.95 0.55 -34.52 

2 1.14 1.19 4.39 0.85 -25.44 

1 1.31 1.36 3.82 1.02 -22.14 

Total Discharge (m3/s) 

50 631.29 653.57 3.53 509.87 -19.23 

10 725.56 747.85 3.07 604.16 -16.73 

2 852.59 874.9 2.62 731.21 -14.24 

1 923.75 946.03 2.41 802.35 -13.14 
 Summer 

Time to peak (mins) 

50 585 540 -7.69 600.00 2.56 

10 565 540 -4.42 575.00 1.77 

2 560 535 -4.46 565.00 0.89 

1 555 535 -3.60 560.00 0.90 

Peak volume (m3/s) 

50 0.55 1.07 94.55 0.49 -10.91 

10 1.05 1.55 47.62 0.99 -5.71 

2 1.72 2.20 27.91 1.65 -4.07 

1 2.09 2.56 22.49 2.02 -3.35 

Total Discharge (m3/s) 

50 458.2 537.07 17.21 448.46 -2.13 

10 530.99 609.81 14.84 521.25 -1.83 

2 629.07 707.84 12.52 619.33 -1.55 

1 683.98 762.75 11.52 674.25 -1.42 

 

Figure 7.2 and Table 7.8 show that peak runoffs from the impermeable land cover simulations 

were higher than HofE and grassland simulations across all modelled storm events in both 

summer and winter, however the discrepancy in winter was slight. Peak flows from HofE land 

cover were 9.84%, 5.95%, 4.39% and 3.82% lower than impermeable for a 50, 10, 2 and 1% 

AEP event respectively. However, in summer this difference was higher, with peak flows being 

94.55%, 47.62%, 27.91% and 22.49% greater across 50, 10, 2 and 1% AEP events for 

impermeable land cover compared to current. In winter, grassland shows a 47.54%, 34.52%, 
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25.44% and 22.14% reduction in peak flows compared to current land cover; this reduction is 

less in summer, being 10.91%, 5.71%, 4.07% and 3.35% for 50, 10, 2 and 1% AEP storms.  

Throughout all simulations, the summer events show the highest peak flows across all land 

covers compared to winter, indicating that the site is more responsive, and runoff is quicker 

during the summer period. This is further reflected by the time to peak of all summer 

simulations being significantly shorter than the equivalent winter simulations. In winter, the 

time to peak of HofE and impermeable land cover is fairly consistent, ranging by 10 minutes 

across all AEP’s (50% AEP being the shortest, 2% and 1% AEP being the longest), the 

impermeable cover is similar, ranging by 25 minutes across all AEP’s (50% AEP being the 

shortest, and 10% being the longest). The grassland land cover, however, shows a range of 680 

minutes, with the 50% AEP duration being significantly shorter than other events, peaking at 

570 minutes compared with 1245, 1250, 1235 for the 10, 2 and 1% AEP events respectively. 

This value was re-tested for confirmation and delivered the same results and is likely due to 

the lower volume of rainfall for this event ( 

Table 5.8), combined with the higher infiltration of the grassland simulation, resulting in there 

being little-to-no water in the system. This may also be a result of the Snyder transform method, 

forcing the water to peak at a specified time regardless of water volume (discussed in section 

5.3.3.3). Time to peak of the impermeable land cover ranges by 5 minutes (540 for 50% and 

10%, and 535 for 2 and 1% AEPs), current HofE land cover ranges by 30 minutes (585, 565, 

560 and 555 for 50, 10, 2 and 1% AEPs respectively), and grassland ranges by 40 minutes (600, 

575, 565 and 560 for 50, 10, 2 and 1% AEPs respectively).  

Total discharge is lower throughout all summer simulations compared with winter by 26.60%, 

18.69% and 14.26% throughout HofE, impermeable and grassland simulations respectively. 

Thought both winter and summer, total discharge was highest from impermeable land cover 

compared to HofE land cover by on average 2.91% (winter) and 14.02% (summer); and 
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grassland was the lowest, being 15.84% (summer) and 1.73% (winter) lower than the HofE site 

at present.  

 

7.2.2 24-hour storm Duration  

Figure 7.3 shows the peak discharge and total flow of the 6-hour summer and winter 

simulations, Table 7.9 shows the tabulated data with the discrepancy between land cover types 

shown in comparison to the HofE site as a percentage. 

 

Figure 7.3. Peak flow and total discharge values for winter and summer 24-hour 50%, 10%, 

2% and 1% AEP events over each landcover type
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Table 7.9. Peak flow, time to peak and total discharge for winter and summer 24-hour 50%, 

10%, 2% and 1% AEP events over HofE, impermeable and grassland land cover. 

24-hour AEP (%) HofE Imperm. 
% +/- 

Current 
Grassland 

% +/- 

Current 

 Winter 

Time to peak (mins) 

50 1785.00 1785.00 0.00 1935.00 8.40 

10 1790.00 1770.00 -1.12 1870.00 4.47 

2 1790.00 1770.00 -1.12 1855.00 3.63 

1 1800.00 1770.00 -1.67 1835.00 1.94 

Peak volume (m3/s) 

50 0.81 0.81 0.00 0.55 -32.10 

10 1.08 1.12 3.70 0.83 -23.15 

2 1.43 1.46 2.10 1.19 -16.78 

1 1.61 1.65 2.48 1.38 -14.29 

Total Discharge (m3/s) 

50 816.65 816.65 0.00 695.26 -14.86 

10 944.78 967.07 2.36 823.36 -12.85 

2 1107.22 1129.52 2.01 985.81 -10.97 

1 1194.59 1216.88 1.87 1073.21 -10.16 
 Summer 

Time to peak (mins) 

50 1230.00 1140.00 -7.32 1255.00 2.03 

10 1195.00 1140.00 -4.60 1215.00 1.67 

2 1175.00 1145.00 -2.55 1190.00 1.28 

1 1170.00 1145.00 -2.14 1180.00 0.85 

Peak volume (m3/s) 

50 0.86 1.15 33.72 0.82 -4.65 

10 1.34 1.59 18.66 1.30 -2.99 

2 1.92 2.14 11.46 1.88 -2.08 

1 2.23 2.44 9.42 2.19 -1.79 

Total Discharge (m3/s) 

50 605.89 683.85 12.87 596.16 -1.61 

10 704.07 781.94 11.06 694.32 -1.38 

2 828.39 906.20 9.39 818.66 -1.17 

1 895.32 973.09 8.69 885.56 -1.09 

 

Figure 7.3 and Table 7.9 show similar trends to the 6-hour duration simulations. The highest 

peak runoff of all simulated land cover types over both winter and summer is generated by the 

impermeable land cover; being on average 2.07% higher than HofE land cover in winter, and 

18.31% higher in summer over all AEPs. The impermeable cover, however, produces the same 

peak runoff as the HofE site for the 50% AEP in winter, and peak flows for the impermeable 

land cover for 10%, 2% and 1% AEPs in winter are on average higher than that of the HofE 
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site land cover by only 1.39%. This is possibly due to the saturation of the ground in winter 

compared with the drying of the ground in summer, discussed further in sections 8.1 and 8.2. 

A similar trend is seen in summer, where peak flows from the HofE land cover are only 0.24% 

lower than impermeable values for all AEPs. All 24-hour events show less of a discrepancy 

between the HofE and impermeable land covers in the winter compared to the 6-hour 

simulations, showing that as storm duration increases, the flows from impermeable and HofE 

land cover become more similar in the winter months. Similar to the 6-hour duration, grassland 

peak flows are lower than impermeable and HofE site land cover throughout the winter, 

however HofE site and grassland peak flows vary less in the summer. In the winter, grassland 

peak flow is 32.10%, 23.15%, 16.78% and 14.29% lower than HofE land cover for 50, 10, 2 

and 1% AEPs; however, in the summer grassland is only 4.65%, 2.99%, 2.08% and 1.79% 

lower than the HofE site for all respective AEPs. 

Total discharge is less across grassland compared with both impermeable and HofE land cover, 

by an average of 13% (vs. HofE) and 15% (vs. impermeable) in winter and 1.3% (vs. HofE) 

and 11.7% (vs. impermeable) in summer. Total discharge from impermeable land cover is 

unchanged between HofE and impermeable land cover in winter for the 50% AEP event, and 

higher than HofE land cover by 2.36%, 2.01% and 1.87% for the 10, 2 and 1% AEPs 

respectively. In summer, total discharge for impermeable cover is higher than winter values, 

being 12.87%, 11.06%, 9.39% and 8.69% for 50, 10, 2 and 1% AEP events respectively.  

Similar to the 6-hour duration, all summer duration events show a quicker time to peak 

compared with winter values by an average of 48% (52.29% HofE, 45.47% impermeable and 

47.37% grassland). The time to peak of the impermeable surface is quickest (1206 minutes in 

winter, 575 minutes in summer), followed by the HofE land cover (1200 minutes in winter, 

654 minutes in summer), and grassland (1075 minutes in winter, 565 minutes in summer) in 

both summer and winter.  
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7.2.3 96-hour storm Duration  

Figure 7.4 shows the peak discharge and total flow of the 6-hour summer and winter 

simulations, Table 7.10 shows the tabulated data with the discrepancy between land cover types 

shown in comparison to the HofE site as a percentage. 

 

Figure 7.4. Peak flow and total discharge values for winter and summer 96-hour 50%, 10%, 

2% and 1% AEP events over each landcover type
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Table 7.10. Peak flow, time to peak and total discharge for winter and summer 50%, 10%, 

2% and 1% AEP events over HofE, impermeable and grassland land cover. 

96-hour AEP (%) HofE Imperm. 
% +/- 

Current 
Grassland 

% +/- 

Current 

 Winter 

Time to peak (mins) 

50 4165.00 4125.00 -0.96 4485.00 7.68 

10 4165.00 4135.00 -0.72 4320.00 3.72 

2 4165.00 4145.00 -0.48 4275.00 2.64 

1 4165.00 4135.00 -0.72 4270.00 2.52 

Peak volume (m3/s) 

50 0.80 0.81 1.25 0.67 -16.25 

10 1.01 1.02 0.99 0.90 -10.89 

2 1.25 1.26 0.80 1.16 -7.20 

1 1.38 1.39 0.72 1.29 -6.52 

Total Discharge (m3/s) 

50 952.79 975.05 2.34 831.62 -12.72 

10 1108.18 1130.46 2.01 986.86 -10.95 

2 1294.74 1317.04 1.72 1173.40 -9.37 

1 1390.39 1412.67 1.60 1269.03 -8.73 
 Summer  

Time to peak (mins) 

50 3460.00 3375.00 -2.46 3465.00 0.14 

10 3400.00 3390.00 -0.29 3465.00 1.91 

2 3385.00 3390.00 0.15 3435.00 1.48 

1 3385.00 3390.00 0.15 3435.00 1.48 

Peak volume (m3/s) 

50 0.78 0.82 5.13 0.77 -1.28 

10 1.02 1.05 2.94 1.01 -0.98 

2 1.30 1.32 1.54 1.30 0.00 

1 1.44 1.46 1.39 1.44 0.00 

Total Discharge (m3/s) 

50 710.85 788.09 10.87 701.12 -1.37 

10 830.10 907.35 9.31 820.36 -1.17 

2 973.27 1050.51 7.94 963.53 -1.00 

1 1046.04 1123.28 7.38 1036.30 -0.93 

 

Figure 7.4 and Table 7.10 is that results from the 96-hour simulations show similar trends to 6 

and 24-hour simulations, however the discrepancy in peak flow between land cover simulations 

are less notable, as are the seasonal variations in peak flows. Impermeable cover exhibits the 

highest peak flows compared to HofE and grassland landcover, however this difference is 

marginal. Impermeable peak flows are 1.25%, 0.99%, 0.80% and 0.72% higher in winter, and 

5.13%, 2.94%, 1.54% and 1.39% higher in summer than HofE landcover for 50, 10, 2 and 1% 

AEP events respectively.  
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There is more variation between HofE land cover and grassland in the winter than the summer; 

peak flows from the grassland cover are 16.25%, 10.89%, 7.20% and 6.52% higher than the 

HofE site in the winter for 50, 10, 2 and 1% AEP events respectively; however only show a 

difference of 1.28%, 0.98% for 50 and 10% AEP events, and 0 change for the 2% and 1% 

AEPs in the summer. Peak flows show less variation between summer and winter for all land 

cover types, compared to the trends seen in the 6- and 24-hour duration simulations. 

All simulations show a higher total discharge in winter compared with summer; discharge from 

HofE land cover is 25% lower, impermeable surfaces are 20% lower and grassland is 17% 

lower in summer compared with winter. Total discharge from the impermeable surface is the 

highest throughout both winter and summer, being on average 1.92% higher than HofE land 

cover in the winter, and 8.87% higher than HofE land cover in the summer. Grassland shows 

the lowest total discharge compared to the HofE site, being 10.44% lower in the winter, and 

1.12% lower in the winter.  

Time to peak of the simulated 96-hour events show similar findings to that of the 6- and 24-

hour duration events. All summer duration events show a quicker time to peak compared with 

winter values by an average of 78% (78.63% HofE, 76.61% impermeable and 79.70% 

grassland). The time to peak of the impermeable surface is quickest (4165 minutes in winter, 

890 minutes in summer), followed by the HofE land cover (4135 minutes in winter, 967 

minutes in summer), and grassland (4337 minutes in winter, 880 minutes in summer) in both 

summer and winter.  

 

7.2.4 Summary of Model Results 

The modelled results presented throughout this section show all winter simulations to produce 

a higher total discharge compared with summer models, however summer simulations show a 

higher peak flow. The higher winter total discharge can be attributed to interception not being 

accounted for (as it was in summer simulations) due to the tree across the HofE site being 



7-22 
 

deciduous, therefore shedding leaves in the winter. Regarding the higher summer peak flows, 

this is due to the method of model calibration (see section 5.4), and the used empirical data 

indicating that the site is ‘flashier’ in the summer. 

Peak flows are greatest throughout the 24-hour duration storms, compared with both 6- hour 

and 96-hour in both winter and summer; however, peak flows become less variable across all 

land cover types throughout the 96-hour duration storms. Of all duration and land cover 

simulations, the impermeable land cover showed the highest peak volume and total discharge, 

followed by the HofE site, and finally the grassland land cover. Impermeable cover generating 

the highest peak flows and total discharge is unsurprising, as it is known that the increase in 

impermeable surface cover is driving the push towards NFM (Burgess-Gamble et al., 2018; 

Ferguson and Fenner, 2020a; Ellis et al., 2021), and is a key motivator for the aims and 

objectives created for this study.  

Overall, it is demonstrated that, at present, woodland planting cannot reduce peak flow or total 

discharge in either winter or summer below the values of grassland. However, these results 

must be interpreted considering the likely influences of soil texture and antecedent conditions 

during infiltration data collection. This is discussed throughout section 8.2 
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7.3 Seasonal Model Projections 

As defined by objective 3b, the collected infiltration data (section 5.2.2) was used in 

conjunction with published values to project the likely changes to infiltration in the future 

(section 5.7). Published values were used to derive the likely future changes to rainfall and 

baseflow in light of climate change, and this information, combined with the projected 

infiltration data was modelled using the HEC-HMS models (section 5.3). The peak flow results 

of the simulated runoff projections are shown throughout this section; the HofE peak flow is 

shown as ‘2020 peak discharge’ as are the intensities for 2040, 2070 and 2120 respectively. 

2120 is included twice as the ‘high rainfall’ series simulates the maximum rainfall increase 

expected in 2120 (40% increase from present, represented as 2120 H). Peak and total flows are 

presented as a range of possible outputs for all land cover types (woodland, grassland, 

impermeable) based on the baseflow scenarios defined in section 5.7.3. 

 

7.3.1 Winter Modelled Projections 

The following sections present the results of the winter 6-, 24- and 96-hour duration modelled 

projections. These results were produced using the methods discussed throughout section 5.7. 

The tabulated result ranges are presented throughout appendix C.3. 

 

7.3.1.1 Winter 6-Hour Storm Duration Projections 
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Figure 7.5. 50% AEP 6-hour peak flow and total discharge ranges winter. Please note the variable y-axis values. 

 

Figure 7.6. 10% AEP 6-hour peak flow and total discharge ranges winter. Please note the variable y-axis values. 
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Figure 7.7. 2% AEP 6-hour peak flow and total discharge ranges winter. Please note the variable y-axis values. 

 

Figure 7.8. 1% AEP 6-hour peak flow and total discharge ranges winter. Please note the variable y-axis values.
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Figure 7.5 to Figure 7.8 show that across all projection years for 6-hour duration storms, no 

land cover type will reduce peak flow below 2020 values, however, it is noticeable that certain 

land cover types are more able to mitigate peak flow compared to others.  

The mean peak flow ranges of woodland are consistently the lowest (1.05 m3/s for 2040, 1.04 

m3/s for 2070, 1.18 m3/s for 2120 and 1.32 m3/s for 2120 H), followed by grassland (1.05 m3/s 

for 2040, 1.10 m3/s for 2070, 1.23 m3/s for 2120 and 1.38 m3/s for 2120 H) and impermeable 

(1.10 m3/s for 2040, 1.15 m3/s for 2070, 1.29 m3/s for 2120 and 1.43 m3/s for 2120 H) land 

cover respectively. Woodland shows the lowest percentage increase in peak flows compared 

with 2020 values, being 8.22% in 2040, 7.19% in 2070, 20.81% in 2120 and 36.04% in 2120 

H. Grassland showed the second-lowest increase, being 7.65%, 12.95%, 26.53% and 41.74% 

higher than 2020 values for 2040, 2070, 2120 and 2120 H respectively. The highest increase 

was the impermeable cover, being 13.28%, 18.62%, 32.19% and 47.39% higher than 2020 

values for 2040, 2070, 2120 and 2120 H respectively.  

The percent-change of woodland peak flow compared to 2020 values is slightly lower in 2070 

(7.19%) compared with 2040 (8.22%). This change is of note as it coincides with when the 

HofE planted woodland is projected to reach its maximum infiltration potential due to tree 

maturity (see section 5.7.2). This indicates that the projected changes to woodland infiltration 

will reduce woodland peak flows when HofE trees mature, however this impact is limited, and 

is outweighed by the projected increases to precipitation due to climate change (see section 

5.7.1). 

Total discharge shows a similar increasing trend to peak flows. Mean woodland total discharge 

increases from current values by 11.16%, 13.06%, 29.97% and 37.97% for 2040, 2070, 2120 

and 2120 H respectively. Impermeable land cover shows a percentage increase from 2020 of 

10.75%, 15.81%, 32.25% and 40.04% in 2040, 2070, 2120 and 2120 H respectively. Mean 

grassland peak flow is 31.17% higher in 2040, 37.33% higher in 2070, 57.35% higher in 2120 

and 66.82% higher in 2120 H. Grassland shows the largest percentage increase to total 
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discharge compared to 2020, however, this is due to the initial values being lower for grassland 

in 2020. The above peak flow and total discharge values, represented in Figure 7.5 to Figure 

7.8 and discussed throughout this section, are tabulated in appendix C.3.1. Additionally, the 

percent increase/decrease of peak flow and total discharge compared with 2020 values for 50%, 

10%, 2% and 1% AEPs over 6-, 24- and 96-hour storms are presented in appendix C.3.2. 
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7.3.1.2 Winter 24-Hour Storm Duration Projections 

 

 

Figure 7.9. 50% AEP 24-hour peak flow and total discharge ranges winter. Please note the variable y-axis values. 

 

Figure 7.10. 10% AEP 24-hour peak flow and total discharge ranges winter. Please note the variable y-axis values. 
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Figure 7.11. 2% AEP 24-hour peak flow and total discharge ranges winter. Please note the variable y-axis values. 

 

Figure 7.12. 1% AEP 24-hour peak flow and total discharge ranges winter. Please note the variable y-axis values.
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Figure 7.9 to Figure 7.12 show the 24-hour duration winter storms display a similar trend to 

the 6-hour durations. The mean peak flow ranges of woodland are consistently the lowest (1.32 

m3/s for 2040, 1.33 m3/s for 2070, 1.49 m3/s for 2120 and 1.69 m3/s for 2120 H), followed by 

grassland (1.32 m3/s for 2040, 1.38 m3/s for 2070, 1.54 m3/s for 2120 and 1.74 m3/s for 2120 

H) and impermeable (1.36 m3/s for 2040, 1.42 m3/s for 2070, 1.58 m3/s for 2120 and 1.78 m3/s 

for 2120 H) land cover respectively. Woodland shows the lowest percentage increase in peak 

flows compared with 2020 values, being 7.35% in 2040, 8.34% in 2070, 21.09% in 2120 and 

37.18% in 2120 H. Impermeable cover showed the second-lowest increase, being 7.96%, 

13.03%, 25.46% and 41.08% for 2040, 2070, 2120 and 2120 H respectively. The highest 

increase was the grassland cover, being 33.65%, 40.14%, 56.01% and 75.99% higher than 2020 

values for 2040, 2070, 2120 and 2120 H respectively, however as with the results in section 0, 

this is primarily due to the lower values exhibited by grassland in 2020 (see section 0). 

Differing from the 6-hour projections, there are no obvious reductions in peak flow in 2070, 

which is when the HofE woodland is projected to reach maturity and maximum infiltration 

potential. This is likely due to the increased volume of rainfall throughout the 24-hour storms 

(see  

Table 5.8), further emphasised by the FEH precipitation increases discussed in section 5.7.1. 

Total discharge shows a similar increasing trend to peak flows. Mean woodland total discharge 

increases from current values by 10.43%, 12.97%, 29.14% and 38.28 for 2040, 2070, 2120 and 

2120 H respectively. Grassland shows the largest percentage increase to total discharge 

compared to 2020, however, this is due to the initial values being lower for grassland in 2020. 

Mean grassland peak flow is 25.24% higher in 2040, 31.11% higher in 2070, 49.48% higher in 

2120 and 59.86% higher in 2120 H; impermeable land cover shows a percentage increase from 

2020 of 10.80%, 15.89%, 31.81% and 40.80% in 2040, 2070, 2120 and 2120 H respectively. 

The above peak flow and total discharge values, represented in Figure 7.9 to Figure 7.12 and 

discussed throughout this section, are tabulated in appendix C.3.1. Additionally, the percent 
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increase/decrease of peak flow and total discharge compared with 2020 values for 50%, 10%, 

2% and 1% AEPs over 6-, 24- and 96-hour storms are presented in appendix C.3.2. 
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7.3.1.3 Winter 96-Hour Storm Duration Projections 

 

 

Figure 7.13. 50% AEP 96-hour peak flow and total discharge ranges winter. Please note the variable y-axis values. 

 

Figure 7.14. 10% AEP 96-hour peak flow and total discharge ranges winter. Please note the variable y-axis values. 
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Figure 7.15. 2% AEP 96-hour peak flow and total discharge ranges winter. Please note the variable y-axis values. 

 

Figure 7.16. 1% AEP 96-hour peak flow and total discharge ranges winter. Please note the variable y-axis values.

0.00

500.00

1000.00

1500.00

2000.00

1.00

1.20

1.40

1.60

1.80

2.00

2020 peak discharge 2040 peak discharge 2070 peak discharge 2120 peak discharge 2120 peak discharge (high rain)

T
o
ta

l 
D

is
ch

ar
g
e 

(m
3
/s

)

P
ea

k
 F

lo
w

 (
m

3
/s

)

Year

0.00

500.00

1000.00

1500.00

2000.00

1.20

1.40

1.60

1.80

2.00

2.20

2020 peak discharge 2040 peak discharge 2070 peak discharge 2120 peak discharge 2120 peak discharge (high rain)

T
o
ta

l 
D

is
ch

ar
g
e 

(m
3
/s

)

P
ea

k
 F

lo
w

 (
m

3
/s

)

Year



7-34 
 

Figure 7.13 to Figure 7.16 show the results of the 96-hour winter climate projections. Differing 

from the 6- and 24-hour simulation results, there is less noticeable discrepancy between the 

peak and total flow projection ranges of differing land covers. 

Mean woodland peak flow is 1.19 m3/s, 1.23 m3/s, 1.37 m3/s and 1.54 m3/s for 2040, 2070, 

2120 and 2120 H, which is an increase from 2020 values of 7.48%, 10.74%, 23.63% and 

38.81% for the projected years respectively. Grassland is the second lowest average peak, being 

1.19 m3/s (in 2040), 1.25 m3/s (in 2070), 1.39 m3/s (in 2120) and 1.56 m3/s (in 2120 H), 

however the percentage increase is greater for grassland due to the lower 2020 value: 18.83% 

in 2040, 24.46% in 2070, 38.59% in 2120 and 55.23% in 2120 H. Impermeable cover shows 

the highest average peak flows, being 1.20 m3/s, 1.26 m3/s, 1.40 m3/s and 1.57 m3/s for 2040, 

2070, 2120 and 2120 H, which is an increase of 7.44%, 12.49%, 25.11% and 40.04% compared 

with 2020 values for each projection year. 

Woodland shows the lowest total discharge, being 1301.34 m3/s (for 2040), 1335.50 m3/s (for 

2070), 1516.66 m3/s (for 2120) and 1643.76 m3/s (for 2120 H); this is a percentage change 

from 2020 values of 9.68%, 12.56%, 27.82% and 38.54% for respective projection years. 

Grassland shows the next-highest total discharge, being 1299.69 m3/s, 1360.67 m3/s, 1541.83 

m3/s and 1668.91 m3/s for 2040, 2070, 2120 and 2120 H, which is an increase from 2020 values 

of 22.01%, 27.73%, 44.74% and 56.67% for the respective projected years. Impermeable 

simulations produce the highest total discharge, being 1323.62 m3/s (in 2040), 1384.59 m3/s 

(in 2070), 1565.76 m3/s (in 2120) and 1692.87 m3/s (in 2120 H), which is an increase of 9.50%, 

14.54%, 29.53% and 40.04%. The above peak flow and total discharge values, represented in 

Figure 7.13 to Figure 7.16 and discussed throughout this section, are tabulated in appendix 

C.3.1. Additionally, the percent increase/decrease of peak flow and total discharge compared 

with 2020 values for 50%, 10%, 2% and 1% AEPs over 6-, 24- and 96-hour storms are 

presented in appendix C.3.2. 
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7.3.2 Summer Modelled Projections 

The following sections present the results of the summer 6-, 24- and 96-hour duration modelled 

projections. These results were produced using the methods discussed throughout section 5.7. 

The tabulated result ranges are presented throughout appendix C.3. 
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7.3.2.1 Summer 6-Hour Storm Duration Projections 

 

 
Figure 7.17. 50% AEP 6-hour peak flow and total discharge ranges summer. Please note the variable y-axis values. 

 

Figure 7.18. 10% AEP 6-hour peak flow and total discharge ranges summer. Please note the variable y-axis values. 
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Figure 7.19. 2% AEP 6-hour peak flow and total discharge ranges summer. Please note the variable y-axis values. 

 

Figure 7.20. 1% AEP 6-hour peak flow and total discharge ranges summer. Please note the variable y-axis values.
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Figure 7.17 to Figure 7.20 show that across all AEP events, impermeable land cover produces 

the highest peak flow, whereas woodland and grassland vary. Impermeable cover shows a mean 

peak flow of 1.96 m3/s in 2040, 2.05 m3/s in 2070, 2.26 m3/s in 2120 and 2.58 m3/s in 2120 H, 

increasing from 2020 values by 6.29%, 1.25%, 22.61% and 40.01%. Grassland shows the 

lowest peak flow range until 2040, at which point it is surpassed by woodland, showing a 

significant reduction in peak and total discharge. Grassland peak flow is 1.41 m3/s, 1.50 m3/s, 

1.71 m3/s and 2.04 m3/s for 2040, 2070, 2120 and 2120 H respectively: differing from 2020 

values by 9.17%, 16.43%, 32.98% and 58.35% for the respective projection years. As seen in 

Figure 7.17 to Figure 7.20, woodland peak flow reduces notably in 2070 – peak flows for 

woodland are 1.47 m3/s in 2040, 1.11 m3/s in 2070, 1.29 m3/s in 2120 and 1.58 m3/s in 2120 

H, which varies from 2020 values by 8.69%, -18.13%, -4.36% and 16.58% across respective 

projection years. 

The most noticeable difference between winter and summer projections, is the drop in 

woodland peak flow and total discharge values in the summer 2070 projections. The sudden 

reduction in projected woodland peak flow can be explained by referring to section 5.7.2, 

regarding the years in which planted trees across the HofE site will reach maturity. It is shown 

that trees across the HofE site will have matured and reached their ultimate heights around 

2050 (Hynynen et al., 2010; MacKenzie, 2010; Lee et al., 2015; Zeltiņš et al., 2018; Savill, 

2019), at which point, root spread will be a maximum, as will infiltration. The next modelled 

projection interval is 2070, so these results are inclusive of the final infiltration projections of 

the site, whereas the 2040 projections are not. This explains why there is a significant fall in 

infiltration between the two projection intervals (Figure 7.17 to Figure 7.20), and 2070 shows 

a lower runoff and peak flow for woodland compared with grassland and impermeable land 

cover. This reduction is not as obvious throughout the winter projections; the shorter duration 

winter simulations do show a reduction in woodland peak flow and total discharge in 2070, 
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however it is not as obvious as summer projections. This is discussed more throughout section 

8.2.2.  

Regarding total discharge, summer impermeable cover is the highest being 649.90 m3/s, 615.99 

m3/s, 720.94 m3/s and 762.81 m3/s for 2040, 2070, 2120 and 2120 H respectively, which is 

12.92%, 7.02%, 25.26% and 32.53% higher than 2020 values. Grassland flows with mean 

discharges of 640.16 m3/s for 2040, 672.13 m3/s for 2070, 781.09 m3/s for 2120 and 829.49 

m3/s for 2120 H: being 11.22%, 16.78%, 35.71% and 44.12% higher than 2020 values for the 

projected years. Woodland showed the lowest total discharge, being 728.71 m3/s, 760.67 m3/s, 

869.62 m3/s and 918.00 m3/s for 2040, 2070, 2120 and 2120 H, which is an increase from 2020 

values of 26.61%, 32.16%, 51.09% and 59.50% for respective projected years. Total discharge 

in summer is lower compared with winter and can be explained by the lower FEH rainfall 

values due to the increased likelihood of interception (see section 5.7.1). As discussed in 

section 5.6.2, interception loss was accounted for throughout the summer months to account 

for the deciduous nature of the sample site woodland (Lunka and Patil, 2016; Ngai et al., 2017; 

Rahman et al., 2019). The above peak flow and total discharge values, represented in Figure 

7.17 to Figure 7.20 and discussed throughout this section, are tabulated in appendix C.3.1. 

Additionally, the percent increase/decrease of peak flow and total discharge compared with 

2020 values for 50%, 10%, 2% and 1% AEPs over 6-, 24- and 96-hour storms are presented in 

appendix C.3.2. 
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7.3.2.2 Summer 24-Hour Storm Duration Projections 

 

 
Figure 7.21. 50% AEP 24-hour peak flow and total discharge ranges summer. Please note the variable y-axis values. 

 

Figure 7.22. 10% AEP 24-hour peak flow and total discharge ranges summer. Please note the variable y-axis values. 
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Figure 7.23. 2% AEP 24-hour peak flow and total discharge ranges summer. Please note the variable y-axis values. 

 

Figure 7.24. 1% AEP 24-hour peak flow and total discharge ranges summer. Please note the variable y-axis values.
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Figure 7.21 to Figure 7.24 show similar trends to those seen throughout the 6-hour projections, 

including the reduction in woodland peak flow and total discharge from 2070 onwards. 

Impermeable land cover shows the highest peak flow range throughout all projection years, 

being 1.94 m3/s, 2.04 m3/s, 2.24 m3/s and 2.56 for 2040, 2070, 2120 and 2120 H respectively; 

these values are 6.31%, 11.28%, 22.69% and 40.05% high than 2020 values. Grassland showed 

the second-highest peak flow range, with mean discharge being 1.67 m3/s for 2040, 1.76 m3/s 

for 2070, 1.98 m3/s for 2120 and 2.31 m3/s for 2120 H; this is an increase of 7.72%, 13.85%, 

27.81% and 49.17% for respective storm projections. Woodland showed the lowest peak flow 

range, with mean discharge being 1.71 m3/s for 2040, 1.39 m3/s for 2070, 1.60 m3/s for 2120 

and 1.92 m3/s for 2120 H: 7.52%, -12.30%, 0.79%, and 21.20% higher than 2020 values 

respectively. The peak flow intensities are higher throughout the larger 24-hour AEP events 

(2% and 1%) compared with the 6-hour equivalent storms; however, this is somewhat to be 

expected as modelled FEH rainfall is greater in comparison (see  

Table 5.8). 

Regarding total discharge, impermeable landcover continually shows the highest discharge, 

being 926.65 m3/s, 967.48 m3/s, 1102.03 m3/s, and 1173.08 m3/s for 2040, 2070, 2120 and 2120 

H projections respectively (10.81%, 15.69%, 31.78% and 40.28% higher than 2020 values 

respectively). Grassland and woodland total discharge are non-discrepant until 2070, where 

they deviate; grassland discharge is 839.07 m3/s, 879.91 m3/s, 1014.47 m3/s and 1085.54 m3/s, 

and woodland discharge is 848.80 m3/s, 806.39 m3/s, 938.69 m3/s and 1006.36 m3/s for 2040, 

2070, 2120 and 2120 H projections respectively. The above peak flow and total discharge 

values, represented in Figure 7.21 to Figure 7.24 and discussed throughout this section, are 

tabulated in appendix C.3.1. Additionally, the percent increase/decrease of peak flow and total 

discharge compared with 2020 values for 50%, 10%, 2% and 1% AEPs over 6-, 24- and 96-

hour storms are presented in appendix C.3.2. 
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7.3.2.3 Summer 96-Hour Storm Duration Projections 

 

 

Figure 7.25. 50% AEP 96-hour peak flow and total discharge ranges summer. Please note the variable y-axis values. 

 

Figure 7.26. 10% AEP 96-hour peak flow and total discharge ranges summer. Please note the variable y-axis values. 
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Figure 7.27. 2% AEP 96-hour peak flow and total discharge ranges summer. Please note the variable y-axis values. 

 

Figure 7.28. 1% AEP 96-hour peak flow and total discharge ranges summer. Please note the variable y-axis values.
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Trends throughout the 96-hour duration modelled projections (Figure 7.25 to Figure 7.28) 

differ from those seen through the 6 and 24-hour duration simulations; there is less contrast 

between the peak flows of impermeable and grassland land cover. Impermeable land cover 

shows mean peak flows of 1.24 m3/s, 1.30 m3/s, 1.44 m3/s and 1.62 m3/s for 2040, 2070, 2120 

and 2120 H (an increase of 7.05%, 12.01%, 24.21% and 40.10% for respective projection 

years). Grassland cover shows mean peak flows of 1.21 m3/s for 2040, 1.27 m3/s for 2070, 1.42 

m3/s for 2120 and 1.61 m3/s for 2120 H, which is an increase of 7.13%, 12.73%, 25.58% and 

42.32% for the projection years respectively. Woodland still shows a reduction in peak flow in 

2070, values being 1.22 m3/s, 1.09 m3/s, 1.25 m3/s and 1.45 m3/s for 2040, 2070, 2120 and 

2120 H, respectively 7.37%, -3.90%, 9.73% and 27.78% lower than 2020 values for each 

projection year. The trend seen throughout woodland peak flows is the same trend seen in the 

6- and 24-hour durations (the reduction in woodland peak flow and total discharge from 2070 

onwards), however the difference is less significant throughout the 96-hour simulations 

compared with previous durations. These results indicate that woodland struggles to mitigate 

the effects of climate change on local hydrology over sustained rainfall durations. 

As with all modelled projections, impermeable land cover shows the highest total discharge, 

being 1064.00 m3/s for 2040, 1111.43 m3/s for 2070, 1259.36 m3/s for 2120 and 1356.79 m3/s 

for 2120 H, higher than 2020 values by 10.00%, 14.90%, 30.19% and 40.26% for the respective 

modelled outputs. Grassland showed the next highest total discharge, being 969.96 m3/s, 

1024.45 m3/s, 1172.37 m3/s and 1269.81 m3/s for 2040, 2070, 2120 and 2120 H respectively 

(10.18%, 16.37%, 33.18% and 44.24% higher than 2020 values respectively). Woodland shoed 

the lowest total discharge, being 986.76 m3/s, 936.20 m3/s, 1089.77 m3/s and 1185.30 m3/s for 

2040, 2070, 2120 and 2120 H storms (10.86%, 5.18%, 22.44% and 33.17% higher than 2020 

values respectively). The above peak flow and total discharge values, represented in Figure 

7.25 to Figure 7.28 and discussed throughout this section, are tabulated in appendix C.3.1. 

Additionally, the percent increase/decrease of peak flow and total discharge compared with 
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2020 values for 50%, 10%, 2% and 1% AEPs over 6-, 24- and 96-hour storms are presented in 

appendix C.3.2. 
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7.3.3 Summary of Modelled Projections 

Overall, the projected results presented throughout sections 7.3.1 and 7.3.2 show that woodland 

planting is unlikely to mitigate future projected peak flow and total discharge from the HofE 

site throughout the winter, however is more likely to have an impact throughout summer. 

7.3.3.1 Winter 

Winter model projections show that woodland, whilst able to reduce peak flow and total 

discharge compared with impermeable and grassland land cover simulations, will not reduce 

peak flow and total discharge compared with current values in any projected year throughout 

winter (section 7.3.1). This is likely a result of the projected increase in rainfall across the site, 

combined with the lower infiltration values (due to the influence of soil texture and antecedent 

conditions (sections 5.2 and 8.1)) influencing infiltration projections (section 5.7.2). Winter 

projections show that woodland is more effective at reducing peak flows in shorter duration 

storms compared with longer duration storms, demonstrated by the discrepancy between peak 

flow and total discharge becoming less as storm duration increases (section 7.3.1). Grassland 

continually shows the highest percentage increase (from 2020 values) in peak flow and total 

discharge throughout the winter; however, this only represents that grassland values have 

changed from the 2020 simulated value, and not that grassland shows higher values. Grassland 

produces the second-lowest peak flow and total discharge behind woodland. Impermeable 

cover shows the highest peak flow and total discharge throughout winter, however, this is to 

be expected as it is known that the increase in impermeable surface cover is driving the push 

towards NFM (Burgess-Gamble et al., 2018; Ferguson and Fenner, 2020a; Ellis et al., 2021). 

This result is also seen in the ‘current’ simulations of the HofE site seen throughout section 

7.2. 
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7.3.3.2 Summer 

Overall, summer projections show lower total discharge compared with winter values, but 

higher peak flow. The higher peak flow is a result of the calibration parameters used to 

represent summer hydrology (section 5.4), and the lower total discharge is a result of the 

inclusion of interception – which reduced the rainfall received in summer by 24.25% (Calder, 

2003; Nisbet, 2005; Lunka and Patil, 2016; Ngai et al., 2017).  

The most significant variation between winter and summer projections, is the reduction in peak 

flow and total discharge values from 2070 onwards. Mentioned in section 7.3.2.1, this is a 

result of the infiltration projections (i.e., when the trees would reach maturity = maximum 

infiltration (section 5.7.2)), and the inclusion of interception – manning there is less 

precipitation to be infiltrated overall in the summer projections. This trend is observed 

throughout woodland peak flows and total discharges in winter, however is much more subtle 

than the summer projections, being more noticeable in shorter duration events (sections 7.2.1 

and 7.2.2). This is explained further in section 8.2.2 

Similar to winter projections, impermeable land cover produces the highest peak and total flow 

volumes, however, the peak flows from grassland and impermeable land cover become more 

similar as storm duration increases. Throughout shorter duration storms, grassland shows a 

lower peak flow compared with grassland until 2070 (where woodland shows to reduce peak 

flow significantly). This relationship is less distinguishable in longer duration events, where 

impermeable and grassland peak flows become more similar. Regardless of the reduction of 

woodland peak flow and total discharge in 2070, results from the longer duration projections 

show that woodland, whilst still showing a reduction in peak flow and total volume compared 

with grassland and impermeable surfaces, does not mitigate the variables to the same 

magnitude as it does in shorter duration events. This is primarily due to increased precipitation. 
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Chapter 8 Discussion 

 

Chapter 7 presents and analyses the results of the study, derived through using the methods 

presented throughout Chapter 5, which were influenced by the current state of the literature 

(Chapter 2) and the wider background of the study topic (Chapter 1). This chapter 

contextualises the results presented throughout Chapter 7 considering the wider literature and 

the aims of this project, emphasising the findings and applications of this work. Note that aim 

2 is not thoroughly discussed here due to the requirements of aim 2 being achieved throughout 

sections 5.3, 5.4 and 5.5 (see Table 5.1). 

 

8.1 Aim 1: Determine to what extent tree planting by the Heart of England Forest has 

influenced infiltration, with reference to tree proximity and tree maturity. 

Aim 1 intended to determine to what extent woodland planting by the Heart of England Forest 

has influenced infiltration, with reference to tree proximity and tree maturity. Objective 1b was 

to use the data collected as required by objective 1a and derive any relationships between 

infiltration dependent on both woodland proximity and woodland maturity. It is presented in 

section 7.1 that mean infiltration is higher at the 10 cm proximity compared with the 200 cm 

proximity by 75.87% in winter and 25.19% in summer. Further to this, mean 10 cm infiltration 

is 192% higher in summer compared with winter, and mean 200 cm infiltration is 310% higher 

in summer compared with winter. These results conclude that overall, the presence of the tree, 

and particularly the developing root system, is influencing infiltration through increasing soil 

porosity, allowing for soil-water storage and faster infiltration. When tree roots develop, they 

grow outwards from the base of the trunk, their course guided primarily by following the path 

of least resistance through the soil matrix (Dobson, 1995; Crow, 2005). Section 2.3.1 highlights 

that tree roots connect flow pathways, reduce compaction, influence porosity and change soil 

structure (Jarvis, 2007; Zhang et al., 2017b, 2019a; Chandler et al., 2018; Leung et al., 2018; 
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Malik et al., 2019; Xie et al., 2020; Guo et al., 2021); and the results of this study support this 

and indicate that infiltration nearer the tree (and subsequently the origin of the root system) is 

higher. Further to this, section 7.1 demonstrates the seasonal variation in infiltration, showing 

infiltration to be 235% higher overall in summer compared with winter (180% higher at the 10 

cm proximity, and 290% at the 200 cm proximity). These results show that woodland is capable 

of increasing infiltration regardless of the naturally low permeability of the sample site soil 

(Folorunso and Aribisala, 2018), and indicate that soil variability (texture and structure) and 

antecedent moisture conditions have an influence on seasonal infiltration. These results can be 

further contextualised when considering the influence of soil texture across the study site 

(Groenendyk et al., 2015; Folorunso and Aribisala, 2018; Leung et al., 2018). Seen in Table 

5.3, the 2006, 2008, 2012, 2014 and 2020 sites are clay textured, and the control, ca.1900 and 

2010 sites are sandier-textured. Clay-heavy soil textures (such as the aforementioned) inherit 

lower infiltration, conductivity and porosity due to the smaller, rounded particle size of clay 

(<0.002 mm) fitting tightly together (Rabot et al., 2018). Sand particles are larger (0.06 mm – 

2.0 mm) and more angular, meaning larger pores are left between the particles, allowing for 

infiltration and conductivity (section 2.5) (Groenendyk et al., 2015; Folorunso and Aribisala, 

2018; Leung et al., 2018). Common across the less permeable clay textured sample sites, was 

surface water pooling during and after rainfall, see Figure 8.1. 
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Figure 8.1. Surface pooling of clay-textured sites. a) 2020, b) 2014, c) 2006 and d) 2012 

Infiltration data could not be collected (although was always attempted) during surface pooling; 

and it is this phenomenon that may account for recorded low permeability during the winter 

period (section 7.1). Surface pooling was  also exaggerated by the winter of 2020 being the 

fifth wettest on record (329.4 mm/143% higher than the 1981–2010 baseline), and the February 

of 2020 being the wettest ever recorded, with 155 mm of precipitation (258% higher than the 

1981–2010 baseline) (The Met Office, 2020; Davies et al., 2021a). Whilst the influences of 

antecedent rainfall and clay-textured sample soils may have contributed to the lower infiltration 

values collected throughout winter; the results of this study have shown that infiltration was 

still higher at the 10 cm proximity compared with the 200 cm proximity. The wider 

implications of this are discussed throughout sections 9.1.3, 8.2.2 and 8.2.3. 

There is no evidence to suggest a correlation between woodland maturity and increase 

infiltration at either proximity over time, this has been determined through use of the Mann-

a) b) 

c) d) 
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Whitney U testing presented in section 7.1. Whilst this finding does predominantly dispute 

what was identified regarding woodland maturity in the literature (section 5.7.2) (Lacob et al., 

2014; Dittrich et al., 2019; Julich et al., 2021; Murphy et al., 2021), it is important to consider 

these results in the context of the current age of sample woodland. Aside from the ca.1900 site, 

the oldest trees sampled were planted in 2006 and the youngest in 2020. Thus the 2006 

woodland had only been in-situ for 15 years, and the 2020 woodland for 1 year (at the time of 

analysis). The maturity ages of the sampled woodland species are discussed in section 5.7.2, 

concluding that birch and aspen trees can live for 100-120 years, reaching their final heights 

(where infiltration will be at a maximum) at 60 and 30 years respectively (Perry, 1982; Mauer 

and Palátová, 2003; Hepner et al., 2020). Considering this, the sampled woodlands are still 

early in their development and the maturity-relationship results presented in section 7.1 are 

only representative of the early stages of the likely effects that the sampled woodland will have 

on infiltration. Whilst there are no obvious trends between infiltration and maturity, Table 7.1 

does show that the ca.1900 sample site demonstrated the highest infiltration at the 200 cm 

proximity in the winter, and the 10 cm proximity in both winter and summer. This is likely a 

result of the soil texture at the ca.1900 site being predominantly sand (sand 47%, silt 40%, clay 

13%, see Table 5.3) meaning it is naturally more porous, leading to higher pore conductivity 

and infiltration. However, may also be a result of tree root spread – further increasing porosity 

and increasing conductivity and infiltration, which would account for the higher infiltration at 

the 200 cm proximity compared with other sites. This supports the existing literature regarding 

infiltration and maturity (Birkinshaw et al., 2014; Lacob et al., 2017; Chandler et al., 2018; 

Julich et al., 2021; Xiao et al., 2021). According to chronology and based on the existing 

literature, it would be expected that the 2006 site would demonstrate the next highest 

infiltration (after ca. 1900). The presumption for this is based on the area being the first planted 

by the HofE forest, therefore having the most time to grow (of the HofE planted woodland) 

and develop a root system that would now be influencing porosity; however, this is not the 
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case. Table 7.1 shows the 2006 site to consistently show the lowest infiltration at both 

proximities regardless of seasonality. Referring back to the age of woodland planted at the site 

(section 5.2.1), particularly in comparison to their discussed maturity age and lifespan, this 

study has focussed primarily on young woodland (15 to 1 year(s) old). The results of the 

infiltration data analysis have indicated that very mature trees (ca.1900) promote infiltration in 

comparison to less mature trees, likely due to their increase root spread, and the influence of 

this on increasing porosity and increasing hydraulic conductivity within the measured 

proximities (Lacob et al., 2014; Dittrich et al., 2019; Cui et al., 2021; Julich et al., 2021; 

Murphy et al., 2021). This is an insight into what could potentially be expected from the HofE 

planted trees across the site as all woodland develops into the future, and this has been tested 

in the infiltration projections and future climate models presented in sections 5.7.2 and 7.3.  

This research has demonstrated that trees can influence infiltration at varying proximity, with 

some early trends indicating that maturity may yet play a future part in this increase (Cui et al., 

2021; Julich et al., 2021; Wu et al., 2021). However, whilst tree planting can be hydrologically 

beneficial, instant increases in infiltration should not be expected as the findings of this research 

suggest that hydrological improvements are unlikely for a minimum of 15 years (as this is the 

oldest age of the trees sampled across the HofE site). This conclusion has connotations 

regarding the way in which woodland is currently handled, with reference to development, 

construction, and forestry. The following sections investigate this in further detail. 

 

8.1.1 Summary of Aim 1 Findings 

Aim 1 was to determine to what extent HofE woodland planting has influenced infiltration, 

dependent on proximity and tree maturity, through defining sampling locations and methods 

(objective 1a) and analysing the collected data to identify trends (objective 1b). Results of the 

collected infiltration data show that woodland planting increases infiltration at the 10 cm 

proximity in both summer and winter compared with the respective 200 cm sample. Mean 
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infiltration is higher at the 10 cm proximity compared with the 200 cm proximity by 75.87% 

in winter and 25.19% in summer; and mean 10 and 200 cm infiltration is 192% and 310% 

higher in summer compared with winter respectively. Regarding the influence of woodland 

maturity on infiltration, no significant trends were identified based on data collected from 

recently planted HofE woodland (2006 – 2020). However, the sampled ca.1900 site 

consistently showed the highest mean infiltration indicating that, whilst the recently planted 

HofE trees may not be notably influencing infiltration, they are early in their lifecycle and will 

likely influence infiltration when the root systems have developed (Archer et al., 2016; Song 

et al., 2018; Zhang et al., 2019a, 2020). It is discussed that antecedent moisture and the 

influence of (clay) soil texture may have influenced data collection (i.e., not given a 

representative sample at all sites).  

The results collected as part of aim 1 have contributed to the mostly sparse literature reserve 

regarding the current value of trees on hydrology, and the future hydrological impacts of 

woodland planting (Thomas and Nisbet, 2016; Chandler et al., 2018; Cooper et al., 2021; 

Murphy et al., 2021). The results and presented discussion points can be used to inform current 

and future tree planting and NFM policy, which is discussed in greater detail throughout section 

9.1. Additionally, the methods, results and discussions involved in the fulfilment of aim 1 were 

used in the development of an academic paper published by Water MDPI (see appendix D.2.2). 

 

8.2 Aim 3: Simulate current and future hydrology from the study site and determine to 

what extent HofE woodland planting has influenced runoff and flood risk. 

To fulfil aim 3, objective 3a required the use of the HEC-HMS models to simulate the outflow 

of the study site dependent on changing storm intensity, duration, land cover and tree maturity. 

Objective 3b required the use of recent climate resources and the HEC-HMS models to predict 

the likely future changes to site hydrology regarding to developing tree maturity and climate 

change. Objective 3c required the culmination of existing literature and the results of aims 1 
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and objectives 3a and 3b to evaluate the value of tree planting as a method of NFM. This section 

discusses the outcomes of aim 3; objective 3a is discussed in section 8.2.1, objective 3b in 

8.2.2, objective 3c in 8.2.3, and aim 3 is summarised in section 8.2.4. 

 

8.2.1 Present Day (current) Hydrological Simulations  

Results of the HEC-HMS modelling (section 7.2) show that HofE woodland planting has 

reduced winter peak runoff compared with impermeable land cover by a mean of 6%, 2% and 

1% for 6-, 24- and 96-hour storms, and summer peak runoff by 48%, 18%, and 2.7% for 6-, 

24-, and 96-hour storms. Whilst results show that woodland can reduce peak runoff in 

comparison with impermeable land cover, this is unsurprising as it is long-established that the 

increase in impermeable surface cover is driving the push towards NFM and is a key motivator 

for the aims of this project (Burgess-Gamble et al., 2018; Ferguson and Fenner, 2020a; Ellis et 

al., 2021). Discussed throughout section 7.2 is that grassland continually shows the lowest peak 

flow, being 32%, 21%, and 10% lower than the current site in the winter, and 6%, 2%, and 

0.5% lower than the HofE site in the summer for 6-, 24-, and 96-hour duration storms 

respectively. This somewhat contradicts what has been discussed throughout section 8.1 

regarding the observed increase in infiltration as a result of woodland planting; however, these 

results can be further explained when considering infiltration sample locations (objective 1a), 

soil texture, and the construction of the HMS model.  

Outlined in section 5.2, infiltration sampling locations were chosen based on accessibility, size 

and landcover; the map of final sampling locations is shown in Figure 5.8. Table 5.3 presents 

the soil textures of infiltration sample sites, showing that the 2006, 2008, 2012, 2014 and 2020 

sites are clay textured (naturally less permeable, section 2.5), whereas the ca.1900, 2010 and 

control sites host a sandier-texture (naturally more permeable, 2.5) (Groenendyk et al., 2015; 

Leung et al., 2018). This variation is insignificant throughout wooded and impermeable 

landcover simulations, as empirical (or extrapolated, section 5.6.3) infiltration data was 
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available for use; however, it is significant when simulating the grassland land cover scenarios. 

As discussed in section 5.6, to simulate grassland cover the infiltration from the control site 

was uniformly applied to all sub-catchments of the HMS model, and the results taken from 

these simulations were used in forming results in section 7.2. This process of grassland 

extrapolation resulted in the site being altered to represent the values of the sandier-textured 

control site, instead of maintaining the variations in soil texture observed at each sample 

location (Table 5.3) (Rabot et al., 2018; Sun et al., 2018; Silber, 2019). Whilst this method of 

grassland representation may have led to the over-prediction of infiltration for the entire site, 

it was the best possible method of deriving modelled results using empirical observations from 

the study site and is representative of the collected field data. These results should also be 

considered in the context of the general nature of field work and hydrological modelling. It is 

discussed (Prieksat et al., 1994; Logsdon and Jaynes, 1996; Khodaverdiloo et al., 2017) that 

spatial variability is inherent with fieldwork; and additional considerations had to be accounted 

for throughout this project (i.e.) budgetary constraints, health and safety, time on site and 

travelling time (section 5.2). Additionally, section 3.4 discusses that hydrology is complex (Sy 

et al., 2019), and hydrological modelling is a mathematical simplification of the most likely  

response to given input parameters (Rampinelli et al., 2020; Kumar and Sherring, 2021).  

Apparent throughout all simulations presented in section 7.2, summer simulations show a lower 

total discharge, but a higher peak flow compared with their corresponding winter values (see 

sections 7.2.1 to 7.2.3). Noticeable, is that woodland seems to be more capable of mitigating 

lower intensity, shorter duration storms, compared with the longer duration AEP events; this is 

most obvious through comparing the ‘percentage difference’ columns of Table 7.8, Table 7.9 

and Table 7.10. Table 7.8, shows the mean difference between the peak and total discharges of 

woodland and grassland to be -32.41% and -15.83% respectively in winter, and -6.01% and -

1.73% respectively in summer. The same values for winter and summer over the 24-hour 

duration storms (Table 7.9) are -21.58% and -12.21% (winter) and -2.87% and -1.31% 
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(summer); and results of the 96-hour duration storms (Table 7.10) are -10.21% and -10.44% 

(winter) and -0.56% and 1.11% (summer). Obvious, is that the mean differences between 

grassland and woodland peak flow and total discharges diminish as storm duration increases. 

Furthermore, the same trends can be seen when investigating these changes on an ‘AEP-by-

AEP’ basis. It is observed in every simulation that as AEP increases (50% to 1%), the 

differences between woodland and grassland peak flow become less. Discrepancies are also 

seen to diminish as storm duration increases across the same AEP, for example, the differences 

in peak flow and total discharge of the 50% AEP reduce as storm duration increases. This can 

be seen in Figure 7.2, Figure 7.3 and Figure 7.4 where peak flows and total discharges become 

more similar as duration increases. These results conclude that whilst woodland can mitigate 

the effects of lower intensity short duration storms in both winter and summer; their ability 

diminishes with increased intensity and duration, which is commonly observed in other studies 

(Chandler et al., 2018; Carrick et al., 2019; Ferguson and Fenner, 2020a; Xiao et al., 2021). 

This indicates that woodland planting is effective at increasing soil porosity and infiltration 

(sections 2.3.1 and 7.1), and contributing to catchment FMR; however, a limitation of 

woodland is the inability to store excess amounts of precipitation. This therefore suggests that 

woodland planting may be most effective when used in conjunction with other methods of 

FRM, conventional or natural, and should be viewed as another valuable asset in a wider 

arsenal of NFM methods (Carrick et al., 2019; Xiao et al., 2021). This approach is discussed 

in greater detail throughout section 8.2.3. 

The above results presented in fulfilment of objective 3a, in addition to the considerations that 

have been made to ensure reliability and accuracy in results, have contributed to the lack of 

empirically based tree planting and infiltration studies (Carrick et al., 2019). These processes 

have provided a methodology for future authors to simulate woodland planting in similar 

catchments. 
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8.2.1.1 The Influence of Precipitation, Interception, Soil Texture and Model Calibration 

As outlined in section 5.2 and reiterated in section 8.1, the majority of sample sites were 

comprised of clay-textured soils. Clay-heavy soil textures inherit lower infiltration, 

conductivity and porosity due to the smaller particle size of clay (Rabot et al., 2018); compared 

with sand particles, which are larger and more angular allowing greater porosity, infiltration 

and conductivity (section 2.5) (Groenendyk et al., 2015; Folorunso and Aribisala, 2018; Leung 

et al., 2018; Rabot et al., 2018). Due to this, seasonal infiltration data collection was highly 

variable (see section 8.1), which is the primary justification for the two hydrological models 

(section 5.4). The clay sample sites were prone to complete saturation throughout the winter, 

and cracking throughout the summer, see Figure 8.2. 

 

Figure 8.2. Saturation of the (a) 2006 and (b)2008 sample sites during winter data collection, 

(c) cracking of the 2006 and (d) 2008 sample sites in the summer  

In the winter, the increase in surface pooling of the sample sites (Figure 8.2, section 8.1) likely 

helped hold water in place across the study site, slowing infiltration and overland flow and 

a b

c d
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creating more of a lag between precipitation and peak flow (Groenendyk et al., 2015; Leung et 

al., 2018). In the summer, however, the cracking of the dry clay caused the clay-textured areas 

to act similarly to an impermeable surface, resulting in a shorter lag time and a higher peak. 

Additionally, increased peak flow throughout the summer may have been influenced by the 

parameters of the chosen Snyder transform method. Discussed in section 5.3.3.3, the Snyder 

method allows for the lag and peaking coefficient to be adjusted to match observed 

hydrological values. The peaking coefficient (the value that determined the profile of the 

transform hydrograph) was set to 0.5 for both winter and summer, however empirical 

observations and the calibration process has determined the lag of the summer transform to be 

6 hours, whereas winter is much longer at 18 hours. Regardless of this, both hydrological 

models were extensively and comprehensively calibrated to empirical values, resulting in final 

calibration and validation NSE values of 0.65 and 0.44 for summer, and 0.65 and 0.87 for 

winter (sections 5.4 and 5.5). The calibration of the HMS models adds validity to the results 

produced throughout section 7.2, as it is not always common practice for modelling studies to 

involve such comprehensive calibration. It is common for modelling studies to use gauged data 

from far-away instruments, or to use arbitrary ‘rainfall – outflow’ methods during model 

calibration (Revilla-Romero et al., 2015; Gumindoga et al., 2017; Komi et al., 2017; Fedorova 

et al., 2018; Muhammad and Lu, 2020).  

The results and discussions presented in partial fulfilment of aim 3 throughout sections 7.2, 

8.2.1 and 8.2.1.1 have added to the current state of literature regarding the construction, 

calibration and validation of the hydrological models, and the impacts of tree planting at 

influencing hydrological processes; and have allowed for the development of an academic 

paper published by Water MDPI (appendix D.2.1). 
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8.2.2 Modelled Future Impacts of Woodland Planting  

The global climate is changing (Lowe et al., 2019) (section 1.1), and it is discussed in section 

2.2.2 that the future hydrological effectiveness of NFM methods (in light of climate change) is 

uncertain due to a lack of projected/recorded data (Lacob et al., 2014, 2017; Carrick et al., 

2019; Black et al., 2021). Woodland planting is not exempt from this hydrological uncertainty; 

however, it is generally regarded that woodland is overall beneficial as a climate mitigation 

tool due to its carbon sequestration potential (Carrick et al., 2019; Fletcher et al., 2021). This 

is discussed in greater detail throughout section 8.2.3.2, this section, however, contextualises 

the results of hydrological projections presented throughout section 7.3. 

Results from the winter projections show that woodland planting will not reduce peak or total 

discharge below that of the current HofE site across any simulated storm duration. However, it 

can be seen throughout Figure 7.5 to Figure 7.16 that woodland will produce lower peak and 

total discharges than both grassland and impermeable cover. The results produced for winter 

are insightful as they show that woodland planting, although second-to-grassland in the 

present-day simulations (section 7.2), will surpass grassland once the root systems have 

developed. The reasoning for this is discussed further throughout sections 2.3.1, 2.5, 5.7.2 and 

8.1; tree roots break up the surrounding soil matrix, increasing porosity, pore connectivity and 

infiltration (Jarvis, 2007; Zhang et al., 2017b, 2019a; Chandler et al., 2018; Leung et al., 2018; 

Malik et al., 2019; Xie et al., 2020; Guo et al., 2021). All projected peak and total discharges 

increase from 2020 values throughout winter simulations, due to a combination of the steady 

projected increase in infiltration as a result of the aforementioned impacts of root spread, and 

the equally progressive increase in precipitation (section 5.7.1). This is also likely an influence 

of the notably low values of infiltration data collected from the study site (discussed in section 

8.1), combined with the method of infiltration projection. The method of infiltration projection, 

detailed in section 5.7.2, involved cumulatively increasing observed infiltration values until the 

trees reached their maturity age (see appendix B.7). As presented in section 7.1, infiltration 
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data throughout the winter was notably low due to a combination of antecedent moisture and 

soil texture (see Figure 8.1); this meant that when these values were cumulatively extrapolated, 

the output values were lower. A good comparison of the effects of this is to view the summer 

projections, which are more exponential due to the higher initial infiltration, leading to a higher 

cumulative increase (see section 5.7.2 and appendix B.7)  

The summer projected peak and total discharge values show differing trends to that of winter 

simulations. Similarly, to the present-day summer modelled values, peak flows are higher and 

total discharge is lower than equivalent winter events. This is due to the inclusion of 

interception throughout the projected simulations, and these similarities are expected as the 

same calibration parameters were used for both the ‘current’ and projected simulations to 

maintain consistency and represent the site (Shinohara et al., 2015; Krysanova et al., 2018; 

Ficchì et al., 2019; Nguyen et al., 2020; Cooper et al., 2021). The most notable difference 

between winter and summer projections is the drop in projected woodland peak flow and total 

discharge values in 2070. Figure 7.17 to Figure 7.28 show that across all durations and AEPs, 

the woodland projections drop in 2070, and remain consistently lower than grassland and 

impermeable outputs until 2120. As with winter projections, this is due to the infiltration 

projection method - all sample trees are predicted to reach their maximum infiltration potential 

(due to maturity) between 2040 and 2070 (see appendix B.7), reducing runoff, which is 

reflected in the drop in peak flow and total discharge of summer simulations (Lacob et al., 

2017; Krysanova et al., 2018; Dittrich et al., 2019; Kay et al., 2019; Hosseinzadehtalaei et al., 

2020; Black et al., 2021). This is also compounded by the higher summer infiltration values 

compared with winter (due to increased sample site porosity, see section 7.1, Figure 8.1 and 

Figure 8.2), and interception loss. An interception loss of 24.25% (section 5.6.2) was derived 

from the literature (Calder, 2003; Nisbet, 2005; Lunka and Patil, 2016; Ngai et al., 2017) and 

applied to the increasing FEH precipitation values; thus meaning less precipitation in 2070, 

combined with higher infiltration and maximum tree maturity. 
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Overall, the projected results shown that in winter, even when factoring in the possible changes 

in infiltration and precipitation (and interception in the summer), woodland will not be able to 

mitigate peak flows or total discharge below the values determined by the present-day models. 

Woodland, however, is projected to show a lower peak flow and total discharge than grassland 

and impermeable land cover in all projected years (section 7.3). In the summer, projected 

results show that woodland will have a significant influence on peak flow and total discharge 

in 2070, and woodland peak flow and total discharge will be lower than both grassland and 

impermeable land cover (Kay et al., 2019; Black et al., 2021).  

 

8.2.3 Woodland Planting as a Method of NFM 

The overarching theme derived from the collected field data and both present and future 

hydrological models, is that woodland planting can influence hydrology though increasing soil 

porosity and increasing interception; however, trees need time to establish and grow before any 

impactful hydrological implications can be empirically observed (Kay et al., 2019; Black et 

al., 2021; Cooper et al., 2021; Xiao et al., 2021). The findings are impactful when assessing 

tree planting as a method of NFM, and its likely capabilities, advantages and disadvantages 

(Dittrich et al., 2019; Cooper et al., 2021; Murphy et al., 2021). The implementation and 

operation of NFM methods are inherently different from conventional FRM methods (section 

2.2.3) (Ngai et al., 2017; Waylen et al., 2018; Wilkinson et al., 2019). Conventional methods 

can mitigate flooding from the day of completion, are designed to a specified AEP and 

withstand predicted future flow increases, and can respond in real-time to allow their mitigating 

effect to be adjusted dependent on hydrological conditions (e.g., the Thames Barrier) (Lacob 

et al., 2014; Ferguson and Fenner, 2020a; Environment Agency, 2022). An additional 

advantage of conventional methods is their common obviousness, which instils a level of trust 

amongst the public, as the structure can be associated with reducing flooding (Lacob et al., 

2014; Waylen et al., 2018). By nature, the benefits of NFM methods differ to the listed benefits 
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of conventional methods; NFM methods are dependent on soil texture, topography, vegetation 

growth, vegetation type and interception increase (see section 2.2) (Burgess-Gamble et al., 

2018; Shuttleworth et al., 2019; Ferguson and Fenner, 2020b; Ellis et al., 2021). Additionally, 

there is less research surrounding the current and future benefits of NFM, and methods 

commonly need time to establish and function as they are intended (Kay et al., 2019; Wingfield 

et al., 2019; Ferguson and Fenner, 2020a; Ellis et al., 2021).  

The results of this study show that the impacts of woodland planting are less noticeable 

throughout winter, which questions the capabilities of woodland to mitigate larger winter storm 

events. UK winters are wet (the wettest ever February was observed throughout the course of 

this study) and are projected to become even wetter under the influences of climate change 

(Chapter 1). It is shown in section 7.2 and discussed by Xiao et al., (2021) that woodland 

planting is valuable for increasing infiltration and reducing runoff following smaller-scale 

storm events, but woodland should solely not be used to mitigate against larger events due to 

their limited capability. This is also discussed throughout sections 8.2.1 and 8.2.2., highlighting 

that woodland lacks the required hydrological storage to mitigate larger-scale precipitation 

events. This is a main limitation of woodland planting (and other vegetation planting-based 

methods of NFM) compared with conventional FRM methods; all of which are designed with 

sufficient storage capacity in order to mitigate large rainfall events (attenuation ponds, 

soakaways, storage tanks) (Butler and Davies, 2011; Shaw et al., 2011). In response to this, it 

is generally acknowledged that NFM methods should be viewed holistically throughout a 

catchment, and multiple NFM methods, both in-channel and throughout the catchment, should 

be employed to achieve the best possible mitigative results on FRM (Forbes et al., 2016; Ngai 

et al., 2017; Lavers and Charlesworth, 2018; Nicholson et al., 2019; Ellis et al., 2021). The 

combination of NFM methods at varying catchment scales are comparable to a commonly 

promoted method in the field of sustainable drainage (SuDS) coined ‘management trains’ 

(Booth and Charlesworth, 2014; Lamond et al., 2015; Lashford et al., 2020). Examples of 
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where multiple methods (a ‘train’) of NFM methods have been utilised to mitigate flood risk 

(in addition to the Hills to Levels project, section 2.2.1) include: the re-meandering of the 

(previously artificial) Swindale Beck in Cumbria, where livestock activity was reduced, trees 

were planted, floodplains were reconnected, and temporary flood storage was installed 

(Wightman and Schofield). The Beam urban watercourse, London, where 12ha of ponds, 

reedbeds, and woodland were installed, in addition to 150 m of realignment, 600 m of 

reprofiling and 300 m of in-channel features (creating an additional 25,660 m3 of flood storage) 

(Burgess-Gamble, 2012); and the Eye Brook, Stonton Brook, Barkby Brooks in Leicestershire, 

where permeable dams and field-edge wetlands have been installed – this in addition to support 

for farmers regarding improving soil management (Biggs et al., 2017).  

Relevant literature (Short et al., 2019; Wells et al., 2020; Bark et al., 2021; Ellis et al., 2021) 

discusses that NFM methods can contribute to an areas overall flood mitigation, however their 

effectiveness is increases when employed alongside (new or) pre-existing ‘hard’ conventional 

structures (Wilkinson et al., 2019). It is often discussed that there should be a trade-off between 

the use of conventional methods, to mitigate against the ever-increasing occurrence of high 

intensity rainfall and extreme weather events, and NFM methods, for mitigation against lower-

intensity storms and for their demonstrated abilities in CO2 sequestration, biodiversity and 

habitat creation (Lacob et al., 2017; Collentine and Futter, 2018; Seddon et al., 2020; Ellis et 

al., 2021). Conventional methods can be utilised for their excess storage and flow control 

ability (attenuation ponds, flood walls), whereas NFM methods, such as vegetation and 

woodland planting can reduce the volume of water entering the watercourse to begin with 

(Wilkinson et al., 2019). This methodology supports the findings of this study, which have 

shown that woodland planting struggles to mitigate the peak flows and total discharge volumes 

of the HofE site in comparison to grassland alone (see section 8.2). 
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8.2.3.1 UK Soil Texture and Tree Planting 

The results of this study have shown that trees (and subsequently woodland) are valuable as a 

method of NFM as they can increase infiltration at close proximity, and become more capable 

of doing so with increased maturity; this in addition to the associated benefits regarding carbon 

sequestration, biodiversity, habitat creation and public amenity (Lacob et al., 2017; Collentine 

and Futter, 2018; Seddon et al., 2020; Ellis et al., 2021). Referred to throughout Chapter 7 and 

Chapter 8, the HofE site is predominantly clay-textured, which is known to demonstrate low 

permeability and infiltration (Groenendyk et al., 2015; Folorunso and Aribisala, 2018). This 

therefore indicates that the derived results are a low-end representation of what the impacts of 

tree planting could be over a more permeable geology. Area calculations of superficial 

alluvium, clay, peat and fluvial deposits throughout the UK show 15% (36,374.25 km2) to be 

similar in geology to the HofE site (British Geological Survey, 2021). See Figure 8.3. 
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Figure 8.3. 1:625k superficial geology map of the UK with the Arrow-Alne River catchment 

highlighted by red circle (British Geological Survey, 2021). 

This can be interpreted to infer that this 15% demonstrates similar infiltration characteristics to 

those presented throughout section 7.1, therefore, the results of this study are representative of 

15% of UK geology. However, this statistic can also be interpreted to show that 85% 

(206,120.75 km2) of the UK is non-clay textured; indicating that the low-end results derived 

throughout this study will likely be increased if applied to other areas of the UK (Folorunso 

and Aribisala, 2018; Anderson et al., 2020). Infiltration may be higher, and differing trends 

may be identified regarding seasonality and woodland maturity (Zhang et al., 2019a; Xie et al., 

2020). This highlights the wider applicability of the collected data, emphasising the impact of 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found 
in the Lanchester Library, Coventry University. 
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study results and proving the applicability of the methodology to other areas across the UK. 

This also presents an opportunity for this research to be extrapolated and applied to other 

geologies and soil textures, to potentially aid in justifying the use of woodland planting as a 

method of NFM. 

 

8.2.3.2 Perceptions of Woodland  

The above sections have focussed primarily on the hydrological implications of woodland 

planting (infiltration, soil, antecedent conditions, and interception), however the additional 

benefits of woodland planting (as introduced in section 2.3) should be highlighted. Woodland 

is beneficial to the oxygen cycle as it absorbs and stores CO2, and recirculates O2, they are 

amenable, and they create and preserve habitats for fauna and flora (Lacob et al., 2014; Ellison 

et al., 2017; Forestry Commission, 2018). These benefits in addition to the presented results 

regarding the impacts of tree planting on soil porosity, infiltration, and interception (sections 

8.1, 8.2.1 and 8.2.2) indicate woodland to be an ‘ideal’ method of NFM (Burgess-Gamble et 

al., 2018; Hankin et al., 2018; Dittrich et al., 2019; Tzioutzios and Kastridis, 2020; Ellis et al., 

2021; Murphy et al., 2021),. However, when considering the ways in which woodland planting 

is often presented and conveyed by relevant authorities (DEFRA, The UK Government, EA) - 

the extensive benefits are often overshadowed and reduced-down to the ‘need’ for woodland 

to sequester CO2 considering a changing climate. This is emphasised in recent documentation 

published by the UK Government: the England Trees Actions Plan 2021-24 (UK Government, 

2021a), and the Path to Net Zero (Climate Assembly UK and House of Commons, 2020) 

Roadmap. Both documents emphasise the need to plant woodland for carbon sequestration and 

biodiversity, however neither mention the need to plant woodland for their hydrological 

benefits, as has been the focus throughout this study. The emphasis on woodland CO2 storage 

and removal may be the influence of increasing public interest and understanding of the effects 

and influences of climate change (Taylor et al., 2014; Whitmarsh and Capstick, 2018; Hasan 
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and Kumar, 2019). Public interest and understanding of local climate change is changing, and 

this has been accelerated in the UK through the observed changes in flood frequency and 

severity (the flash-floods of summer 2021, see Chapter 1) and increased news coverage of 

climate related issues (referring to the summer flooding in Germany (Bosseler et al., 2021) and 

the COP26 climate assembly (for example, BBC News, (2021)). Public understanding may be 

influencing the government to tailor new climate policies at reducing and sequestering CO2 to 

resonate with public understanding, making the policy more favourable. An additional reason 

for this may also be to ‘sell’ the idea of woodland planting only for its benefits in CO2 

sequestration, however, to not explain the additional benefits of woodland planting 

(particularly when they are of direct impact in light of climate change) is interesting. Overall, 

it seems few policy documents investigate or present all benefits of woodland planting (the 

hydrological factors investigated throughout this project), and place emphasis on the carbon 

sequestration potential. The findings derived throughout this chapter indicate that woodland 

planting is valuable as a method of NFM due to its ability to increase nearby infiltration and 

subsequent storage (section 8.1). Additionally, woodland planting is predicted to mitigate 

future flows from the HofE site in comparison to grassland and impermeable surfaces (section 

8.2.2). These findings can be used to inform upcoming and existing UK woodland and 

environmental policy, and evidence that woodland planting is hydrologically valuable, in 

addition to the currently emphasised benefits of carbon sequestration. It is understood by 

organisations such as the EA and the Forestry Commission that woodland planting is overall 

beneficial regardless of the planting motive (as was discussed at the EA/HofE feedback 

presentation, section D.1). However, it seems unnecessary to overlook the hydrological 

benefits from new documentation and policy supporting the increase in tree planting (Climate 

Assembly UK and House of Commons, 2020; UK Government, 2021a) only focus on CO2 and 

biodiversity – instead, the hydrological benefits that come hand-in-hand with all other 

advantages should be included A reason for the lack of emphasis regarding the hydrologic 
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benefits of trees may be the lack of empirically based studies in the UK, or a lack of long-term 

investigations in to the useability of woodland for future climate change (Nicholson et al., 

2019; Black et al., 2021; Ellis et al., 2021; Revell et al., 2021). Numerous studies exist both 

nationally and internationally, proving that tree planting is beneficial to carbon sequestration 

(Carrick et al., 2019; Fletcher et al., 2021); however, few studies have empirically tested the 

impacts of woodland planting on infiltration over sustained periods. Ongoing woodland 

planting case studies do exist in the UK, however infiltration nor interception are ever the sole 

focus, and these parameters are often inferred through rainfall/runoff relationships (Kirby et 

al., 1991; Birkinshaw et al., 2014; Marshall et al., 2014). The aforementioned lack of 

empirically based infiltration studies may be the reason that carbon sequestration is made the 

primary focus of emerging policy, and more data needs to be collected regarding tree hydrology 

to reinforce its importance as a method of NFM (Carrick et al., 2019). However, regardless of 

the circumstances for planting, woodland is positive on multiple fronts (section 2.3) and the 

findings of this study further demonstrate that the 25-year Environment Plan (HM Government, 

2018), the England Trees Action Plan 2021 – 2024 (UK Government, 2021a) and the 

Woodland for Water scheme (GOV.UK et al., 2019) will be beneficial for flood risk reduction. 

Furthermore, the findings of this study also demonstrate the value of mature trees on 

hydrological processes, bolstering the recent amendments to the Environment Act, offering 

more protection to mature woodland (UK Government, 2021b). The implications and 

recommendations of this study are discussed in greater detail throughout Chapter 9. 

The findings of aims 1 and 3 (Chapter 7) indicate that woodland planting is valuable as a 

method of NFM due to its ability to increase nearby infiltration and subsequent storage. 

Additionally, it is shown that whilst woodland is not reducing peak flow and total discharge in 

comparison to grassland at present, the effects will be more significant in the future throughout 

both summer and winter. The applications of these findings have been discussed in the context 
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of UK policy above, but these findings can also be used to inform international policy regarding 

tree planting and NFM (see section 9.1.5). 

 

8.2.4 Summary of Aim 3 Findings 

Aim 3 was to use the calibrated HEC-HMS model to simulate hydrology from the HofE site 

dependent on changing storm intensity, duration, land cover, tree maturity and climate change; 

and determine to what extent HofE woodland planting has influenced discharge. This section 

summarises the findings of objectives 3a, 3b and 3c.  

The collected infiltration data, discussed throughout section 7.1, has shown that tree planting 

does influence infiltration. Coupling the present-day field data with the hydrological model has 

produced results indicating that, whilst woodland can increase infiltration at the 10 cm 

proximity in comparison with the 200 cm proximity, grassland still shows greater reductions 

in peak flow and total discharge (section 7.2). It is discussed in sections 8.1 and 8.2.1 that the 

influences of antecedent rainfall and varying soil textures of the control in comparison to the 

sample sites were likely the primary influence of these findings. Aside from the discussed 

discrepancies in soil texture, the present-day modelled results demonstrate that the mitigative 

influences of younger woodland are second-to grassland at this scale. However, considering 

the discussions in section 8.1 regarding the influence of maturity on infiltration, and the 

literature-wide acknowledgement that tree root systems increase infiltration over time, it is 

likely that woodlands will become more hydrologically impactful in future. This was 

demonstrated throughout the modelled projections. 

Modelled projections are presented and discussed in sections 7.3 and 8.2.2. The projections are 

promising from a FRM perspective as they show that trees can mitigate peak flows and total 

discharge when their maximum growth, and subsequent root spread/infiltration is attained. The 

results are less prominent throughout winter, and it is discussed in (section 8.2.2) that this is 

likely a result of site conditions during winter infiltration data collection; however, summer 
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values show woodland to be promising into the future, taking into account the projected 

increase in precipitation (section 5.7.1). Section 8.2.3 evaluates the effectiveness and wider 

applications and considerations of woodland planting as a method of NFM.  
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Chapter 9 Implications and Recommendations for Stakeholders 

 

This section will discuss the implications of the study results with regards to the HofE forest, 

the forestry industry, the construction industry, and DEFRA policy. This section will also make 

recommendations, where fitting, based on the results and discussions presented throughout 

Chapter 7 and Chapter 8.  

 

9.1 Aim 4: The Implications, Applications and Recommendations of Study Findings 

The following sections focus on the specific applications impacts and recommendations of this 

study regarding the HofE Forest Charity, the construction industry, the forestry (woodland) 

industry and current and future flood risk management policy, specifically policy relating to 

DEFRA and the EA. 

 

9.1.1 The Heart of England Forest  

The findings of this study can instil a level of confidence in the methods and mentality of tree 

planting adopted by the HofE forest. The study results have proven that the work they are doing 

is positively influencing infiltration, reducing flood risk, and is expected to carry on influencing 

hydrology into the future. Additionally, the HofE forest have been working towards their goal 

of creating 12,140 hectares of new woodland (section 4.1.1) (The Heart of England Forest 

Charity, 2020, 2021), and have ‘accidentally’ been improving infiltration and changing local 

hydrology as a by-product. This can be used to evidence how easy (and altogether beneficial) 

tree planting can be across any scale, particularly when considering that 85% of the UK hosts 

a more permeable soil texture than the study site (section 8.2.3.1). To maximise infiltration and 

hydrological impact, that the HofE forest could consider planting in a lattice pattern with no 

tree more than 200 cm from the next in all directions (this is discussed in greater detail in 

section 9.1.3). This would ensure infiltration in all directions around the tree would be at a 



9-2 
 

maximum, and would be of use should the charity want to profit from lumber sales. However, 

this would never be considered (at present) by the HofE forest, as their primary intention is to 

plant woodland to create a continuous forest, and for the benefit of public amenity and 

biodiversity (see section 4.1.1).  

 

9.1.2 Woodland and Construction 

Development and increased impermeable surfaces significantly alter the hydrology of an area 

and seal-off once permeable areas, excluding them from participating in infiltration processes 

(Chandler et al., 2018; Chappell et al., 2018; Cooper et al., 2021; Julich et al., 2021; Murphy 

et al., 2021; Patra et al., 2022). However, paragraph 180 c) of the National Planning Policy 

Framework (NPPF) 2021 (Ministry of Housing Communities & Local Government, 2021) 

states that development where the deterioration of ancient or veteran trees is a possibility 

should be refused unless there are wholly exceptional reasons. The NPPF defines an 

exceptional reason as ‘where a need for affordable housing is identified’, however stresses that 

a suitable compensation strategy must exists. Such strategies could include the translocation 

(movement) or felling-and-replating of trees in a new location. As they grow, tree roots 

encroach into the surrounding soil, increasing its porosity, permeability and subsequent 

infiltration – this has been demonstrated and discussed throughout sections 2.3.1, 7.1 and 8.1 

(Chappell et al., 2018; Cooper et al., 2021; Julich et al., 2021; Murphy et al., 2021; Patra et 

al., 2022). Infiltration increases as proximity to the tree decreases; infiltration is also influenced 

by maturity, with fully established trees (trees that have been in-situ long enough to reach their 

maximum height and age) showing greater infiltration compared with younger woodlands 

(section 7.1). It is discussed throughout sections 2.5 and 8.1, that soil texture and structure have 

an overarching influence on infiltration, with more clayey soils inheriting lower permeability 

and subsequent infiltration compared with sandier soils (Jarvis, 2007; Scholl et al., 2014; 

Folorunso and Aribisala, 2018). These influences, combined with the influences of woodland 
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maturity on infiltration, are significant when discussing the actual usefulness of felling or 

translocating/re-planting trees to a new location to make way for development. Replanted and 

translocated trees will not have a comparable moderating impact on flood risk compared with 

the felled mature trees, as younger trees have not yet developed the root systems nor influenced 

surrounding infiltration rates to the likely extent they will with maturity (Archer et al., 2016; 

Song et al., 2018; Zhang et al., 2019a, 2020). This is demonstrated throughout section 7.1, 

where the 10 cm proximity mean is consistently greater than the 200 cm mean (Hynynen et al., 

2010; Archer et al., 2013; Cooper et al., 2021). Additionally, the removal and translocation of 

mature woodland is detrimental to the effects of interception. If a tree is removed, interception 

loss is no longer a factor, meaning more rainfall reaches ground surface to contribute to 

infiltration and overland flow (Deng et al., 2020; Xie et al., 2020; Kitsikoudis et al., 2021). 

The significance of interception loss is demonstrated throughout present-day and future 

simulations (sections 7.2 and 7.3), showing that summer models demonstrate a lower total 

discharge compared with winter simulations. This is discussed throughout sections 5.6.2 and 

5.7.1, and is due to the deciduous sample trees growing leaves in the winter, and shedding them 

throughout the summer (Komatsu et al., 2011; Klamerus-Iwan, 2015; Cerdà et al., 2021). In 

addition, removing or translocating trees can be detrimental to carbon sequestration, which is 

something the UK Government are trying to alleviate through woodland planting (UK 

Government, 2021a). 

The findings of aim 1 show that mature trees are beneficial to their surrounding hydrology 

(infiltration, interception), however need time to reach their full hydrological potential 

(Chappell et al., 2018; Cooper et al., 2021; Julich et al., 2021; Murphy et al., 2021; Patra et 

al., 2022). This indicates that the removal and replanting / translocations of trees in the wake 

of construction is hydrologically detrimental to an area, which supports the wording of the 

NPPF (Ministry of Housing Communities & Local Government, 2021), suggesting that ancient 

or veteran trees (defined in annex 2: glossary of the NPPF 2021) should not be disturbed or 



9-4 
 

removed during construction unless exceptional circumstances are met and a compensation 

strategy exists. However, sometimes permission can be given to large-scale construction 

projects regardless of the damage posed to ancient woodland, one example of note is High-

Speed 2 (HS2).  

HS2 aims to connect London, Birmingham, Nottingham and Manchester through 330 miles of 

new high-speed rail track (HS2, 2021a). It is hoped that HS2 will contribute towards the UK 

Governments’ goal of achieving net zero carbon emissions by 2050 across all sectors 

(GOV.UK, 2021). However, whilst HS2 promises to be an essential tool in reducing air 

pollution and CO2 emissions, some methods employed in its construction could be seen to be 

against the promoted environmental ethos (Razzaque and Lester, 2021). The Woodland Trust 

(2022) highlight that 51 areas of ancient woodland (established for over 1600 years (Ministry 

of Housing Communities & Local Government, 2021)) will be removed/partially removed to 

make way for the line, and a further 39 will be indirectly affected (disturbance/noise/pollution). 

The removal of ancient woodland is against the suggestions of paragraph 180 c) of the NPPF, 

however, whilst the removal of ancient woodland still looks inevitable for the construction of 

HS2, the project has set up a ~£1.2m ‘Woodland Fund’ to plant 7 million new trees (33 km2) 

along the route from the West Midlands to London. As of the 5th July, the project had planted 

700,000 of these trees (in addition to new areas of grassland, ponds and wetlands) over 118 

sites, including Finham Brook, Stoneleigh Park and South Cubbington Wood in Warwickshire, 

and Bernwood in Buckinghamshire (HS2, 2021b). Regardless, the removal of ancient 

woodland and their replacement with new saplings will not have the same level of hydrological 

mitigation for some time (Kay et al., 2019; Wingfield et al., 2019; Ferguson and Fenner, 2020a; 

Ellis et al., 2021). 
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9.1.3 Woodland Management Practice: Planting, Felling and Woodland Structure  

As discussed in section 4.1.1, the HofE forest do not plant new areas of woodland in any pre-

determined pattern, nor do they harvest their woodland; however, the results presented in 

section 7.1 can be applied to organisations that do. Coppicing is the process of felling trees at 

their base, and is desirable compared with felling and replanting as coppiced trees develop 

similar root systems to those of more mature trees, making regrowth quicker (2-25 years) 

(Collentine and Futter, 2018; Siegmeier et al., 2019; Hepner et al., 2020; Tullus et al., 2020). 

The collected infiltration data (section 7.1) shows that at all sample sites (aside from 2020 in 

the winter), infiltration was greater at the 10 cm proximity compared with the 200 cm 

proximity, and from this, it can be derived that there is a gradual decrease in infiltration as 

distance away from the tree increases (section 7.1). Considering this and the already largely 

employed woodland management method of coppicing (to maximise lumber production and 

minimise growing times), it can be deduced that planting woodland in a lattice pattern could 

maximise a wooded areas overall infiltration (this is briefly outlined with reference to the HofE 

forest in section 9.1.1). Planting in a lattice pattern would capitalise on what is known about 

the lateral spread of roots (Perry, 1982; Crow, 2005; Day and Wiseman, 2009; Myking et al., 

2011; Alani and Lantini, 2020), and over time, the roots of woodland planted in this pattern 

would form a ‘mat’ of roots under the soil surface. Coppicing a tree forces the root system to 

continually grow and develop as if the tree is maturing, regardless of felling (Siegmeier et al., 

2019), so the continual growth of the roots system coupled with the increase in infiltration with 

tree maturity (sections 7.1 and 8.1) would indicate that the ‘mat’ of roots would eventually 

break-up the surrounding soils increasing porosity, hydraulic conductivity and infiltration 

(Jarvis, 2007; Zhang et al., 2017b, 2019a; Chandler et al., 2018; Leung et al., 2018; Malik et 

al., 2019; Xie et al., 2020; Guo et al., 2021). For the forestry industry, this would maximise 

lumber production (as coppicing would be encouraged), whilst simultaneously making the 

entire woodland area more capable of mitigating heavy precipitation events, and maximising 
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flood risk mitigation (Lozano-Baez et al., 2019; Ferguson and Fenner, 2020a). It is also 

suggested by Collentine and Futter (2018) that rotation times (the time from felling, through 

growth to harvesting) and required specialised harvesting machinery vary by species, 

broadening the horizons of how applicable this method could be to forestry and FRM. 

So far, this section has outlined several key impacts as a direct result of the results presented 

in section 7.1. However, whilst lattice planting and coppicing would be beneficial to lumber 

production and the maximisation of infiltration (from an NFM perspective), there are 

limitations to be considered. For a lumber-production forest, planting in a lattice pattern with 

limited space between trees would increase disease susceptibility (Ashton and Kelty, 2018; 

Singer et al., 2019), and the limited accessibility for heavy harvesting machinery would 

outweigh any hydrological benefit from the perspective of the forestry industry (Ballard, 2011; 

Al-Dousari et al., 2019). Additionally, the compaction caused by vehicles and machinery 

travelling between the trees would influence the porosity induced through root-spread of 

latticed trees, defeating the purpose of planting for hydrological benefit (see section 2.5 on 

compaction). Moreover, planting in the rigid lattice structure would defer from the natural 

amenity of woodland, and the lack of sunlight reaching the forest floor would limit the growth 

of additional vegetation, influencing interception, additional infiltration, and biodiversity (all 

of which are main ambitions of NFM, section 2.2) (Ashton and Kelty, 2018; Singer et al., 

2019). Relating the discussed to the HofE forest, it is unlikely that they will invest in the 

discussed methods, as they do not correlate with their key values of wildlife, biodiversity and 

public enjoyment and engagement (section 4.1.1). For the HofE forest to peruse these 

recommendations in the interest of maximising infiltration: community planting days would 

stop and public access throughout HofE owned forests would be limited due to health and 

safety concerns, and the woodland areas would lose their abundant amenity and biodiversity 

potentials. 
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This section has discussed the ways in which woodland can be planted to maximise 

hydrological impact and infiltration. However, the usability of the methods proposed have 

shown to be mostly limiting to the public enjoyment of woodland areas and biodiversity, which 

are key values of the HofE forest. Limitations aside, whilst planting wooded areas purely in 

the interest of maximising infiltration and runoff reduction is mostly impractical for the reasons 

discussed above, the wider benefits of woodland planting on surrounding hydrology should be 

explored on a larger scale. The HofE forest do not intend to grow and harvest lumber, and the 

woodland planting they are doing is contributing to the local hydrology, more-so than doing 

nothing at all, and infiltration results and modelled projections show that they are contributing 

to the future climate resilience of the catchment.  

 

9.1.4 Department for Environment, Food and Rural Affairs (DEFRA) and the Environment 

Agency 

The findings of this study are of particular interest to the Department for Environment, Food 

and Rural Affairs (DEFRA) and the Environment Agency (EA) as these organisations are due 

to become responsible for the selection and planting of woodland areas for the benefit of both 

flood risk reduction and CO2 sequestration. Additionally, DEFRA and the EA are working 

cooperatively towards the Governments ‘Net Zero by 2050 plan’ and are already promoting 

schemes and policies regarding woodland planting (see section 2.4). Furthermore, the EA have 

a vested interest in NFM research, and are undertaking NFM projects throughout the UK to 

test the feasibility of such approaches (see ‘case studies’ section of the GOV.UK et al., (2021) 

website); the results presented throughout this study will aid in their justification of tree 

planting to stakeholders. The infiltration and future climate change projection elements of this 

project were of particular interest to the EA during the feedback presentation (appendix D.1), 

quoting that future work could involve turning these results into an ‘off-the-shelf’ saleable 
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product. This section introduces more specific DEFRA policy and schemes and highlights the 

impacts and recommendations of this work on such schemes. 

 

9.1.4.1 The Environment Act (2021) 

The Environment Act (UK Government, 2021b) aims to improve air and water quality, tackle 

waste, improve biodiversity and make other positive changes to the way the environment is 

handled. With regards to trees, the most recent revisions to the environment act included 

additional protection to established trees, stating that the unnecessary or illegal felling of trees 

could result in prosecution or fines (UK Government, 2021b). 

The findings of this study, particularly those indicating that trees influence infiltration more-

so as they mature, support the recent amendments to the environment act. It is discussed 

throughout Chapter 8 that mature(ing) woodland has the greatest influence on infiltration (in 

addition to positively influencing surrounding biological and ecological processes and public 

amenity), as the root systems have had ample time to develop and influence porosity and 

subsequent infiltration. Therefore, the increased protection warranted through the Environment 

Act will allow mature trees to remain throughout a catchment, and positively influence 

hydrological processes (infiltration) as they mature.  

 

9.1.4.2 The Agriculture Act (2020) and Environmental Land Management Schemes (ELMS) 

The Agricultural Act, introduced in 2020, is a post-Brexit alternative to the previously 

inefficient policy instated by the EU (Defra, 2020). The Act defines how land managers in 

England will be rewarded with public money for public goods, such as initiatives to improve 

air, soil and water quality, reduce flood risk and mitigate the adverse effects of climate change; 

applicable under the Environmental Land Management Scheme (ELMS) (Defra, 2020; The UK 

Government, 2020).  
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There are three defined ELMS (Defra and Rural Payments Agency, 2021): 

• Sustainable farming schemes (launched in 2022) - comprised of a set of customisable 

and adoptable standards based on natural features (i.e., hedgerows, grassland), that 

govern how each should be managed. Payment is attained upon adhering to the standard 

management technique agreed upon. 

• Local nature recovery schemes (piloting in 2022 and launching in 2024) – payment for 

actions that support and promote local nature recovery and environmental priorities. 

The added intention is to encourage collaboration between land owners, peers and the 

community. 

• Landscape recovery schemes (piloting in 2022 and launching in 2024) – payment for 

long-term schemes that support landscape and ecosystem recovery, such as rewilding, 

large-scale tree planting, and peatland and saltmarsh restoration.  

Throughout these schemes, land managers will be encouraged (and will be paid for) delivering 

and enhancing (e.g.): clean and plentiful water, clean air, thriving plants and wildlife, 

protection from environmental hazards, reduction of and adaptation to climate change, beauty, 

heritage and engagement with the environment. A seven-year transition period from the EU 

framework to the new agricultural system introduced by the Act began in 2021, and it is 

believed that these financial incentives will aid in achieving the goals of the government’s 25 

Year Environment Plan (see section 9.1.4.3), and DEFRA’s commitment to reach net zero 

emissions by 2050 (see section 9.1.4). 

When contextualising the results of this study with regard to the Agricultural act and ELMS, it 

can be suggested that this study has provided preliminary evidence that the ELMS will 

contribute to improving air, soil and water quality, reducing flood risk and mitigating the 

adverse effects of climate change. It is discussed throughout section 2.4 that woodland planting 

is seen to be beneficial from the perspective of carbon sequestration, biodiversity and ecology; 

and the positive hydrological influences of woodland planting (both present and future) are 
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presented and discussed throughout Chapter 7 and Chapter 8. The encouragement of land 

owners to implement management schemes to enhance the sustainability, biodiversity and 

carbon sequestration potential of their land will contribute towards the 25 Year Environment 

Plan (see section 9.1.4.3) and DEFRA’s commitment to reach net zero emissions by 2050 (see 

section 9.1.4). Additionally, it is proven throughout section 7.1 that long-term schemes (such 

as those posed by the landscape recovery schemes), will improve infiltration and soil storage, 

reducing the likelihood and severity of flooding.  

 

9.1.4.3 DEFRA 25-Year Environment Plan (2018) 

As has been referred to in above sections, the 25-year environmental plan sets out the goals 

and philosophies of DEFRA for improving and future-proofing the environment through using 

more sustainable management methods (Defra, 2021). The plan sets out targets to aid in 

improving: air quality, water quality, encouraging wildlife and biodiversity, improved 

sustainability and encouraging methods of future climate resilience (Defra, 2021).  

Woodland planting is mentioned numerous times throughout the 25-year plan, however the 

primary focus is in regards to increasing woodland coverage for the benefits of carbon 

sequestration and biodiversity. A recommendation of this study for consideration by the 25-

year plan would be that woodland can should be viewed not only for the positive implications 

regarding the above points, but also from a hydrological perspective. Chapter 7 and Chapter 8 

demonstrate and discuss that woodland planting can increase infiltration, and this combined 

with the increase in root-growth over time can be hydrologically beneficial in light of climate 

change. Therefore, a greater emphasis on this throughout the 25-year plan would allow for the 

hydrological implications of woodland planting to be further explored and quantified by 

academics and practitioners, and aid when justifying both the short and long-term hydrological 

(and other discussed (section 2.3)) benefits of woodland planting to stakeholders in light of a 

changing climate. 
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9.1.4.4 England Trees Action Plan (2021 – 2024) 

The England Trees Action Plan defines the current government’s vision for extensive and 

opportunistic future woodland planting across England by 2050 and beyond. The plan details 

a framework for implementing the Nature for Climate Fund, and outlines over 80 policy actions 

the current government is taking to deliver these objectives(UK Government, 2021a).  

The primary focus of the plan is to increase woodland coverage for the benefit of carbon 

sequestration, biodiversity, wildlife and public amenity; the hydrological benefits and flood 

risk mitigation potentials of trees, whilst featured, are not the focus of the document (UK 

Government, 2021a). However, the plan does detail how responsible authorities (DEFRA) 

should aim to support land owners with tree planting, and the benefits this can have from both 

the perspective of flood risk management, and ELMS payments (for the land owner) (section 

9.1.4.2).  

A recommendation to the action plan as a result of the results detailed and discussed throughout 

Chapter 7 and Chapter 8 is to increase the reference to literature supporting the use of woodland 

planting (as a method of NFM) to reduce the frequency and severity of flood events (Chandler 

et al., 2018; Revell et al., 2021, 2022). This would add further justification and applicability to 

woodland planting, and would enable other researchers to justify investigating the hydrological 

implications of woodland planting on infiltration and reducing flood severity. Providing 

enough future quantification regarding the hydrological advantages of woodland planting, this 

newfound data could be used when justifying the use of woodland as a method of NFM to 

reduce the frequency and severity of flooding (alongside the commonly noted advantages to 

biodiversity, public amenity, habitat creation and carbon sequestration).  
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9.1.5 International and Domestic Flood Risk Management Policy and NFM 

UK policy regarding NFM, and tree planting have been introduced and discussed throughout 

sections 2.4, 8.2.3.2 and 9.1.1 - 9.1.4.4. The findings of this study (Chapter 7) can inform these 

policies, and support the use of tree planting as a method of NFM due to its multiple benefits, 

inclusive of the purely hydrological (section 8.2.3.2); however, the study findings also have 

international applications. On the 16th September 2021, the United States Army Corps of 

Engineers (USACE) published an international guide on using NFM (however referred to as 

Natural and Nature Based Features (NNBF), see Table 2.1) to aid international policymakers 

with the application and uses of such devices (Bridges et al., 2021). Rijkswaterstaat – a 

department of the Dutch Ministry of Infrastructure and Water Management - aided in the 

development of the guide, and the UK Environment Agency were involved in the authorship 

of chapters, supplying 10 UK case study examples (Environment Agency, 2021c); the 

publication had over 4,200 downloads as of February 2022, showing that the sharing of NFM 

methods, case studies and knowledge is being capitalised upon internationally. Furthermore, 

the European Commission, (2011) have published guidance for member states regarding the 

benefits of NFM, and how NFM and NWRM (natural water retention methods, Table 2.1) can 

be integrated across a catchment to achieve ‘greener’ outcomes compared with conventional 

methods.  

The international application of NFM methods is promising for the more widespread uptake of 

such methods, and now the findings of this study can be used to inform both UK policy and 

international policy with regards to the positive impacts of tree planting on hydrology, and their 

use as a method of NFM. With further developments and evidence emerging from around the 

UK regarding the benefits of NFM, including the results presented as part of this study, it is 

hoped that international collaborations and contributions to the international knowledge base 

will continue. With continued development and collaboration, NFM (and tree planting) will 

become common practice when mitigating the adverse effects of flooding and a changing 
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climate internationally, whilst simultaneously aiding in biodiversity, preservation, habitat 

creation and CO2 sequestration.  

 

9.1.6 Summary of Aim 4 Findings 

This section has discussed the findings and discussions of Chapter 7 and Chapter 8 in the 

context of its wider implications regarding the HofE forest, woodland and construction, and 

woodland management. Further to this, outcomes have been contextualised and 

recommendations been posed regarding current and future water policies and water-governing 

authorities, namely; DEFRA, the Agricultural Act, the 25-year plan, the England trees action 

plan, and other international policy. 

The overarching conclusions of this section are that tree planting and woodland area creation 

are featuring more prominently in recent and upcoming policy. The ability of woodland to 

sequester carbon and improve biodiversity seem to be the main drivers (in light of climate 

change and the recent COP26 conference); however, more emphasis should be targeted towards 

the hydrological benefits of trees – as has been proven throughout this work. This study has 

shown that woodland planting can increase infiltration, improve soil porosity and increase 

catchment-water storage potential in forests (Chapter 7) – and this is only projected to increase 

in impact as trees mature, which will contribute towards mitigating the adverse effects of 

climate change. The inclusion and emphasis of the hydrological impacts of trees would aid in 

the further justification of large-scale and targeted tree planting, and would also have the effect 

of encouraging more research both from academia and the water industry. However, this being 

said, tree planting, as with many other methods of NFM (Kay et al., 2019; Wells et al., 2020; 

Ellis et al., 2021), lacks empirical and quantifiable support, and whilst this study does quantify 

and present the hydrological benefits of trees for the study site, further research needs to be 

conducted to build the empirical body of knowledge before policy can encourage woodland for 

this benefit alone.  
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Chapter 10 Conclusion 

 

This chapter summarises the main research findings and reviews how and where the aims and 

objectives (section 1.3) were met. The contributions to knowledge are identified, as are any 

sources of error and opportunities for future work. 

 

10.1 Review of Aims and Objectives 

Aim 1 and the associated objectives determined the structure and methods for the collection of 

infiltration data and aim 2 determined how such data should be hydrologically modelled. Aim 

3 compiled both field and modelled data to simulate the hydrological responses of the site both 

at present, and in the future, and then assessed the feasibility of woodland planting as a method 

of NFM. Aim 4 was to apply and contextualise the findings of this research to shareholders and 

policy, providing recommendations for both. The following sections conclude each aim 

individually. 

 

10.1.1 Aim 1 

Aim 1 was to determine to what extent tree planting by the HofE forest has influenced 

infiltration regarding proximity and maturity. This was to be achieved through defining suitable 

sampling locations and methods for infiltration data collection (objective 1a) and using the 

collected data to derive any relationships (objective 1b).  

The methodology for sample site selection, along with the finalised sample site locations are 

discussed throughout sections 5.2; as is information regarding the rationale for the use of MDI, 

infiltration data collection points and the interpretation of data. Section 7.1 presents and 

analyses the results of the collected infiltration data, showing that mean infiltration is higher at 

the 10 cm proximity compared with the 200 cm proximity by 75.87% in winter and 25.19% in 

summer. Further to this, 10 cm infiltration is 192% higher in summer compared with winter 
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and mean 200 cm infiltration is 310% higher in summer compared with winter. These results 

conclude that overall, the presence of the tree, and particularly the developing root system, is 

influencing infiltration through increasing soil porosity, allowing for soil-water storage and 

faster infiltration. Regarding the influence of tree maturity on infiltration, there is no evidence 

in the collected field data to suggest a correlation, however the ca.1900 site did continually 

show the highest infiltration (aside from at the 200 cm proximity in summer 2020/2021). The 

conclusions of this are discussed comprehensively throughout section 8.1, where it is 

determined that the reason for the lack of correlation is simply the young age of the sample 

trees. 

The results collected show that tree planting does influence infiltration, and infiltration is 

higher at the 10 cm proximity compared with the 200 cm proximity. Whilst these is no obvious 

correlation between infiltration and maturity, these results contribute to the growing literature 

base regarding tree planting as a method of NFM.  

The construction of the infiltration data collection methodology and the subsequent collection 

of infiltration data formed an imperative element of study result generation, which then allowed 

the production of both present-day and future hydrological models to be produced. The 

methods involved were also used in the development of an academic paper published by Water 

MDPI (appendix D.2.2). 

 

10.1.2 Aim 2 

Aim 2 was to use HEC-HMS to build, calibrate, and validate two-separate hydrological models 

using spatial and hydrometric data collected from the study site. This was to be achieved 

through the fulfilment of objective 2a, requiring the construction, calibration, and validation of 

two hydrological models.  

HEC-HMS was chosen for all hydrological modelling due to its common use in similar studies 

(Derdour et al., 2018; Al-Mukhtar and Al-Yaseen, 2019; Joshi et al., 2019; Rangari et al., 
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2020), its reliability, and the supported ‘process models’ - allowing for the intricate 

representation of site hydrology based on the available input data (see sections 3.2.2.1.2 and 

5.3.3). The model was constructed using multiple GIS methods to delineate the catchment, 

specify likely overland flow pathways, (manually) classify landcover, and define catchment 

and river geomorphology (these methods are compressively discussed throughout sections 

4.2.2, 4.2.3 and 5.3.2). Representing study site hydrology through use of two models (summer 

and winter) allowed for more accurate representation of the seasonal variations in study site 

hydrology (which had been observed throughout data collection) (see section 5.4). Calibration 

was undertaken using empirical and simulated flow data from the study site; unobserved model 

variables were adjusted until consistent parameters could emulate empirical flow in all 

calibration storm events (see section 5.4 and appendix B.5.2). The winter and summer models 

both showed a calibration NSE of 0.65. The models were validated following a similar 

methodology to calibration however no parameters were adjusted; different storm events 

(varying by magnitude and duration) were selected, and the simulated and empirical outflows 

were observed. The validation NSE’s of winter and summer models are 0.87 and 0.44 

respectively.  

The construction, calibration and validation of the hydrological models formed an imperative 

element of study result generation, which then allowed the fulfilment of aim 3. The methods 

involved were also used in the development of an academic paper published by Water MDPI 

(appendix D.2.1). 

 

10.1.3 Aim 3 

Aim 3 was to simulate outflow from the HofE site dependent on changing storm intensity, 

duration, land cover, tree maturity and climate change; and determine to what extent HofE 

woodland planting has influenced runoff and flood risk. This was to be achieved through 

simulating the hydrological responses of the HofE study site to varying land cover, tree 
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maturity, storm duration and intensity (objective 3a). Using recent climate resources to predict 

the likely future changes to site hydrology regarding to developing tree maturity and climate 

change (objective 3b); and evaluating how valuable tree planting is as a method of NFM using 

both the empirical and simulated results of the study (objective 3c). 

Present-day simulations of the HofE site show that woodland planting has reduced winter peak 

runoff compared to impermeable cover by a mean of 6%, 2% and 1% for 6-, 24- and 96-hour 

storms, and summer peak runoff by 48%, 18%, and 2.7% for 6-, 24-, and 96-hour storms 

(section 7.2). However, grassland simulations show the lowest peak flow, being 32%, 21%, 

and 10% lower than the current site in the winter, and 6%, 2%, and 0.5% lower than the HofE 

site in the summer for 6-, 24-, and 96-hour duration storms respectively. Although this 

contradicts what would maybe be expected (based on the literature, and the results of aim 1 

showing woodland to increase infiltration), the soil texture of the grassland site was more-

permeable, meaning a higher infiltration when extrapolated to the whole site in the model (this 

is discussed in section 8.2). These results can also be interpreted using the conclusions of aim 

1, discussing that the sample trees are early in their development, and infiltration will likely 

surpass that of grassland over time; however, this is an area of future work (section 10.4). The 

methods and results involved in the present-day hydrological models have contributed towards 

the publication of a peer reviewed journal article in Water MDPI (see section D.2). 

Results of the likely future changes to study site hydrology (section 7.3) were based on existing 

EA precipitation increase (due to climate change) information, infiltration data extrapolation, 

and baseflow projections (section 5.7). The modelled impacts of tree planting on infiltration 

and subsequent overland flow reduction were investigated, as an extension of the results 

derived regarding the current day impacts (objective 3a). Results showed that in winter, 

woodland is predicted to reduce peak flow and total discharge below that of grassland and 

woodland, however, will not reduce it below present-day simulated values (but does come close 

in 2070). The summer projections show similar results to winter (woodland with a lower peak 
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flow and total discharge compared with grassland and impermeable), however a significant 

difference is the reduction of woodland flow in 2070. The reduction is the result of HofE 

woodland maturing (see section 7.3.2.1). The results derived in fulfilment of objective 3b 

indicate that woodland is a valuable method of reducing the adverse hydrological effects of 

climate change (throughout the summer) once tree maturity is reached. 

Objective 3c required the culmination of existing literature and the results of aims 1 and 3 to 

evaluate the value of tree planting as a method of NFM - this is discussed comprehensively 

throughout section 8.2.3 (see also sections 9.1.1, 9.1.3, 8.2 and 8.2.2). It is concluded that tree 

planting is a valuable method of NFM as it increases nearby infiltration and is projected to be 

useful at mitigating adverse hydrology as a result of climate change. However, it is discussed 

in section 8.2.3.2 that woodland (similarly to other methods of NFM) should not be used alone 

– it should be used in conjunction with other methods (NFM or conventional) to maximise 

effectiveness (Burgess-Gamble et al., 2018; Wilkinson et al., 2019; Xiao et al., 2021). 

Woodland planting is advantageous from the perspectives of CO2 mitigation, biodiversity, 

habitat creation and public amenity, and relevant authorities are beginning to encourage 

woodland creation in current and upcoming policy (summarised in section 10.1.4).  

 

10.1.4 Aim 4 

Aim 4 was to assess the implications of study findings, and provide recommendations and 

suggestions for relevant stakeholders and future policy; this was to be achieved in part through 

objective 4a, which required contextualising the findings of both aims 1 and 3 to provide 

recommendations and suggestions for relevant stakeholders and future policy. 

This aim is fulfilled in detail through Chapter 9, where the results and key discussion topics of 

this study are used to assess and provide recommendations for; the HofE forest, the woodland 

and construction industry, and woodland management bodies. Additionally, current and future 
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policy is discussed with regard to the findings of this study, namely; DEFRA, the Agricultural 

Act, the 25-year plan, the England trees action plan, and other international policy. 

In summary of aim 4, it is concluded that whilst woodland planting is beginning to feature more 

prominently in recent and upcoming policy for the ability to sequester carbon and improve 

biodiversity, there is little reference to the influence that woodland can have on reducing flood 

severity. It is unsurprising that policies regarding woodland planting are tailored towards their 

climate mitigation potential, as some were published ahead of / slightly after the COP26 

conference, additionally, the public are more aware of the impacts of climate change, so 

tailoring policies to these audiences will rally support. Recommendations as a result of Chapter 

7, Chapter 8 and Chapter 9 of this study to organisations, governing bodies, and policymakers 

in the water industry, is to focus on increasing the publicization of the benefits of woodland 

planting on infiltration increase and flood risk. This will allow for greater understanding of the 

hydrological benefits of woodland planting (in addition to the alternatives previously 

mentioned), and will encourage more research regarding the quantification and implementation 

of woodland planting as a method of NFM. It is noted in section 2.2.3 that NFM (inclusive of 

woodland planting) struggles with a lack of empirical evidence (Kay et al., 2019; Wells et al., 

2020; Ellis et al., 2021), so encouraging further research is both an outcome of this study, and 

a recommendation to those in the water industry. 

 

10.2 Contributions to Knowledge 

The research methods, hydrological modelling and derived results of this study have 

contributed to the current state of knowledge regarding the use of trees as a method of NFM. 

This study has shown that tree planting increases nearby infiltration, showing that the tree is 

influencing the permeability and influencing porosity. No correlation between infiltration and 

tree maturity was detected, however, the sample trees are still early in development, and a 

correlation may be identifiable in future years (discussed throughout section 8.1). These 
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findings are significant when applied to the handling of trees during construction (section 

9.1.2), and how woodlands can be managed to maximise infiltration (section 9.1.3). 

Additionally, these findings support the recent Governmental policy shift towards increasing 

tree planting (see section 2.4) and show that there are positive hydrological implications also 

(in addition to the CO2 sequestration). The impacts of this work have been discussed with 

respect to flood risk management policy, the HofE Forest Charity, the forestry industry, the 

construction industry, and DEFRA and the Environment Agency in Chapter 9. 

An additional contribution of this study is the methodologies employed throughout infiltration 

data collection, and hydrological model calibration and validation. As discussed in sections 

3.1.2 and 5.2.2.1, one of the many advantaged of the MDI compared with ring-infiltrometer 

methods is the opportunity for replication. This study has demonstrated that similar studies to 

this one (requiring continuous replicable infiltration data collection) are achievable through use 

of the instrument, and such information has been published as a result of this work (section 

D.2.2). Useable academic guidance on the specific processes of model calibration and 

validation is sparse, therefore the full disclosure and explanation of these processes throughout 

sections 5.4 and 5.5 can be used by other authors wishing to calibrate and validate hydrological 

models. Both the use of the MDI and the thorough explanation of model calibration and 

validation enable other authors to use this project as a framework when contributing to the 

knowledge base regarding infiltration, NFM, woodland planting, and hydrology as a whole. 

The method of infiltration projection (section 5.7.2) has provided a framework for other authors 

to project the likely changes to infiltration in the future, using empirical values and published 

literature regarding the maturity ages of sample trees. Additionally, the resultant hydrological 

projections (section 7.3) can be used to support the hydrological benefits of woodland planting 

in future years (accounting for climate change) when presenting to stakeholders; and an 

element of future research is to develop these projections further. The projections were of 

particular interest to the EA, during the feedback presentation, see section D.1. 
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Chapter 9 highlights the various contributions and recommendations of this work to 

organisations and industries of interest (the HofE forest, the woodland and construction 

industry, and woodland management bodies), and current and future policy (DEFRA, the 

Agricultural Act, the 25-year plan, the England trees action plan, and other international 

policy). The findings of this study support the current drive to increase woodland cover, 

however it is recommended that future policies focus on increasing the publicization of the 

benefits of woodland planting on infiltration increase and flood risk. In turn, this would allow 

for greater understanding of the hydrological benefits of woodland planting, and would 

encourage more research regarding the quantification and implementation of woodland 

planting as a method of NFM, contributing to the known knowledge gap in this area. 

In addition to the contributions, the methods and results of this project have been continually 

fed-back into the academic and practitioner community through use of posters, presentations, 

conferences, and peer reviewed publications. These can be seen in Appendix D.  

 

10.3 Limitations and Sources of Uncertainty 

The following factors have been identified as having a potential influence on the study results  

10.3.1 Data and Data Collection 

It is discussed in section 3.1.2 that vegetation was removed from all MDI measurement areas 

prior to collection. It is possible that this process may have influenced the accuracy of 

infiltration measurement, i.e., more precipitation was reaching the soil surface from this 

moment forward due to there being no surface vegetation to intercept incoming rain. This may 

have influenced the saturation of the collection points (mainly through winter); however, this 

would have been negligible. Additionally, vegetation removal is a pre-requisite for ring-

infiltrometer methods (Eijkelkamp, 2015), so vegetation removal would have been a limitation 

with any infiltrometer method. 
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Mentioned in section 5.2.2.1. Infiltration data was not collected between the 24th-March-2020 

and the 1st of July 2020 due to both UK Government and Coventry University restrictions 

regarding travel during the COVID-19 pandemic. This resulted in 15 sample days being missed 

(348 individual infiltrometer collection points) from the beginning of summer 2020 data 

collection, and this caused the mean summer infiltration (section 5.4) to be based on one year 

of collection (2021) compared with two. Whereas this limitation was unavoidable, it is worth 

considering as a potential influencing factor on infiltration results. 

 

10.3.2 Methods and Modelling 

The first methodological limitation regards how unobserved infiltration data was predicted for 

the hydrological modelling of the study catchment. These values were calculated by using the 

median of observed values (see section 5.6.3) and this method may have over/underestimated 

infiltration for unobserved sites. Whilst this may have influenced model output, it is important 

to consider the lack of literature regarding specific infiltration rates for wooded areas, and that 

the models were calibrated and validated by this point – indicating that they could replicate 

empirical study site hydrology (see sections 5.4 and 5.5). Additionally, this section of the 

methodology has been peer reviewed and published (see appendix D.2) showing its overall 

acceptability.  

On a similar note, there are limitations regarding the methods used to project infiltration for 

future hydrological projections of the site. It is comprehensively discussed throughout section 

5.7.2 that exiting literature and tree maturity was used to determine the rate of infiltration 

increase; however, it should be noted that trees do not grow uniformly, and their growth is 

influenced by numerous internal and external factors (section 2.3.1) (Dobson, 1995; Crow, 

2005; Jarvis, 2007; Guo et al., 2021). Whilst this may be the case, statistical testing (appendix 

C.1) showed the chosen method was the only one to show a positive infiltration increase over 
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time, and it was based on empirical data. Regardless, the output projections present a method 

that can be refined and adopted by other authors and is of interest to the EA (Appendix D.1). 

 

10.4 Further Work and Recommendations  

The methods and results used throughout this study have highlighted areas of potential future 

research. The first area being the application of this studies’ methodology to other similar sized 

catchments (both in the UK, or internationally), however with differing soil texture. A study of 

this nature would add further evidence to what has been derived throughout this study regarding 

tree planting and infiltration and would add further context regarding different impacts 

dependent on soil texture. Secondly (as discussed in section 8.2.4), further research could be 

undertaken to refine and expand the climate projections presented throughout section 7.3. This 

could involve sampling more trees in different areas of the UK and would help in delivering a 

saleable tool for tree planting (as wished by the EA, see appendix D.1). Furthermore, from an 

academia perspective, information regarding the processes involved in model calibration and 

validation should be more readily available for authors looking to undertake their own 

hydrological simulations. It was found throughout this project that calibration and validation is 

referred to a great deal in modelling studies, however there is very little specific information 

on the process involved.  
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Chapter 12 Appendices 

 

This appendix contains additional explanations, technical information, figures, and graphs in 

support/addition to the work included throughout the main body. The structure of this appendix 

is as follows: 
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Appendix C Results 
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Appendix A. Literature Review 

 

This appendix contains additional and supporting information relating to the literature review 

in Chapter 2. 

 

A.1 Process Models Included in HEC-HMS 4.6.1 

Outlined in sections 3.2.2.1.2 and 5.3.3, HEC-HMS is capable of simulating hydrological 

processes via a number of ‘process models’. HMS supports 10 infiltration/loss models (Table 

A.1), 7 transform models (Table A.2), 5 baseflow models (Table A.3) and 6 routing models 

(Table A.4). This section outlines the available models within HEC-HMS, their uses and the 

assumptions and limitations of each. 
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Table A.1. Loss models supported by HEC-HMS. Note the E/C column specifies if the loss method should be used in event or continuous simulations. Gridded 

models have not been included, as discussed below (adapted from US Army Corps of Engineers, 2000, 2022; Scharffenberg, 2016). 

Loss 

method 
E/C Overview Requirements Information and Limitations 

Deficit and 

Constant 
C 

− Good at simulating total infiltration loss. 

− Infiltration/runoff calculated as single layer.  

− Precipitation input during storm. 

evapotranspiration withdraws during dry 

periods.  

− Infiltration process is Hortonian (Beven, 

2004). 

− Initial soil infiltration capacity (mm). 

− Soil layer thickness (mm). 

− Constant infiltration (mm/hr). 

− Impervious area (%). 

− Assumes soil to be homogenous. 

− Assumes precipitation is infinite until soil 

saturation. 

− Difficulty applying to ungauged areas due 

to lack of direct physical relationship of 

parameters and watershed properties. 

− Sometimes too simple to predict losses 

throughout longer events. 

Exponential E 

− Represents infiltration as a decreasing 

function of infiltration capacity. 

− Can facilitate increased initial infiltration 

capacity for use in dry soils. 

− Initial infiltration capacity (mm). 

− Initial loss rate coefficient ((mm/hr)^(1-x)). 

− Loss coefficient curve. 

− Precipitation exponent (0.0 to 1.0). 

− Impervious area (%). 

− Advised that this method is not used 

without calibration. 

− Consideration should be given to Green and 

Ampt as an alternative, due to the use of 

better physical interpretation. 

Green and 

Ampt 
E 

− Calculated as initial content (user specifies 

initial soil moisture content), or initial 

deficit (specified as a volume ratio, 

calculated as the difference between the 

saturated content and initial content). 

− Soil infiltration capacity is governed by the 

Richards equation, which is derived by 

combining unsaturated flow from Darcy’s 

law with mass conservation (Baiamonte, 

2019). 

− Initial soil infiltration capacity  

− Initial soil moisture as a ratio. 

− Maximum water holding capacity of soil as 

a ratio. 

− Soil suction (mm). 

− Hydraulic conductivity (mm/hr). 

− Impervious area (%). 

− Uses porosity, hydraulic conductivity and 

wetting front suction values from the 

literature if not known. This can impact 

results, so should only be used if all 

parameters are known and entered on a site-

by-site basis by the user. 

− Not widely used, so less mature, not as 

much experience in professional 

community. 

− Has been compared with other physically 

based infiltration models by (Mishra et al., 

2003), finding it to show poor efficiency 

(≥75%). 
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Initial and 

Constant 
E 

− Maximum potential rate of precipitation 

loss is constant throughout an event. 

− No runoff occurs until precipitation exceeds 

initial loss volume (Hortonian, (Beven, 

2004)). 

− Initial infiltration loss (mm). 

− Constant infiltration rate (mm/hr). 

− Impervious area (%). 

− SCS approximate loss rates can be 

substituted to calculate constant rate, if not 

known. 

− More commonly applied to empirical areas 

due to the reliance on physical parameters 

and watershed properties. 

SCS Curve 

Number 
E 

− Estimate precipitation excess as a function 

of cumulative precipitation, soil cover, land 

use and antecedent moisture 

− Runoff is zero until the accumulated rainfall 

exceeds initial abstraction 

− An empirical relationship was developed 

between initial abstraction and potential 

maximum retention, allowing a calculation 

of excess flow at time t 

− A curve number (CN) can be empirically 

estimated or derived from literature, 

ranging from 254 (for impermeable 

surfaces) to 25400 (for water bodies). 

− Initial abstraction (mm). 

− The SCS curve number. 

− Impervious area (%). 

− Infiltration rate will approach zero during a 

storm of long duration, rather than constant 

rate as expected. 

− Developed with data from small 

agricultural watersheds in midwestern US, 

so applicability elsewhere is uncertain. 

− Initial abstraction does not scale with storm 

characteristics or timing. Thus, same 

number would be applied to both 50% and 

1% AEP storms. 

− Rainfall intensity and ground slope not 

considered (Al-Mukhtar and Al-Yaseen, 

2019) 

Smith 

Parlange 
E 

− Approximates the Richard's equation by 

assuming the wetting front can be 

represented with an exponential scaling of 

the saturated conductivity  

 

− Initial soil saturation as a volume ratio 

− Ratio of water remaining in soil after all 

drainage has ceased 

− Ratio of soil water holding capacity 

− Wetting front suction (mm) 

− Total pore space and distribution 

− Hydraulic conductivity (mm/hr) 

− Impervious area (%). 

− Delivers reasonable approximations of the 

wetting front and infiltration loss (Smith 

and Parlange, 1978) and has been compared 

with other physically based infiltration 

models by (Mishra et al., 2003), finding it 

to be ≥95% efficient. 

Soil 

Moisture 

Accounting 

C 

− Simulates both wet and dry weather 

behaviour (continuous).  

− Soil storage (%). 

− Groundwater laver 1 storage (%). 

− Groundwater layer 2 storage (%). 

− Developed by HEC-HMS, so not widely 

applicable outside the software. 
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− Developed by (Bennett and Peters, 2004) – 

simulates water movement, storage, 

interception and groundwater storage. 

− Can compute evapotranspiration (ET), 

surface runoff, groundwater (GW) flow, 

and aquafer percolation. 

− Maximum infiltration (mm/hr). 

− Impervious area (%). 

− Soil storage (mm). 

− Tension storage (mm). 

− Soil percolation (mm/hr). 

− Groundwater layer 1 storage (mm). 

− Groundwater layer 1 percolation (mm/hr). 

− Groundwater layer 1 coefficient (hr). 

− Groundwater layer 2 storage (mm). 

− Groundwater layer 2 percolation (mm/hr). 

− Groundwater layer 2 coefficient (hr). 

− Complex and requires large volumes of 

very specific soil profile and infiltration 

data. 

 

Note that gridded loss models (gridded deficit constant, gridded SCS curve number, and 

gridded soil moisture accounting) have not been included in Table A.1. This is because HMS 

gridded models divide the sub-basin in to (minimum) 10x10 m cells and individual cell initial 

parameters are specified by the user; in comparison to non-gridded methods, which simulate 

the whole sub-basin area with one set of defined parameters. The minimum resolution of 

gridded data input is too coarse for the size of the study catchment, additionally, gridded data 

requires vast amounts of telemeted hydrometric and spatial data to compute. Such information 

was not available for this project, and due to the design of the model (section 5.3), a more 

specific representation of empirical infiltration could be derived through use of the chosen 

loss method (section 5.3.3.2 ). 
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Table A.2. Transform models supported by HEC-HMS (adapted from US Army Corps of Engineers, 2000, 2022; Scharffenberg, 2016). 

Transform 

method 
Overview Requirements Information and Limitations 

Clark Unit 

Hydrograph 

− Hydrograph based on time-area histogram. 

− Uses the linear reservoir method (the lumped 

impacts of all inputted watershed storage) to 

account for storage in the subbasin.  

− The movement of water through the 

catchment to the outlet is calculated with the 

absence of attenuation, and instead through 

the provided histogram. 

− For standard: 

− Time of concentration (hr). 

− Storage coefficient (hr). 

− For Variable: 

− Time of concentration (hr). 

− Storage coefficient (hr). 

− Index excess (mm/hr). 

− Concentration curve. 

− Storage curve.  

− For Maricopa County: 

− Flow path length (km). 

− Flow path slope (m/km). 

− Resistance coefficient. 

− Can be used to simulate both translation 

(movement of water from the origin to 

outlet), or attenuation (the reduction of the 

volume of discharged water dure to 

attenuation). 

− Assumes that all water is heading to the 

outlet at varying times. 

− Parameters required for the Clark method 

can be implied implicitly through calibration 

and observed data. 

Kinematic Wave 

− Represents the watershed as an open 

channel, with inflow to the channel equal to 

the excess precipitation.  

− HMS solves the transform equations (i.e., 

the momentum and continuity equations) as 

shallow unsteady in-channel flow to 

generate a transform hydrograph. 

− Method is ideal for smaller catchments 

where most hydrological parameters are 

empirical. 

− For comprehensive required input 

parameters, see US Army Corps of 

Engineers (2000, 2022) and Scharffenberg, 

(2016). 

− Due to numerical limitations of the 

equations, it is suggested by Ponce (1991) 

that KW should only be used for small 

watersheds of (2.5km2 or less) as to not 

compromise the deterministic nature of the 

equations. 

SCS Unit 

Hydrograph 

− Developed based on collected rainfall and 

runoff data from small agricultural 

watersheds throughout the US.  

− Graph type (peak rate factor (PRF)) 

− Lag time (min) 

− Method assumes that the resultant transform 

hydrograph is single-peaked, so should not 
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− The peak rate factor (PRF) is specified, as is 

the lag time, and the model uses a 

dimensionless, single-peaked hydrograph to 

calculate runoff from the subbasin. 

be used when multiple peaks are observed 

throughout the subbasin.  

− The requirement to specify the best fitting 

hydrograph is not always inclusive of more 

intricate hydrology across varying sites. 

Snyder Unit 

Hydrograph 

− Uses the lag, peak and time to base of a 

subbasin to calculate discharge over time.  

− For Standard: 

− Lag (hr) 

− Peaking coefficient 

− For FT Worth District: 

− Length (km) 

− Centroid length (km) 

− Weighted slope (m/km) 

− Impermeable area (%) 

− Sand (%) 

− Peaking coefficient 

− For Tulsa District: 

− Length (km) 

− Centroid length (km) 

− Weighted slope (m/km) 

− Channelisation (%) 

− Empirically based so can be tailored to suit 

observed flows during calibration. 

− Follows a similar process to SCS Unit 

hydrograph and User-specified unit 

hydrograph; however, the Snyder method 

allows for further user manipulation to 

variables. 

− Standard, Ft Worth and Tulsa allow for the 

inclusion of other parameters based on 

model requirements and empirical data 

availability. 

User-Specified S 

Graph 

− Exact empirical relationship between one 

unit of excess rainfall and the resulting direct 

runoff to be specified.  

− Defined in terms of % unit flow versus % of 

lag time, meaning that the S-graph can be 

used in multiple subbasins to define different 

lag times to discharge. 

− S-graph import 

− Standard method: 

− Lag time (hr) 

− Regression method: 

− Length (km) 

− Centroid length (km) 

− Slope (m/km) 

− Roughness 

− M exponent 

− P exponent  

− Similar in theory to the unit hydrograph 

method, however the method requires a 

‘percentage curve’ to be selected form a list 

of pre-loaded curves. 

− This method is exclusive to HEC-HMS, and 

therefore very little supporting literature 

exists beyond the user manuals and technical 

reference guides. 
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User-Specified 

Unit Hydrograph 

− Allows for the direct entry of known 

(flow/time) data for a catchment/watershed. 

− Unit hydrograph import − A hydrograph must be created for every 

subbasin. 

− Uncommon due to data availability and the 

amount of observed data required (coupled 

with the lack thereof in many watersheds). 

− Each subbasin hydrograph requires 

extensive calibration to ensure it replicates 

observed data (Chow et al., 1988) 

 

Note that the ModClark transform method has not been included in Table A.2 due to it being 

a gridded parameter. As discussed below Table A.1, gridded methods divide the sub-basin in 

to (minimum) 10x10 m cells, and the minimum resolution of gridded data input is too coarse 

for the size of the study catchment. Additionally, gridded data requires vast amounts of 

telemeted hydrometric and spatial data to compute. Such information was not available for 

this project, and due to the design of the model (section 5.3), a more specific representation 

of empirical infiltration could be derived through use of the chosen loss method (section 

5.3.3.2 ). 
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Table A.3. Baseflow models supported by HEC-HMS (adapted from US Army Corps of Engineers, 2000, 2022; Scharffenberg, 2016). 

Baseflow method Overview Requirements Information and Limitations 

Recession 

− Suggests that baseflow decays over time as 

a ration of the starting flow value. 

− The starting baseflow is defined as an initial 

condition of the model and can be specified 

as flow rate or flow per area.  

− Initial type (discharge/discharge per area). 

− Initial discharge (m3/s or m3/s per km2). 

− Regression constant. 

− Threshold type (ratio to peak/threshold 

discharge). 

− Ratio. 

− Method is beneficial when a decay of 

baseflow is observed or is frequent at the 

study site. 

− This method has applications regarding 

abstraction or can be used to represent the 

influence of flow control measures (flap 

gates allowing water into the channel at a 

specified volume). 

− The recession ratio can be defined as the 

ration of baseflow at the current time, 

compared with the ration one day earlier. 

Bounded 

Recession 

− Uses same principles as recession, however, 

allows the user to input a bounded recession 

volume for each month.  

− This method is beneficial for longer 

simulations, where baseflow is variable from 

month-to-month. 

− Initial type (discharge/discharge per area). 

− Initial discharge (m3/s or m3/s per km2). 

− Regression constant. 

− Monthly baseflow (m3/s or m3/s per km2). 

− Ideally used in real time or near real-time 

simulations. 

− This method is a combination of recession 

baseflow (meaning baseflow decays 

following a specified ration over time) and 

constant monthly baseflow (as monthly 

values can be specified). 

− The recession ratio can be defined as the 

ration of baseflow at the current time, 

compared with the ration one day earlier. 

Constant Monthly 

− Represents baseflow as a constant volume, 

specified on a month-by-month basis  

− A user specified flow is added to the direct 

runoff and computed per timestep during the 

simulation. 

− Monthly baseflow (m3/s). − Effective when baseflow is empirically 

monitored and varies monthly. 
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− Monthly baseflows are best simulated using 

empirical data. 

Linear Reservoir 

− Should be used in conjunction with the soil 

moisture accounting (SMA) loss method 

(Table A.1).  

− Simulates baseflow as storage and 

movement of water through reservoirs.  

− The outflow from GW 1 of the SMA method 

is inflow to one baseflow reservoir, and the 

same for GW 2 of the SMA. The outflow is 

combined to compute total subbasin 

outflow. 

− Reservoirs. 

− Initial type (discharge/discharge per area). 

− Groundwater 1 initial (m3/s). 

− Groundwater 1 fraction. 

− Groundwater 1 coefficient (hr). 

− Groundwater 1 steps. 

− Beneficial when the study area is 

comprehensively empirically monitored.  

− Can represent the influence of groundwater 

and aquifer flows when used in combination 

with the SMA loss method. 

− Useful for simulating the influences of 

surface water/groundwater pollution. 

Nonlinear 

Boussinesq 

− Uses a simplified assumption that a 

horizontal impermeable layer underlies an 

aquafer, which is drained by a fully 

penetrating stream.  

− The baseflow maximum and baseflow 

recession can be estimated using observed 

discharge from past flood events. The 

hydrograph rising limb is assumed to be 

linear for simplicity (Szilagyi and Parlange, 

1998; Aksoy and Wittenberg, 2011). 

− Initial type (discharge/discharge per area). 

− Initial discharge (m3/s or m3/s per km2). 

− Threshold type (ratio to peak/threshold 

discharge). 

− Ratio. 

− Length (m). 

− Conductivity (mm/hr). 

− Porosity. 

− Ideal when aiming to simulate the 

behaviours of baseflow following a 

simulated event.  

− Can be used in event or continues 

simulation, as parameters can be reset after 

each event. 

− Operates similarly to the recession method, 

however only applying the recession once 

the simulated event has subsided. 
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Table A.4. Routing models supported by HEC-HMS (adapted from US Army Corps of Engineers, 2000, 2022; Scharffenberg, 2016). 

Routing method Overview Requirements Information and Limitations 

Kinematic Wave 

− Calculated based upon finite difference 

approximations of the continuity equation 

(section 3.2), and a simplification of the 

momentum equation.  

− More information regarding the applications 

and uses of the Kinematic Wave routing 

method in HEC-HMS can be found in (US 

Army Corps of Engineers, 1993). 

− Initial type (Specified discharge/ discharge = 

inflow) 

− Length (m) 

− Slope (m/m) 

− Manning’s n  

− Sub-reaches 

− Index method (celerity/flow) 

− Index flow (m3/s) 

− Cross-sectional shape (Circle, eight-point, 

rectangle, trapezoid, triangle) 

− Bottom width (m) 

− Side slope (xH:1V) 

− Invert (m) 

− Requires vast amounts of empirical data 

including for set up, however large 

proportions of this can be derived from maps 

and imagery. 

− Commonly used to simulate 1-D flow in 

open-channels or large closed channels 

(conduits). 

− Should not be used when watercourse slope 

exceeds 0.002 (km), an alternative is the 

Muskingum-Cunge method. 

 

Lag 

− Outflow hydrograph is a replication of the 

input hydrograph, but with all components 

lagged by a user specified amount.  

− Flow is not attenuated, so hydrograph shape 

does not change throughout simulation. 

− Initial type (Specified discharge/discharge = 

inflow). 

− Lag (min). 

− commonly used in urban drainage channels 

or pipe networks where flow pathways are 

simplistic with minute losses due to storage 

and resistance. 

− Lag can be derived empirically or 

determined through calibration using past 

observed data. 

Lag and K  

− Identical to the lag routing method; 

however, accounts for hydrograph peak 

attenuation as water moves downstream.  

− The reduction in peak can be estimated, 

however it is commonly achieved through 

empirical and historically recorded data.  

− Initial type (Specified discharge/discharge = 

inflow) 

− Lag method (constant lag/variable lag) 

− K method (constant K/variable K) 

− Only works effectively when dealing with 

slowly varying flood waves 

− Does not account for backwater, 

constrictions, bridges, ice, or tidal-

influenced river reaches. 
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− This is ideally used for channels with a very 

gradual change downstream. 

Modified Puls 

(a.k.a. storage 

routing, level-

pool routing) 

− Calculated based upon finite difference 

approximations of the continuity equation 

(section 3.2), coupled with an empirical 

representation of the momentum equation.  

− Does not consider cross-sectional width. 

− Method should be calibrated through 

empirical flood events, then applied to the 

rest of the cross-sectional areas before 

simulation. 

− Initial type (Specified discharge/discharge = 

inflow). 

− Sub-reaches. 

− Invert (m). 

− Require a large amount of pre-processing 

before use: requires a storage-outflow 

relationship to be defined through use of 

hydraulic modelling, historical 

observations, or inflow and outflow 

hydrographs. This can beyond the scope and 

processing power of smaller-scale 

simulations. 

− Requires extensive calibration if observed 

data is not extensively available.  

Muskingum 

− Uses finite difference approximations of the 

continuity equation (similar to the Modified 

Puls method). 

− Storage is represented as the sum of prism 

storage (volume defined by flow water 

profile), and wedge storage (additional 

water volume under the flood wave profile). 

During inflow, wedge storage is added to 

prism storage, during outflow, wedges 

storage is subtracted from prism storage to 

wedge storage.  

− Initial type (Specified discharge/discharge = 

inflow). 

− Muskingum K (hr). 

− Muskingum X. 

− Sub-reaches. 

− Includes parameters that are not physically 

based, and are not always replicated in 

natural channels, thus are difficult to 

estimate (prism and wedge). 

− K and X parameters are essential to 

accuracy, however difficult to predict. 

− Can be calibrated using observed flows and 

inflow and outflow hydrographs to 

determine the difference in flow between 

two identical points on each hydrograph. 

Muskingum-

Cunge 

− Includes adaptions to the Muskingum 

method to overcome the limitations with 

predicting K and X. 

− Based upon the continuity equation and the 

diffusion form of the momentum equation, 

used in conjunction with the linear 

approximation. 

− Initial type (Specified discharge/ discharge = 

inflow) 

− Length (m) 

− Slope (m/m) 

− Manning’s n  

− Sub-reaches 

− If the channel is complex, reaches may need 

to be sub-divided and modelled as a series of 

linked reaches.  

− Backflow and pooling can influence results 

if undetected, as the Muskingum-Cunge 

method cannot account for these influences. 
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− Time steps and distance coefficients must 

can be selected and influence outcomes. 

− Cross-sectional shape must be specified by 

the user – however the model does allow an 

eight-point channel to be inputted. 

 

− Space-time method (auto DX auto DT, 

specified DX auto DT, Specified DX 

specified DT) 

− Index method (celerity/flow) 

− Index flow (m3/s) 

− Cross-sectional shape (Circle, eight-point, 

rectangle, trapezoid, triangle) 

− Bottom width (m) 

− Side slope (xH:1V) 

− Invert (m) 

− Parameters required for simulations can be 

derived through imagery, maps, and site 

walks. 

− Can simulate slowly rising flood waves. 
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Appendix B. Methodology 

 

This appendix contains additional and supporting information relating to the methods presented 

throughout Chapter 5. 

 

B.1 HofE Planted Tree Species Defined by the NVC 

The HofE forest fall into the NVC category ‘mature lowland broadleaved woodland’ (see 

section 4.1.1), the species included under this classification are displayed in Table B.1 (Heart 

of England Forest, 2020; Coffey, 2021). 

Table B.1. Woodland species included under NVC classification. 

English oak Quercus robur Cherry Prunus avium 

Alder Alnus glutinosa Whitebeam Sorbus aria 

Birch Betula pendula White poplar Populus alba 

Sycamore Acer psuedoplatanus Holly Ilex aquifolium 

Sesile oak Quercus petraea Hazel Corylus avellana 

Aspen Populus tremula Dogwood Cornus sanguinia 

Lime Tilia cordata Common privet Lingustrum vulgare 

Sweet chestnut Castanea sativa Guelder rose Viburnum opulus 

Hornbeam Carpinus betulus Wayfaring tree Viburnum lantana 

Wild service Sorbus torminalis Spindle Euonymous europeas 

Beech Fagus sylvatica Buckthorn Rhamnus catharticus 

Rowan Sorbus aucuparia Mixed Willow Salix cinerea, Salix 

purpurea, Salix viminalis Field maple Acer campestre 
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B.2 Spatial Analysis of the Arrow-Alne Catchment Area 

As discussed in section 4.1.1, topographical and hydrological analysis was undertaken using 

the Arrow-Alne catchment area; namely, a flow direction analysis, and a watershed delineation. 

An understanding of these parameters aid in the identification of the study site (section 4.2), 

allowing for a deeper understanding of study site characteristics. This section describes these 

processes in greater detail. 

 

B.2.1 Arrow-Alne Catchment: Topography  

A comprehensive understanding of catchment topography is necessary for gaining further 

insight in to the hydrological response of a catchment, and is also of use in both GIS and 

hydrological modelling (Zhang et al., 2018). Topographical data is commonly acquired 

through light detection and ranging (LiDAR) and can be outputted as a digital surface model 

(DSM - inclusive of above-terrain features such as houses and trees), or a digital terrain model 

(DTM - a ‘bare earth’ representation excluding above-surface features) (Mason et al., 2016). 

A 2 m resolution DTM was created for the River Arrow catchment using data downloaded 

from the EA (see appendix Table B.16). The Arrow-Alne DTM is shown in Figure B.1. 
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Figure B.1. Digital Terrain Model (DTM) of the Arrow Alne catchment (Data from the 

Environment Agency et al., 2020). 

The creation of the Arrow-Alne catchment DTM (Figure B.1) was required to allow for an 

accurate flow direction analysis (Li et al., 2019). The flow direction analysis was performed as 

a necessary precursor to the watershed delineation process, which would allow for the 

hydrological boundary of the study site to be defined (Brunda and Nyamathi, 2015; Li et al., 

2019). The flow direction and watershed delineation processes are discussed below. 

 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found 
in the Lanchester Library, Coventry University. 
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B.2.2 Arrow-Alne Catchment: Flow Direction  

A flow direction analysis allows for watershed delineation, which will be the method used for 

defining the hydrological study catchment for this study, however, before flow direction, 

further processing of the elevation model (Figure B.1) was required (Brunda and Nyamathi, 

2015; Li et al., 2019). Elevation models often contain ‘sinks’, or areas of depression resulting 

from genuine topography changes or incorrect data (Fernandez et al., 2016; Rashed, 2016). A 

flow direction cannot be assigned to a sink cell as a two-cell loop is created, resulting in an 

inaccurate flow direction raster output, so sinks need to be filled correctly before the flow 

direction can be calculated (Rashed, 2016; Wagner et al., 2018; Li et al., 2019).  

The ‘sink’ tool in ArcGIS was utilised to identify areas of negative or impossible flow. Few 

sinks were present in the elevation model; however, all were cross referenced against aerial 

photography and elevation data from Google Earth (Google, 2022), determining that the sinks 

were a result of no data, and therefore could be rectified through use of the ‘fill’ tool in ArcMap; 

this method is in line with those commonly adopted in relevant literature (Planchon and 

Darboux, 2002; Pan et al., 2012; Fernandez et al., 2016). outlines the steps taken to prepare the 

elevation model for flow direction analysis.  
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Figure B.2. Process of creating flow direction raster 

Once filled, a flow direction analysis of the catchment elevation model could be undertaken. 

The ArcGIS flow direction tool operates following the rolling ball technique, where the 

direction of steepest decent throughout the elevation model is calculated on a cell-by-cell basis 

(Hashim et al., 2004; Rashed, 2016; Wagner et al., 2018). The calculation is: 

𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝑑𝑟𝑜𝑝 =
∆𝑍

𝑑
× 100 EQ 12.1 

Where ∆𝑍 is the change in elevation, and 𝑑 is the distance (cell size). After applying EQ 12.1 

to every cell in the elevation model, the tool numbers and colour codes of each cell to represent 

the direction of flow from that cell to the next, in line with Jenson and Domingue's (1988) D8 

model, see Figure B.3. 

Validate sink locations, then use the ‘fill sinks’ tool 

with the elevation model as the input in order to 

eliminate any remaining sinks 

Using the output raster file from the fill sinks tool, 

calculate flow direction using the flow direction tool 

 

Identify sinks in the elevation model using the ‘sink’ 

tool and cross reference sink areas with aerial 

imagery to determine if accurate 
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Figure B.3. (left) colours and numbers associated with flow to any of the 8 given directions 

from the centre cell. (right) associated directional relevance of colour allocation (Adapted 

from Pan et al., 2012; ESRI, 2019). 

The output of the flow direction analysis for the whole catchment elevation model is shown in 

Figure B.3. 
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Figure B.4. Output flow direction raster of whole catchment with the Arrow and Alne 

highlighted. Directional colours correspond to the D8 model. 

The general movement of flow for the Arrow-Alne catchment is to the south/south-west/west, 

which aligns with the direction of flow of the Arrow and Alne Rivers. There are significant 

areas of red on the map, indicating that water is flowing north, however, north flowing water 

then reverts downslope in to either the River Arrow or Alne (dependent on closest proximity). 

This is particularly evident towards the north and east of Figure B.4. 

 

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in 
the Lanchester Library, Coventry University. 
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B.3 Individual Sampling Locations and Information 

The following sections display and describe the characteristics of each infiltration sample area 

(as discussed throughout section 5.2) in turn. Figure B.5 shows an overview map of all sample 

sites. 

Figure B.5. Overview map of all sample sites (image retrieved from Google Earth (Google, 

2022). 

B.3.1 Control  

Table B.2 shows the location and soil texture of the control sample site. Figure B.6 to Figure 

B.8 show additional photographs of the sample site and surrounding area.

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in the 
Lanchester Library, Coventry University. 
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Table B.2. Geographical location, size, and soil texture of the control sample site 

Site Latitude Longitude Grid Ref East (X) North (Y) Size (Ha) 

Control 52.253906, -1.860428 SP0962561757 409625 261757 2.49 

Soil 

Texture 

Sand % Silt % Clay % UK Soil Classification 

53 20 27 SaCL Sandy clay loam 

 

Figure B.6. Aerial imagery of the Control site, marked with red circle (image retrieved from 

Google Earth (Google, 2022).

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be found in 
the Lanchester Library, Coventry University. 
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Figure B.7. MDI replication locations at the control site, outlined in orange. 

 

Figure B.8. A view of the grassland control site (looking towards middle Spernal farm)
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B.3.2 ca. 1900 

Table B.3 shows the location and soil texture of the ca.1900 sample site. Figure B.9 to Figure 

B.11 show additional photographs of the sample site and surrounding area. 

Table B.3. Geographical location, size, and soil texture of the ca. 1900 sample site 

 

Latitude Longitude Grid Ref East (X) North (Y) Size (Ha) 

52.244356, -1.864804 SP0932860694 409328 260694 2.93 

Soil 

Texture 

Sand % Silt % Clay % UK Soil Classification 

47 40 13 SSL Sandy silt loam 

Species Sessile Oak Quercus Petraea 

 

Figure B.9. Aerial imagery of the ca.1900 site, marked with red circle (image retrieved from 

Google Earth (Google, 2022)

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
found in the Lanchester Library, Coventry University. 
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Figure B.10. MDI replication locations at the ca. 1900 sample site 

 

Figure B.11. ca.1900 sample site surrounding area, sample tree can be seen to the left 

(denoted by orange cross)
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B.3.3 2006 

Table B.4 shows the location and soil texture of the 2006 sample site. Figure B.12 to Figure 

B.14 show additional photographs of the sample site and surrounding area. 

Table B.4. Geographical location, size, and soil texture of the 2006 sample site 

 
Latitude Longitude Grid Ref East (X) North (Y) Size (Ha) 

 
52.251681, -1.857476 SP0982761510 409827 261510 6.48 

Soil 

Texture 

Sand % Silt % Clay % UK Soil Classification 

20 20 60 C Clay 

Species Silver Birch Betula Pendula 

 

Figure B.12. Aerial imagery of the 2006 site, marked with red circle (image retrieved from 

Google Earth (Google, 2022)

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
found in the Lanchester Library, Coventry University. 
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Figure B.13. MDI replication locations at the 2006 sample site. 

 

Figure B.14. 2006 sample site surrounding area.  
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B.3.4 2008 

Table B.5 shows the location and soil texture of the 2008 sample site. Figure B.15 to Figure 

B.17 show additional photographs of the sample site and surrounding area. 

Table B.5. Geographical location, size, and soil texture of the 2008 sample site 

 Latitude Longitude Grid Ref East (X) North (Y) Size (Ha) 

 52.249425, -1.859663 SP0967861259 409678 261259 8.9 

Soil 

Texture 

Sand % Silt % Clay % UK Soil Classification 

13 20 67 C Clay 

Species Aspen Populus Tremula 

 

Figure B.15. Aerial imagery of the 2008 site, marked with red circle (image retrieved from 

Google Earth (Google, 2022)

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
found in the Lanchester Library, Coventry University. 
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Figure B.16. MDI replication locations at the 2008 sample site 

 

Figure B.17. 2008 sample site surrounding area 
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B.3.5 2010 

Table B.6 shows the location and soil texture of the 2010 sample site. Figure B.18 to Figure 

B.20 show additional photographs of the sample site and surrounding area. 

Table B.6. Geographical location, size, and soil texture of the 2010 sample site. 

 Latitude Longitude Grid Ref East (X) North (Y) Size (Ha) 

 52.246350, -1.862651 SP0947460916 409474 260916 13.8 

Soil 

Texture 

Sand % Silt % Clay % UK Soil Classification 

53 33 14 SaL Sandy Loam 

Species Silver Birch Betula Pendula 

 

Figure B.18. Aerial imagery of the 2010 site, marked with red circle (image retrieved from 

Google Earth (Google, 2022).

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can 
be found in the Lanchester Library, Coventry University. 
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Figure B.19. MDI replication locations at the 2010 sample site. 

 

Figure B.20. 2010 sample site surrounding area.
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B.3.6 2012 

Table B.7 shows the location and soil texture of the 2012 sample site. Figure B.21 to Figure 

B.23 show additional photographs of the sample site and surrounding area. 

Table B.7. Geographical location, size, and soil texture of the 2012 sample site 

 Latitude Longitude Grid Ref East (X) North (Y) Size (Ha) 

 52.250039, -1.869270 SP0902261326 409022 261326 13.2 

Soil 

Texture 

Sand % Silt % Clay % UK Soil Classification 

33 13 54 C Clay 

Species Aspen Populus Tremula 

 

Figure B.21. Aerial imagery of the 2012 site, marked with red circle (image retrieved from 

Google Earth (Google, 2022)

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can 
be found in the Lanchester Library, Coventry University. 
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Figure B.22. MDI replication locations at the 2012 sample site. 

 

Figure B.23. 2012 sample site surrounding area. 
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B.3.7 2014 

Table B.8 shows the location and soil texture of the 2014 sample site. Figure B.24 to Figure 

B.26 show additional photographs of the sample site and surrounding area. 

Table B.8. Geographical location, size, and soil texture of the 2014 sample site 

 Latitude Longitude Grid Ref East (X) North (Y) Size (Ha) 

 52.272429, -1.877509 SP0845563815 408455 263815 2.65 

Soil 

Texture 

Sand % Silt % Clay % UK Soil Classification 

7 13 80 C Clay 

Species Aspen Populus Tremula 

 

Figure B.24. Aerial imagery of the 2014 site, marked with red circle (image retrieved from 

Google Earth (Google, 2022).

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
found in the Lanchester Library, Coventry University. 
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Figure B.25. MDI replication locations at the 2014 sample site. Orange circles indicate MDI 

measurement locations 

 

Figure B.26. 2014 sample site surrounding area.  
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B.3.8 2020 

Table B.9 shows the location and soil texture of the 2020 sample site. Figure B.27 to Figure 

B.29 show additional photographs of the sample site and surrounding area. 

Table B.9. Geographical location, size, and soil texture of the 2020 sample site 

 Latitude Longitude Grid Ref East (X) North (Y) Size (Ha) 

 52.234833, -1.772749 SP1561759651 415617 259651 17.5 

Soil 

Texture 

Sand % Silt % Clay % UK Soil Classification 

13 23 77 C Clay 

Species Aspen Populus Tremula 

 

Figure B.27. Aerial imagery of the 2020 site, marked with red circle (image retrieved from 

Google Earth (Google, 2022)

This item has been removed due to 3rd Party Copyright. The unabridged version of the thesis can be 
found in the Lanchester Library, Coventry University. 
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Figure B.28. MDI replication locations at the 2020 sample site. Orange circles indicate MDI 

measurement locations. 

 

Figure B.29. 2020 sample site surrounding area 
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B.4 Maps and Routes around Sample site from Week-to-week 

As discussed in section 5.2.2 data was collected from the sample sites in reverse order from 

week-to-week. This was to account for any implications that may arise regarding the sampling 

of the same site at the same time every week. For instance, if the control site was only ever 

sampled first, then it could be assumed that the control site was unfairly exposed to antecedent 

conditions or morning dew, which would impact data collection. Similar could be said if the 

control site was only ever sampled last – the site would have been thawing/during all day, 

meaning the results of data collection would be skewed. Figure B.30 and Figure B.31 show the 

routes taken between sample sites at the Spernal site. 

 

Note that the routes taken were selected based on ease of access and efficiency. The sites were 

not sampled in exact reverse order every week (i.e., oldest – newest / newest – oldest) as this 

was not the most efficient way to traverse the site. This route was also selected due to health 

and safety concerns (lone working in the darker winter months). 

 

Note the 2020 and 2014 sites (not mapped) were treated with the same method; one week would 

start at the 2014 site then travel to 2020, then next would start at 2020 and travel to 2014. 
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Figure B.30. Route 1: Start, control, 2006, 2008, 2010, ca.1900, 2012, finish.
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Figure B.31. Route 2: Start, ca.1900, 2010, 2008, 2012, 2006, control, finish. 
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B.5 Model Information 

This appendix contains information regarding the calculated total areas of HMS model nodes, 

the final calibration parameters, and an explanation of the calibration and validation RMSE 

values.   

 

B.5.1 HEC-HMS Model Node Area Calculations 

Table B.10 shows the area calculations for each sub catchment/HMS model node as described 

throughout section 5.3. 

Table B.10. Land cover calculations for each HMS node 

Plot Total Wood 10 cm 200 cm Grass Misc. 
Misc. 

Detail 

% 

Wood 

% 

Grass 

% 

Misc. 

1991 0.056 0.056 0.028 0.028 0.000 0.000  100.0 0.0 0.0 

1995 0.046 0.046 0.023 0.023 0.000 0.000  100.0 0.0 0.0 

2006 0.066 0.045 0.023 0.023 0.021 0.000  68.2 31.8 0.0 

2007_1 0.006 0.005 0.003 0.003 0.001 0.000  83.3 16.7 0.0 

2007_2 0.008 0.008 0.004 0.004 0.000 0.000  100.0 0.0 0.0 

2008_1 0.013 0.013 0.007 0.007 0.000 0.000  100.0 0.0 0.0 

2008_2 0.055 0.044 0.022 0.022 0.011 0.000  80.0 20.0 0.0 

2008_3 0.029 0.017 0.009 0.009 0.012 0.000  58.6 41.4 0.0 

2008_4 0.086 0.065 0.033 0.033 0.021 0.000  75.6 24.4 0.0 

2008_5 0.030 0.016 0.008 0.008 0.012 0.002  53.3 40.0 6.7 

2009_1 0.020 0.020 0.010 0.010 0.000 0.000  100.0 0.0 0.0 

2009_2 0.086 0.054 0.027 0.027 0.027 0.005 Pond 62.8 31.4 5.8 

2009_3 0.057 0.009 0.005 0.005 0.033 0.015 Pond 15.8 57.9 26.3 

2009_4 0.074 0.064 0.032 0.032 0.010 0.000  86.5 13.5 0.0 

2009_5 0.068 0.055 0.028 0.028 0.013 0.000  80.9 19.1 0.0 

2009_6 0.043 0.033 0.017 0.017 0.010 0.000  76.7 23.3 0.0 

2009_7 0.040 0.032 0.016 0.016 0.008 0.000  80.0 20.0 0.0 

2010_1 0.091 0.060 0.030 0.030 0.031 0.000  65.9 34.1 0.0 

2010_2 0.140 0.095 0.048 0.048 0.045 0.000  67.9 32.1 0.0 

2011 _3 0.083 0.071 0.036 0.036 0.012 0.000  85.5 14.5 0.0 

2011_1 0.008 0.008 0.004 0.004 0.000 0.000  100.0 0.0 0.0 

2011_2 0.048 0.034 0.017 0.017 0.014 0.000  70.8 29.2 0.0 

2011_4 0.031 0.018 0.009 0.009 0.013 0.000  58.1 41.9 0.0 

2011_5 0.037 0.030 0.015 0.015 0.007 0.000  81.1 18.9 0.0 

2011_6 0.057 0.042 0.021 0.021 0.015 0.000  73.7 26.3 0.0 

2012_1 0.031 0.025 0.013 0.013 0.006 0.000  80.6 19.4 0.0 

2012_2 0.138 0.110 0.055 0.055 0.028 0.000  79.7 20.3 0.0 
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Grassland 1 0.052 0.000 0.000 0.000 0.049 0.003  0.0 94.2 5.8 

Grassland 2 0.025 0.000 0.000 0.000 0.025 0.000  0.0 100.0 0.0 

Grassland 3 0.042 0.000 0.000 0.000 0.042 0.000  0.0 100.0 0.0 

Grassland 4 0.008 0.000 0.000 0.000 0.008 0.000  0.0 100.0 0.0 

Northeast 1 0.078 0.000 0.000 0.000 0.078 0.000  0.0 100.0 0.0 

Northeast 2 0.076 0.010 0.005 0.005 0.064 0.002 Lake 13.2 84.2 2.6 

Northeast 3 0.075 0.015 0.008 0.008 0.060 0.000  20.0 80.0 0.0 

Northeast 4 0.089 0.000 0.000 0.000 0.089 0.000  0.0 100.0 0.0 

Northeast 5 0.060 0.000 0.000 0.000 0.060 0.000  0.0 100.0 0.0 

Northeast 6 0.063 0.000 0.000 0.000 0.063 0.000  0.0 100.0 0.0 

Northeast 7 0.004 0.000 0.000 0.000 0.004 0.000  0.0 100.0 0.0 

Pre-1900_1 0.010 0.010 0.005 0.005 0.000 0.000  100.0 0.0 0.0 

Pre-1900_2 0.027 0.027 0.014 0.014 0.000 0.000  100.0 0.0 0.0 

Pre-1900_3 0.022 0.022 0.011 0.011 0.000 0.000  100.0 0.0 0.0 

Pre-1900_4 0.053 0.000 0.000 0.000 0.052 0.001  0.0 98.1 1.9 

Purity Area 0.017 0.000 0.000 0.000 0.000 0.017  0.0 0.0 100.0 

Road 0.011 0.000 0.000 0.000 0.000 0.011 Road 0.0 0.0 100.0 

Misc. 
Impermeable 

0.009 0.000 0.000 0.000 0.000 0.009  0.0 0.0 100.0 

 

B.5.2 Model Calibration Parameters for Winter and Summer Models 

Table B.11 presents the final values used to represent each HEC-HMS model node during 

model calibration for both winter and summer models (see section 5.4). 

Table B.11. Final Snyder parameters for winter and summer model calibration. 

HEC-HMS node name 

Snyder Transform Parameters 

Winter Summer 

Lag Peaking Lag Peaking 

Grassland_1 (G) 18 0.5 6 0.5 

Grassland_2 (G) 18 0.5 6 0.5 

Grassland_3 (G) 18 0.5 6 0.5 

Grassland_4 (G) 18 0.5 6 0.5 

Northeast 1 (G) 18 0.5 6 0.5 

Northeast 2 (G) 18 0.5 6 0.5 

Northeast 2 (W10) 18 0.5 6 0.5 

Northeast 2 (W200) 18 0.5 6 0.5 

Northeast 3 (G) 18 0.5 6 0.5 

northeast 3 (W10) 18 0.5 6 0.5 

Northeast 3 (W200) 18 0.5 6 0.5 

Northeast 4 (G) 18 0.5 6 0.5 

Northeast 5 (G) 18 0.5 6 0.5 

Northeast 6 (G) 18 0.5 6 0.5 

Northeast 7 (G) 18 0.5 6 0.5 
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Pond 1 18 0.5 6 0.5 

Pond 2 18 0.5 6 0.5 

Pre_1900 3 (W10) 18 0.5 6 0.5 

Pre_1900 3 (W200) 18 0.5 6 0.5 

Pre_1900 4 (G) 18 0.5 6 0.5 

Pre_1900 (W10) 18 0.5 6 0.5 

Pre_1900 (W200) 18 0.5 6 0.5 

Pre_1900_1 (W10) 18 0.5 6 0.5 

Pre_1900_1 (W200) 18 0.5 6 0.5 

Purity Impermeable (I) 6 0.8 4 0.8 

Road (I) 6 0.8 4 0.8 

Spernal B&R (I) 6 0.8 4 0.8 

1991 (W10) 18 0.5 6 0.5 

1991 (W200) 18 0.5 6 0.5 

1995 (W10) 18 0.5 6 0.5 

1995 (W200) 18 0.5 6 0.5 

2006 (G) 18 0.5 6 0.5 

2006 (W10) 18 0.5 6 0.5 

2006 (W200) 18 0.5 6 0.5 

2007_1 (W10) 18 0.5 6 0.5 

2007_1 (W200) 18 0.5 6 0.5 

2007_2 (W10) 18 0.5 6 0.5 

2007_2 (W200) 18 0.5 6 0.5 

2008_1 (W10) 18 0.5 6 0.5 

2008_1 (W200) 18 0.5 6 0.5 

2008_2 (G) 18 0.5 6 0.5 

2008_2 (W10) 18 0.5 6 0.5 

2008_2 (W200) 18 0.5 6 0.5 

2008_3 (G) 18 0.5 6 0.5 

2008_3 (W10) 18 0.5 6 0.5 

2008_3 (W200) 18 0.5 6 0.5 

2008_4 (G) 18 0.5 6 0.5 

2008_4 (W10) 18 0.5 6 0.5 

2008_4 (W200) 18 0.5 6 0.5 

2008_5 (G) 18 0.5 6 0.5 

2008_5 (W10) 18 0.5 6 0.5 

2008_5 (W200) 18 0.5 6 0.5 

2009_1 (W10) 18 0.5 6 0.5 

2009_1 (W200) 18 0.5 6 0.5 

2009_2 (G) 18 0.5 6 0.5 

2009_2 (W10) 18 0.5 6 0.5 

2009_2 (W200) 18 0.5 6 0.5 

2009_3 (G) 18 0.5 6 0.5 

2009_3 (W10) 18 0.5 6 0.5 

2009_3 (W200) 18 0.5 6 0.5 

2009_4 (G) 18 0.5 6 0.5 
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2009_4 (W10) 18 0.5 6 0.5 

2009_4 (W200) 18 0.5 6 0.5 

2009_5 (G) 18 0.5 6 0.5 

2009_5 (W10) 18 0.5 6 0.5 

2009_5 (W200) 18 0.5 6 0.5 

2009_6 (G) 18 0.5 6 0.5 

2009_6 (W10) 18 0.5 6 0.5 

2009_6 (W200) 18 0.5 6 0.5 

2009_7 (G) 18 0.5 6 0.5 

2009_7 (W10) 18 0.5 6 0.5 

2009_7 (W200) 18 0.5 6 0.5 

2010_1 (G) 18 0.5 6 0.5 

2010_1 (W10) 18 0.5 6 0.5 

2010_1 (W200) 18 0.5 6 0.5 

2010_2 (G) 18 0.5 6 0.5 

2010_2 (W10) 18 0.5 6 0.5 

2010_2 (W200) 18 0.5 6 0.5 

2011_1 (W10) 18 0.5 6 0.5 

2011_1 (W200) 18 0.5 6 0.5 

2011_2 (G) 18 0.5 6 0.5 

2011_2 (W10) 18 0.5 6 0.5 

2011_2 (W200) 18 0.5 6 0.5 

2011_3 (G) 18 0.5 6 0.5 

2011_3 (W10) 18 0.5 6 0.5 

2011_3 (W200) 18 0.5 6 0.5 

2011_4 (G) 18 0.5 6 0.5 

2011_4 (W10) 18 0.5 6 0.5 

2011_4 (W200) 18 0.5 6 0.5 

2011_5 (G) 18 0.5 6 0.5 

2011_5 (W10) 18 0.5 6 0.5 

2011_5 (W200) 18 0.5 6 0.5 

2011_6 (G) 18 0.5 6 0.5 

2011_6 (W10) 18 0.5 6 0.5 

2011_6 (W200) 18 0.5 6 0.5 

2012_1 (G) 18 0.5 6 0.5 

2012_1 (W10) 18 0.5 6 0.5 

2012_1 (W200) 18 0.5 6 0.5 

2012_2 (G) 18 0.5 6 0.5 

2012_2 (W10) 18 0.5 6 0.5 

2012_2 (W200) 18 0.5 6 0.5 
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B.5.3 RMSE Values for Calibration and Validation 

As outlined in section 5.4, RMSE was calculated for each calibration and validation event to 

further indicate the efficiency of the model. A RMSE closer to 0 indicates a good-fit between 

the observed and simulated data, whereas a value further from 0 indicates a poor-fit (Naik et 

al., 2019; O’Loughlin et al., 2020). Some calibration and validation results shown in sections 

5.4 and 5.5 show a RMSE of 0. This is due to the values being defined to 4 significant figures. 

The actual RMSE values for each calibration and validation event are shown in Table B.12 and 

Table B.13. 

Table B.12. RMSE values for calibration events, shown to 10 significant figures. 

Duration Winter Summer 

24 0.0013301035 0.0000203069 

72 0.0004470588 0.0001000000 

96 0.0000101929 0.0000356753 

120 0.0000957518 0.0002188612 

 

Table B.13. RMSE values for validation events, shown to 10 significant figures. 

Duration Winter Summer 

24 0.0043964489 0.0000507673 

72 0.0008647059 0.0000176471 

96 0.0004586825 0.0000000000 

120 0.0000227980 0.0000091192 
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B.6 Tested Methods for Infiltration Projection 

A discussed in section 5.7.2, future infiltration across the site was extrapolated using published 

values of maturity and growth to cumulatively increase the infiltration year-on-year until 

maturity (these results can be seen in appendix section B.7). The other two methods tested for 

the projection of infiltration data are discussed in sections B.6.1 and B.6.2. 

 

B.6.1 Disused Infiltration Projection Method 1 

Tested projection method 1 aimed to perform a regression analysis on the collected infiltration 

data for every observed site over both summer and winter, then use the slope and intercept of 

the regression line (𝑌 = 𝑚𝑥 + 𝑐) to project infiltration data into the future. The data for the 

years in between would be taken as the mean from this data. Results of this method showed the 

2006, 2008, 2010 and 2012 sites to demonstrate negative infiltration, with only the 2014 and 

2020 sites showing positive infiltration. See Table B.14. 

Table B.14. Projected infiltration for 2120 using method 1 

Planting year 2006 2008 2010 2012 2014 2020 

2120 Infiltration rate 

(ml) 
-575.88 -1602.87 -1638.80 -513.34 2193.77 960.60 

 

Negative infiltration is a hydrological impossibility, and it is noted in the literature that 

infiltration around woodland increases over time (Chandler et al., 2018; Zhang et al., 2019a; 

Murphy et al., 2021), so the results of this method were deemed unsuitable for the requirements 

of this project. 
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B.6.2 Disused Infiltration Projection Method 2 

Tested projection method 2 used the same regression method as method 1, however treated the 

collected infiltration data as the data for sequential years. For example, providing the data 

collected in 2019 for each site is progressively older year-on-year, (i.e.) the 2006 site is 

interpreted as the tree being 13 years old in 2019, 14 in 2020, and 15 in 2021. Results of this 

method showed similar projections to method 1, with 2006, 2008, 2010, 2012 and 2015 

showing negative infiltration, and only 2007, 2009, 2011, 2013, 2014, 2016, 2020 being 

positive infiltration, and even then, the positive values are deemed unrealistic based on what 

has been observed already. See Table B.15. 

Table B.15. Projected infiltration for 2120 using method 2. 

Planting 

year 
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2020 

2120 

Infiltration 

rate (ml) 

-2270 1196 -5638 594 -3472 1192 -1136 712 620 -2550 1902 1410 

 

The same constraints are seen in the results of method 2 as were discussed regarding method 

1, therefore, method 2 was deemed an unsuitable method of projecting infiltration for this 

project. The conclusions of both disused projection methods resulted in the selection of the 

chosen method for infiltration data projection (section B.7).
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B.7 Projected Increases to Infiltration due to Climate Change 

A discussed in section 5.7.2, future infiltration across the site was extrapolated using published 

values of maturity and growth to cumulatively increase the infiltration year-on-year until 

maturity.  

 

B.7.1 Empirical Site Infiltration Projections  

The results of infiltration data extrapolations for EMPIRICAL sites are shown throughout 

Figure B.32 to Figure B.35. 
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Figure B.32. Mean winter infiltration projections for all empirical sample sites at 10 cm proximity 
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Figure B.33. Mean winter infiltration projections for all empirical sample sites at 200 cm proximity 
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Figure B.34. Mean summer infiltration projections for all empirical sample sites at 10 cm proximity.  
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Figure B.35. Mean summer infiltration projections for all empirical sample sites at 200 cm proximity. 
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B.7.2 Non-Empirical Site Infiltration Projections 

The results infiltration data extractions for NON-EMPIRICAL values are shown throughout 

Figure B.36 to Figure B.39. These figures present values for sites within the study catchment 

where infiltration was not directly sampled with the MDI (section 5.2.2); and represent the 

results of the chosen infiltration projection method (discussed in section 5.7.2). 
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Figure B.36. Mean winter infiltration projections for all non-empirical sample sites at 10 cm proximity. 
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Figure B.37. Mean winter infiltration projections for all non-empirical sample sites at 200 cm proximity. 
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Figure B.38. Mean summer infiltration projections for all non-empirical sample sites at 10 cm proximity. 
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Figure B.39. Mean summer infiltration projections for all non-empirical sample sites at 200 cm proximity. 
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B.8 Data Sources, Permissions and Uses 

Table B.16 outlines the sources, year and uses of data used throughout this study.  

Table B.16. Data sources and special permissions for project 

Data Year Source / Permissions Purpose/ Use 

Arrow-Alne catchment area north 

of Broom gaging station 

2019 National River Flow Archive 

(NRFA) (2019) 

To define the catchment 

boundary of the Arrow/Alne 

Catchment 

Arrow/ordinary watercourse 

shapefiles 

2019 Ordnance Survey open data 

download webpage (Ordnance 

Survey, 2021) 

For use in the GIS map outputs 

presented throughout the study 

and for flood modelling 

10k raster base map of Arrow 

catchment 

2019 Ordnance Survey open data 

download webpage (Ordnance 

Survey, 2021) 

To use as a base map for the GIS 

map outputs presented 

throughout the study 

Environment Agency Integrated 

Height Model (IHM) 2m 

resolution LiDAR DTM of Broom 

catchment 

2020 Granted under permission from 

the Environment Agency 

For use in the whole catchment 

analysis in section… and for the 

creation of the study area 

elevation model  

Owned Heart of England site 

location shapefiles and tree 

species detail  

2019 Special permission from the 

Heart of England Forest charity 

Used in the determination of 

sample sites and in GIS map 

outputs presented throughout the 

study 

1:625,000 Scale Map of UK 

Bedrock and Superficial Geology 

2019 British Geological Survey 

(BGS) data download portal 

(British Geological Survey, 

2019) 

Used for investigating bedrock 

and superficial geology of the 

whole/study catchments, and 

used in GIS map outputs 

presented throughout the study 

25cm resolution aerial 

photography of Arrow catchment 

2018 Special permission from 

(Ordnance Survey, 2020) 

For use in the GIS map outputs 

presented throughout the study 

and for flood modelling 

1m resolution LiDAR DTM of 

Broom catchment 

2018 Department of Environment 

Food and Rural Affairs 

(DEFRA) download portal 

(Environment Agency, 2021d) 

For use in the whole catchment 

elevation analysis in section… 
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Lower Super Output Areas 

(LSOA) of geographical census 

areas 

2011 Census boundary data portal 

(UK Data Service Census 

Support, 2011) 

For use in presenting the 

boundaries of Redditch and 

Alcester in figure…  

Drone Imagery (14/100 cm DTM 

and aerial imagery) 

 Collected on site by Dr. Sim 

Reaney of Durham University 

with permission from Stephen 

Coffey, head forester at the 

Heart of England Forest  

For use in the creation of the 

study area elevation model and 

flood modelling. 

Rainfall Data 2019 

- 

2022 

Collected by the rain gauge 

located at the NextGen 

wastewater treatment plant. 

Used in the calibration and 

validation of the hydrological 

models 

Flow and stage data of the study 

site tributary 

2019 

- 

2022 

Fitted in the tributary of the 

HofE Spernal site at the request 

of this project by Environmental 

Monitoring Solutions (EMS) 

Ltd, after permission from 

Stephen Coffey of the HofE 

forest Charity   

Used in the calibration and 

validation of the hydrological 

models 
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B.9 Ethical Approvals  

Figure B.40 and Figure B.41 show the approvals of the required ethics applications for this study. The figures represent both the pre-pandemic approval, and 

revised approval including updated precautions as a result of the COVID-19 pandemic. 

Figure B.40. Original CU Ethics application (project P96879) 

 

Figure B.41. Updated CU Ethics approval with added procedures to account for the COVID-19 pandemic (project P108617) 
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Appendix C. Results 

 

This appendix contains additional and supporting information relating to the results presented 

in Chapter 7. 

 

C.1 Statistical Testing 

As discussed in section 7.1 statistical testing was undertaken to both determine the sorting of 

the collected infiltration data (parametric/non-parametric), and to conduct more thorough 

analysis. These are discussed further thought the following sections.  

 

C.1.1 Kolmogorov-Smirnov (Normality) Testing  

A Kolmogorov-Smirnov (KS) test returns a value indicating if the sample data is parametric or 

non-parametric. A knowledge of this is important when deciding the correct statistical tests to 

perform across a dataset, as using a parametric statistical test using non-parametric data can 

yield inaccurate results, and visa-versa (Gadian et al., 2018; Mishra et al., 2019). The KS test 

outputs a numerical value, which is compared with a known value (derived from the sample 

size) to calculate the correct KS value for a P value of 0.05%, given by the equation: 

1.36

√𝑛
 

Where n is the number of samples used in the KS test. Table C.1 displays the input data for the 

seven KS tests undertaken, and the output P-values for each.
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Table C.1. Test metrics and output P-values for KS tests 

 KS Test Input Data  KS Value P-Value 

1 All infiltration data regardless of proximity and season 1.00 0.06 

2 All summer infiltration regardless of proximity 0.87 0.07 

3 All winter infiltration regardless of proximity 0.79 0.07 

4 All winter 10 cm infiltration data 0.87 0.10 

5 All winter 200 cm infiltration data 0.99 0.10 

6 All summer 10 cm infiltration data 0.99 0.11 

7 All summer 200 cm infiltration data 1.00 0.11 

 

No tested input data showed a P-value less than alpha (0.05%), thus indicating that the data 

collected from the study site is not normally distributed (non-parametric), which will influence 

the type of statistical test used in data analysis. To visualise the distribution of the collected 

field data alongside the KS values shown (Table C.1), the distribution graphs for all seven 

scenarios are shown throughout Figure C.1 to Figure C.7 

 

 

Figure C.1. Distribution of all infiltration data regardless of proximity and season. 
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Figure C.2. Distribution of all 10 cm infiltration regardless of season 

 

 

Figure C.3. Distribution of all 200 cm infiltration regardless of season 
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Figure C.4. Distribution of all winter 10 cm infiltration data 

 

 

Figure C.5. Distribution of all winter 200 cm infiltration data 
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Figure C.6. Distribution of all summer 10 cm infiltration data 

 

 

Figure C.7. Distribution of all summer 200 cm infiltration data 
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C.1.2 Mann-Whitney U Test  

As discussed in section 7.1 Mann-Whitney U tests were undertaken following the Kolmogorov-

Smirnoff test (appendix C.1.1) to determine the significance of the relationships between 

infiltration and proximity, and infiltration and maturity (Fay and Proschan, 2010; Mishra et al., 

2019; Kamis et al., 2021). The Mann-Whitney U test is the non-parametric equivalent of the 

independent samples t-test: 

𝑈1 =  𝑛1𝑛2 +
𝑛1(𝑛1+1)

2
− 𝑅1   EQ 12.2 

𝑈2 = 𝑛1𝑛2 +
𝑛2(𝑛2+1)

2
− 𝑅2   EQ 12.3 

𝑛1 and 𝑛2 are the number of samples in group 1 and 2 respectively, and 𝑅1 and 𝑅2 are the sum 

of all ranks from the data in groups 1 and 2 respectively. Both 𝑈1and 𝑈2 (EQ 12.2 and EQ 12.3) 

can be interpreted as the number of observations in a sample that precede or follow 

observations in the other sample when all samples are ranked in ascending order (Nachar, 

2008). To determine significance (P-value), the normal approximation equation (Mann and 

Whitney, 1947) can be used: 

𝑃 =
|𝑈𝑚𝑖𝑛−

𝑛1𝑛2
2
|

√
𝑛1𝑛2(𝑛1𝑛2+1)

12

    EQ 12.4 

Where 𝑈𝑚𝑖𝑛 is the smallest U value (of 𝑈1and 𝑈2). The results of Mann-Whitney U testing can 

be seen throughout section 7.1. 
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C.1.3 Selection of Statistical Tests for Results Analysis 

It is determined in section C.1.1 that the collected data is non-parametric, meaning it does not 

follow a normal distribution, therefore influencing the type of statistical method that could be 

used during analysis. Furthermore, the collected infiltration data is unpaired. Paired data refers 

to measurements that have been taken from the same sample population/area both before and 

after a known change (i.e., infiltration both before and after rainfall, immune response both 

before and after taking prescribed medication). This contrasts with unpaired (independent) 

data, when the collected data is from separate populations/sample sites at different points in 

time, and with potentially different characteristics. The infiltration data collected throughout 

this study is unpaired, as measurements are taken from three separate areas (replicas, see 

section 5.2.2) at 10 cm and 200 cm proximities, and soil and moisture conditions can vary. 

Ultimately, the Mann-Whitney U test was chosen for use throughout this study (section C.1.2), 

however other commonly used nonparametric statistical tests are presented in Table C.2. 

Table C.2. Statistical tests for non-parametric data 

Nonparametric Test Parametric Equivalent Description 

Kruskal-Wallis One-way ANOVA 

Compares more than two independent 

groups with ordinal (scaled/ordered/0-

10(e.g.)) data. 

Wilcoxon signed rank Paired samples T-test 
Compares two dependent (paired) samples 

with ordinal data. 

Mann-Whitney U Test Independent samples T-test 
Analyses two independent (unpaired) 

samples that contain ordinal data. 
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C.2 Temperature and Infiltration 

A correlation analysis was undertaken to quantify the effect of air temperature, ground surface 

and soil temperature on the collected infiltration data. A correlation analysis derives a 

dimensionless value between -1 and 1, where a value closer to 1 indicates positive correlation, 

and a value closer to -1 indicates a negative correlation; a value closer to 0 indicates the absence 

of correlation (Esezi Isaac and Eric Chikweru, 2018; Schober et al., 2018). The results of the 

correlation analysis are shown in Table C.3 

Table C.3. Correlation coefficients for air, ground, and soil temperatures 

 Control ca.1900 2006 2008 2010 2012 2014 2020 Mean 

10 

Air 0.36 0.30 0.45 0.19 0.31 0.35 0.16 0.22 0.29 

Ground 0.36 0.30 0.44 0.18 0.33 0.40 0.17 0.31 0.31 

Soil 0.38 0.30 0.45 0.20 0.31 0.34 0.15 0.26 0.30 

200 

Air  0.46 0.50 0.22 0.28 0.40 0.18 0.13 0.31 

Ground  0.57 0.55 0.15 0.29 0.47 0.24 0.31 0.37 

Soil  0.58 0.55 0.13 0.32 0.41 0.17 0.26 0.35 

 

Table C.3 shows there to be a positive correlation between all measured temperatures and 

infiltration at both proximities, however very few correlations are notably strong. At the 10 cm 

proximity, measured temperatures at the 2006 sample site showed the strongest correlation 

(however still relatively weak), being 0.45, 0.44 and 0.45 for air, ground, and soil respectively. 

The weakest positive correlation at the 10 cm proximity is between 2014 soil temperature and 

infiltration, being 15, followed by 2014 air and ground, being 16 and 17 respectively. The 

lowest mean positive correlation was seen between air temperature and infiltration (0.29), 

followed by soil (0.30), then by ground (0.31). Of the 200 cm proximity, air temperature of the 

2020 site, and soil temperature of the 2008 site both show the lowest correlation value of 0.13; 

the highest correlation is seen between soil and infiltration at the ca. 1900 site. Most correlation 

values are higher for the 200 cm proximity than the 10 cm proximity, except for air temperature 
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in 2010 and 2020 (-0.03 and -0.09 respectively), ground temperature in 2008 and 2010 (-0.03 

and -0.04 respectively), and soil temperature in 2008 (-0.07). Overall, the mean correlation of 

all measured temperatures for the 200 cm proximity were higher than that of 10 cm, being 0.31 

(+0.02), 0.35 (+0.05) and 0.37 (+0.06) for air, soil, and ground respectively. 

Whilst the results of the correlation analysis are valuable for indicating the relationship between 

infiltration and temperature values, a multiple linear regression was undertaken in addition to 

this, to investigate the influence of each temperature variable on infiltration. A multiple linear 

regression is used to assess the relationship between a dependent variable (in this case 

infiltration) and several predictor variables (in this case, air, ground and soil temperature) 

(Petchko, 2018; Ciulla and D’Amico, 2019; Rath et al., 2020). Table C.4 shows the P-values 

for each temperature measure in relation to infiltration. 

Table C.4. Resultant P-values from the multiple regression analysis 

 Control ca.1900 2006 2008 2010 2012 2014 2020 Mean 

10 cm P-values 

Air 0.60 0.86 0.41 0.60 0.85 0.75 0.61 0.75 0.68 

Ground 0.27 0.04 0.35 0.70 0.39 0.28 0.28 0.24 0.32 

Soil 0.86 0.08 0.08 0.57 0.61 0.82 0.17 0.88 0.51 

200 cm P-values 

Air  0.89 0.97 0.22 0.87 0.67 0.67 0.23 0.65 

Ground  0.03 0.80 0.37 0.52 0.13 0.38 0.13 0.34 

Soil  0.38 0.22 0.75 0.70 0.46 0.94 0.96 0.63 

 

In Table C.4, a P-value smaller than 0.05 indicates the measured temperatures do effect 

infiltration, whereas a P-value higher than 0.05 indicates no relationship between variables. the 

only temperature with a P-value lower than alpha is ground temperature at both proximities at 

the ca. 1900 site (10 cm =P- 0.04, 200 cm = P-0.03). This indicates that out of all measured 

data, ground temperature at the ca. 1900 site is the only measured temperature that shows to 

have an influence on infiltration at the same site. The correlation analysis (Table C.3) combined 

with the multiple regression analysis (Table C.4) can be used to determine that, whilst there is 
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a positive correlation between all measured temperatures and infiltration, there is no evidence 

to suggest that temperature directly influences infiltration, aside from at the ca. 1900 site. 
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C.3 Modelled Climate Projections 

The following sections present the raw data used to generate the projection figures throughout 

section 7.3, the mean projected future peak flow for the site throughout summer and winter, 

and the mean percent difference from current (2020) modelled values. 

 

C.3.1 Data Tables 

This section presents the results of the HEC-HMS modelled projections for future peak flow 

and total discharge throughout winter, inclusive of climate change projections defined by the 

EA and UKCP (section 5.7.1). Peak and total flows are presented as a range of possible outputs 

for all land cover types (woodland, grassland, impermeable) based on the baseflow scenarios 

defined in section 5.7.3. The HofE peak flow is shown as ‘2020 peak discharge’ as are the 

intensities for 2040, 2070 and 2120 respectively. 2120 is included twice as the ‘high rainfall’ 

series simulates the maximum rainfall increase expected in 2120 (40% increase from present, 

displayed at 2120H). 

The following tables (Table C.5 to Table C.10) are of use for authors/organisations aiming to 

evaluate the likely reduction in peak flow as a result of woodland planting over a clay-textured 

sample site.  
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Table C.5. Peak flow and total discharge change ranges for woodland (W), grassland (G) and impermeable (I) land cover, compared with 2020 values for 6-

hour 50%, 10%, 2% and 1% AEP events in winter 

  AEP% 2040 2070 2120 2120 H 

   m3/s % Change m3/s % Change m3/s % Change m3/s % Change 

W 

Peak Flow 

Range 

50 0.66 - 0.70 8.20 - 14.75 0.63 - 0.67 3.28 - 9.84 0.69 - 0.80 13.11 - 31.15 0.77 - 0.88 26.23 - 44.26 

10 0.89 - 0.93 5.95 - 10.71 0.87 - 0.92 3.57 - 9.52 0.96 - 1.07 14.29 - 27.38 1.08 - 1.19 28.57 - 41.67 

2 1.20 - 1.25 5.26 - 9.65 1.20 - 1.25 5.26 - 9.65 1.32 - 1.43 15.79 - 25.44 1.50 - 1.61 31.58 - 41.23 

1 1.38 - 1.42 5.34 - 8.40 1.38 - 1.43 5.34 - 9.16 1.52 - 1.63 16.03 - 24.43 1.73 - 1.84 32.06 - 40.46 

Total 

Discharge 
Range 

50 674.81 - 747.43 6.89 - 18.40 676.66 - 761.38 7.19 - 20.61 742.82 - 929.55 17.67 - 47.25 774.93 - 961.67 22.75 - 52.33 

10 773.79 - 846.41 6.65 - 16.66 779.70 - 864.42 7.46 - 19.14 855.35 - 1042.08 17.89 - 43.62 906.31 - 1093.06 24.91 - 50.65 

2 907.20 - 979.82 6.41 - 14.92 919.19 - 1003.91 7.81 - 17.75 1007.64 - 1194.38 18.19 - 40.09 1084.22 - 1270.96 27.17 - 49.07 

1 981.89 - 1054.51 6.29 - 14.16 997.47 - 1082.19 7.98 - 17.15 1092.96 - 1279.71 18.32 - 38.53 1183.78 - 1370.51 28.15 - 48.36 

G 

Peak Flow 

Range 

50 0.65 - 0.69 103.13 - 115.63 0.67 - 0.74 109.38 - 131.25 0.75 - 0.86 134.38 - 168.75 0.82 - 0.93 156.25 - 190.63 

10 0.88 - 0.93 60.00 - 69.09 0.92 - 0.98 67.27 - 78.18 1.01 - 1.12 83.64 - 103.64 1.14 - 1.24 107.27 - 125.45 

2 1.20 - 1.24 41.18 - 45.88 1.25 - 1.31 47.06 - 54.12 1.37 - 1.48 61.18 - 74.12 1.56 - 1.66 83.53 - 95.29 

1 1.38 - 1.42 35.29 - 39.22 1.43 - 1.50 40.20 - 47.06 1.58 - 1.68 54.90 - 64.71 1.79 - 1.90 75.49 - 86.27 

Total 

Discharge 
Range 

50 672.3 - 744.91 31.86 - 46.10 685.6 - 797.99 34.47 - 56.51 765.66 - 952.40 50.17 - 86.79 798.00 - 984.73 56.51 - 93.13 

10 771.3 - 843.91 27.66 - 39.68 789.25 - 901.63 30.64 - 49.24 878.83 - 1065.56 45.46 - 76.37 929.97 - 1116.7 53.93 - 84.84 

2 904.68 - 977.30 23.72 - 33.66 929.01 - 1041.39 27.05 - 42.42 1031.27 - 1218.01 41.04 - 66.57 1107.86 - 1294.6 51.51 - 77.05 

1 979.41 - 1052.02 22.07 - 31.12 1007.29 - 1119.68 25.54 - 39.55 1116.63 - 1303.36 39.17 - 62.44 1207.44 - 1394.17 50.49 - 73.76 

I 

Peak Flow 

Range 

50 0.71 - 0.75 5.97 - 11.94 0.73 - 0.79 8.96 - 17.91 0.80 - 0.91 19.40 - 35.82 0.88 - 0.99 31.34 - 47.76 

10 0.94 - 0.98 5.62 - 10.11 0.97 - 1.04 8.99 - 16.85 1.07 - 1.18 20.22 - 32.58 1.19 - 1.30 33.71 - 46.07 

2 1.25 - 1.30 5.04 - 9.24 1.30 - 1.37 9.24 - 15.13 1.43 - 1.54 20.17 - 29.41 1.61 - 1.72 35.29 - 44.54 

1 1.43 - 1.47 5.15 - 8.09 1.49 - 1.55 9.56 - 13.97 1.63 - 1.74 19.85 - 27.94 1.84 - 1.95 35.29 - 43.38 

Total 

Discharge 
Range 

50 696.24 - 768.86 6.53 - 17.64 709.54 - 821.92 8.56 - 25.76 789.61 - 976.34 20.81 - 49.39 821.93 - 1008.66 25.76 - 54.33 

10 795.23 - 867.85 6.34 - 16.05 813.21 - 925.60 8.74 - 23.77 902.77 - 1089.50 20.72 - 45.68 953.92 - 1140.66 27.55 - 52.53 

2 928.65 - 1001.27 6.14 - 14.44 952.95 - 1065.33 8.92 - 21.77 1055.23 - 1241.96 20.61 - 41.95 1131.81 - 1318.55 29.36 - 50.71 

1 1003.35 - 1075.98 6.06 - 13.74 1031.23 - 1143.61 9.01 - 20.89 1140.56 - 1327.29 20.56 - 40.30 1231.38 - 1418.11 30.16 - 49.90 
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Table C.6. Peak flow and total discharge change ranges for woodland (W), grassland (G) and impermeable (I) land cover, compared with 2020 values for 24-

hour 50%, 10%, 2% and 1% AEP events in winter  

  AEP% 2040 2070 2120 2120 H 

   m3/s % Change m3/s % Change m3/s % Change m3/s % Change 

W 

Peak Flow 

Range 

50 0.86 - 0.90 6.17 - 11.11 0.83 - 0.90 2.47 - 11.11 0.93 - 0.94 14.81 - 16.05 1.04 - 1.15 28.4 - 41.98 

10 1.14 - 1.19 5.56 - 10.19 1.14 - 1.20 5.56 - 11.11 1.26 - 1.19 16.67 - 10.19 1.42 - 1.53 31.48 - 41.67 

2 1.51 - 1.55 5.59 - 8.39 1.52 - 1.58 6.29 - 10.49 1.67 - 1.49 16.78 - 4.20 1.91 - 2.02 33.57 - 41.26 

1 1.70 - 1.74 5.59 - 8.07 1.72 - 1.79 6.83 - 11.18 1.90 - 1.64 18.01 - 1.86 2.17 - 2.28 34.78 - 41.61 

Total 

Discharge 
Range 

50 870.29 – 955.00 6.57 - 16.94 863.05 - 994.16 5.68 - 21.74 964.03 - 1181.86 18.05 - 44.72 1016.89 - 1234.72 24.52 - 51.19 

10 1004.83 - 1089.55 6.36 - 15.32 1003.77 - 1134.87 6.24 - 20.12 1117.68 - 1335.52 18.30 - 41.36 1196.29 - 1414.12 26.62 - 49.68 

2 1175.42 - 1260.14 6.16 - 13.81 1182.59 - 1313.69 6.81 - 18.65 1312.56 - 1530.40 18.55 - 38.22 1423.71 - 1641.54 28.58 - 48.26 

1 1267.16 - 1351.88 6.07 - 13.17 1278.58 - 1409.69 7.03 - 18.01 1417.44 - 1635.28 18.65 - 36.89 1546.03 - 1763.88 29.42 - 47.66 

G 

Peak Flow 

Range 

50 0.85 - 0.90 165.63 - 181.25 0.89 - 0.95 178.13 - 196.88 0.98 - 1.09 206.25 - 240.63 1.09 - 1.20 240.63 – 275.00 

10 1.14 - 1.18 107.27 - 114.55 1.19 - 1.25 116.36 - 127.27 1.31 - 1.41 138.18 - 156.36 1.47 - 1.58 167.27 - 187.27 

2 1.50 - 1.55 76.47 - 82.35 1.57 - 1.63 84.71 - 91.76 1.72 - 1.83 102.35 - 115.29 1.96 - 2.06 130.59 - 142.35 

1 1.70 - 1.74 66.67 - 70.59 1.77 - 1.83 73.53 - 79.41 1.94 - 2.05 90.20 - 100.98 2.22 - 2.32 117.65 - 127.45 

Total 

Discharge 
Range 

50 868.64 - 953.35 24.94 - 37.12 888.00 - 1019.11 27.72 - 46.58 989.06 - 1206.90 42.26 - 73.59 1042.06 - 1259.90 49.88 - 81.21 

10 1003.17 - 1087.89 21.84 - 32.13 1028.93 - 1160.04 24.97 - 40.89 1142.87 - 1360.71 38.81 - 65.26 1221.46 - 1439.29 48.35 - 74.81 

2 1173.76 - 1258.48 19.07 - 27.66 1207.73 - 1338.83 22.51 - 35.81 1337.73 - 1555.58 35.70 - 57.80 1448.87 - 1666.70 46.97 - 69.07 

1 1265.52 - 1350.23 17.92 - 25.81 1303.77 - 1434.86 21.48 - 33.70 1442.60 - 1660.45 34.42 - 54.72 1571.19 - 1789.03 46.40 - 66.70 

I 

Peak Flow 

Range 

50 0.90 - 0.94 34.33 - 40.30 0.93 - 0.99 38.81 - 47.76 1.02 - 1.13 52.24 - 68.66 1.13 - 1.24 68.66 - 85.07 

10 1.18 - 1.22 32.58 - 37.08 1.23 - 1.29 38.20 - 44.94 1.35 - 1.45 51.69 - 62.92 1.51 - 1.62 69.66 - 82.02 

2 1.54 - 1.58 29.41 - 32.77 1.60 - 1.67 34.45 - 40.34 1.76 - 1.87 47.90 - 57.14 1.99 - 2.10 67.23 - 76.47 

1 1.74 - 1.78 27.94 - 30.88 1.81 - 1.87 33.09 - 37.50 1.98 - 2.09 45.59 - 53.68 2.25 - 2.36 65.44 - 73.53 

Total 

Discharge 
Range 

50 892.58 - 977.30 9.30 - 19.67 911.94 - 1043.04 11.67 - 27.72 1013.02 - 1230.85 24.05 - 50.72 1066.01 - 1283.84 30.53 - 57.21 

10 1027.12 - 1111.83 6.21 - 14.97 1052.87 - 1183.97 8.87 - 22.43 1166.80 - 1384.64 20.65 - 43.18 1245.38 - 1463.21 28.78 - 51.30 

2 1197.72 - 1282.43 6.04 - 13.54 1231.67 - 1362.78 9.04 - 20.65 1361.67 - 1579.52 20.55 - 39.84 1472.81 - 1690.64 30.39 - 49.68 

1 1289.46 - 1374.17 5.96 - 12.93 1327.70 - 1458.80 9.11 - 19.88 1466.54 - 1684.39 20.52 - 38.42 1595.15 - 1812.99 31.09 - 48.99 
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Table C.7. Peak flow and total discharge change ranges for woodland (W), grassland (G) and impermeable (I) land cover, compared with 2020 values for 96-

hour 50%, 10%, 2% and 1% AEP events in winter 

  AEP% 2040 2070 2120 2120 H 

   m3/s % Change m3/s % Change m3/s % Change m3/s % Change 

W 

Peak Flow 

Range 

50 0.85 - 0.89 6.25 - 11.25 0.85 - 0.92 6.25 – 15.00 1.04 - 1.05 30.00 - 31.25 1.05 - 1.16 31.25 – 45.00 

10 1.06 - 1.11 4.95 - 9.90 1.08 - 1.15 6.93 - 13.86 1.36 - 1.30 34.65 - 28.71 1.34 - 1.45 32.67 - 43.56 

2 1.32 - 1.36 5.60 - 8.80 1.36 - 1.42 8.80 - 13.60 1.78 - 1.60 42.40 – 28.00 1.69 - 1.80 35.20 – 44.00 

1 1.45 - 1.50 5.07 - 8.70 1.50 - 1.56 8.70 - 13.04 2.00 - 1.75 44.93 - 26.81 1.87 - 1.97 35.51 - 42.75 

Total 

Discharge 
Range 

50 1013.96 - 1098.68 6.42 - 15.31 1012.94 - 1144.04 6.31 - 20.07 1127.13 - 1344.97 18.30 - 41.16 1207.45 - 1425.28 26.73 - 49.59 

10 1176.65 - 1261.37 6.18 - 13.82 1184.04 - 1315.14 6.85 - 18.68 1313.52 - 1531.36 18.53 - 38.19 1424.80 - 1642.64 28.57 - 48.23 

2 1372.52 - 1457.24 6.01 - 12.55 1388.86 - 1519.96 7.27 - 17.39 1537.51 - 1755.35 18.75 - 35.58 1686.67 - 1904.51 30.27 - 47.10 

1 1472.79 - 1557.50 5.93 - 12.02 1493.97 - 1625.08 7.45 - 16.88 1652.82 - 1870.65 18.87 - 34.54 1820.43 - 2038.27 30.93 - 46.60 

G 

Peak Flow 

Range 

50 0.85 - 0.89 26.87 - 32.84 0.88 - 0.94 31.34 - 40.30 0.97 - 1.08 44.78 - 61.19 1.07 - 1.18 59.70 - 76.12 

10 1.06 - 1.11 17.78 - 23.33 1.10 - 1.17 22.22 – 30.00 1.21 - 1.32 34.44 - 46.67 1.36 - 1.47 51.11 - 63.33 

2 1.32 - 1.36 13.79 - 17.24 1.37 - 1.44 18.10 - 24.14 1.51 - 1.62 30.17 - 39.66 1.70 - 1.81 46.55 - 56.03 

1 1.45 - 1.50 12.40 - 16.28 1.51 - 1.58 17.05 - 22.48 1.66 - 1.77 28.68 - 37.21 1.88 - 1.99 45.74 - 54.26 

Total 

Discharge 
Range 

50 1012.31 - 1097.02 21.73 - 31.91 1038.08 - 1169.19 24.83 - 40.59 1152.28 - 1370.12 38.56 - 64.75 1232.56 - 1450.40 48.21 - 74.41 

10 1174.98 - 1259.70 19.06 - 27.65 1209.21 - 1340.31 22.53 - 35.82 1338.69 - 1556.52 35.65 - 57.72 1449.97 - 1667.81 46.93 – 69.00 

2 1370.88 - 1455.59 16.83 - 24.05 1414.04 - 1545.14 20.51 - 31.68 1562.7 - 1780.53 33.18 - 51.74 1711.83 - 1929.68 45.89 - 64.45 

1 1471.14 - 1555.86 15.93 - 22.60 1519.13 - 1650.23 19.71 - 30.04 1678.00 - 1895.84 32.23 - 49.39 1845.60 - 2063.44 45.43 - 62.60 

I 

Peak Flow 

Range 

50 0.86 - 0.90 6.17 - 11.11 0.89 - 0.95 9.88 - 17.28 0.98 - 1.09 20.99 - 34.57 1.08 - 1.19 33.33 - 46.91 

10 1.07 - 1.12 4.90 - 9.80 1.11 - 1.18 8.82 - 15.69 1.22 - 1.33 19.61 - 30.39 1.37 - 1.48 34.31 - 45.10 

2 1.33 - 1.37 5.56 - 8.73 1.38 - 1.45 9.52 - 15.08 1.52 - 1.62 20.63 - 28.57 1.71 - 1.82 35.71 - 44.44 

1 1.46 - 1.51 5.04 - 8.63 1.52 - 1.59 9.35 - 14.39 1.67 - 1.78 20.14 - 28.06 1.89 – 2.00 35.97 - 43.88 

Total 

Discharge 
Range 

50 1036.24 - 1120.94 6.28 - 14.96 1062.00 - 1193.10 8.92 - 22.36 1176.21 - 1394.05 20.63 - 42.97 1256.55 - 1474.39 28.87 - 51.21 

10 1198.96 - 1283.67 6.06 - 13.55 1233.12 - 1364.22 9.08 - 20.68 1362.62 - 1580.46 20.54 - 39.81 1473.91 - 1691.74 30.38 - 49.65 

2 1394.79 - 1479.51 5.90 - 12.34 1437.97 - 1569.08 9.18 - 19.14 1586.63 - 1804.46 20.47 - 37.01 1735.77 - 1953.61 31.79 - 48.33 

1 1495.08 - 1579.79 5.83 - 11.83 1543.07 - 1674.17 9.23 - 18.51 1701.92 - 1919.76 20.48 - 35.90 1869.56 - 2087.40 32.34 - 47.76 
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Table C.8. Peak flow and total discharge change ranges for woodland (W), grassland (G) and impermeable (I) land cover, compared with 2020 values for 6-

hour 50%, 10%, 2% and 1% AEP events in summer 

  AEP% 2040 2070 2120 2120 H 

   m3/s % Change m3/s % Change m3/s % Change m3/s % Change 

W 

Peak Flow 

Range 

50 0.62 - 0.65 12.73 - 18.18 0.43 - 0.49 -21.82 - -10.91 0.51 - 0.60 -7.27 - 9.09 0.60 - 0.69 9.09 - 25.45 

10 1.14 - 1.17 8.57 - 11.43 0.76 - 0.81 -27.62 - -22.86 0.89 - 0.98 -15.24 - -6.67 1.11 - 1.20 5.71 - 14.29 

2 1.83 - 1.87 6.40 - 8.72 1.38 - 1.43 -19.77 - -16.86 1.59 - 1.68 -7.56 - -2.33 1.96 - 2.05 13.95 - 19.19 

1 2.22 - 2.26 6.22 - 8.13 1.75 - 1.81 -16.27 - -13.40 2.00 - 2.09 -4.31 – 0.00 2.45 - 2.55 17.22 - 22.01 

Total 

Discharge 
Range 

50 495.59 - 557.83 8.16 - 21.74 472.75 - 567.84 3.18 - 23.93 532.84 - 690.18 16.29 - 50.63 546.41 - 703.74 19.25 - 53.59 

10 571.97 - 634.22 7.72 - 19.44 520.55 - 615.64 -1.97 - 15.94 589.23 - 746.57 10.97 - 40.60 622.11 - 779.45 17.16 - 46.79 

2 674.97 - 737.22 7.30 - 17.19 612.50 - 707.59 -2.63 - 12.48 693.24 - 850.58 10.20 - 35.21 747.48 - 904.82 18.82 - 43.83 

1 732.59 - 794.83 7.11 - 16.21 667.96 - 763.06 -2.34 - 11.56 753.76 - 911.11 10.20 - 33.21 820.56 - 977.90 19.97 - 42.97 

G 

Peak Flow 

Range 

50 0.55 - 0.58 12.24 - 18.37 0.59 - 0.65 20.41 - 32.65 0.71 - 0.80 44.90 - 63.27 0.88 - 0.97 79.59 - 97.96 

10 1.07 - 1.11 8.08 - 12.12 1.14 - 1.20 15.15 - 21.21 1.31 - 1.40 32.32 - 41.41 1.57 - 1.67 58.59 - 68.69 

2 1.77 - 1.81 7.27 - 9.70 1.87 - 1.93 13.33 - 16.97 2.10 - 2.19 27.27 - 32.73 2.50 - 2.59 51.52 - 56.97 

1 2.16 - 2.20 6.93 - 8.91 2.28 - 2.33 12.87 - 15.35 2.55 - 2.64 26.24 - 30.69 3.02 - 3.11 49.50 - 53.96 

Total 

Discharge 
Range 

50 485.85 - 548.09 8.34 - 22.22 495.47 - 590.56 10.48 - 31.69 561.64 - 718.98 25.24 - 60.32 586.54 - 743.88 30.79 - 65.87 

10 562.24 - 624.48 7.86 - 19.80 575.53 - 670.63 10.41 - 28.66 648.92 - 806.26 24.49 - 54.68 688.43 - 845.77 32.07 - 62.26 

2 665.23 - 727.48 7.41 - 17.46 683.45 - 778.54 10.35 - 25.71 766.63 - 923.97 23.78 - 49.19 825.74 - 983.08 33.33 - 58.73 

1 722.83 - 785.08 7.21 - 16.44 743.88 - 838.98 10.33 - 24.43 832.49 - 989.83 23.47 - 46.80 902.59 - 1059.92 33.87 - 57.20 

I 

Peak Flow 

Range 

50 1.13 - 1.16 5.61 - 8.41 1.17 - 1.22 9.35 - 14.02 1.28 - 1.37 19.63 - 28.04 1.45 - 1.54 35.51 - 43.93 

10 1.63 - 1.67 5.16 - 7.74 1.70 - 1.75 9.68 - 12.90 1.86 - 1.95 20.00 - 25.81 2.12 - 2.21 36.77 - 42.58 

2 2.31 - 2.35 5.00 - 6.82 2.41 - 2.47 9.55 - 12.27 2.64 - 2.73 20.00 - 24.09 3.03 - 3.12 37.73 - 41.82 

1 2.70 - 2.73 5.47 - 6.64 2.81 - 2.87 9.77 - 12.11 3.08 - 3.17 20.31 - 23.83 3.54 - 3.63 38.28 - 41.80 

Total 

Discharge 
Range 

50 574.46 - 636.70 6.96 - 18.55 584.06 - 679.15 8.75 - 26.45 650.22 - 807.56 21.07 - 50.36 675.11 - 832.45 25.70 – 55.00 

10 650.8 - 713.04 6.72 - 16.93 664.10 - 759.19 8.90 - 24.50 737.46 - 894.81 20.93 - 46.74 776.94 - 934.28 27.41 - 53.21 

2 753.75 - 815.99 6.49 - 15.28 771.96 - 867.06 9.06 - 22.49 855.13 - 1012.47 20.81 - 43.04 914.22 - 1071.55 29.16 - 51.38 

1 811.33 - 873.58 6.37 - 14.53 832.37 - 927.46 9.13 - 21.59 920.98 - 1078.31 20.74 - 41.37 991.04 - 1148.39 29.93 - 50.56 
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Table C.9. Peak flow and total discharge change ranges for woodland (W), grassland (G) and impermeable (I) land cover, compared with 2020 values for 24-

hour 50%, 10%, 2% and 1% AEP events in summer 

  AEP% 2040 2070 2120 2120 H 

   m3/s % Change m3/s % Change m3/s % Change m3/s % Change 

W 

Peak Flow 

Range 

50 0.93 - 0.97 8.14 - 12.79 0.63 - 0.69 -26.74 - -19.77 0.74 - 0.83 -13.95 - -3.49 0.91 – 1.00 5.81 - 16.28 

10 1.42 - 1.46 5.97 - 8.96 1.08 - 1.14 -19.4 - -14.93 1.25 - 1.34 -6.72 – 0.00 1.52 - 1.61 13.43 - 20.15 

2 2.04 - 2.07 6.25 - 7.81 1.70 - 1.76 -11.46 - -8.33 1.93 - 2.02 0.52 - 5.21 2.32 - 2.41 20.83 - 25.52 

1 2.36 - 2.40 5.83 - 7.62 2.04 - 2.09 -8.52 - -6.28 2.3 - 2.39 3.14 - 7.17 2.76 - 2.85 23.77 - 27.80 

Total 

Discharge 
Range 

50 652.34 - 724.95 7.67 - 19.65 599.41 - 710.33 -1.07 - 17.24 678.53 - 862.08 11.99 - 42.28 712.78 - 896.32 17.64 - 47.93 

10 755.42 - 828.03 7.29 - 17.61 692.97 - 803.90 -1.58 - 14.18 783.25 - 966.80 11.25 - 37.32 838.66 - 1022.20 19.12 - 45.18 

2 885.98 - 958.59 6.95 - 15.72 820.31 - 931.24 -0.98 - 12.42 923.54 - 1107.09 11.49 - 33.64 1007.08 - 1190.63 21.57 - 43.73 

1 956.25 - 1028.86 6.81 - 14.92 891 - 1001.93 -0.48 - 11.91 1002.32 - 1185.87 11.95 - 32.45 1099.82 - 1283.37 22.84 - 43.34 

G 

Peak Flow 

Range 

50 0.89 - 0.92 8.54 - 12.2 0.94 - 0.99 14.63 - 20.73 1.07 - 1.16 30.49 - 41.46 1.26 - 1.36 53.66 - 65.85 

10 1.39 - 1.42 6.92 - 9.23 1.46 - 1.51 12.31 - 16.15 1.63 - 1.72 25.38 - 32.31 1.92 - 2.01 47.69 - 54.62 

2 2.00 - 2.04 6.38 - 8.51 2.10 - 2.16 11.70 - 14.89 2.33 - 2.42 23.94 - 28.72 2.72 - 2.81 44.68 - 49.47 

1 2.33 - 2.36 6.39 - 7.76 2.44 - 2.50 11.42 - 14.16 2.70 - 2.79 23.29 - 27.40 3.15 - 3.24 43.84 - 47.95 

Total 

Discharge 
Range 

50 642.61 - 715.22 7.79 - 19.97 656.68 - 767.62 10.15 - 28.76 739.70 - 923.25 24.08 - 54.87 780.30 - 963.85 30.89 - 61.68 

10 745.69 - 818.30 7.40 - 17.86 764.60 - 875.54 10.12 - 26.10 857.42 - 1040.97 23.49 - 49.93 917.60 - 1101.14 32.16 - 58.59 

2 876.25 - 948.85 7.03 - 15.90 901.44 - 1012.38 10.11 - 23.66 1006.70 - 1190.25 22.97 - 45.39 1091.75 - 1275.31 33.36 - 55.78 

1 946.5 - 1019.12 6.88 - 15.08 975.03 - 1085.97 10.10 - 22.63 1086.92 - 1270.49 22.74 - 43.47 1185.43 - 1368.98 33.86 - 54.59 

I 

Peak Flow 

Range 

50 1.21 - 1.25 5.22 - 8.70 1.26 - 1.31 9.57 - 13.91 1.38 - 1.47 20.00 - 27.83 1.56 - 1.65 35.65 - 43.48 

10 1.67 - 1.71 5.03 - 7.55 1.74 - 1.80 9.43 - 13.21 1.91 – 2.00 20.13 - 25.79 2.18 - 2.27 37.11 - 42.77 

2 2.26 - 2.29 5.61 - 7.01 2.35 - 2.41 9.81 - 12.62 2.57 - 2.67 20.09 - 24.77 2.95 - 3.05 37.85 - 42.52 

1 2.57 - 2.61 5.33 - 6.97 2.68 - 2.74 9.84 - 12.30 2.93 - 3.02 20.08 - 23.77 3.37 - 3.46 38.11 - 41.80 

Total 

Discharge 
Range 

50 730.31 - 802.92 6.79 - 17.41 744.35 - 855.28 8.85 - 25.07 827.35 - 1010.89 20.98 - 47.82 867.93 - 1051.48 26.92 - 53.76 

10 833.28 - 905.89 6.57 - 15.85 852.20 - 963.14 8.99 - 23.17 945.01 - 1128.57 20.85 - 44.33 1005.16 - 1188.70 28.55 - 52.02 

2 963.77 - 1036.38 6.35 - 14.37 988.96 - 1099.90 9.13 - 21.37 1094.22 - 1277.78 20.75 – 41.00 1179.25 - 1362.80 30.13 - 50.39 

1 1034.02 - 1106.63 6.26 - 13.72 1062.53 - 1173.46 9.19 - 20.59 1174.44 - 1357.98 20.69 - 39.55 1272.90 - 1456.45 30.81 - 49.67 
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Table C.10. Peak flow and total discharge change ranges for woodland (W), grassland (G) and impermeable (I) land cover, compared with 2020 values for 96-

hour 50%, 10%, 2% and 1% AEP events in summer 

  AEP% 2040 2070 2120 2120 H 

   m3/s % Change m3/s % Change m3/s % Change m3/s % Change 

W 

Peak Flow 

Range 

50 0.83 - 0.87 6.41 - 11.54 0.65 - 0.70 -16.67 - -10.26 0.74 - 0.83 -5.13 - 6.41 0.88 - 0.97 12.82 - 24.36 

10 1.08 - 1.12 5.88 - 9.80 0.93 - 0.98 -8.82 - -3.92 1.06 - 1.15 3.92 - 12.75 1.23 - 1.32 20.59 - 29.41 

2 1.37 - 1.41 5.38 - 8.46 1.26 - 1.31 -3.08 - 0.77 1.41 - 1.50 8.46 - 15.38 1.65 - 1.74 26.92 - 33.85 

1 1.52 - 1.56 5.56 - 8.33 1.43 - 1.48 -0.69 - 2.78 1.59 - 1.68 10.42 - 16.67 1.86 - 1.95 29.17 - 35.42 

Total 

Discharge 
Range 

50 762.74 - 557.83 7.3 - -21.53 699.44 - 567.84 -1.61 - -20.12 790.37 - 690.18 11.19 - -2.91 847.98 - 703.74 19.29 - -1.00 

10 887.13 - 634.22 6.87 - -23.60 821.25 - 615.64 -1.07 - -25.84 925.22 - 746.57 11.46 - -10.06 1009.16 - 779.45 21.57 - -6.10 

2 1037.43 - 737.22 6.59 - -24.25 975.49 - 707.59 0.23 - -27.30 1094.52 - 850.58 12.46 - -12.61 1207.74 - 904.82 24.09 - -7.03 

1 1114.53 - 794.83 6.55 - -24.02 1054.99 - 763.06 0.86 - -27.05 1181.86 - 911.11 12.98 - -12.90 1309.23 - 977.90 25.16 - -6.51 

G 

Peak Flow 

Range 

50 0.82 - 0.85 6.49 - 10.39 0.85 - 0.91 10.39 - 18.18 0.95 - 1.04 23.38 - 35.06 1.07 - 1.17 38.96 - 51.95 

10 1.08 - 1.10 6.93 - 8.91 1.12 - 1.17 10.89 - 15.84 1.24 - 1.33 22.77 - 31.68 1.40 - 1.49 38.61 - 47.52 

2 1.37 - 1.40 5.38 - 7.69 1.43 - 1.48 10.00 - 13.85 1.57 - 1.66 20.77 - 27.69 1.79 - 1.88 37.69 - 44.62 

1 1.52 - 1.55 5.56 - 7.64 1.58 - 1.64 9.72 - 13.89 1.74 - 1.83 20.83 - 27.08 1.98 - 2.08 37.50 - 44.44 

Total 

Discharge 
Range 

50 753.01 - 548.09 7.40 - -21.83 771.92 - 590.56 10.10 - -15.77 865.46 - 718.98 23.44 - 2.55 927.58 - 743.88 32.3 - 6.10 

10 877.39 - 624.48 6.95 - -23.88 902.63 - 670.63 10.03 - -18.25 1008.69 - 806.26 22.96 - -1.72 1093.92 - 845.77 33.35 - 3.10 

2 1027.67 - 727.48 6.66 - -24.50 1060.61 - 778.54 10.08 - -19.20 1180.14 - 923.97 22.48 - -4.11 1294.18 - 983.08 34.32 - 2.03 

1 1104.80 - 785.08 6.61 - -24.24 1140.79 - 838.98 10.08 - -19.04 1268.12 - 989.83 22.37 - -4.48 1396.46 - 1059.92 34.75 - 2.28 

I 

Peak Flow 

Range 

50 0.87 - 0.90 12.99 - 16.88 0.90 - 0.95 16.88 - 23.38 0.99 - 1.08 28.57 - 40.26 1.11 - 1.20 44.16 - 55.84 

10 1.11 - 1.14 9.90 - 12.87 1.15 - 1.20 13.86 - 18.81 1.26 - 1.35 24.75 - 33.66 1.42 - 1.51 40.59 - 49.50 

2 1.39 - 1.42 6.92 - 9.23 1.44 - 1.50 10.77 - 15.38 1.58 - 1.67 21.54 - 28.46 1.80 - 1.89 38.46 - 45.38 

1 1.53 - 1.57 6.25 - 9.03 1.60 - 1.65 11.11 - 14.58 1.75 - 1.84 21.53 - 27.78 1.99 - 2.08 38.19 - 44.44 

Total 

Discharge 
Range 

50 574.46 - 636.70 -27.11 - -19.21 584.06 - 679.15 -25.89 - -13.82 650.22 - 807.56 -17.49 - 2.47 675.11 - 832.45 -14.34 - 5.63 

10 650.80 - 713.04 -28.27 - -21.42 664.10 - 759.19 -26.81 - -16.33 737.46 - 894.81 -18.72 - -1.38 776.94 - 934.28 -14.37 - 2.97 

2 753.75 - 815.99 -28.25 - -22.32 771.96 - 867.06 -26.52 - -17.46 855.13 - 1012.47 -18.60 - -3.62 914.22 - 1071.55 -12.97 – 2.00 

1 811.33 - 873.58 -27.77 - -22.23 832.37 - 927.46 -25.90 - -17.43 920.98 - 1078.31 -18.01 - -4.00 991.04 - 1148.39 -11.77 - 2.24 
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C.3.2 Percent difference between projected peak flow and total discharge 

Table C.11 to Table C.14 present the mean projected peak flow and total discharge for winter 

and summer storms, in addition to the mean percent change from current (2020) modelled 

values.  

Table C.11. Winter peak flow and percent difference compared with 2020. W=woodland, 

G=grassland, I=impermeable land cover 

Duration 
 2020 2040 2070 2120 2120 H 
 m3/s m3/s ± %  m3/s ± % m3/s ± % m3/s ± % 

6 

W 0.97 1.05 8.22 1.04 7.19 1.18 20.81 1.32 36.04 

G 0.68 1.05 7.65 1.10 12.95 1.23 26.53 1.38 41.74 

I 1.02 1.10 13.28 1.15 18.62 1.29 32.19 1.43 47.39 

24 

W 1.23 1.32 35.86 1.33 37.12 1.49 53.25 1.69 73.62 

G 0.99 1.32 35.58 1.38 42.15 1.54 58.26 1.74 78.53 

I 1.26 1.36 39.66 1.42 46.21 1.58 62.29 1.78 82.51 

96 

W 1.11 1.19 7.48 1.23 10.74 1.37 23.63 1.54 38.81 

G 1.00 1.19 7.43 1.25 12.52 1.39 25.29 1.56 40.34 

I 1.12 1.20 8.31 1.26 13.40 1.40 26.13 1.57 41.17 

 

Table C.12. Winter total discharge and percent difference compared with 2020. 

W=woodland, G=grassland, I=impermeable land cover 

Duration 
 2020 2040 2070 2120 2120 H 
 m3/s m3/s ± %  m3/s ± % m3/s ± % m3/s ± % 

6 

W 783.30 870.73 11.16 885.62 13.06 1018.06 29.97 1080.68 37.97 

G 661.90 868.23 31.17 908.98 37.33 1041.46 57.35 1104.18 66.82 

I 805.59 892.18 10.75 932.92 15.81 1065.41 32.25 1128.13 40.04 

24 

W 1015.81 1121.78 10.43 1147.55 12.97 1311.85 29.14 1404.65 38.28 

G 894.41 1120.13 25.24 1172.66 31.11 1336.99 49.48 1429.81 59.86 

I 1032.53 1144.08 10.80 1196.59 15.89 1360.93 31.81 1453.76 40.80 

96 

W 1186.53 1301.34 9.68 1335.50 12.56 1516.66 27.82 1643.76 38.54 

G 1065.23 1299.69 22.01 1360.67 27.73 1541.83 44.74 1668.91 56.67 

I 1208.81 1323.62 9.50 1384.59 14.54 1565.76 29.53 1692.87 40.04 
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Table C.13. Summer peak flow and percent difference compared with 2020. W=woodland, 

G=grassland, I=impermeable land cover 

Duration 
 2020 2040 2070 2120 2120 H 
 m3/s m3/s ± %  m3/s ± % m3/s ± % m3/s ± % 

6 

W 1.35 1.47 8.69 1.11 -18.13 1.29 -4.36 1.58 16.58 

G 1.29 1.41 9.17 1.50 16.43 1.71 32.98 2.04 58.35 

I 1.84 1.96 6.29 2.05 11.25 2.26 22.61 2.58 40.01 

24 

W 1.59 1.71 7.52 1.39 -12.30 1.60 0.79 1.92 21.20 

G 1.55 1.67 7.72 1.76 13.85 1.98 27.81 2.31 49.17 

I 1.83 1.94 6.31 2.04 11.28 2.24 22.69 2.56 40.05 

96 

W 1.14 1.22 7.37 1.09 -3.90 1.25 9.73 1.45 27.78 

G 1.13 1.21 7.13 1.27 12.73 1.42 25.58 1.61 42.32 

I 1.16 1.24 7.05 1.30 12.01 1.44 24.21 1.62 40.10 

 

Table C.14.Summer total discharge and percent difference compared with 2020. 

W=woodland, G=grassland, I=impermeable land cover 

Duration 
 2020 2040 2070 2120 2120 H 
 m3/s m3/s ± %  m3/s ± % m3/s ± % m3/s ± % 

6 

W 575.56 649.90 12.92 615.99 7.02 720.94 25.26 762.81 32.53 

G 565.82 640.16 13.14 672.13 18.79 781.09 38.05 829.49 46.60 

I 654.37 728.71 11.36 760.67 16.25 869.62 32.89 918.00 40.29 

24 

W 758.42 848.80 11.92 806.39 6.32 938.69 23.77 1006.36 32.69 

G 748.67 839.07 12.07 879.91 17.53 1014.47 35.50 1085.54 45.00 

I 836.27 926.65 10.81 967.48 15.69 1102.03 31.78 1173.08 40.28 

96 

W 890.06 986.76 10.86 936.20 5.18 1089.77 22.44 1185.30 33.17 

G 880.32 969.96 10.18 1024.45 16.37 1172.37 33.18 1269.81 44.24 

I 967.31 1064.00 10.00 1111.43 14.90 1259.36 30.19 1356.79 40.26 

 

 



12-79 
 

Appendix D. Extracurricular Academic Engagement 

 

This section details all academic and extracurricular engagement undertaken throughout the 

course of the study duration.  

 

D.1 HofE and EA Feedback Presentation 

Upon partial completion of the project (i.e., all infiltration, modelled and projected results had 

been produced and analysed), a feedback presentation was held with Roy Stokes (project 

manager in the EA’s Midlands region), Stephen Coffey (head forester for the HofE forest 

charity), and Sophie Leszczynska (biodiversity manager for the HofE forest charity). The aim 

of this presentation was primarily to explain the motivations for the project, the methods 

employed, the determined results, the applications and reliability of findings, and the 

opportunities for future work across the HofE site and the Midlands in general. The 

presentation also acted as a productive environment to receive any feedback on the project and 

develop ideas that could be discussed throughout Chapter 8 to broaden the applicability and 

current relevance of study findings. 

Overall feedback was highly positive. The HofE forest were happy that a side-effect of their 

motivations for woodland planting was an increase in infiltration (section 7.1). The EA were 

interested in continuing the development of the modelled projections to infiltration, peak flow, 

and total discharge – with primary interest revolving around the potential to make this data a 

saleable product. They were keen on learning about the methods used in infiltration data 

projection, future peak flow, and total discharge calculations, and think this is a valuable area 

of future research in the field of woodland planting and NFM. The HofE forest were happy 

with the research undertaken and pleased that they had contributed towards the publication of 

the peer reviewed paper (section D.2) and are keen to initiate future projects at the study site.  
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No fundamental floors, nor areas for large-scale modification/improvement were identified as 

a result of the presentation. However, discussions with the attendees did influence some of the 

discussion points outlined throughout section Chapter 8. Both the HofE forest and the EA 

emphasised the numerous benefits of woodland planting aside from the predominantly 

hydrological ones discussed throughout this study (carbon sequestration, biodiversity, public 

amenity, mental health, and fitness). This led to sections of this nature to be added to the 

discussion, placing more emphasis on the wider-scale impacts of woodland planting, and how 

there is a governmental shift towards woodland planting for the benefit of carbon sequestration, 

however this is also advantageous for flood risk, even if not specified by the policies 

themselves. 
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D.2 Peer Reviewed Publications 

This section presents the peer-reviewed publications, produced as a direct output of this work. 

D.2.1 Modelling the Hydrological Effects of Woodland Planting on Infiltration and Peak 

Discharge Using HEC-HMS 

First author of the below article, published in the Water MDPI special issue ‘forms, functions 

and values of treescapes (natural and urban)’. The paper presents the methods and results of 

the hydrological modelling undertaken in partial fulfilment of this study, presented in sections 

5.3 and 7.2 of this thesis.  

 

The publication is inserted below.
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Article 

Modelling the Hydrological Effects of Woodland Planting on 

Infiltration and Peak Discharge Using HEC-HMS 

Nathaniel Revell 1,*, Craig Lashford 1,2, Matthew Blackett 1,2 and Matteo Rubinato 1,2,3 

1 Centre for Agroecology, Water and Resilience, Coventry University, Wolston Lane, Coventry CV8 3LG, UK; 

ab0874@coventry.ac.uk (C.L.); aa8533@coventry.ac.uk (M.B.); ad2323@coventry.ac.uk (M.R.) 
2 Faculty of Engineering, Environment & Computing, School of Energy, Construction and Environment, Coventry 

University, Coventry CV1 5FB, UK 
3 IKT-Institute for Underground Infrastructure, Exterbruch 1, 45886 Gelsenkirchen, Germany 

* Correspondence: revelln@uni.coventry.ac.uk 

Abstract: Woodland planting is gaining momentum as a potential method of natural flood management 

(NFM), due to its ability to break up soil and increase infiltration and water storage. In this study, a 2.2 

km2 area in Warwickshire, England, planted with woodland every year from 2006 to 2012, was sampled 

using a Mini Disk infiltrometer (MDI). Infiltration measurements were taken from 10 and 200 cm away 

from the trees, from November 2019 to August 2021. Two individual hydrological models were built 

using the US Hydraulic Engineering Center Hydrological Modelling System (HEC-HMS), to model the 

effects of infiltration change on peak flows from the site throughout the summer and winter. The models 

were calibrated and validated using empirical data; the Nash and Sutcliffe Efficiency (NSE) was used 

as an indicator of accuracy. Results from this study show that woodland planting reduced peak flow 

intensity compared to impermeable land cover by an average of 6%, 2%, and 1% for 6-h, 24-h, and 96-h 

winter storms, respectively, and 48%, 18%, and 3% for 6-h, 24-h, and 96-h summer storms, respectively. 

However, grassland simulations show the greatest reduction in peak flows, being 32%, 21%, and 10%, 

lower than woodland for 6-, 24-, and 96-h winter storms, respectively, and 6%, 3%, and 0.5% lower than 

woodland for 6-, 24-, and 96-h summer storms, respectively. 

Keywords: infiltration; natural flood management; HEC-HMS; hydrological modelling; Nash and 

Sutcliffe efficiency; calibration; validation 

 

1. Introduction 

Urbanisation and the replacement of permeable and vegetated surfaces to impermeable 

surfaces, such as asphalt and concrete, reduces lag times and increases peak flows in receiving 

watercourses, influencing the likelihood and severity of high-flow or flooding events across 

the UK (Ferguson and Fenner, 2020a; Ellis et al., 2021). Coupled with this, the global climate 

is predicted to change in ways unseen in recorded history (Lowe et al., 2019). In the UK, sea 

levels are expected to rise, the frequency of extreme weather events will increase, summers 

will become hotter and drier, and winters will become warmer and wetter (Lowe et al., 2019; 

Murphy et al., 2021). Consequently, authorities responsible for managing flood risk in the UK 

have increased investment in alternative, more sustainable methods of mitigating flooding, 

such as natural flood management (NFM) techniques (Metcalfe et al., 2018; Shuttleworth et 

al., 2019; Ferguson and Fenner, 2020a). 

The design and operation of any NFM feature is based primarily on emulating the 

natural hydrology of a catchment as it was prior to human interaction, with the intention of 

reducing fluvial flood risk (Forbes et al., 2016; Ellis et al., 2021). Common NFM methods can 

be categorised into those that (a) reduce hydrological or hydraulic connectivity; (b) create 

storage; or (c) increase infiltration (Ferguson and Fenner, 2020b). Examples of these methods 

include vegetation planting to increase infiltration and interception, changing animal grazing 

and farming routines to reduce compaction and increase lag time, and reconnecting or 

introducing offline marshlands and mudflat areas, to slow the flow of flooding water during 

a storm event (Forbes et al., 2016; Dadson et al., 2017; Ngai et al., 2017; Burgess-Gamble et al., 

2018). 

Whilst continuous academic investigations into the real-world applicability of NFM 

methods are ongoing, NFM implementation is slow, primarily due to the lack of long-term 
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evidence-based studies (Wells et al., 2020; Ellis et al., 2021). One method of NFM that is 

assumed valuable, although under-investigated, is woodland planting (Lacob et al., 2014; 

Dittrich et al., 2019; Murphy et al., 2021). Tree roots break up the surrounding soil, increasing 

infiltration rate and water storage capacity, whilst simultaneously offering a higher 

opportunity for interception and evapotranspiration (Chandler et al., 2018; Zhang et al., 

2019a). The value of woodland planting has been identified by the UK government, who have 

allocated GBP 4 million to various organizations to increase woodland planting for flood risk 

reduction, and the Environment Agency (England), who have been awarded GBP 1.4 million 

for the same purpose (GOV.UK, 2020). However, whilst some studies have attempted to 

investigate the link between woodland planting and soil infiltration characteristics (Chandler 

et al., 2018; Murphy, 2021; Murphy et al., 2021), evidence-based studies focusing solely on the 

impacts of changing infiltration as a result of woodland planting are sparse, posing a 

challenge to researchers in this discipline. 

In light of the changing climate, and the predicted increases to flood frequency and 

severity, the policy shift towards NFM methods, and the lack of evidence-based studies 

investigating the feasibility of woodland planting as a method of NFM, this study aims to 

determine the extent to which woodland planting has influenced infiltration at a site in central 

England (Lowe et al., 2019; Ferguson and Fenner, 2020a; Ellis et al., 2021; Murphy et al., 2021). 

Two hydrological models were built using HEC-HMS, calibrated and validated using the 

NSE method, and simulations were undertaken to predict the ability of woodland to increase 

infiltration and reduce peak runoff to the receiving watercourse. 

2. Materials and Methods 

2.1. Infiltration Data Collection 

Infiltration data were collected once every two weeks from specific areas of a 2.2 km2 site 

in Warwickshire, UK (52.1511° N, 1.5139° W). The HofE charity began planting woodland in 

2006, continuing every year until 2012. Infiltration data were collected from the woodland in 

plots planted in 2006 (Betula Pendula), 2008 (Populus Tremula), 2010 (Betula Pendula), and 2012 

(Populus Tremula). Additionally, infiltration data were collected from a plot planted in ca.1900 

(Quercus Petraea), and a control site consisting of a grassland area that pre-exists the HofE 

forest. The grassland area was sampled for comparison with the woodland areas, and the 

ca.1900 area was sampled to provide information on the infiltration characteristics of mature 

woodland, and for comparison to more recently planted areas. Figure 1 shows the locations 

of the infiltration sample plots and sampling locations. 
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Figure 1. Sample sites, sampling locations, rain gauge, and telemetry locations (Ordnance Survey, 2021). Data is reproduced 

under the open government license. 

Infiltration rates are influenced by soil texture (Rahman et al., 2019; Bátková et al., 2020; 

Ren et al., 2020). Therefore, soil samples were extracted from the surface (~5 cm depth) of the 

soil surrounding the area of MDI measurement using a trowel. The soil texture of these 

samples was then determined using a  LaMotte soil texture testing kit (LaMotte, 2020). The 

percentiles of sand, silt, and clay for each soil were compared against the UK soil texture 

triangle to determine the classification name of the sample soils. The percentiles and soil 

texture classifications of the sample area are shown in Table 1. 

Table 1. Soil percentiles and texture classification of each sample site. 

Sample Site Sand % Silt % Clay % UK Soil Classification 

Control 53 20 27 SaCL Sandy clay loam 

Pre-1900 47 40 13 SSL Sandy silt loam 

2006 20 20 60 C Clay 

2008 13 20 67 C Clay 

2010 53 33 14 SaL Sandy loam 

2012 33 13 54 C Clay 

Infiltration measurements were collected (10 and 200 cm away from the base of the 

sample trees) using a Mini Disk infiltrometer (MDI) (METER® Group Inc., 2020). The 10 cm 

proximity was chosen to represent the influence of the tree on infiltration directly adjacent to 

the trunk, and the 200 cm proximity was chosen to account for potential root spread due to 

tree growth (Perry, 1982; Mauer and Palátová, 2003; Hepner et al., 2020). As the MDI required 

a watertight seal with the sample soil, vegetation was removed from the surface of the soil 

before infiltration measurement proceeded. See Figure 2a,b. 
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Figure 2. (a) MDI performing measurement at the study site; (b) 10 and 200 cm proximity MDI sample replication points 

outlined in orange. 

Collecting infiltration data from two proximities allowed for the comparison and 

representation of both proximities in hydrological modelling. Infiltration measurements were 

carried out until three consecutive volumes were recorded (~10 min) and replicated three 

times at both proximities around the sample tree (Bagarello and Sgroi, 2004; Chandler et al., 

2018). 

It is acknowledged that, in addition to infiltration, woodland can influence hydrology 

through interception and evapotranspiration, which is also accounted from in this study (and 

discussed in Section 2.5.3) (Forbes et al., 2016; Dadson et al., 2017; Burgess-Gamble et al., 2018). 

These additional factors are important for justifying the use of woodland as a method of NFM, 

and are accounted for throughout the modelling and results of this study (this is discussed 

further in Section 2.5.3). A total of 1617 individual infiltration measurements were collected 

from October 2019 to August 2021; 888 from the 10 cm proximity (including a grassland 

control), and 729 from the 200 cm proximity. Infiltration data were not collected from March 

to July 2020 due to the UK national COVID-19 lockdown. 

2.2. Hydrometric Data Collection and HEC-HMS Modelling 

Rainfall data (in mm) were collected via a tipping bucket rain gauge (accuracy ±4% 

between 0.2 and 50 mm) located at the NextGen (2020) waste water treatment plant, 1 km 

north of the HofE site (see Figure 1). Whist not located directly on the HofE site, the rain 

gauge is the only one located within eyeshot of the study site and is representative of local 

rainfall (Roberts, 2008; Terink et al., 2018; Maier et al., 2020). The stage (in mm) of the study 

site tributary was recorded every 15 min via a pressure transducer (accuracy ± 0.05% FS) 

located at the downstream end of the site watercourse (Figure 1). Upon instillation, the 

transducer was calibrated to a flow meter, enabling the generation of a ratings curve to 

determine watercourse flow (in L/s) relative to measured water pressure (Malik and Pal, 2020; 

Rampinelli et al., 2020). 

The US Hydrologic Engineering Center Hydrological Modelling System (HEC-HMS) 

allows the application of various numerical methods to each stage of the rainfall–runoff 

process, meaning a model can be tailored to serve a very specific purpose dependent on the 

required output (Derdour et al., 2018; Al-Mukhtar and Al-Yaseen, 2019; Joshi et al., 2019; 

Rangari et al., 2020). The software is also capable of modelling simple hydraulic elements, 

allowing watercourses to be inputted as either user-defined open channels, or specified-shape 

culvers/pipes. 

For this study, ArcMap 10.6.1 was used in conjunction with a 1 m resolution digital 

terrain model (downloaded from the Department for Environment, Food and Rural Affairs) 

(Department for Environment Food & Rural Affairs, 2020), and the shapefile of the study site 

tributary to delineate the watershed and generate a flow accumulation file. The area defined 

by the watershed delineation was overlain with HofE field boundaries. Each field boundary 

was treated as a separate sub-catchment model input, and these were individually digitised 

to represent the 10 cm woodland proximity, the 200 cm proximity, and the grassland areas 

(a (b
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individually. This was implemented so that the model would account for the collected 

infiltration data of both the 10 and 200 cm proximities and the grassland (taken from the 

control site) data separately. 

The watercourse of the HofE site was added to the model in a series of reaches and 

junctions, the dimensions of which were validated from cross-section measurements taken 

on site. After the watercourse, sub-catchment nodes were added. Each node represented a 

different land cover type of each sub-catchment, meaning there were up-to three nodes for 

each catchment (10 cm proximity, 200 cm proximity, grassland, and impermeable). ArcGIS, 

the flow accumulation, and personal knowledge of the site (field visits, observations of flow 

paths during storm events, topography) were used to determine where the nodes 

representing the different plots should connect to the tributary. The HEC-HMS model is 

shown in Figure 3. 

 

Figure 3. HEC-HMS hydrological model. Brown indicates forested plots, green indicates grassland only plots, grey indicates 

impermeable surfaces, and cross-hatching represents infiltration sample plots. 

The Muskingum-Cunge routing method (Equations (1)–(6)) was used for modelling 

tributary flow (Kafle, 2019; Ramly et al., 2020; Rangari et al., 2020): 

𝑄𝑗+1
𝑛+1 = 𝐶0𝑄𝑗

𝑛+1 + 𝐶1𝑄𝑗
𝑛 + 𝐶2𝑄𝑗+1

𝑛  (1) 

where Q is discharge, j is a spatial index, n is time index. 𝐶0, 𝐶1, and  𝐶2 are calculated as 

follows (Cunge, 1969): 

 𝐶0 =
∆𝑡−2𝐾𝑋

2𝐾(1−𝑋)+∆𝑡
 (2) 

 𝐶1 =
∆𝑡+2𝐾𝑋

2𝐾(1−𝑋)+∆𝑡
 (3) 

 𝐶2 =
2𝐾(1−𝑋)−∆𝑡

2𝐾(1−𝑋)+∆𝑡
 (4) 

K and X are calculated as follows (Cunge, 1969): 
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 𝐾 =
∆𝑥

𝑐
 (5) 

 𝑋 =
1

2
(1 −

𝑞

𝑆𝑜  𝑐 ∆𝑥
) (6) 

where ∆𝑥 is reach length, c is flood wave celerity, q is unit width discharge, and 𝑆𝑜 is channel 

bed slope (Cunge, 1969) 

The initial and constant loss method (Equation (7)) was used to simulate the collected 

infiltration data (Section 2.1), the constant rate element is calculated as follows: 

 𝑝𝑒𝑡 {
0

𝑝1 − 𝑓𝑐 
0

𝑖𝑓 ∑ 𝑝𝑖 < 𝐼𝑎
𝑖𝑓 ∑ 𝑝𝑖 > 𝐼𝑎 and  𝑝𝑡 > 𝑓𝑐
𝑖𝑓 ∑ 𝑝𝑖 > 𝐼𝑎 and  𝑝𝑡 < 𝑓𝑐

 
 
 
  (7) 

where 𝑝𝑒𝑡 is excess overland flow, 𝑝1 is precipitation depth, 𝑓𝑐 is the maximum potential rate 

of precipitation, and 𝐼𝑎 is initial loss. The initial and constant method (equation) was chosen 

for use in this study due to the nature of collected infiltration data; however, it is 

acknowledged that other authors have modified the Richards equation to account for root 

water uptake in soils (Kuhlmann et al., 2012; Dong, 2016; Broadbridge et al., 2017). Whilst 

these physics-based infiltration models can account for variations in soil texture, the wetting 

front and unsaturated hydraulic conductivity (Kuhlmann et al., 2012; Blengino Albrieu et al., 

2015; Difonzo et al., 2021); they can be prone to error and require in-depth data of the soil 

column for accurate execution compared with the initial and constant method used here. 

The Snyder unit hydrograph transform (Equations (8) and (9)) was used to simulate the 

observed runoff and lag times of the catchment areas, Snyder’s equation for lag time is 

(Fedorova et al., 2018): 

𝑇𝑙𝑎𝑔 = 𝐶𝑡(𝐿𝐿𝑐)
0.2 (8) 

where 𝑇𝑙𝑎𝑔 is the catchment lag time (hours), 𝐶𝑡 is the catchment gradient coefficient, L is flow 

path length (km), and 𝐿𝑐 is length of flow path from outlet to closest point of the catchment 

centroid (km). 

For peak discharge, is (Fedorova et al., 2018): 

 𝑄𝑝 =
2.78×𝐶𝑝×𝐴

𝑇𝑙𝑎𝑔
 (9) 

where 𝑄𝑝 is peak discharge related to 1 cm of effective rainfall (m3 s-1), A is catchment area 

(km2), and 𝐶𝑝 is an empirical coefficient of peak intensity. 

The constant monthly baseflow method was used to simulate antecedent baseflow of the 

site, which applied a user-defined constant flow to all models as required (see Section 2.5.4) 

(Koneti et al., 2018; Zelelew and Melesse, 2018; Kafle, 2019). 

Two identical models, ‘winter’ and ‘summer’ were constructed and independently 

calibrated and validated (see Sections 2.3 and 2.4) to generate the results for this study. This 

approach was decided as a result of observed hydrological variations across the site from dry-

to-wet seasons. The winter model is representative of hydrological data (infiltration, 

telemetry, rainfall) from October to March (2019/2020 and 2020/2021), and the summer model 

from April to September (2019/2020 and 2020/2021). These timeframes are based on UK 

average annual rainfall and temperature data, as defined by the Met Office (2021). 

2.3. Model Calibration 

Model calibration involved setting the initial baseflow to match that of the observed 

tributary value for the selected event, then gradually adjusting unobserved model parameters 

until the modelled output best simulated those of the observed values (Derdour et al., 2018; 

Kumarasamy and Belmont, 2018; Al-Mukhtar and Al-Yaseen, 2019). Regarding the observed 

model parameters, infiltration was the key parameter for the hydrological model, it had been 

collected from October 2019 to August 2021 (with a break from March to July 2020 due to 

COVID-19), and this parameter could not be changed during the calibration process. The 

same applied to rainfall and baseflow, as these had been observed through use of the rain 

gauge and in-channel telemetry. This meant the only adjustable parameters were the lag 

times and peaking coefficients of the Snyder unit hydrograph transform (Equations (8) and 

(9)), so these parameters were adjusted through trial-and-error until one set of Snyder values 

(based on site observations and observed and simulated model output) could be used across 

all events and produce a similar outcome to the observed flow. This process was undertaken 
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for both the summer and winter models, using available data from the time periods specified 

in Section 2.2. 

The Nash and Sutcliffe (1970) Efficiency (NSE) method was used to determine the 

closeness-of-fit between the simulated and observed values in calibration. The NSE equation 

is displayed as follows: 

NSE = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚)2𝑛

𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑚𝑒𝑎𝑛)2𝑛

𝑖=1

] (10) 

where 𝑌𝑖
𝑜𝑏𝑠 is the observed discharge, 𝑌𝑖

𝑠𝑖𝑚 is the simulated discharge, and 𝑌𝑚𝑒𝑎𝑛 is the mean 

of observed discharge. Table 2 shows the timeframes of the model calibration for winter and 

summer models, in addition to the individual and mean NSE values. The NSE method 

produces a value between 0 and 1, as an indication of how well the simulated dataset (𝑌𝑖
𝑠𝑖𝑚) 

fits the observed dataset (𝑌𝑖
𝑜𝑏𝑠) (Nash and Sutcliffe, 1970; Naik et al., 2019). A value of 1 

indicates a perfect fit between the two datasets, whereas a value of 0 (or a negative value) 

indicates a poor fit. 

Table 2. Calibration events for winter and summer models. Note that the start and end time describes the time at which 

modelling began, not the start of the storm event. 

Calibration Events 

Winter 

Duration (h) Start Date Start Time End Date End Time Rainfall (mm) NSE 

24 16 January, 2021 04:00 17 January, 2021 04:00 1.8 0.41 

72 17 January, 2021 16:00 20 January, 2021 16:00 10.60 0.30 

96 30 November, 2019 04:00 04 December, 2019 04:00 0.80 0.92 

120 08 October, 2020 07:00 13 October, 2020 07:00 6.70 0.98 

                Summer  

24 09 September, 2020 03:00 10 September, 2020 03:00 1.20 0.62 

72 19 August, 2020 07:00 22 August, 2020 07:00 19.60 0.80 

96 01 August, 2020 01:00 05 August, 2020 01:00 7.90 0.29 

120 28 August, 2020 07:00 02 September, 2020 07:00 13.40 0.89 

The mean NSE of both the winter and summer calibrations are 0.65. Seen from Table 2, 

the shorter duration events (24 and 72 h) showed a lower calibration NSE output compared 

with longer duration events (96 and 120 h). Across the summer calibration events, the lowest 

NSE value of 0.29 was produced by the 96-h duration, influencing the average NSE. Figures 

4 and 5 show the observed and simulated discharge flow graphs for winter and summer 

model calibration events. 
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Figure 4. Observed and simulated discharge for winter model calibration events; (a) is the 24-h duration, (b) is the 72-h 

duration, (c) is the 96-h duration and (d) is the 120-h duration. 

 

Figure 5. Observed and simulated discharge for summer model calibration events; (a) is the 24-h duration, (b) is the 72-h 

duration, (c) is the 96-h duration and (d) is the 120-h duration. 

2.4. Model Validation 

The model was validated, again, using the NSE method for determination of 

relationship; however, different storm events were used to those used in calibration (using 

the same durations) (Table 3) (McMillan et al., 2016; Al-Mukhtar and Al-Yaseen, 2019). Table 

3 shows the timeframes of model validation for winter and summer models, in addition to 

the individual and mean NSE values. 

Table 3. Validation events for winter and summer models. Note that the start and end time describes the time at which 

modelling began, not the start of the storm event. 

Validation Events 

Winter 

Duration (h) Start Date Start Time End Date End Time Rainfall (mm) NSE 

24 14 January, 2021 04:30 15 January, 2021 04:30 1.10 0.90 

72 06 December, 2020 07:00 09 December, 2020 07:00 2.70 0.81 

96 02 November, 2020 01:00 06 November, 2020 01:00 6.70 0.87 

120 13 October, 2020 07:00 18 October, 2020 07:00 4.50 0.88 

Summer 

24 04 September, 2020 02:00 05 September, 2020 02:00 0.70 0.35 

72 09 September, 2020 22:00 12 September, 2020 22:00 1.00 0.23 

96 04 September, 2020 22:00 08 September, 2020 22:00 4.20 0.74 

120 30 August, 2020 02:00 04 September, 2020 02:00 8.00 0.42 

The mean NSE of the winter validations is 0.87, and summer 0.44. The NSE average for 

validation events in the winter is high (0.87) indicating that the winter model is very effective 

at modelling the observed response from the site; whereas the summer validation NSE is 0.44, 

indicating that the output from the summer models is less accurate than the winter model. 

Figures 6 and 7 show the observed and simulated discharge flow graphs for winter and 

summer model validation events. 
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Figure 6. Observed and simulated discharge for winter model validation events; (a) is the 24-h duration, (b) is the 72-h 

duration, (c) is the 96-h duration and (d) is the 120-h duration. 

 

Figure 7. Observed and simulated discharge for summer model validation events; (a) is the 24-h duration, (b) is the 72-h 

duration, (c) is the 96-h duration and (d) is the 120-h duration. 

The chosen calibration and validation datasets were selected primarily due to the 

scarcity of collected telemetry data from the study site and the timescales from which the data 

needed to be collected. Therefore, replication of calibration and validation events for the 

purposes of accuracy was not possible in this instance. Data scarcity for calibration and 

hydrological modelling is a common occurrence in the field of hydrological modelling. The 

methods presented throughout this section could be adopted by other researchers in the 

discipline aiming to simulate similar scenarios to those presented here. 

2.5. Model Boundary Conditions 

2.5.1. Precipitation and AEP Events 

The Flood Estimation Handbook (FEH) was used to generate the design storms used in 

simulations (UK Centre for Ecology and Hydrology, 2021). Annual exceedance probabilities 

0

0.1

0.2

0.3

0.4

0.5

0 6

1
2

1
8

2
4

F
lo

w
 (

m
3
/s

)

Hours

0.22

0.23

0.24

0.25

0.26

0.27

0.28

0.29

0 6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

F
lo

w
 (

m
3
/s

)

Hours

0.24

0.25

0.26

0.27

0.28

0.29

0.3

0.31

0 6

1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

F
lo

w
 (

m
3
/s

)

Hours

0.225

0.23

0.235

0.24

0.245

0.25

0 6
1
2

1
8

2
4

3
0

3
6

4
2

4
8

5
4

6
0

6
6

7
2

7
8

8
4

9
0

9
6

1
0
2

1
0
8

1
1
4

1
2
0

F
lo

w
 (

m
3
/s

)
Hours

a
b

c d



12-91 
 

(AEPs) representing 50% (1 in 2), 10% (1 in 10), 2% (1 in 50), and 1% (1 in 100) rainfall 

intensities were simulated over 6-, 24-, and 96-h durations (Wobus et al., 2017; Darwish et al., 

2021; UK Centre for Ecology and Hydrology, 2021). The 24- and 96-h durations were chosen 

to test the short-to-medium scale impacts of woodland planting on infiltration. The 6 h 

duration was chosen due to the requirement of all UK sustainable drainage systems (SuDS) 

to be tested to this level (Defra, 2014; Local Authority SuDS Officer Organisation (LASOO), 

2016). The rainfall intensities were chosen for similar reasons: the modelled results would 

enable further understanding regarding the true ability of woodland planting to mitigate 

runoff from low intensity (50% AEP) to very high intensity (1% AEP) storms, offering insight 

in to their use as a method of NFM. 

2.5.2. Infiltration Data 

The collected infiltration data (Section 2.1) were interpreted and included as a primary 

focus of the modelling process. As this study focuses on the impacts of woodland planting on 

runoff, the mean infiltration rate (in mL) from every sample site at 10 and 200 cm proximities 

through both winter and summer (see Section 2.1) were compiled and averaged. The HofE 

forest planted new woodland every year from 2006 to 2012, but infiltration data were only 

collected every other year from 2006 (plus a control and the ca.1900 woodland area). To 

account for the infiltration values of woodland areas planted in the years between the sample 

plots (2007, 2009, 2011), which needed to be included in the model to fully represent the land 

cover of the study site, the median value of observed data in both years before and after was 

calculated. For example, the infiltration value for the unobserved 2007 areas were calculated 

using the median of the average 2006 and 2008 infiltration data (etc.). Given the lack of 

observed data and supporting literature in this area, this method is based on mathematical 

extrapolation and the observation of similar soil texture across the site (Table 1). 

2.5.3. Interception 

As the sampled woodland is deciduous, interception needed to be considered as it would 

vary seasonally across the study site (Komatsu et al., 2011; Klamerus-Iwan, 2014; Rahman and 

Ennos, 2016). Interception loss was not empirically monitored for this study; however, it was 

accounted for, considering the interception loss for grassland to be negligible (<10%) (Nisbet, 

2005; Ngai et al., 2017), and the interception from broadleaves to be between 10–34% (mean 

24.25 %) (Calder, 2003; Lunka and Patil, 2016). FEH values were adjusted in the summer 

model to account for the rainfall loss due to interception, as simulating the site in both winter 

and summer with uniform rainfall would not account for any interception loss encountered. 

This method allows for the inclusion of interception loss in the model without the use of 

specialised equipment or continuous monitoring, and was an important process, as the 

influence of interception loss would vary seasonally across the site, both at present and in the 

future. 

2.5.4. Baseflow 

Antecedent baseflow had to be calculated, as neglecting to consider this parameter could 

result in the total discharge from each simulated storm being inaccurate, and not represent 

true site conditions (Yusop et al., 2007; Schütte and Schulze, 2017). To calculate the baseflow, 

telemetry data from both winter and summer periods (Section 2.2) were averaged, the 

average baseflow for winter models is 0.284 m3 s-1 and for summer models is 0.239 m3 s-1. 

2.6. Hydrological Simulations 

Three scenarios were simulated using both the winter and summer models with the 

intention of simulating the peak outflow of the site dependent on varying observed 

infiltration. Infiltration values for the first simulation scenario were derived from the collected 

infiltration data from the HofE site (Section 2.1); these data were simulated to reflect the 

“current HofE (woodland) land cover” as it is at present, and would allow a representation 

of current site peak discharge. Infiltration values for the second simulation scenarios were 

altered to represent sites discharge if it was impermeable land cover (developed). The 

rationale for this originates in Section 1, where it is acknowledged that urbanisation is a key 

influence of rising flood risk in the UK (Ferguson and Fenner, 2020a; Ellis et al., 2021). 

Infiltration for scenario three were adjusted to represent infiltration collected from the 

grassland control site (Figure 1). This was to enable a comparison (Section 3) between peak 

flows from current woodland cover, impermeable land cover, and grassland land cover. It 

was decided to use the above scenarios as they could be based on collected infiltration data 

from the site, and provide an accurate representation of the hydrological variations of the 

sampled study site compared to using published values. 

3. Results 
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Figure 8 shows the peak discharge of the 6-h summer and winter simulations, Table 4 

shows the tabulated data with the discrepancy between land cover types shown in 

comparison to the current HofE site as a percentage. 

 

Figure 8. Output peak flows from all simulated land cover types. 

Table 4. Peak discharge of all simulated land cover types over a 6-h duration rainfall event. 

6-h AEP % 

HofE (Wooded 

Land Cover)  

(m3 s-1) 

Impermeable 

Land Cover  

(m3 s-1) 

Change from 

HofE (as %) 

Grassland Land 

Cover  

(m3 s-1) 

Change from 

HofE (as %) 

Winter 

Peak volume  

50 0.61 0.67 9.84 0.32 −47.54 

10 0.84 0.89 5.95 0.55 −34.52 

2 1.14 1.19 4.39 0.85 −25.44 

1 1.31 1.36 3.82 1.02 −22.14 

Summer 

Peak volume  

50 0.55 1.07 94.55 0.49 −10.91 

10 1.05 1.55 47.62 0.99 −5.71 

2 1.72 2.2 27.91 1.65 −4.07 

1 2.09 2.56 22.49 2.02 −3.35 

Figure 8 and Table 4 show that peak runoffs from the impermeable land cover 

simulations are higher than current and grassland simulations across all modelled storm 

events in both summer and winter; however, the discrepancy in the winter was slight. Peak 

flows from HofE land cover were 9.84%, 5.95%, 4.39%, and 3.82% lower than impermeable 

for a 50%, 10%, 2%, and 1% AEP events, respectively. However, in the summer this difference 

was higher, with peak flows being 94.55%, 47.62%, 27.91%, and 22.49% greater across 50%, 

10%, 2%, and 1% AEP events for impermeable land cover compared to HofE. Grassland peak 

flows for winter and summer differ significantly, with summer peak flows being 84.71%, 

41.67%, 23.52%, and 18.67% higher for 50%, 10%, 2%, and 1% AEP events, respectively. In the 

winter, grassland shows a 47.54%, 34.52%, 25.44%, and 22.14% reduction in peak flows 

compared to HofE land cover; this reduction is less in the summer, being 10.91%, 5.71%, 

4.07%, and 3.35% for 50%, 10%, 2%, and 1% AEP storms. 

Figure 8 and Table 5 show that impermeable cover produces the highest peak flows, 

compared to the HofE and grassland simulations, over both summer and winter. Current 

HofE site values are similar to impermeable values throughout the winter; however, this 

trend is not seen in the summer, where HofE site values are much lower. Grassland produces 

the lowest peak flows overall; however, grassland values are more similar to current HofE 

site values in the summer. 
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Figure 9 shows the peak discharge of the 24-h summer and winter simulations, Table 5 

shows the tabulated data with the discrepancy between land cover types shown in 

comparison to the HofE site as a percentage. 

 

Figure 9. Output peak flows from all simulated land cover types. 

Table 5. Peak discharge of all simulated land cover types over a 24-h duration rainfall event. 

24-h 
AEP 

% 

HofE (Wooded 

Land Cover)  

(m3 s-1) 

Impermeable 

Land Cover  

(m3 s-1) 

Change from 

HofE (as %) 

Grassland 

Land Cover  

(m3 s-1) 

Change from 

HofE (as %) 

Winter 

Peak 

volume  

50 0.61 0.67 9.84 0.32 −47.54 

10 0.84 0.89 5.95 0.55 −34.52 

2 1.14 1.19 4.39 0.85 −25.44 

1 1.31 1.36 3.82 1.02 −22.14 

Summer 

Peak 

volume  

50 0.55 1.07 94.55 0.49 −10.91 

10 1.05 1.55 47.62 0.99 −5.71 

2 1.72 2.2 27.91 1.65 −4.07 

1 2.09 2.56 22.49 2.02 −3.35 

Figure 9 and Table 5 show the highest peak runoff of all simulated land cover types over 

both winter and summer to be generated by the impermeable land cover; being on average 

2.07% higher than HofE land cover in the winter, and 18.31% higher in the summer over all 

AEPs. The impermeable cover, however, produces the same peak runoff as the HofE site for 

the 50% AEP in the winter, and peak flows for the impermeable land cover for 10%, 2%, and 

1% AEPs in the winter are on average higher than that of the HofE site land cover by only 

1.39%. A similar trend is seen in the summer, where peak flows from HofE land cover are 

only 0.24% lower than impermeable values for all AEPs. All 24-h events show less of a 

discrepancy between the HofE and impermeable land covers in the winter compared to the 

6-h simulations, showing that, as storm duration increases, the flows from impermeable and 

HofE land cover become more similar in the winter months. Similar to the 6-h duration, 

grassland peak flows are lower than impermeable and HofE site land cover throughout the 

winter, however HofE site and grassland peak flows vary less in the summer. In the winter, 

grassland peak flow is 32.10%, 23.15%, 16.78%, and 14.29% lower than HofE land cover for 

50%, 10%, 2%, and 1% AEPs; however, in the summer, grassland is only 4.65%, 2.99%, 2.08%, 

and 1.79% lower than the current site for all respective AEPs. 
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Results from the 24-h simulations are similar in trend to those of the 6-h simulations. 

Impermeable cover produces the highest peak flows over both summer and winter. These 

values are similar to HofE site discharge in the winter, but not the summer. Grassland produces 

the lowest peak flows; however, grassland values are more similar to HofE site values in the 

summer. Summer peak flows for all land cover types are higher than winter values. 

Figure 10 shows the peak discharge of the 96-h summer and winter simulations; Table 6 

shows the tabulated data with the discrepancy between land cover types shown in 

comparison to the HofE site as a percentage. 

 

Figure 10. Output peak flows from all simulated land cover types. 
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Table 6. Peak discharge of all simulated land cover types over a 96-h duration rainfall event. 

96-h 
AEP 

% 

HofE (Wooded 

land Cover)  

(m3 s-1) 

Impermeable Land 

Cover  

(m3 s-1) 

Change from 

HofE (as %) 

Grassland 

Land Cover 

(m3 s-1) 

Change from 

HofE (as %) 

Winter 

Peak 

volume  

50 0.61 0.67 9.84 0.32 −47.54 

10 0.84 0.89 5.95 0.55 −34.52 

2 1.14 1.19 4.39 0.85 −25.44 

1 1.31 1.36 3.82 1.02 −22.14 

Summer 

Peak 

volume  

50 0.55 1.07 94.55 0.49 −10.91 

10 1.05 1.55 47.62 0.99 −5.71 

2 1.72 2.2 27.91 1.65 −4.07 

1 2.09 2.56 22.49 2.02 −3.35 

As apparent from Figure 10 and Table 6, the results from the 96-h simulations show 

similar trends to 6- and 24-h simulations; however, the discrepancy in peak flow between 

land cover simulations are less notable, as are the seasonal variations in peak flows. 

Impermeable cover exhibits the highest peak flows compared to HofE and grassland cover; 

however, this difference is marginal. Impermeable peak flows are 1.25%, 0.99%, 0.80%, and 

0.72% higher in the winter, and 5.13%, 2.94%, 1.54%, and 1.39% higher in the summer than 

HofE land cover for 50%, 10%, 2%, and 1% AEP events, respectively. There is more variation 

between HofE land cover and grassland in the winter than the summer. Peak flows from the 

grassland cover are 16.25%, 10.89%, 7.20%, and 6.52% higher than the HofE site in the winter 

for 50%, 10%, 2%, and 1% AEP events, respectively; however, only showing a difference of 

1.28%, 0.98% for 50% and 10% AEP events, and 0 change for the 2%, and 1% AEPs in the 

summer. Peak flows show less variation between summer and winter for all land cover types, 

compared to the trends seen in the 6- and 24-h duration simulations. 

The results displayed in Figure 10 and Table 6 show that the 96-h duration simulations 

show less variation in peak flows across all land cover types. There is very little variation in 

peak flows between land cover types; however, impermeable is slightly higher compared to 

both current HofE land cover and grassland cover over both summer and winter. 

Overall, Figures 8–10 and Tables 4–6 show that, at present, impermeable cover produces 

the highest peak flows over all durations and storm intensities compared to other simulated 

land cover types. However, this is somewhat expected as it is known that the increase in 

impermeable surface cover is driving the push towards NFM (see Section 1) (Burgess-Gamble 

et al., 2018; Ferguson and Fenner, 2020a; Ellis et al., 2021). The current land cover of the site 

shows less of a peak flow compared to impermeable; however, the discrepancy is small and 

reduces with increased storm duration and intensity. The grassland simulations result in the 

lowest peak flows, regardless of season or storm scenario. The summer simulations show 

significantly higher peak flows compared to winter values across all land cover types in the 

lower duration storms (6 and 24 h); however, this is less significant in the higher duration 

simulations (96 h). 

4. Discussion 

The results of the HEC-HMS models presented throughout Section 3 show that 

woodland planting across the HofE site has reduced peak runoff compared to if the entire site 

was impermeable, by an average of 6% for 6-h, 2% for 24-h, and 1% for 96-h duration events 

in the winter; and 48%, 18%, and 2.7% for 6-, 24-, and 96-h durations in the summer. This 

finding reinforces the benefit that woodland planting can have on increasing the surrounding 

soils infiltration potential, storage potential, resultantly reducing peak flow from the study 

area. Whereas the current HofE site does reduced peak flow compared to the impermeable 

scenario, an entirely grassland catchment shows the greatest reduction in peak flow, being 

32%, 21%, and 10% lower than the current site in the winter, and 6%, 2%, and 0.5% lower than 

the HofE site in the summer for 6-, 24-, and 96-h duration storms, respectively. 

It is worth considering that the reduction in peak flows exhibited by grassland compared 

to both the impermeable and current HofE site reduces as storm duration and intensity 

increases. This can be explained through considering both the age, and relative root spread 

of the woodland species sampled (Randrup, 2001; Birkinshaw et al., 2014). As discussed in 

Section 2.1, aside from the ca.1900 (Quercus Petraea) woodland, the oldest trees sampled were 
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planted in 2006 (Betula Pendula) and the youngest in 2012 (Populus Tremula). Therefore, the 

2006 trees have only been developing for 15 years, and the 2012 trees for 9. Betula Pendula 

reaches its ultimate height at around 60 years from planting, and can live for up to 100 years 

in total, meaning that the infiltration data collected and simulated in this study is only 

representative of the beginning of the likely effects that this tree will have, and infiltration 

will only improve as the tree (and its root system) develop, as the tree approaches maturity 

(Hynynen et al., 2010; Kuparinen et al., 2010; Lee et al., 2015; Zeltiņš et al., 2018). A similar 

rationale can be applied to the Populus Tremula (2012) tree; the growth of Aspen in the UK 

slows at around 30 years, and trees can live for 100–120 years (MacKenzie, 2010; CAB 

International, 2013; Savill, 2019). Thus, if this project was to be replicated in 20 years, tree 

roots would have developed, breaking up the surrounding soil, and infiltration would likely 

be greater due to the increased porosity (Chandler et al., 2018; Zhang et al., 2019a). 

Consequently, the modelled data show that, whilst some reduction in runoff is possible 

during the growth phase of trees, it will not be until they mature that the total potential 

reduction is demonstrated in comparison to grassland peak flow reduction. 

4.1. Woodland Planting Mentality 

The findings of this project are significant when considering the way in which woodland 

areas are currently managed, regarding the growth and felling of trees and the removal of 

mature woodlands to make way for either newer areas of woodland or, more significantly, 

impermeable developments (Thomas and Nisbet, 2016; Chandler et al., 2018; Murphy et al., 

2021). It is not uncommon for mature(ing) woodland to be removed to make way for 

impermeable developments, which significantly alters the local hydrology of an area, sealing-

off once permeable areas and excluding them from participating in infiltration processes 

(Chandler et al., 2018; Hankin et al., 2018; Cooper et al., 2021; Murphy et al., 2021). Felled trees as 

a result of development are commonly ‘balanced out’ by planting saplings in alternate locations, 

however newly planted saplings will not have a comparable moderating impact on flood risk 

compared with the felled mature trees (Hynynen et al., 2010; Archer et al., 2013; Cooper et al., 

2021; Murphy, 2021). This project has demonstrated the above through presenting modelled 

results, showing that young trees, whilst they do reduce peak flows compared to impermeable 

land cover, have not yet developed the root systems, and influenced surrounding infiltration 

rates, to the extent they will with maturity. 

4.2. The Influence of Precipitation, Interception, and Model Calibration 

Apparent throughout Section 3 is that summer peak flows over all simulated land cover 

types are higher than the corresponding winter values, this discrepancy reduces in the 96-h 

duration storm; however, it is more apparent in the 6- and 24-h duration storms. As discussed 

in Section 2.5.3, the hydrological effects of interception were accounted for in the summer 

through reducing the precipitation received. Therefore, it would be assumed that summer 

peak flows would be reduced; however, this is not the case. A reason for this output may be 

effect of surface pooling (as discussed above); however, another explanation may be due to 

the parameters used in calibration. The summer and winter models were calibrated 

individually (Section 2, Table 2), and a set of parameters used for each. The purpose of 

calibration is to align the observed and simulated outputs as closely as possible over varying 

events, leaving a final set of values that will produce a reliable output (Sharu, 2020; Hamdan 

et al., 2021). In this case, the only variables that could be adjusted were the components of the 

Snyder transform method, and the summer model had a quicker lag and a higher peaking 

coefficient than the winter model. It is possible that this caused the variation seen between 

summer and winter; however, the calibration was comprehensive, resulting in a final 

calibration and validation NSE of 0.65 and 0.44 for summer. 

4.3. Antecedent Conditions and Results 

Grassland continually showing the greatest reduction in peak flow may have been 

influenced by several external factors. The grassland control site comprises of a sandier soil 

texture than the pedology of the other sample sites (with the exception of 2010, see Table 1), 

making it more permeable (Folorunso and Aribisala, 2018). This means that when the 

grassland infiltration data are applied to the whole site to the represent grassland coverage, 

it is not accounting for variations in soil texture across the site (Rabot et al., 2018; Sun et al., 

2018; Silber, 2019). Additionally, Table 1 shows that the ca. 1900, 2008, and 2012 sites are 

comprised of a clay-heavy soil texture, meaning that they are naturally less permeable due to 

the smaller particle sizes of clay compared with sand (Folorunso and Aribisala, 2018). This 

may be an indication as to why the current HofE site peak flow is higher than that of 

grassland, particularly in the winter. The winter of 2020 was the fifth wettest on record (329.4 
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mm/143% higher than the 1981–2010 baseline), and February of 2020 was the wettest ever 

recorded, with 155 mm of precipitation (258% higher than the 1981–2010 baseline) (The Met 

Office, 2020; Davies et al., 2021b). These dates are within the time periods that winter 

infiltration data were collected, and the excess rainfall received would have contributed to 

the study site saturation, influencing infiltration data collection. See Figure 11. 

 

Figure 11. (a,b) saturation of the 2006 sample site during winter data collection, (c) cracking of the 2006, and (d) 2008 sample 

sites in the winter (locations can be identified using Figure 1). 

As seen in Figure 11, the variation between antecedent rainfall and clay-saturation 

throughout winter, and cracking and drying-out throughout summer may have led to 

infiltration rates being significantly higher than the grassland for the current site simulations 

in the winter. These effects may also explain the higher peak flows observed throughout 

summer compared with winter; the increase in surface pooling of the sample sites in the 

winter (Figure 11a,b) held water in place across the study site. Infiltration would have been 

slowed due to the clay-geology and antecedent conditions of the site (Groenendyk et al., 2015; 

Leung et al., 2018), meaning runoff was slowed, creating more of a lag between precipitation 

and peak flow in the winter. Whereas in the summer, the cracking of the ground (Figure 

11c,d) reduced infiltration, with the dry clay acting similarly to an impermeable surface. Due 

to this, rainfall was able to runoff into the watercourse, causing a quicker lag time and a higher 

peak. 

4.4. Study Applications 

Whilst antecedent weather conditions and soil texture have influenced the trends seen 

between woodland and grassland land cover (see Section 3), the clay-heavy soil textures of 

the sample site are representations of the conditions of many sites around the UK. With the 

woodland sites being clay, and the ongoing comprehensive infiltration data collection, this 

project provides an assessment of the impact of NFM (woodland planting) over one of the 

most impermeable soil types throughout the UK. 

Area calculations regarding the coverage of superficial alluvium, clay, peat, and fluvial 

deposits throughout the UK show that 15% (39,269.24 km2) of UK superficial geology is 

similar in infiltration to the geology of the HofE site (British Geological Survey, 2021). This 

demonstrates that the results of this study are significant, and are representative of 15% of 

UK geology, demonstrating that the results found throughout this study with regard to 

woodland planting and their runoff reduction capabilities can be extrapolated, furthering the 

usage of NFM across the UK. This therefore shows that woodland planting can be considered 

a b

c d
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as a method of NFM throughout other areas of the UK, and once could expect to find similar 

positive results to those found in this study. 

5. Conclusions and Future Work 

The results from the simulations undertaken in this study have shown that woodland 

can reduce peak flows when compared to impermeable cover; however, at present, grassland 

reduces peak flow most in both winter and summer. The values of the data collected 

throughout is that; if woodland can reduce peak flows at present over a predominantly clay 

(impermeable) geology, then the value of woodland planting on a site with slightly more 

permeable geology would show greater results than this study. This presents an opportunity 

for this research to be extrapolated and applied to other geologies and soil textures, to 

potentially aid in justifying the use of NFM (woodland planting), as a viable method of 

increasing infiltration and reducing ruff peaks to watercourses. 

Woodland planting is gaining momentum as a method of NFM due to its ability to break 

up soil and increase infiltration and water storage. This study took infiltration measurements 

at 10 and 200 cm away from woodland planted at a 2.2 km2 area in Warwickshire, England, 

from November 2019 until August 2021. Infiltration data were incorporated into two 

calibrated and validated HEC-HMS models, and the reductions in peak flow for woodland, 

grassland, and impermeable land cover were quantified. Results of this study show that, 

across a predominantly clay-site: 

• Woodland planting across the HofE site shows less of a peak flow compared to 

impermeable land cover simulations; however, the discrepancy is small and reduces 

with increase storm duration and intensity. 

• The grassland simulations result in the lowest peak flows, regardless of season or storm 

scenario. 

• Impermeable land cover produces the highest peak flows throughout all durations and 

storm intensities compared to woodland and grassland; however, this is somewhat 

expected as it is known that the increase in impermeable surface cover is aiding the push 

towards NFM) [1,2,10]. 

• The summer simulations show significantly higher peak flows compared to winter 

values across all land cover types in the lower duration storms (6 hour and 24 hour); 

however this is less significant in the higher duration simulations (96 hour). 

The quantified results of this study show woodland to have a positive impact on peak flow 

reduction after only 15 years (since 2006), and indicate that the impacts will become more 

significant with root spread as the site matures (Zhang et al., 2019a; Xie et al., 2020). This study 

is also representative of a clay-textured site, the same soil texture as 15% of the UK, indicating 

that if woodland can show a reducing in peak flow across this study site, similar results will 

be seen in other similar sites. Further to this, the results will likely be more significant in areas 

inherent of a more permeable soil texture (Folorunso and Aribisala, 2018). 

Additionally, this study has provided insight into how to collect and extrapolate 

infiltration data and model such information in HEC-HMS. Additionally, it has provided a 

methodology regarding the calibration and validation of HEC-HMS models where empirical 

data are sparse. This will enable other authors in the field of hydrology to use this project as 

a framework when contributing to the knowledge base regarding infiltration, NFM, 

woodland planting, and hydrology as a whole. 

Future work will involve developing a method of projecting the collected infiltration 

data, with the intention of using the HEC-HMS model to project the ability of woodland 

planting to mitigate flow and overland runoff into the future, regarding precipitation and 

baseflow increases in light of climate change. 
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D.2.2 The Impact of Tree Planting on Infiltration Dependent on Tree Proximity and 

Maturity at a Clay Site in Warwickshire, England 

First author of the below article, published in the Water MDPI special issue ‘Surface Water 

Management: Recent Advances and Challenges’. The paper presents the methods and results 

of the infiltration data collection and analysis (presented and discussed in sections 5.2, 7.1 and 

8.1) undertaken to allow for further hydrological modelling(presented and discussed in sections 

5.3, 7.2 and 8.2.1) of this thesis.  

 

The publication is inserted below
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 Abstract: Urbanisation and the replacement of previously vegetated areas with impermeable surfaces 

reduces the lag times of overland flow and increases peak flows to receiving watercourses; the 

magnitude of this will increase as a result of climate change. Tree planting is gaining momentum as a 

potential method of natural flood management (NFM) due to its ability to break up soil and increase 

infiltration and water storage. In this study, a 2.2 km2 clay-textured area in Warwickshire, England, 

planted with trees every year from 2006 to 2012 was sampled to investigate how infiltration varies 

dependent on season and tree proximity and maturity. Infiltration data was collected from 10 and 200 

cm away from selected sample trees from November 2019 to August 2021 using a Mini Disk 

infiltrometer (MDI). The results show that mean infiltration is higher at the 10 cm proximity compared 

with the 200 cm proximity by 75.87% in winter and 25.19% in summer. Further to this, mean 10 cm 

infiltration is 192% higher in summer compared with winter, and mean 200 cm infiltration is 310% 

higher in summer compared with winter. There is little evidence to suggest a relationship between 

infiltration and tree maturity at the study site. 

Keywords: tree planting; tree proximity; infiltration; flood risk management; natural flood 

management; NFM 

 

1. Introduction 

The global climate is predicted to change in ways unseen in recorded history [1,2]. 

Climate predictions show that across the UK, the frequency and severity of extreme weather 

events will increase, sea levels will rise, summers will become warmer and drier, and winters 

will be warmer and wetter [1,3]. Urbanisation and the replacement of previously vegetated 

areas with impermeable surfaces, such as asphalt and concrete, reduces the lag times of 

overland flow and increases peak flows to receiving watercourses; the magnitude of this will 

increase as a result of climate change [4–8]. Conventional methods of flood management 

prioritise moving flood waters downstream as quickly as possible [5,9]; however, the recent 

increase in flood frequency has led to increased investigations into more sustainable methods 

of managing flood risk, namely, Natural Flood Management (NFM) methods [5,10,11]. 

NFM methods aim to replicate pre-development catchment hydrology and encourage 

infiltration, interception, and evapo(transpi)ration, with the aim of storing and slowing 

precipitation before reaching the receiving watercourse [4,12,13]. Common examples include 

vegetation planting to increase infiltration and interception (and subsequent 

evapotranspiration), reducing soil compaction by changing farming and animal grazing 

routines, and ‘roughening’ and obstructing watercourse channels and overland flow 

pathways to slow the flow of water downstream during high-rainfall events [14–17]. Tree 

planting is often considered a valuable method of NFM as tree roots can enhance soil macro-

porosity, connect flow pathways, reduce compaction, and improve soil structure, which 

increases infiltration and water storage capacity [18–23]. The value of tree planting has been 

acknowledged by the UK Government, who have allocated GBP 4 million to organizations 

aiming to increase UK woodland coverage; and GBP 1.4 million to the Environment Agency 

Citation: Revell, N.; Lashford, C.; 

Rubinato, M.; Blackett, M. The  

Impact of Tree Planting on  

Infiltration Dependent on Tree  

Proximity and Maturity at a Clay 

Site in Warwickshire, England.  

Water 2022, 14, x. 

https://doi.org/10.3390/xxxxx 

Academic Editor(s):  

Received: 15 February 2022 

Accepted: 11 March 2022 

Published: date 

Publisher’s Note: MDPI stays 

neutral with regard to jurisdictional 

claims in published maps and 

institutional affiliations. 

 

Copyright: © 2022 by the authors. 

Submitted for possible open access 

publication under the terms and 

conditions of the Creative Commons 

Attribution (CC BY) license 

(https://creativecommons.org/license

s/by/4.0/). 



12-104 
 

(England) for the same purpose [24]. Additionally, Government grants have been introduced 

to encourage farmers to convert arable land to woodland via the ‘Woodland for Water’ 

scheme, run in coalition with the Environment Agency and the Forestry Commission [25]. 

Furthermore, the UK Government have pledged to plant 30,000 ha of trees per year until 2024 

(the end of the current Government), which highlights their acknowledgement of the benefits 

of tree planting [26]. 

However, regardless of funding allocations and the increased investment in tree 

planting, few studies have assessed the impacts of tree planting on infiltration, and 

contextualised this with regard to flood risk mitigation and the use of tree planting as a 

method of NFM [3,27–31]. Therefore, the aim of this study is to investigate the impacts of tree 

planting on infiltration dependent on tree maturity and tree proximity. 

This work is the precursor to another study previously conducted by the same authors 

[31], which focused on the hydrological modelling of the collected infiltration data (used for 

this work and listed in Section 3) and the analysis and variations in peak flow and total 

discharge from the study site as a result of changing land cover. Therefore, the same sample 

site and infiltration data collection methods (presented in Section 2) are used in both studies. 

However, this study focuses solely on the variations in infiltration data, and the influence of 

tree proximity and tree maturity on infiltration—in addition to undertaking statistical testing 

on such data. Developing an understanding of the influences of tree planting on infiltration, 

and contextualising these findings in the context of the wider implementation of NFM and 

existing policy, will aid in the justification and subsequent uptake of NFM methods [15,32]. 

This will allow for enhanced flood risk reduction both at present, and in the future, 

considering the predicted impacts of climate change and continued urbanisation [1,3–5]. 

2. Materials and Methods 

2.1. The Heart of England Forest 

The Heart of England (HofE) Forest charity have planted 1,883,928 trees across 2,832 

hectares of Warwickshire and Worcestershire, England. The charity aim to eventually plant 

and maintain 12,140 hectares of forest across the English Midlands for the benefit CO2 

mitigation, public amenity, habitat creation, wildlife, and biodiversity [33]. The HofE forest 

began planting trees across the study site in 2006, and continued annually until 2012, when 

the trees were left to grow with very little human interference. The HofE forest plant saplings 

in line with National Vegetation Classification (NVC) guidelines [34,35] to ensure that newly 

forested areas correspond with exiting native species for the area, defined as ‘mature lowland 

broadleaved woodland’. 

2.2. Sample Area and Infiltration Data Collection 

The study site is a 2.2 km2 area in Warwickshire, UK (52.1511° N, 1.5139° W), owned by 

the HofE forest, and was defined by generating a watershed boundary using a 1 m digital 

terrain model of the area [36] (Figure 1). Infiltration data were collected every other week 

from specific sample trees planted in 2006 (Betula pendula), 2008 (Populus tremula), 2010 (Betula 

pendula) and 2012 (Populus tremula). In addition, infiltration data were collected from a plot of 

pre-existing woodland planted in ca.1900 (Quercus petraea), and a grassland control site. The 

data collected from the grassland control were used in comparison with the wooded areas, 

and the samples taken from the ca.1900 area provided information regarding the infiltration 

characteristics of mature trees and were used for comparison. Figure 1 shows the locations of 

the infiltration sample plots and sampling locations. 
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Figure 1. Sample sites and sampling locations with land cover highlighted [37]. Data is reproduced 

under the open government license. 

As this study aims to determine the variation in infiltration dependent on proximity, 

infiltration measurements were taken from 10 cm and 200 cm away from the base of the 

sample trees. The 10 cm proximity was as close as any measurement instrument could get to 

the base of the tree without interference from the root system or growths around the base. 

The 200 cm proximity was defined using literature specific to the tree species sampled 

throughout the fieldwork [38–40], suggesting that the lateral root spread of all trees would 

surpass the 200 cm measuring distance by the time the tree matured. The 200 cm proximity 

would also act as a comparison for the 10 cm proximity, allowing for the influence of tree 

proximity on infiltration to be delineated. 

The Mini Disk Infiltrometer (MDI) was chosen for infiltration data collection due to its 

portability, low water usage (in comparison to ring-infiltrometer methods), replicability, ease 

of individual operation, and durability [41–43]. Relevant literature indicates that the tension 

setting of the MDI is altered from study to study [41,44–46]; therefore, a tension setting of 2 

cm was selected following the suggestion of the MDI user manual [47]. It is acknowledged 

that recent advancements in infiltration models are inclusive of plant-root water uptake such 

as the Feddes reduction function [48], the compensated non-linear uptake model [49], and 

methods involving Python [50]. However, this work utilised the infiltration-time model due 

to the study scope outlining the influence of tree roots on soil porosity and subsequent 

infiltration as the primary focus (see Section 1). 

It is well regarded in the literature that field infiltration measurements inherit high 

spatial variability, and that replication is imperative for attaining accurate results [51–53]. 

Therefore, every MDI measurement was replicated twice (in addition to the first 

measurement) and all replicates were averaged to give a mean average total for that site. As 

the MDI required a watertight seal with the sample soil, vegetation was removed from the 

surface of the soil before infiltration measurement proceeded. Figures 2a and 2b show the 

method by which infiltration measurements were taken in proximity to the tree. 
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Figure 2. (a) Diagram of MDI measurement location in proximity to the sample tree. Black crosses (X) 

indicate MDI measurement location. (b) MDI measurement locations represented at the 2008 sample 

site. 

The 10 cm datums were identified, and a line was measured from the base of the tree in 

the direction of least obstruction (i.e., no other trees, undergrowth, or shrubbery intruding 

the area) to mark the location of the 200 cm measurement locations; 50 cm was measured 

either side of the line to identify replica locations. Replication could not take place in the exact 

same location as the initial infiltration measurement, as any measurements would be skewed 

due to previous saturation of the soil; so, 50 cm was chosen to avoid lateral seepage (leading 

to the overestimation of infiltration values) [54–56]. The control site measurements were 

collected in a triangular pattern, with each replication being 50 cm from the last to avoid 

lateral seepage (Figures 3a and 3b). 

 

Figure 3. (a) Diagram of MDI measurement locations at the controls sample site. Black crosses (X) 

indicate MDI measurement location. (b) MDI measurement locations represented at the control 

sample site. 
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A total of 1287 individual infiltration measurements were collected from November 

2019–August 2021; 702 from the 10 cm proximity (including the grassland control), and 585 

from the 200 cm proximity. Infiltration data was not collected from March 2020 to July 2020 

due to the UK national COVID-19 lockdown. 

2.3. Soil Texture Analysis and Seasonal Variation 

Soil texture influences infiltration characteristics (rate, capacity) [43,57,58]. To 

understand the influence that varying soil textures across the study site may have on the 

collected infiltration data, soil samples were extracted from the surface (~5 cm depth) of the 

soil surrounding the area of MDI measurement using a trowel. A LaMotte [59] soil texture 

test kit was used to determine the percentiles of sand, silt, and clay for each infiltration 

sample-area soil, and this information was compared against the UK soil texture triangle to 

determine the classification name of each sample soil. The percentiles and soil texture 

classifications of the sample area are shown in Table 1. 

Table 1. Soil percentiles and texture classification of each sample site. 

Sample Site Sand % Silt % Clay % UK Soil Classification 

Control 53 20 27 SaCL Sandy clay loam 

cc. 1900 47 40 13 SSL Sandy silt loam 

2006 20 20 60 C Clay 

2008 13 20 67 C Clay 

2010 53 33 14 SaL Sandy Loam 

2012 33 13 54 C Clay 

The 2006, 2008, and 2012 sites are comprised of a clay-heavy soil texture, meaning that 

they are naturally less permeable compared to other soil textures [55]. The grassland control, 

ca. 1900 and 2010 sites are comprised of a sandier soil texture, indicating that these areas are 

more permeable compared with other soil textures [55,60]. Due to the varying soil texture, 

the study site varied hydrologically between summer and winter—particularly across the 

clay-heavy soils. Throughout the summer, the clay-heavy soils began to crack, creating 

macropores; this is the opposite to winter, where the soil was bare and often completely 

saturated due to the inability of infiltration to take place (see Figure 4). 
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Figure 4. (a,b) saturation of the 2006 sample site throughout winter, (c,d) cracking of the 2006 and 2008 

sample sites throughout summer. 

These changes influenced the collected infiltration data and as such, it was decided that 

the collected infiltration data would be separated to represent soil conditions across the site 

in both wet and dry periods. This approach also allowed for the trends in infiltration change 

as a result of changing proximity to be compared through winter and summer, allowing an 

in-depth analysis of the influence of tree planting on infiltration seasonally across the site. 

Metrologically, December, January, and February are defined as winter, and June, July, and 

August are defined as summer by the UK met office [61,62]. However, as this collected data 

is the precursor to the development of a hydrological model (see Revell et al., (2021)); winter 

is defined as October to March, and summer is defined as April to September. These 

timeframes are based on UK average annual temperature and rainfall data, provided by the 

Met Office [63]. 

3. Results 

3.1. Tree Proximity and Infiltration 

Table 2 shows the average infiltration values for each sample site throughout winter and 

summer 2019/20 and 2020/21. 
  

a b

c d
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Table 2. Average infiltration for 10 and 200 cm proximities throughout both winter and summer 

sample periods. 

 Winter (ml) 
Averages 

 Control ca. 1900 2006 2008 2010 2012 

2019/20 10 cm 

3.4 

9.96 0.67 7.04 4.85 3.07 5.42 

2020/21 10 cm 5.64 2.17 1.98 2.80 2.31 2.80 

10 cm average 7.80 1.42 4.51 3.83 2.69 4.11 

2019/20 200 cm 4.22 0.37 2.56 4.70 2.30 3.16 

2020/21 200 cm 3.78 0.83 1.36 1.50 1.69 1.51 

200 cm average 4.00 0.60 1.96 3.10 2.00 2.34 

 Summer (ml)  

2019/20 10 cm 

12.35 

20.81 14.62 17.95 17.62 18.14 17.19 

2020/21 10 cm 11.54 5.06 5.85 9.73 6.70 6.83 

10 cm average 16.18 9.84 11.90 13.68 12.42 12.01 

2019/20 200 cm 11.38 9.48 16.14 15.19 14.90 14.14 

2020/21 200 cm 9.21 3.27 4.45 6.45 4.94 5.04 

200 cm average 10.30 6.38 10.30 10.82 9.92 9.60 

Mean 10 cm and 200 cm infiltration was 192% and 310% higher in summer compared 

with winter. In winter, the mean 10 cm infiltration was 75.87% higher than the mean 200 cm 

infiltration over both sample years; in summer, the mean 10 cm infiltration was 25.19% higher 

than 200 cm over both years. Throughout winter 2019/20, the mean 10 cm infiltration was 

71.38% higher than the 200 cm proximity; in winter 2020/21, the infiltration at 10 cm was on 

average 85.26% higher than the infiltration at 200 cm across all sites. Summer 2019/20 showed 

the mean 10 cm infiltration to be 21.55% higher than the 200 cm infiltration, and the mean 10 

cm infiltration data was 35.48% higher than the 200 cm proximity values throughout 2020/21. 

These results show that infiltration varies more between the 10 and 200 cm proximities in 

winter (71.38% and 85.26% for 2019/20 and 2020/20, respectively) compared with summer; 

however, the summer 10 cm infiltration was still higher than the 200 cm by 21.55% and 35.48% 

(in 2019/20 and 2020/21, respectively). 

3.2. Tree Maturity and Infiltration 

It would be expected that the discrepancy between infiltration at the 10 cm and 200 cm 

proximity would become greater as tree roots develop, break up the surrounding soil matrix, 

reduce compaction, and increase porosity [20,21,64,65]. Considering this, it would be 

expected that the most recently planted HofE trees would show a lower mean infiltration at 

both proximities compared with older trees across the site; however, this is not the case at the 

study site. Table 3 shows the two-year mean infiltration of each sample site in winter and 

summer at both measured proximities, sorted in ascending order. 
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Table 3. Sample sites in ascending order based on mean infiltration in winter and summer at both 10 

and 200 cm proximity. 

Winter 10 cm 
ca. 1900 2008 2010 2012 2006 

7.8 4.51 3.83 2.69 1.42 

Summer 10 cm 
ca. 1900 2010 2012 2008 2006 

16.18 13.68 12.42 11.9 9.01 

Winter 200 cm 
ca. 1900 2010 2012 2008 2006 

4 3.1 2 1.96 0.6 

Summer 200 cm 
2010 ca. 1900 2008 2012 2006 

10.82 10.3 10.3 9.92 6.38 

Table 3 shows that, aside from the 2006 site, which consistently showed the lowest mean 

infiltration regardless of season or proximity, the sorted mean infiltration data did not follow 

the expected chronological order. The ca. 1900 site showed the highest mean infiltration for 

winter (10 and 200 cm) and for summer at 10 cm; however, it was displaced by 2010 at the 

summer 200 cm proximity. There was no obvious trend between the highest and lowest 

infiltration values, with no consistent chronology, as would be expected based on the existing 

literature [20,21,64,65]. 

Statistical Analysis: Mann–Whitney Testing 

To further test for trends and relationships across the collected infiltration data, 

statistical analysis was undertaken. Conducting a Kolmogorov–Smirnoff test found the 

collected data to be non-parametric [66]; therefore, Mann–Whitney tests were undertaken 

[66–68]. The Mann–Whitney test is the non-parametric equivalent of the independent samples 

t-test, and is used to deliver a p-value indicating to what extent two sets of sample data are 

statistically significant. Both 𝑈1and 𝑈2 (EQ’s 1 and 2) can be interpreted as the number of 

observations in a sample that precede or follow observations in the other sample when all 

samples are ranked in ascending order [69]: 

𝑈1 = 𝑛1𝑛2 +
𝑛1(𝑛1 + 1)

2
− 𝑅1 (1) 

𝑈2 = 𝑛1𝑛2 +
𝑛2(𝑛2 + 1)

2
− 𝑅2 (2) 

where 𝑛1 and 𝑛2 are the number of samples in group 1 and 2, respectively, and 𝑅1 and 𝑅2 are 

the sum of all ranks from the data in groups 1 and 2, respectively. To determine significance 

(p), the normal approximation equation [70] can be used: 

𝑃 =
|𝑈𝑚𝑖𝑛 −

𝑛1𝑛2
2 |

√𝑛1𝑛2(𝑛1𝑛2 + 1)
12

 (3) 

where 𝑈𝑚𝑖𝑛 is the smallest U value. The Mann–Whitney tests would indicate if there was a 

significant difference in infiltration between the 10 cm and 200 cm proximities—initially for 

all winter/summer data, then on a site-by-site basis. If p ≤ 0.05, then there is a significant 

difference between the measured variables; if p > 0.05, then there is not a significant difference 

between the two measured variables. The results of the Mann–Whitney test are shown in 

Table 4. 
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Table 4. Test criteria, p values and significance levels of Mann–Whitney testing. 

Test Criteria p-Value 

All 10 cm vs. 200 cm <0.1 

All winter 10 cm vs. 200 cm <0.1 

All summer 10 cm vs. 200 cm 0.02 

ca. 1900 10 cm vs. 200 cm winter 0.03 

2006 10 cm vs. 200 cm winter 0.02 

2008 10 cm vs. 200 cm winter 0.15 

2010 10 cm vs. 200 cm winter 0.23 

2012 10 cm vs. 200 cm winter 0.07 

ca. 1900 10 cm vs. 200 cm summer 0.26 

2006 10 cm vs. 200 cm summer 0.07 

2008 10 cm vs. 200 cm summer 0.08 

2010 10 cm vs. 200 cm summer 0.17 

2012 10 cm vs. 200 cm summer 0.17 

Table 4 shows that overall, there was a significant difference between the mean 

infiltration data at the 10 cm tree proximity and the 200 cm tree proximity in both winter and 

summer. However, whilst the overall trends from the proximity infiltration data showed a 

significant difference between the 10 cm and 200 cm proximities, this trend was infrequently 

seen at each individual sample site. In winter, the only sites to show a p-value ≤ 0.05 were ca. 

1900 and 2006; in summer, no sites showed a significant difference between the 10 cm and 

200 cm infiltration data. Whilst only a few values were below the significance threshold (0.05), 

the p-values can still be used as an indication of how tree maturity may be influencing 

infiltration across the study site. As discussed, it would be expected that the more recently 

planted trees would show less discrepancy between infiltration at both proximities, and older 

planted trees would show more discrepancy. The difference between the sample site p-values 

(representative of the difference between 10 cm and 200 cm infiltration) are shown in Table 5. 

Table 5. Sample sites sorted in ascending order of the relationship between infiltration difference 

between 10 cm and 200 cm for winter and summer. 

Winter p-Value Summer p-Value 

2006 0.02 2006 0.07 

ca. 1900 0.03 2008 0.08 

2012 0.07 2010 0.17 

2008 0.15 2012 0.17 

2010 0.23 ca. 1900 0.26 

The values in Table 5 do not follow the expected chronological increase of the 10 cm and 

200 cm infiltration data, as would be expected based on existing literature; however, this trend 

may be due to varying soil textures, sample days, and antecedent soil saturation. Section 4 

discusses and contextualises the presented results in further detail. 

4. Discussion 

The results of the collected infiltration data show that mean infiltration was higher at the 

10 cm proximity compared with the 200 cm proximity by 75.87% in winter and 25.19% in 

summer. Additionally, the mean 10 cm infiltration was 192% higher in summer compared 

with winter, and the mean 200 cm infiltration was 310% higher in summer compared with 

winter. There is no evidence to suggest a correlation between tree maturity and increase 

infiltration (Section 3.2). Infiltration was highest across both proximities at the ca. 1900 site, 

which supports literature indicating that maturity results in greater infiltration [3,18,71]; 

however, infiltration was lowest at the 2006 site (the oldest HofE trees), which would be 

expected to demonstrate the second-highest infiltration rate following chronology. When 

contextualizing the results of this study, it is important to consider tree maturity, current 

plating mentality, and antecedent conditions, which are discussed throughout this section. 

4.1. Infiltration and Tree Proximity 

Th results presented throughout Section 3 indicate that the presence of the tree, and 

particularly the developing root system, influences infiltration by increasing soil porosity, 
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allowing for soil-water storage and faster infiltration [18,20,58]. Mean infiltration was higher 

at the 10 cm proximity compared with the 200 cm proximity by 75.87% in winter and 25.19% 

in summer. It was discussed in Section 1 that tree roots connect flow pathways, reduce 

compaction, influence porosity, and change soil structure [18–23], and the results of this study 

support this. Further to this, Section 3.1 highlights the variance between winter and summer 

infiltration values, showing mean infiltration to be 235% higher in summer compared with 

winter, and summer 10 cm and 200 cm infiltration being 180% and 290% higher than winter 

values, respectively. This adds further evidence in support of tree planting, as results show 

that trees are capable of increasing infiltration at the 10 cm proximity throughout summer 

and winter, regardless of the naturally low permeability of the sample site soil (Table 1). These 

results contribute to the knowledge gap regarding both infiltration and proximity, as well as 

seasonal variations in infiltration, and indicate that tree planting is valuable as a method of 

NFM. 

4.2. Infiltration and Tree Maturity 

Regarding the influence of tree maturity on infiltration, there is no evidence to suggest a 

correlation between tree maturity and increased infiltration at either proximity over time, 

which has been identified through use of the Mann–Whitney testing presented throughout 

Section 3. Whilst this finding does predominantly dispute what has been identified regarding 

tree maturity in the literature [3,71,72], it is important to consider these results in the context 

of the current ages of sampled trees. Aside from the ca.1900 site, the oldest trees sampled were 

planted in 2006 and the youngest in 2020. Thus, the 2006 woodland had only been in-situ for 

15 years, and the 2012 woodland for 9 years (at the time of analysis). The maturity ages of the 

sampled tree species were discussed in Section 2.2, concluding that birch and aspen trees can 

live for 100–120 years, reaching their final heights (where infiltration will be at a maximum) 

at 60 and 30 years, respectively [38–40]. Considering this, the sample trees are still early in 

their development and the maturity-relationship results presented throughout Section 3 are 

only representative of the beginning of the likely effects that the trees will have on infiltration. 

Whilst there are no obvious trends between infiltration and maturity, Tables 2 and 3 show 

that the ca.1900 sample site demonstrated the highest infiltration at the 200 cm proximity in 

the winter, and the 10 cm proximity in both winter and summer. This supports the existing 

literature regarding infiltration and maturity [18,28,73,74]. According to chronology, and 

based on the existing literature, it would be expected that the 2006 site would demonstrate 

the next highest infiltration (after ca. 1900); however, this was not the case. Table 3 shows the 

2006 site to consistently show the lowest infiltration at both proximities, regardless of 

seasonality. Referring back to the age of trees planted at the site, particularly in comparison 

to their discussed maturity age and lifespan, this study has focused primarily on young trees 

(15 to 1 year old). The results of the infiltration data analysis have highlighted that very 

mature trees (ca.1900) promote high infiltration, which is an insight into what could 

potentially be expected from the HofE planted trees across the site. 

4.3. Anticedent Conditions 

The results regarding tree proximity, maturity, and infiltration can be further 

contextualised when considering the influence of soil texture across the study site [23,60]. 

Seen in Table 1, the 2006, 2008, and 2012 sites are clay-textured, meaning they are less 

permeable compared with the control, ca.1900 and 2010 sites [75,76]. Antecedent moisture, 

compounded by the less permeable clay-texture, often resulted in surface water pooling 

during and after rainfall at the aforementioned sites. Infiltration data could not be collected 

(although it was always attempted) during surface pooling, and it is this phenomenon that 

may account for the recorded low permeability. Surface pooling was also exaggerated by the 

winter of 2020 being the fifth wettest on record (329.4 mm/143% higher than the 1981–2010 

baseline), and the February of 2020 being the wettest ever recorded, with 155 mm of 

precipitation (258% higher than the 1981–2010 baseline) [77,78]. It is important to 

acknowledge the effect that soil texture and moisture may have had on the collected results. 

However, this study shows that tree planting still increased infiltration at the 10 cm proximity 

compared with the 200 cm proximity, which is a valuable contribution to the current 

knowledge regarding the impacts of tree planting on infiltration, and their potential use as a 

method of NFM. 

4.4. Trees and Construction 

While this study has demonstrated that there is not a correlation between tree maturity 

and infiltration at both near and far proximities across the site, it is displayed in Tables 2 and 
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3 that the ca. 1900 sample site showed the highest infiltration at the 200 cm proximity in the 

winter, and the 10 cm proximity in both winter and summer. This finding is notable when 

considering the way in which woodland areas are currently managed regarding the felling 

and (less frequent) translocation of trees to make way for impermeable developments 

[3,18,79]. Urbanisation can often involve the removal of mature(ing) trees, and this study has 

shown that trees increase the nearby soil porosity and infiltration rate; so, the removal of 

established woodlands can alter the hydrology of an area [3,18,30,80]. Aside from the 

demonstrated improvements to soil porosity and infiltration (Section 3), trees are also proven 

to contribute to increased interception. Quantifying interception is difficult due to the need 

for specialised equipment or continuous monitoring [81–83]. However, it is suggested that 

broadleaf interception loss as a percentage of total precipitation is estimated to be between 

10–34% (mean 24.25%) [84,85]. As a comparison, interception loss for grassland is negligible, 

being <1% [16,86]. In addition to the hydrological implications of mature woodland removal 

and translocation, it is widely acknowledged that woodlands capture and store significant 

volumes of CO2 [72,87,88], and the value of woodland carbon sequestration has been 

identified by the UK Government as key to aiding in achieving net zero carbon emissions 

[26]. Furthermore, established woodlands are beneficial from the perspectives of habitat 

creation and protection [89] and public amenity [16]. Apparent from the benefits of 

established woodland areas, is that the removal and replacement of mature woodland is 

mostly detrimental to the surrounding area. Whilst the influences of woodland removal are 

sometimes ‘balanced out’ by planting saplings in alternate locations, the newly planted 

saplings will not have a comparable moderating impact on flood risk (and habitats and 

amenity) compared with the felled mature trees, as has been demonstrated throughout 

Section 3 [30,75,90]. 

4.5. Study Applications 

The results of this study have shown that trees (and subsequently woodland) are 

valuable as a method of NFM as they can increase infiltration at close proximities, and become 

more capable of doing so with increased maturity; this in addition to the associated benefits 

regarding carbon sequestration, biodiversity, habitat creation, and public amenity. Referred 

to in Section 2.3, the HofE site is predominantly clay-textured, which is known to demonstrate 

low permeability and infiltration [55,60]. This therefore indicates that the derived results are 

a low-end representation of what the impacts of tree planting could be over a more permeable 

geology. Area calculations of superficial alluvium, clay, peat, and fluvial deposits throughout 

the UK show 15% (36,374.25 km2) to be similar in geology to the HofE site [91]. Therefore, 

15% of the UK is likely to demonstrate similar infiltration characteristics to the results of this 

study (Section 3) if trees were to be planted. However, this statistic can also be interpreted to 

show that 85% (206,120.75 km2) of the UK is non-clay textured; indicating that the low-end 

results derived throughout this study will likely be increased if applied to other areas of the 

UK [55,89]. Infiltration may be higher, and differing trends may be identified regarding 

seasonality and tree maturity [20,21]. This highlights the wider applicability of the collected 

data, emphasising the impact of the study results and proving the applicability of the 

methodology to other areas across the UK. This also presents an opportunity for this research 

to be extrapolated and applied to other geologies and soil textures, to potentially aid in 

justifying the use of tree planting as a method of NFM. 

It was discussed throughout Section 4.4 that removing woodland does not only disrupt 

the ongoing processes of infiltration and interception, but that habitats and carbon 

sequestration are also influenced—something which the UK Government is trying to alleviate 

through woodland planting [26]. This is also applicable to planting new saplings to account 

for the removed established trees—new saplings take time to develop the root systems 

necessary to influence soil porosity (as has been shown throughout this study), and saplings 

cannot intercept precipitation to the same extent as an established tree with a larger canopy. 

5. Conclusions and Future Work 

This study used the MDI to collect 1287 infiltration measurements from 10 cm and 200 

cm away from sample trees across a clay-texture site, owned by the HofE forest, in 

Warwickshire, UK. The results of the study show that mean infiltration was higher at the 10 

cm proximity compared with the 200 cm proximity by 75.87% in winter and 25.19% in 

summer, and that mean infiltration was 180% and 290% higher in summer compared with 

winter at the 10 cm and 200 cm proximities, respectively. There is little evidence to show a 

relationship between tree maturity and infiltration; however, the sample trees were still early 
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in their development, and it is likely that infiltration will increase as the root systems of the 

trees develop [18–23]. 

The conclusions show that tree planting increases infiltration, even over less-permeable 

soil textures (see Section 2.3); therefore, is valuable as a method of NFM. The findings of this 

study also have connotations regarding the way in which woodlands are currently managed, 

with particular reference to development, construction, and forestry. Trees should be left in-

situ wherever possible, and allowed to mature to achieve their maximum infiltration 

potential. Tree planting is not only beneficial to flood risk management, as Section 4.3 

indicates that further benefits include carbon sequestration, public amenity, and habitat 

creation and preservation. It has been discussed in the literature [30] that published research 

and case studies reporting the results of long-term woodland infiltration studies are scarce. 

Shorter-term tree planting and infiltration studies have been undertaken [3,18,30,79]; 

however, this study has contributed to the wider understanding of the longer-term 

implications and relationships of tree planting and infiltration with regard to proximity and 

maturity. 

Future work will involve developing a method for projecting the collected infiltration 

data, and simulating this using a hydrologic model to project the likely future hydrological 

response of the study site regarding precipitation and baseflow increases in light of climate 

change. Additionally, future studies could investigate likely variations to the study findings, 

with specific reference to the impact that climate change will have on woodland growth and 

rainfall patterns, and how this would influence the effectiveness of tree planting as a method 

of NFM. Furthermore, further considerations will be made regarding the incorporation of 

time domain reflectometry (TDR) measurements to compliment the derived infiltration data 

[92]; TDR instrumentation could be installed at both measurement proximities and the 

information interpreted to inform infiltration measurements. This would allow for a more 

robust interpretation of the influence of trees on infiltration characteristics dependent on 

maturity and proximity at greater depths [93–95]. 

Author Contributions: Conceptualization, methodology, software, validation, formal analysis, 

investigation, resources, data curation, writing—original draft preparation N.R.; writing—review and 

editing, C.L., M.R. and M.B.; visualization, N.R., M.R., C.L. and M.B.; supervision, C.L., M.R. and M.B. 

All authors have read and agreed to the published version of the manuscript. 

Funding: This research received no external funding. 

Data Availability Statement: To access the data collected and analysed in this study, please contact 

Nathaniel Revell (revelln@uni.coventry.ac.uk). 

Acknowledgments: Special thanks are extended to the HofE forest, in particular Stephen Coffey, for 

their support and assistance throughout the data collection phase of this project. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Lowe, J.A.; Bernie, D.; Bett, P.; Bricheno, L.; Brown, S.; Calvert, D.; Clark, R.; Edwards, T.; Fosser, G.; Fung, F.; et al. UKCP18 Science 

Overview Report; Met Office Hadley Centre: Exeter, UK, 2019. 

2. Fowler, H.J.; Ali, H.; Allan, R.P.; Ban, N.; Barbero, R.; Berg, P.; Blenkinsop, S.; Cabi, N.S.; Chan, S.; Dale, M.; et al. Towards advancing 

scientific knowledge of climate change impacts on short-duration rainfall extremes. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 

2021, 379, 20190542. https://doi.org/10.1098/rsta.2019.0542. 

3. Murphy, T.R.; Hanley, M.E.; Ellis, J.S.; Lunt, P.H. Native woodland establishment improves soil hydrological functioning in UK 

upland pastoral catchments. L. Degrad. Dev. 2021, 32, 1034–1045. https://doi.org/10.1002/ldr.3762. 

4. Ellis, N.; Anderson, K.; Brazier, R. Mainstreaming natural flood management: A proposed research framework derived from a 

critical evaluation of current knowledge. Prog. Phys. Geogr. Earth Environ. 2021, 45, 819–841. 

https://doi.org/10.1177/0309133321997299. 

5. Ferguson, C.; Fenner, R. The impact of Natural Flood Management on the performance of surface drainage systems: A case study 

in the Calder Valley. J. Hydrol. 2020, 590, 125354. https://doi.org/10.1016/j.jhydrol.2020.125354. 

6. Kitsikoudis, V.; Erpicum, S.; Rubinato, M.; Shucksmith, J.D.; Archambeau, P.; Pirotton, M.; Dewals, B. Exchange between drainage 

systems and surface flows during urban flooding: Quasi-steady and dynamic modelling in unsteady flow conditions. J. Hydrol. 

2021, 602, 126628. https://doi.org/10.1016/j.jhydrol.2021.126628. 

7. Rubinato, M.; Luo, M.; Zheng, X.; Pu, J.H.; Shao, S. Advances in Modelling and Prediction on the Impact of Human Activities and Extreme 

Events on Environments; MDPI: St. Alban-Anlage 66 4052 Basel, Switzerland, 2020; Volume 12, ISBN 9783039368020. 

8. Rubinato, M.; Nichols, A.; Peng, Y.; Zhang, J.M.; Lashford, C.; Cai, Y.P.; Lin, P.Z.; Tait, S. Urban and river flooding: Comparison of 

flood risk management approaches in the UK and China and an assessment of future knowledge needs. Water Sci. Eng. 2019, 12, 

274–283. https://doi.org/10.1016/j.wse.2019.12.004. 



12-115 
 

9. Palla, A.; Colli, M.; Candela, A.; Aronica, G.T.; Lanza, L.G. Pluvial flooding in urban areas: The role of surface drainage efficiency. 

J. Flood Risk Manag. 2018, 11, S663–S676. https://doi.org/10.1111/jfr3.12246. 

10. Wells, J.; Labadz, J.C.; Smith, A.; Islam, M.M. Barriers to the uptake and implementation of natural flood management: A social-

ecological analysis. J. Flood Risk Manag. 2020, 13, e12561. https://doi.org/10.1111/jfr3.12561. 

11. Bosseler, B.; Salomon, M.; Schlüter, M.; Rubinato, M. Living with Urban Flooding: A Continuous Learning Process for Local 

Municipalities and Lessons Learnt from the 2021 Events in Germany. Water 2021, 13, 2769. https://doi.org/10.3390/w13192769. 

12. Ferguson, C.R.; Fenner, R.A. The potential for natural flood management to maintain free discharge at urban drainage outfalls. J. 

Flood Risk Manag. 2020, 13, e12617. https://doi.org/10.1111/jfr3.12617. 

13. Shuttleworth, E.L.; Evans, M.G.; Pilkington, M.; Spencer, T.; Walker, J.; Milledge, D.; Allott, T.E.H. Restoration of blanket peat 

moorland delays stormflow from hillslopes and reduces peak discharge. J. Hydrol. X 2019, 2, 100006. 

https://doi.org/10.1016/j.hydroa.2018.100006. 

14. Dadson, S.J.; Hall, J.W.; Murgatroyd, A.; Acreman, M.; Bates, P.; Beven, K.; Heathwaite, L.; Holden, J.; Holman, I.P.; Lane, S.N.; et 

al. A restatement of the natural science evidence concerning catchment-based ‘natural’ flood management in the UK. R. Soc. Publ. 

2017, 473, 20160706. https://doi.org/10.1098/rspa.2016.0706. 

15. Burgess-Gamble, L.; Ngai, R.; Wilkinson, M.; Nisbet, T.; Pontee, N.; Harvey, R.; Kipling, K.; Addy, S.; Rose, S.; Maslen, S.; et al. 

Working with Natural Processes—Evidence Directory; Environment Agency, Horizon House, Deanery Road,Bristol, UK, 2018. 

16. Ngai, R.; Wilkinson, M.; Nisbet, T.; Harvey, R.; Addy, S.; Burgess-Gamble, L.; Rose, S.; Maslen, S.; Nicholson, A.; Page, T.; et al. 

Working with Natural Processes-Evidence Directory Appendix 2: Literature Review; Environment Agency, Horizon House, Deanery 

Road, Bristol, UK, 2017. 

17. Forbes, H.; Ball, K.; McLay, F. Natural Flood Management Handbook; Scottish Environment Protection Agency Strathallan House 

Castle Business Park Stirling,2016; ISBN 978-0-85759-024-4. 

18. Chandler, K.R.; Stevens, C.J.; Binley, A.; Keith, A.M. Influence of tree species and forest land use on soil hydraulic conductivity and 

implications for surface runoff generation. Geoderma 2018, 310, 120–127. https://doi.org/10.1016/j.geoderma.2017.08.011. 

19. Malik, I.; Pawlik, Ł.; Ślęzak, A.; Wistuba, M. A study of the wood anatomy of Picea abies roots and their role in biomechanical 

weathering of rock cracks. Catena 2019, 173, 264–275. https://doi.org/10.1016/j.catena.2018.10.018. 

20. Xie, C.; Cai, S.; Yu, B.; Yan, L.; Liang, A.; Che, S. The effects of tree root density on water infiltration in urban soil based on a Ground 

Penetrating Radar in Shanghai, China. Urban For. Urban Green. 2020, 50, 126648. https://doi.org/10.1016/j.ufug.2020.126648. 

21. Zhang, D.; Wang, Z.; Guo, Q.; Lian, J.; Chen, L. Increase and Spatial Variation in Soil Infiltration Rates Associated with Fibrous and 

Tap Tree Roots. Water 2019, 11, 1700. https://doi.org/10.3390/w11081700. 

22. Guo, F.X.; Wang, Y.P.; Hou, T.T.; Zhang, L.S.; Mu, Y.; Wu, F.Y. Variation of soil moisture and fine roots distribution adopts rainwater 

collection, infiltration promoting and soil anti-seepage system (RCIP-SA) in hilly apple orchard on the Loess Plateau of China. Agric. 

Water Manag. 2021, 244, 106573. https://doi.org/10.1016/j.agwat.2020.106573. 

23. Leung, A.K.; Boldrin, D.; Liang, T.; Wu, Z.Y.; Kamchoom, V.; Bengough, A.G. Plant age effects on soil infiltration rate during early 

plant establishment. Geotechnique 2018, 68, 646–652. https://doi.org/10.1680/jgeot.17.T.037. 

24. GOV.UK £3.9 Million to Drive Innovative Tree Planting. Available online: https://www.gov.uk/government/news/39-million-to-

drive-innovative-tree-planting (accessed on 13 July 2021). 

25. GOV.UK; Environment Agency. Forestry Commission Reduce Flood Risk with the Woodland for Water Scheme. Available online: 

https://www.gov.uk/government/news/reduce-flood-risk-with-the-woodlands-for-water-scheme (accessed on 27 October 2021). 

26. UK Government. The England Trees Action Plan 2021–2024; APS Group: Defra, Seacole Building, 2 Marsham Street, London, UK, 

2021. 

27. Waylen, K.A.; Holstead, K.L.; Colley, K.; Hopkins, J. Challenges to enabling and implementing Natural Flood Management in 

Scotland. J. Flood Risk Manag. 2018, 11, S1078–S1089. https://doi.org/10.1111/jfr3.12301. 

28. Xiao, L.; Robinson, M.; O’Connor, M. Woodland’s role in natural flood management: Evidence from catchment studies in Britain 

and Ireland. Sci. Total Environ. 2021, 813, 151877. https://doi.org/10.1016/j.scitotenv.2021.151877. 

29. Kay, A.L.; Old, G.H.; Bell, V.A.; Davies, H.N.; Trill, E.J. An assessment of the potential for natural flood management to offset 

climate change impacts. Environ. Res. Lett. 2019, 14, 044017. https://doi.org/10.1088/1748-9326/aafdbe. 

30. Cooper, M.M.D.; Patil, S.D.; Nisbet, T.R.; Thomas, H.; Smith, A.R.; McDonald, M.A. Role of forested land for natural flood 

management in the UK: A review. Wiley Interdiscip. Rev. Water 2021, 8, e1541. https://doi.org/10.1002/wat2.1541. 

31. Revell, N.; Lashford, C.; Blackett, M.; Rubinato, M. Modelling the Hydrological Effects of Woodland Planting on Infiltration and 

Peak Discharge Using HEC-HMS. Water 2021, 13, 3039. https://doi.org/10.3390/w13213039. 

32. McLean, L.; Beevers, L.; Pender, G.; Haynes, H.; Wilkinson, M. Natural Flood Management in the UK: Developing a Conceptual 

Management Tool. In Proceedings of the 35th IAHR World Congress, Chengdu, China, 8–13 September 2013; p. 12. 

https://doi.org/10.1039/a800340h. 

33. The Heart of England Forest Charity The Heart of England Forest. Available online: https://www.heartofenglandforest.com/ 

(accessed on 13 March 2019). 

34. JNCC. National Vegetation Classification—Ten Years Experience Using the Woodland Section; Goldberg, E., Ed.; JNCC: Monkstone 

House, City Road, Peterborough, 2003. 

35. Rodwell, J.S. National Vegetation Classification : Users Handbook; JNCC: Monkstone House, City Road, Peterborough 2006. 

36. Environment Agency LIDAR Composite 1 m DTM. Available online: 

https://environment.data.gov.uk/DefraDataDownload/?Mode=survey (accessed on 13 October 2018). 

37. Ordnance Survey OS VectorMap District. Available online: https://osdatahub.os.uk/downloads/open/VectorMapDistrict (accessed 

on 14 December 2021). 

38. Perry, T.O. Tree Roots : Facts and Fallacies. J. Arboric. 1982, 8, 197–211. 

39. Mauer, O.; Palátová, E. The role of root system in silver birch (Betula pendula Roth) dieback in the air-polluted area of Krušné hory 

Mts. J. For. Sci. 2003, 49, 191–199. https://doi.org/10.17221/4693-jfs. 



12-116 
 

40. Hepner, H.; Lutter, R.; Tullus, A.; Kanal, A.; Tullus, T.; Tullus, H. Effect of Early Thinning Treatments on Above-Ground Growth, 

Biomass Production, Leaf Area Index and Leaf Growth Efficiency in a Hybrid Aspen Coppice Stand. Bioenergy Res. 2020, 13, 197–

209. https://doi.org/10.1007/s12155-020-10111-0. 

41. Robichaud, P.R.; Lewis, S.A.; Ashmun, L.E. New procedure for sampling infiltration to assess post-fire soil water repellency. USDA 

For. Serv.-Res. Note RMRS-RN 2008, 14, 33. 

42. Naik, A.P.; Ghosh, B.; Pekkat, S. Estimating soil hydraulic properties using mini disk infiltrometer. ISH J. Hydraul. Eng. 2019, 25, 

62–70. https://doi.org/10.1080/09715010.2018.1471363. 

43. Bátková, K.; Miháliková, M.; Matula, S. Hydraulic properties of a cultivated soil in temperate continental climate determined by 

mini disk infiltrometer. Water 2020, 12, 843. https://doi.org/10.3390/w12030843. 

44. Nestingen, R.; Asleson, B.C.; Gulliver, J.S.; Hozalski, R.M.; Nieber, J.L. Laboratory Comparison of Field Infiltrometers. J. Sustain. 

Water Built Environ. 2018, 4, 04018005. https://doi.org/10.1061/JSWBAY.0000857. 

45. Fatehnia, M.; Tawfiq, K.; Ye, M. Estimation of saturated hydraulic conductivity from double-ring infiltrometer measurements. Eur. 

J. Soil Sci. 2016, 67, 135–147. https://doi.org/10.1111/ejss.12322. 

46. Matula, S.; Miháliková, M.; Lufinková, J.; Bátková, K. The role of the initial soil water content in the determination of unsaturated 

soil hydraulic conductivity using a tension infiltrometer. Plant Soil Environ. 2015, 62, 515–521. https://doi.org/10.17221/527/2015-

PSE. 

47. METER Group Inc. Mini Disk Infiltrometer User’s Manual; METER Group, Inc. USA: 2365 NE Hopkins Court, Pullman, 2020. 

48. de Melo, M.L.A.; de Jong van Lier, Q. Revisiting the Feddes reduction function for modeling root water uptake and crop 

transpiration. J. Hydrol. 2021, 603, 126952. https://doi.org/10.1016/j.jhydrol.2021.126952. 

49. Sonkar, I.; Sudesan, S.; Suryanarayana Rao Kotnoor, H.P. Compensated non-linear root water uptake model and identification of 

soil hydraulic and root water uptake parameters. Irrig. Drain. 2022, 71, 157–174. https://doi.org/10.1002/ird.2636. 

50. Difonzo, F.V.; Masciopinto, C.; Vurro, M.; Berardi, M. Shooting the Numerical Solution of Moisture Flow Equation with Root Water 

Uptake Models: A Python Tool. Water Resour. Manag. 2021, 35, 2553–2567. https://doi.org/10.1007/s11269-021-02850-2. 

51. Logsdon, S.D.; Jaynes, D.B. Spatial variability of hydraulic conductivity in a cultivated field at different times. Soil Sci. Soc. Am. J. 

1996, 60, 703–709. 

52. Prieksat, M.A.; Kaspar, T.C.; Ankeny, M.D. Positional and temporal changes in ponded infiltration in a corn field. Soil Sci. Soc. Am. 

J. 1994, 58, 181–184. 

53. Khodaverdiloo, H.; Khani Cheraghabdal, H.; Bagarello, V.; Iovino, M.; Asgarzadeh, H.; Ghorbani Dashtaki, S. Ring diameter effects 

on determination of field-saturated hydraulic conductivity of different loam soils. Geoderma 2017, 303, 60–69. 

https://doi.org/10.1016/j.geoderma.2017.04.031. 

54. Rönnqvist, H. Double-Ring Infiltrometer for In-Situ Permeability Determination of Dam Material. Engineering 2018, 10, 320–328. 

https://doi.org/10.4236/eng.2018.106022. 

55. Folorunso, O.; Aribisala, J. Effect of Soil Texture on Soil Infiltration Rate. Arch. Curr. Res. Int. 2018, 14, 1–8. 

https://doi.org/10.9734/ACRI/2018/41974. 

56. Muneer, A.S.; Sayl, K.N.; Kamal, A.H. A Comparative Study to Assess the Suitable Models for Predicting the Infiltration Rate in an 

Arid Region. Iraqi J. Civ. Eng. 2020, 14, 29–38. 

57. Ren, X.; Hong, N.; Li, L.; Kang, J.; Li, J. Effect of infiltration rate changes in urban soils on stormwater runoff process. Geoderma 2020, 

363, 114158. https://doi.org/10.1016/j.geoderma.2019.114158. 

58. Rahman, M.A.; Moser, A.; Anderson, M.; Zhang, C.; Rötzer, T.; Pauleit, S. Comparing the infiltration potentials of soils beneath the 

canopies of two contrasting urban tree species. Urban For. Urban Green. 2019, 38, 22–32. https://doi.org/10.1016/j.ufug.2018.11.002. 

59. LaMotte Soil Texture Test Kit. Available online: https://lamotte.com/products/soil/individual-soil-plant-tissue-test-kits/soil-texture-

test-1067 (accessed on 15 October 2020). 

60. Groenendyk, D.G.; Ferré, T.P.A.; Thorp, K.R.; Rice, A.K. Hydrologic-process-based soil texture classifications for improved 

visualization of landscape function. PLoS ONE 2015, 10, e0131299. https://doi.org/10.1371/journal.pone.0131299. 

61. The Met Office When Does Summer Start? Available online: https://www.metoffice.gov.uk/weather/learn-

about/weather/seasons/summer/when-does-summer-start (accessed on02/02/2022). 

62. The Met Office When Does Winter Start? Available online: https://www.metoffice.gov.uk/weather/learn-

about/weather/seasons/winter/when-does-winter-start (accessed on12/12/2021). 

63. Met Office UK Climate Averages. Available online: https://www.metoffice.gov.uk/research/climate/maps-and-data/uk-climate-

averages/gcq89t680 (accessed on 13/11/2021). 

64. Martinez, P.; Buurman, P.; do Nascimento, D.L.; Almquist, V.; Vidal-Torrado, P. Substantial changes in podzol morphology after 

tree-roots modify soil porosity and hydrology in a tropical coastal rainforest. Plant Soil 2021, 463, 77–95. 

https://doi.org/10.1007/s11104-021-04896-y. 

65. Mölder, A.; Sennhenn-Reulen, H.; Fischer, C.; Rumpf, H.; Schönfelder, E.; Stockmann, J.; Nagel, R.V. Success factors for high-quality 

oak forest (Quercus robur, Q. petraea) regeneration. For. Ecosyst. 2019, 6, 49. https://doi.org/10.1186/s40663-019-0206-y. 

66. Mishra, P.; Pandey, C.; Singh, U.; Keshri, A.; Sabaretnam, M. Selection of appropriate statistical methods for data analysis. Ann. 

Card. Anaesth. 2019, 22, 297–301. https://doi.org/10.4103/aca.ACA_248_18. 

67. Kamis, A.S.; Ahmad Fuad, A.F.; Ashaari, A.; Mohd Noor, C.W. Development of WOP mathematical model for efficient course 

alteration: LNG tanker manoeuvring analysis and Mann-Whitney U test. Ocean Eng. 2021, 239, 109768. 

https://doi.org/10.1016/j.oceaneng.2021.109768. 

68. Fay, M.P.; Proschan, M.A. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of 

decision rules. Stat. Surv. 2010, 4, 1–37. https://doi.org/10.1214/09-SS051. 

69. Nachar, N. The Mann-Whitney U: A Test for Assessing Whether Two Independent Samples Come from the Same Distribution. 

Tutor. Quant. Methods Psychol. 2008, 4, 13–20. https://doi.org/10.20982/tqmp.04.1.p013. 

70. Mann, H.B.; Whitney, D.R. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Ann. Math. 

Stat. 1947, 18, 50–60. https://doi.org/10.1214/aoms/1177730491. 



12-117 
 

71. Dittrich, R.; Ball, T.; Wreford, A.; Moran, D.; Spray, C.J. A cost-benefit analysis of afforestation as a climate change adaptation 

measure to reduce flood risk. J. Flood Risk Manag. 2019, 12, e12482. https://doi.org/10.1111/jfr3.12482. 

72. Lacob, O.; Rowan, J.S.; Brown, I.; Ellis, C. Evaluating wider benefits of natural flood management strategies: An ecosystem-based 

adaptation perspective. Hydrol. Res. 2014, 45, 774–787. https://doi.org/10.2166/nh.2014.184. 

73. Lacob, O.; Brown, I.; Rowan, J. Natural flood management, land use and climate change trade-offs: The case of Tarland catchment, 

Scotland. Hydrol. Sci. J. 2017, 62, 1931–1948. https://doi.org/10.1080/02626667.2017.1366657. 

74. Birkinshaw, S.J.; Bathurst, J.C.; Robinson, M. 45 years of non-stationary hydrology over a forest plantation growth cycle, Coalburn 

catchment, Northern England. J. Hydrol. 2014, 519, 559–573. https://doi.org/10.1016/j.jhydrol.2014.07.050. 

75. Archer, N.A.L.; Bonell, M.; Coles, N.; MacDonald, A.M.; Auton, C.A.; Stevenson, R. Soil characteristics and landcover relationships 

on soil hydraulic conductivity at a hillslope scale: A view towards local flood management. J. Hydrol. 2013, 497, 208–222. 

https://doi.org/10.1016/j.jhydrol.2013.05.043. 

76. Rabot, E.; Wiesmeier, M.; Schlüter, S.; Vogel, H.J. Soil structure as an indicator of soil functions: A review. Geoderma 2018, 314, 122–

137. https://doi.org/10.1016/j.geoderma.2017.11.009. 

77. The Met Office Record Breaking Rainfall. Available online: https://www.metoffice.gov.uk/about-us/press-office/news/weather-

and-climate/2020/2020-winter-february-stats (accessed on 11 June 2021). 

78. Davies, P.A.; McCarthy, M.; Christidis, N.; Dunstone, N.; Fereday, D.; Kendon, M.; Knight, J.R.; Scaife, A.A.; Sexton, D. The wet 

and stormy UK winter of 2019/2020. Weather 2021, 76, 396–402. https://doi.org/10.1002/wea.3955. 

79. Thomas, H.; Nisbet, T.R. Slowing the Flow In Pickering: Quantifying the Effect of Catchment Woodland Planting on Flooding Using 

the Soil Conservation Service Curve Number Method. In International Journal of Safety and Security Engineering; WIT Press: Ashurst, 

New Forest, England, 2016; Volume 6, pp. 12–20. 

80. Hankin, B.; Chappell, N.; Page, T.; Whitling, M.; Burgess-gamble, L. Mapping the potential for Working with Natural Processes: User 

Guide; Environment Agency: Bristol, UK, 2017. 

81. Klamerus-Iwan, A. Different views on tree interception process and its determinants. For. Res. Pap. 2014, 75, 291–300. 

https://doi.org/10.2478/frp-2014-0028. 

82. Rahman, M.; Ennos, R. What We Know and Don’t Know about the Surface Runoff Reduction Potential of Urban Trees; School of Biological, 

Biomedical and Environmental Sciences, University of Hull, Cottingham Road, Kingston-upon-Hull, UK, 2016. 

83. Komatsu, H.; Kume, T.; Otsuki, K. Increasing annual runoff-broadleaf or coniferous forests? Hydrol. Process. 2011, 25, 302–318. 

https://doi.org/10.1002/hyp.7898. 

84. Calder, I.R. Assessing the water use of short vegetation and forests: Development of the Hydrological Land Use Change (HYLUC) 

model. Water Resour. Res. 2003, 39, 1–8. https://doi.org/10.1029/2003WR002040. 

85. Lunka, P.; Patil, S.D. Impact of tree planting configuration and grazing restriction on canopy interception and soil hydrological 

properties: Implications for flood mitigation in silvopastoral systems. Hydrol. Process. 2016, 30, 945–958. 

https://doi.org/10.1002/hyp.10630. 

86. Nisbet, T. Water Use by Trees—Forestry Commission Information Note FCIN065; Forestry Commission, Corstorphine Road Edinburgh, 

2005; pp. 1–8. 

87. Forestry Commission. Forestry Statistics 2018; Forestry Commission: Aylesbury, UK, 2018. 

88. Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; van Noordwijk, M.; Creed, I.F.; Pokorny, J.; 

et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. 

https://doi.org/10.1016/j.gloenvcha.2017.01.002. 

89. Anderson, R.L.; Brye, K.R.; Wood, L.S. Landuse and soil property effects on infiltration into Alfisols in the Lower Mississippi River 

Valley, USA. Geoderma Reg. 2020, 22, e00297. https://doi.org/10.1016/j.geodrs.2020.e00297. 

90. Hynynen, J.; Niemisto, P.; Vihera-Aarnio, A.; Brunner, A.; Hein, S.; Velling, P. Silviculture of birch (Betula pendula Roth and Betula 

pubescens Ehrh.) in northern Europe. Forestry 2010, 83, 103–119. https://doi.org/10.1093/forestry/cpp035. 

91. British Geological Survey 1:625k Bedrock and Superficial UK Geology. Available online: https://www.bgs.ac.uk/datasets/bgs-

geology-625k-digmapgb/ (accessed on 15 June 2021). 

92. He, H.; Aogu, K.; Li, M.; Xu, J.; Sheng, W.; Jones, S.B.; González-Teruel, J.D.; Robinson, D.A.; Horton, R.; Bristow, K.; et al. A Review 

of Time Domain Reflectometry (TDR) Applications in Porous Media, 1st ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2021; Volume 

168, ISBN 9780128245897. 

93. Cataldo, A.; De Benedetto, E.; Masciullo, A.; Cannazza, G. A new measurement algorithm for TDR-based localization of large 

dielectric permittivity variations in long-distance cable systems. Meas. J. Int. Meas. Confed. 2021, 174, 109066. 

https://doi.org/10.1016/j.measurement.2021.109066. 

94. Ahmed, F.; Borst, M. Monitoring infiltration rates with time domain reflectometers. Water Environ. Res. 2019, 91, 1638–1649. 

https://doi.org/10.1002/wer.1165. 

95. Samimi, S.; Marshall, S.J.; Vandecrux, B.; MacFerrin, M. Time-Domain Reflectometry Measurements and Modeling of Firn 

Meltwater Infiltration at DYE-2, Greenland. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006295. 

https://doi.org/10.1029/2021JF006295. 

 



12-118 
 

D.3 Conferences, Presentations and Posters 

This section details conferences attended, presentations and posters created throughout the 

duration of study 
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D.3.1 AGU Fall 2020 Conference, San Francisco (Poster and Presentation) 

Online oral poster presentation at the 2020 American Geophysical Union (AGU) conference in San Francisco. The presentation outlined and 

explained the methodology and preliminary results of infiltration data collection from the HofE site.  
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D.3.2 ICUD Conference, Melbourne (Presentation) 

Online oral poster presentation at the 2021 International Conference on Urban Drainage 

(ICUD) in Melbourne. The presentation outlined and explained the methodology and results 

involved in the hydrological modelling of infiltration data. 
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D.3.3 Coventry University Postgraduate Research Seminar (Oral Presentation) 

Oral presentation to university staff and research students of CAWR (Centre for Agroecology, 

Water and Resilience) focusing on the methods and results of infiltration data and hydrological 

modelling. 

 

D.3.4 Cov-Unovi (Oral Presentation) 

Oral presentation to university staff and other invited attendees of CAWR (Centre for 

Agroecology, Water and Resilience), and the students and staff of the university of Oviedo, 

Spain. I was the sole presenter, and the presentation revolved around the methods and results 

of infiltration data and hydrological modelling. 
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D.3.5 Coventry University Doctoral College Trailblazer Showcase (Poster Presentation) 

Poster presentation at the Coventry University trailblazer conference. The poster included 

information on the background, justification, methods, and results of the project. 
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D.4 Additional Development and Engagement 

This section outlines all additional and miscellaneous development, both academic and 

professional, undertaken throughout the course of study. 

 

D.4.1 Development Activity Log 

Table D.1 lists all development activities and the hours accumulated in partial fulfilment of the 

requirements of this study. 

Table D.1. Extracurricular additional activities undertaken throughout the course of study 

Date Activity/Event Hours Total 

23/09/2018 - 
24/09/2018 

SuDSNet 20 20 

25/10/2018 Lecture preparation 8 28 

29/10/2018 Lecture delivery 4 32 

29/10/2018 Tutoring in GIS 5 37 

01/11/2018 Study site tour with tutors 5 42 

05/11/2018 - 
30/11/2018 

External data management and GIS project 50 92 

11/04/2019 
Site walk around Staffordshire with Staffordshire Wildlife Trust and my 
DoS 

8 100 

15/04/2019 
Meeting with Jacobs in Leeds to discuss my project and how they may 
be able to assist 

10 110 

24/06/2019 Day on site with Dr. Sim Reaney flying drone to survey study site 10 120 

04/11/2019 
Meeting with Jacobs in Peterborough regarding the modelling elements 
of my PhD 

5 125 

07/11/2019 CAWR Ethics Training 3 128 

19/02/2020 SIGMA Stats Workshop: Intro to SPSS 3 131 

20/02/2020 Tutoring in modelling and GIS 7 138 

19/04/2020 
Being tutored on the advanced features of Flood Modeller Pro by a 
modelling consultant 

8 146 

05/05/2020 SIGMA Stats Workshop: Descriptive Statistics 3 149 

06/05/2020 SIGMA Stats Workshop: Statistical Inference 3 152 

06/05/2020 SIGMA Stats Workshop: Non-Parametric Statistics 3 155 

07/05/2020 SIGMA Stats Workshop: Analysis of Variance Workshop 3 158 

07/05/2020 SIGMA Stats Workshop: Correlation and Regression 3 161 

03/09/2020 - 
08/09/2020 

Presentation preparation for upcoming presentation to all CAWR staff 
and students 

7 168 

09/09/2020 Presentation to all CAWR staff and students 2 170 

11/09/2020 
Meeting with HofE head forester for a walk around the study site and 
general questions 

5 175 
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20/11/2020 - 
09/12/2020 

Preparation of poster presentation for the virtual AGU conference 
(2020) 

20 195 

10/12/2020 Presentation of poster, and time spent taking questions 1 196 

19/01/2021 Tutoring in GIS and HEC-HMS 10 206 

20/05/2021 - 
25/04/2021 

Preparation for the upcoming Cov-Unovi workshop presentation 10 216 

25/05/2021 Cov-Unovi workshop presentation 2 218 

31/10/2021 First Peer Reviewed Publication 60 278 

27/10/2021 ICUD Conference 2 280 

01/11/2021 Preparation of poster of upcoming trailblazer presentation 10 290 

09/11/2021 Trailblazer Poster Presentation 2 292 

10/11/2021 Meeting with Michigan Tech Professors about the MDI app 2 294 

12/01/2022 
Meeting with HofE head forester, biodiversity manager and 
Environment Agency 

3 297 

11/03/2022 Second peer Reviewed Publication 60 357 

15/03/2022 Feedback session with the development team of the MDI app 2 359 
 Total Hours 359 

 

D.4.2 Mini-Disk Infiltrometer App Development 

Working with Dr. Mary Miller and (Research Scientist) and Dr Robert Pastel (Computer 

Science Associate Professor) from Michigan Tech Research Institute (MTRI), to feedback, 

discuss and test a new app to assist in the use of the Mini Disk Infiltrometer. 
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