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Abstract

The importance of an optimal solution for disaster evacuation has recently
raised attention from researchers across multiple disciplines. This is not only
a serious, but also a challenging task due to the complexities of the evacuees’
behaviors, route planning, and demanding coordination services. Although
existing studies have addressed these challenges to some extent, mass evac-
uation in natural disasters tends to be difficult to predict and manage due
to the limitation of the underlying models to capture realistic situations. It
is therefore desirable to have on-demand mechanisms of locally-driven com-
puting and data exchange services in order to enable near real-time capture
of the disaster area during the evacuation. For this purpose, this paper
comprehensively surveys recent advances in information and communication
technology-enabled disaster evacuations, with the focus on fog computation
and communication services to support a massive evacuation process. A nu-
merous variety of tools and techniques are encapsulated within a coordinated
on-demand strategy of an evacuation platform, which is aimed to provide a
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situational awareness and response. Herein fog services appear to be one
of the viable options for responsive mass evacuation because they enable
low latency data processing and dissemination. They can additionally pro-
vide data analytics support for autonomous learning for both the short-term
guidance supports and long-term usages. This work extends the existing
data-oriented framework by outlining comprehensive functionalities and pro-
viding seamless integration. We review the principles, challenges, and future
direction of the state-of-the-art strategies proposed to sit within each func-
tionality. Taken together, this survey highlights the importance of adaptive
coordination and reconfiguration within the fog services to facilitate respon-
sive mass evacuations as well as open up new research challenges associated
with analytics-embedding network and computation, which is critical for any
disaster recovery activities.

Keywords: Disaster recovery, evacuation guidance, fog, fog computing, fog
communications, collaborative analytics

1. Introduction

Large-scale evacuation solutions for pre-, on-going, and post-disaster natu-
ral disaster events have been studied extensively in recent years. Devising
an effective evacuation solution is a critical and also a complicated task be-
cause it relates to the number of casualties and mobilization management.
These solutions should consider several important factors, such as road ca-
pacity, human behavior, capability [1, 2, 3], and infrastructure destruction
[4]. Moreover, these developed solutions often uniquely serve for different
phases of a disaster. Pre- and on-going disaster evacuation strategies govern
massive mobilization to reduce travel time, and plan the best route, while
post-disaster evacuation aims at locating survivors quickly within the golden
relief period. Due to its specific condition of each disaster part, and related
factor complexities, a large body of knowledge has utilized various approaches
that can be mainly categorized into agent-based modeling (ABM) [1, 3, 5, 2],
and crowdsourced services [6, 7, 8, 4, 9].

Despite many benefits given by the ABM strategies, they lack the ability
to adequately react to unexpected situation due to the model used. The op-
timal solution of these strategies are pre-computed (Fig. 1a) and tend to be
less-realistic due to various dynamic elements, such as weather change, unex-
pected traffic surge, road network destruction, and evacuation rate [4]. Also,
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the usage of the agent-based model tends to be location-, and population-
specific due to the assumptions made in the system modeling step. Moti-
vated by the static nature of the agent-based model, crowdsourced service
has been designed to provide an on-demand solution using a robust infras-
tructure. The service processes data input at the designated cloud facility,
and outputs the solution to information outlets, such as roadside units [4],
or handheld devices [6, 8, 10]. However, these solutions are highly likely to
suffer from transmission delays caused by the data propagation, and queuing
process. Moreover, the lack of a failover plan caused by physical damage or
system failure at the core layer of the facility makes this approach alone more
vulnerable to failure [7, 10].

(a) with Agent-based model OR GIS (b) with Fog service

Figure 1: Network-enabled computation framework for disaster evacuation.

Fog computing and communication is a technological approach that has
the potential to address high-delay issues in centralized service [11] by bring-
ing the computation facility closer to end-users. Existing studies [11, 12]
showed several substantial contributions to low-latency, localized solutions,
and low-cost deployment. Furthermore, these studies combined the remain-
ing functioning infrastructure and crowd-based services, producing a viable
solution for crowd management in a disruptive scenario. Not only does it offer
a more fault-tolerance strategy, but also provide a circumstantial awareness
that allows authorities to observe various crowd conditions [8]. This service
can typically consist of several mobile computing units (MCUs), such as mov-
able fog nodes, smartphones, and sensing devices [11, 12], as well as mobile as-
sistant units (MAUs), namely Unmanned Aerial Vehicles (UAV) [9, 7, 13] and
Unmanned Ground Vehicles (UGV) [14]. These sub-units can communicate
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and work together for data collection [9, 14] or short-term decision-making
[15]. An autonomous collaboration between the ground and aerial units
can improve the quality of imagery data. As a result, fog-computing-aided
crowdsourced service is envisioned to produce optimum evaluation paths by
considering the density of the road and traffic congestion. The platform has
sufficient capability to interpret and process real-time situations locally and
forwards brief key information to the central units, if possible. The compu-
tation process can be further improved by taking into account historical and
geographical information surrounding the catchment areas [16, 17, 18, 19, 20].
A generic illustration of this approach can be found in Fig. 1b.

Table 1: Comparison of related surveys.

Source Main highlight

Mukherjee
et al. [21]

Fundamental fog architecture, key metrics, challenges, and appli-
cations.

Mahmud
et al.[22]

Key differentiating concepts between other new computing
paradigms, and fog taxonomy based identified challenges.

Mouradian
et al. [23]

Comprehensive survey on fog computing based on architectural
and algorithmic perspective.

Hu et al.
[24]

Survey on key technologies and applications of fog computing.

Our work Novel framework-based survey on fog computing key-enabling
technologies aiming at seamless integration specifically for evacu-
ation service.

In addition to the abovementioned benefits, the use of mobile fog services
also highlights the potential of data analytics implementation in which the
existing solution lacks. The collected data and the stored knowledge base,
such as sensing data and trajectory patterns will provide valuable direction
on how the solution should be devised and implemented. Additionally, the
capability to analyze and derive network condition pattern, such as trans-
mission loss [7] and channel capacity [10], offers the potential to do reactive
reconfiguration. However, finding a balance between these metrics is a chal-
lenging issue because of the limited energy which mobile fog and terminal
devices have [25, 26, 27]. Mobile fog is different from a typical fog device be-
cause it only relies on battery to serve any incoming requests [11]. Therefore,
not all types of data should be considered important and served equally [7].
Beside the energy issue for the computation purpose, collaborative processes
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that occur between all units should be carefully governed. It causes not only
communication interference but also a queuing problem.

Though there have existed several surveys of fog computing as listed
in Table 1, this paper serves different purposes. Previous surveys [21, 22,
23, 24] cover fog computing concepts with provided taxonomy. In contrast,
this paper surveys the state-of-the-art fog-assisted technologies with scalable
communications and data analytics for context-aware disaster evacuation
scenarios. Our contributions are summarized as follows:

• Top-down comprehensive review. Our survey is structured based on an
umbrella of a fog-based service architecture named Fog-Assisted Dis-
aster Evacuation Service (FADE). We illustrate FADE as a conceptual
stack of logical capabilities that mainly operate at the mobile comput-
ing unit.

• Critical evaluation on communication technology. We formulate an in-
tegrated communication service suitable for high-demand access during
an emergency situation. Then, we analyze the building elements for a
low-delay communication context.

• In-depth examination on analytics capability. We list and review the
practical applications and examine possible technological adoptions to
anticipate uncertain conditions.

• Discussion on technology interoperability. We extend the original layered-
oriented Data-driven Architecture [28] by incorporating comprehensive
functionalities on each layer and providing a seamless integration.

• Highlight on critical challenges and future directions. We discuss cur-
rent research challenges for each supporting technology and provide
brief directions to address them.

The remaining parts of this paper are organized as follows. Firstly, we
review the existing evacuation solutions in Section 2. Then, the key features
and architecture of fog-assisted service, including high-level perspective and
layered-oriented functionalities, are presented in Section 3. In Sections 4-7,
existing works on each functionality component are discussed. Since FADE
offers a collaborative computation feature, a functionality for retrieval and
analytics requires modification of the corresponding layers. These are dis-
cussed in Section 8. Then, we present the research challenges and future
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direction of related topics in Section 9. Finally, we conclude our work in
Section 10 with an overview of our contributions.

2. Existing Evacuation Guidance Solution

This section compares several existing evacuation guidance approaches
that focus on different phases of a disaster event. This highlights several im-
portant aspects that differentiate the principles used in the existing strategies
with the envisioned collaborative method. In brief, the main distinctive as-
pect between the strategies covered in Table 1 and FADE is the presence of
a decentralized facility to enable a lower-latency coordination and a future
analytics.

Table 2 presents available strategies for evacuation guidance or route plan-
ning that can be classified into different categories. Herein a strategy for
delivery indicates an appropriate phase where solution calculation or dis-
semination occurs. Pre-computed strategies attempt to compute an optimal
evacuation plan before the disaster happens. Meanwhile, the strategies with
on-demand approach (Fig. 1b) compute the optimal evacuation path re-
quested during the occurrence of natural disaster. These stragies of delivery
can utilize one of two distinct information flows either uni-directional or bi-
directional. While uni-directional strategies use pre-stored data and deliver
to authorities, bi-directional schemes require field data captured multiple
times by on-field units before finally sending the optimal decision to emer-
gency response units. The next category, focus of disaster event, indicates
which part of a disaster event aimed by an evacuation guidance scheme.
The subsequent category is contribution areas which lists the focus of each
strategy, such as modelling, simulation, infrastructure, and communication
aspect.

The ABM strategies provide an approach to simulate and to evaluate the
decision taken by a trained personnel to mobilize the affected population
before and during the occurrence of a disaster. In this approach, the agents
often have better knowledge than residents such that they possess capabili-
ties to decide the best route to safe points. The authors of [1] and [3] devised
an agent-based strategy that considers pedestrian’s capability, road capac-
ity, and moving direction. Similarly, the authors of [5] and [2] designed an
algorithm that manages evacuation from a macro and micro-level perspec-
tive. The second approach, crowdsourced service, extends or replaces the
existing communication infrastructure with users’ devices, and sensor net-
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works. This service exploits the short-range information exchange between
the users’ equipment to provide a backup communication service using Delay-
tolerant Network [6] or Opportunistic Communication [7]. Additionally, the
crowdsourced service also can offer additional data capture source [8, 4], and
cognitive resource [11, 9] to help the complex computation task.

As seen in Table 2, most of the existing evacuation guidance approaches
and plans were developed using pure [2, 3, 29, 30, 1] or hybrid agent-based
[5, 31] models. In these pure agent-based solutions, a simulation tool was

Table 2: Existing Solutions to Disaster Evacuation Problem

Ref.
Delivery
strategy

Info.
flow

Focus of disaster event Contribution
area(s)

Key concept(s)
Pre- During Post-

[1] P 1 � � � M,S ABM†

[3] P 1 � � � M,S ABM†

[5] P 1 � � � M,S ABM‡

[2] P 1 � � � M,S ABM†

[29] P 1 � � � M,S,I ABM†

[30] P 1 � � � M,S ABM†

[31] O 2 � � � M,I ABM‡, DTN

[10] O 1 � � � M,S Routing

[4] O 2 � � � M,I Cloud

[12] O 2 � � � I Fog

[11] O 2 � � � I Fog

[8] O 2 � � � C,I Cloud, Fog

[6] O 1 � � � C,I DTN

[32] O 2 � � � M,S,C DTN

[13] O 2 � � � M,I UAV

[9] O 2 � � � M,I UAV

[7] O 2 � � � M,S Cloud, UAV

[33] O 2 � � � S,I UAV

[34] O 1 � � � M,S UAV

[35] O 2 � � � S,I WSN

[36] O 1 � � � S,C WSN

[37] O 2 � � � I Cloud, SDN

Note. P = pre-computed; O = on-demand; 1/2 = uni-/bi-directional; M =
modelling; S = simulation; I = infrastructure; C = communication; †/‡ =

pure/hybrid.
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used to investigate the impact of the agents’ parameters, such as horizontal,
vertical evacuation, multimodal capability, and evacuees’ decision time, on
the total number casualties. Some important findings were obtained from
these studies, such as: (1) mortality rate was sensitive to the time delay; (2)
variation in walking speed caused by multi-modal evacuation determined the
number of casualties due to the traffic congestion; and (3) shelter allocation
for vertical evacuation could greatly reduce the mortality rate. Due to these
assumptions made on the model, the running time of the simulation increases.
Motivated by these limitations, a parallel algorithm was proposed in [29] to
speed up the computation and executed in High-performance Computing
(HPC) infrastructure. This work simulated agents for evacuation with visi-
bility parameters to recognize the busy road situation and react accordingly
to the condition.

While the aforementioned methods demonstrated a potential reduction
in the disaster mitigation time, they were static, making them less respon-
sive to unexpected situations. In fact, mitigation time is a complex metric
as it is related to the completion time of various disaster relief processes,
such as casualty loss estimation, evacuee behavior analysis, traffic bottleneck
identification, shelter condition monitoring, and evacuation mode evaluation
[3]. Because the pre-computed strategies lacked of pro-active and reactive re-
sponse mechanism to adapt with various scenarios, a more dynamic approach
was then proposed in [4, 9, 13]. In these studies, a two-way data exchange
was used for an input and output mechanism that facilitated a series of inter-
active evacuation guidance. MACROSERV [4] incorporates a joint function
between Intelligent Traffic System (ITS) and sensing system. The platform
acts as: (1) an evacuation-plan analysis—tool used by authorities that simu-
lates various disaster scenarios–; and (2) an efficient-route recommendation
tool during the course of a disaster. The service processes real-time traffic
data provided by Road-side Units (RSUs), then transfers them to a central-
ized computation facility, and outputs the generated optimum route to the
RSUs. The MACROSERV optimizes an evacuation route by considering the
models of the road capacity, traffic volume, route distance, and population
size. Meanwhile, in order to provide similar responsiveness in obtaining input
and delivering instruction, several works, i.e., [6, 19, 11] used aerial units to
replace human agents. These UAV units have more mobility, making them
capable of gathering evacuation data [6] to guide the evacuees according to
a pre-computed plan [13]. In [13], the drones were used as a replacement of
human-agents to guide evacuees to safe location points.
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In addition to a desirable dynamic support provided by the evacuation
guidance, computation capability is also seen as an important aspect to focus
on. Not only does it affect how well the response is computed, but also how
effective it is to operate during the evacuation process. This consideration
becomes more relevant when a multi-hazard disaster scenario occurs, such as
the 2018 Sulawesi [38] and the 2010 Chile [39] earthquake-tsunami. For this
reason, several studies designed a hybrid platform including infrastructure
and crowdsourced facilities to alleviate the computation demand [11], to
backup the barebone network service [8, 6], or to provide the emergency
communication service [7]. The centralized computation facility that offers a
powerful computation capability was used in [4] to help the decision-making
process. However, the support comes with the cost of a longer response
time and thus makes it less desirable in a highly demanding and low-latency
scenario [11, 12]. Therefore, the notion of Opportunistic Fog was proposed in
[11] as a movable computation facility aiming at localized solutions and low-
latency data transfers. Meanwhile, an integrated communication acting as a
scalable service during a crowd was proposed in [8, 6]. In these studies, the
authors designed a communication network that enabled a combination of
peer-to-peer connection of user devices and infrastructure-based service. The
user-to-user connection establishes an opportunistic concept that is prone to
high-latency and low-delivery rate.

3. Fog-assisted Disaster Evacuation (FADE) Solution

3.1. Principle Characteristics

While conventional strategies have predominant characteristics of being
uni-directional, static, and location-specific solutions, FADE is envisioned
to create a bi-directional flow of information that is intended to cope with
the dynamic nature of the evacuation process. Additionally, the existing
solutions tend to be pre-computed and use non-stationary computing infras-
tructures. Key technologies to enable FADE functionalities are mobile fog
infrastructure and aerial surveillance units, which were proposed by a num-
ber of pilot studies [11, 9, 12]. According to [11], opportunistic fog provides
high-quality services to a wider area with higher localized accuracy compared
to the cloud processing via low-latency and transient connectivity. We de-
scribe the unique features of FADE compared to the conventional solutions
as follows.
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• On-field data capture: FADE attempts to monitor on-going evacuation
activities via ad-hoc infrastructures under the guidance of the central
processing unit. These on-demand supports are expected to arrive on
the affected population ideally before the disaster fatalities emerge.
The first impact time of several disasters such as tsunami, wildfire,
hurricane, or flood can be predicted and spans over 20 minutes to 1
hour prior to the event [1]. During this critical time, a careful traf-
fic management considering several key factors, such as road capacity,
movement direction, and safe points, is necessary. Different methods
and data can be used to obtain this information, such as aerial images
[13], sensor data [4], or phone signal activities [31, 7].

• Online solution: A conventional strategy on the evacuation guidance
mainly considers the usage of a pre-computed contingency plan that
will be executed by the evacuees [1, 3] or the rescue team [2, 13]. In
this case, the solution is calculated as an output of a problem formu-
lation under which the model may have some limitations [4]. Firstly,
the conventional algorithm uses a static road model that is unable to
capture the real emergency scenario. Secondly, the assumptions used in
the model can be less relevant due to variations in weather, unexpected
conditions of traffic, and physical damages to the infrastructure. Fig.
1a illustrates how the offline solution’s framework operates. Sensing
inputs from a Geographic Information System (GIS) sub-units act as
an early detection system and a regular data capture. On the con-
trary, FADE provides live assistance computed by Mobile Fog Units
(MFU) and subsequently disseminate processed information via MAU
instructions.

• Predictive step: The affected population has unique and recurrent mo-
bility patterns that can be possibly obtained from timestamped GPS
[17, 40] or mobile phone cell records [41]. This information combined
with the GIS data stores can provide sufficient training data to pre-
dict the mobility pattern of local residents. Upon receiving the alarm
for the detection system, FADE will identify the central position of a
disaster event and attempt to map which part of the affected location
should be prioritized. This prioritization necessitates the computation
of the residents’ trajectory data and, thus, can be used to avoid traffic
congestion. Furthermore, during the evacuation process, field data will
contribute to the prediction as additional training data, which serve as
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valuable inputs to the routing optimization process. Also, these addi-
tional data can be used for training or stored in the central unit for
future usage. See, e.g., Fig. 1b for illustration.

Figure 2: A generic cognitive process diagram for FADE.

3.2. Management of Functionalities

FADE performs complex computation using various pre- and during disaster
data inputs provided by mobile units, sensing devices, and local authorities.
These data are then propagated to local gateways provided by the MFU. Due
to a variety in circulated data types, traffic management is needed to avoid
the bottleneck in the system. Depending on the computation scheme used in
the computation facilities, these data are then distributed within the comput-
ing clusters, processed, and finally stored at the end of the evacuation process.
Due to the high frequency of data exchange, processing and analytics, FADE
adopts Data-driven Architecture proposed in [28] for context-aware guidance
support. The framework governs the data cycle starting from retrieval to
mining activities, which are an ideal base for a scalable data management.

FADE proposes management of data-driven functionalities by creating
an overlay connection to four activities within the initial Data-driven archi-
tecture. This setup extends the original capability of the architecture to
suit FADE core processes. Each functionality represents a unique processing
block and will be mapped to a related layer(s) in this architecture. Fig. 2
depicts a high-level information cycle involving FADE internal sub-systems
and external actors. Based on this cycle, the connection and information
exchanged between each process is drawn in Fig. 3. There are four proposed
functionalities encapsulated into functional layers, which are described fur-
ther as follows.
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Figure 3: The four functionalities (functional layers) and their interactions in FADE.

• Retrieval : This functionality handles the early stage of the process
where multiple data types from various data sources can contribute.
There are two sub-processes herein, namely data collection and prepa-
ration. The first sub-process governs how data are retrieved by mobile
units and computing units, whilst, the second sub-process pre-processes
the inputs for subsequent steps. This later sub-process is required
because different data types can proceed through different activities.
Therefore, the processed data should match the requirement of the
next process.

• Exchange and Communications : To support collaborative processing
characteristics of FADE, incoming and outgoing data managements
are important. This functionality governs data distribution in the field
capture, mobile unit communications, or long-term data store activi-
ties. Due to the high amount of transmitted data, this functional layer
should be able to handle scalable data growth, which can be achieved
by a configuration that is provided by the Intelligence functional layer.

• Intelligence: Parameter-based computation using physical and theoret-
ical models takes place in this functionality. Live data obtained during
the evacuation process, e.g., pedestrian images, latest environmental
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data, or network usage, are processed using various techniques, e.g.,
crowd analysis or network traffic estimation, to obtain relevant infor-
mation and optimize internal system configuration. This functionality
requires robust input processing, image or text data processing, and a
smart mechanism to manage traffic allocation to avoid congestion.

• Analytics : Data-driven techniques for long-term purposes, such as data
training and learning, take place in this functionality. The former op-
eration focuses on forecasting possible user behaviors based on the his-
torical data. Meanwhile, the latter mainly concentrate on storing and
analyzing data for future trajectory modeling, user behavior recogni-
tion, or network metrics profiling. This functionality is motivated by
the fact that computation can be done by separate units of multi-tier
systems, such as fog or cloud architecture, which can have more re-
sources.

Security and privacy are important aspect but not the main concern of
FADE. These two features can affect both the system’s performance and
availability at normal and emergency time. During non-disaster time, FADE
collects environmental telemetry and post-evacuation log analysis, which can
be retrieved from third-party data providers, such as meteorological office,
intelligent transport system, or government agency office. Such a data ex-
change takes place on the backbone network which is protected by enterprise-
level security protection. On the other hand, privacy and security processing
during disaster evacuation should be kept to minimum as it potentially dete-
riorates time-sensitive communication and energy-constrained computation
of mobile fog infrastructure.

4. Retrieval Functionality in FADE

4.1. Data Ingestion

Data ingestion activity manages how data is received from an external data
storage or a raw data capture. As illustrated in Fig. 1b, FADE can re-
ceive data from two sources, namely existing GIS databases and deployed
MAUs. While the first source provides on-premise computing facilities with
the stored historical data, the second source pushes on-field data via ad-hoc
wireless communication networks. We refer to the corresponding first and
second data categories as the stored data and live data, respectively.
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Table 3: Summary of FADE functionality key action and reference.

Main and sub-functionality Activity Overview Key Reference(s)
A. Retrieval
A1. Data Ingestion Primary and

secondary-source data
input administration.

[42, 43, 44, 45, 46, 47, 9]
A2. Data Preparation [48, 49, 50, 51, 52, 53, 54,

55]
B. Exchange and Communication
B1. Information Broker Internal and external

transactional data
circulation management.

[56, 57, 58, 59, 60, 61, 62,
63, 64, 65, 66]

B2. Cache Management [67, 68, 69, 70, 71, 72, 73,
74]

C. Intelligence
C1. Metrics Processing On-demand optimization

process for evacuation
guidance and internal
system setup.

[75, 76, 77, 78, 79, 80, 81,
82, 83, 79, 84, 85]

C2. Optimum Calculation [86, 87, 88, 89, 90, 91, 92,
93, 94, 1, 95]

D. Analytics
D1. Reconfiguration Data-driven learning

process for long-term and
case-by-case configuration.

[96, 97, 98, 99, 100, 101,
102, 103, 104, 105, 106,
107]

D2. Trend Analysis [16, 17, 18, 19, 20, 40, 108]

• Stored data: Two types of data can help evacuation guidance for FADE,
i.e., the IoT-provided sensor data [42, 43, 44] and the trajectory data
model [17, 41]. FADE can gain valuable information on geographical
conditions and people’s mobility. Sensor data will provide FADE his-
torical metric data of the affected locations, including water level, wind
speed, or sound. These readings can help FADE understand which part
of the affected location that is heavily or will be likely affected by a
natural disaster. Meanwhile, the trajectory data contain the movement
pattern of local residents during a certain period and are made avail-
able as an output of the movement analysis [17, 41]. FADE will retrieve
the training model for some parts of the evacuation point.

• Live data: The live data category consists of the raw data of the evac-
uees and environment, including the road and shelter conditions during
the evacuation process. Different data types can be utilized for this
purpose, including aerial images [11, 47], cellphone signals or activities
[7, 109], and even video inputs [46, 45]. These data will be further pro-
cessed by the Intelligence layer to derive the road density, to identify
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the impassable roads, and to manage the distribution of the evacuees
to each shelter.

The mobile unit can collaboratively obtain an evacuation image and
upload it to its controlling device shortly. This is made available via an
established socket connection between mobile and control units. Then,
the controlling unit can distribute more complex processing activities
to portable computing units as shown in [9]. Cellphone activities can
be made available from radio observations within the evacuation scene.
A radio unit, such as a cellphone or radio modem, can be attached to a
mobile agent and capture the signal activities based on the transceiver
activities or feature detection [110].

Realizing potential complexities rises from these two data types, both the
data receving and operation process must be managed intesively. A coordi-
nation between these two sub-functionalities and other higher functionalities
namely Exchange and Intelligence is required (Fig. 4).

4.2. Data Preparation

Data received by each relevant unit have different types and require differ-
ent preparation strategies. Data collected by the on-field device units can be
blurry, redundant, or lacking of pedestrian images due to bad angle captures,
weather conditions, or inaccurate deployment positions. On the other hand,
the data series provided by government database can be incomplete or erro-
neous because of unreliable transmission. Data preparation in these contexts
can be generally classified into three main groups, namely data cleansing,
integration, and reduction as investigated in [111]. In FADE, cleansing is
envisaged to deal with incompleteness and erroneous conditions. Integration
manages data enhancement whereas reduction controls feature and input re-
duction. We then further map the strategy to a possible execution in the fog
environment as seen in Table 4.

One of core FADE’s activities that rely on good-quality data is crowd
counting [112]. This cognitive mechanism, will be further discussed in Section
6.2.1, analyzes the evacuation process by counting the number of pedestrians
and estimating the road density from a single image input. Then, the input
will be computed by learning methods, such as Deep Learning. In such a
technique, image data will be computed via several layers of computation.
The deeper the data proceed, the more complex the process. If the input has
too many noise or missing parts, then the results’ accuracy and precision will
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Figure 4: Detailed processing within the Retrieval functionality.

be lower. In other words, Deep Learning-based technique is highly reluctant
to the quality of dataset. The work in [112] reviewed a wide range of strategies
that only run on a single computing unit and can be further improved by
distributed computing as discussed in [113].

In view of the distributed processing strategy, the implementation of col-
laborative data preparation depends on the execution mechanism or the
topology setup of FADE. Such a process can be done by an equal or hi-
erarchical distribution that may focus on the item or step execution. Table
4 lists three different implementations, namely non-, peer- and hierarchical-
offloading. A non-offloading or single device computation scheme performs
all preparation tasks by each mobile units and is particularly suitable for error
and incomplete data detection and lightweight image preprocessing. Mean-
while, peer-offloading arranges the end-devices to prepare inputs together
so that each device has a level of involvement. The third strategy, namely
hierarchical-offloading, regulates the data preparation based on the level of
difficulties where lower and higher layers will be assigned to end-devices and
servers, respectively. This setup is designed by dividing each process com-
plexity in which a higher layer has more matrix multiplication and requires
higher computation resources.

4.2.1. Non-offloading data preparation

Data preparation conducted by the on-field unit should be lightweight to min-
imize the computation time because of the limited energy resources. Several
simple image processing activities, i.e., grayscale conversion, image enhance-
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Table 4: Data Preparation Strategy

Strategy
Image Text

Operation Execution Operation Execution

Cleansing

Abnormality
detection [53]

�,�
Abnormality
detection [53]

�,�
Background

removal [49, 53] �
Filter application

[49]
Enhancement [48]

Integration
Model

partition
[114, 115,

116]

� Model partition
[114, 115, 116]

�
Discretization

[54]
�

Reduction

Feature
extraction [54]

� Feature reduction
[54, 55]

�,�
Object

localization
[117, 50]

� Dimensionality
reduction [55]

�

Compression
[49, 53]

� Instance
reduction

[114, 115, 116]

�
Grayscale

conversion [48]
�

Note. � non-offloading; � peer-offloading; � hierarchical-offloading

ment [48], or filter application [49], are suitable strategies for this purpose.
More complex image operations such as the early stage of image classification
[50], feature extraction [117], or even inference ability [118, 51, 52] can be
run on mobile devices with more power and energy resource. Additionally,
fast detection of the data quality is also important as it will affect the final
result. Adversarial or corrupted data should not be further processed and
on-field data re-capture should be executed as soon as possible. Strategies
such as aberrant data detection [53] are suitable for this purpose because of
its low complexity.

4.2.2. Peer-offloading data preparation

This strategy often has higher complexity because it turns local data from its
raw form into communal information. A series of data will be initially cap-
tured by each mobile unit. The data will then be shared before combined or
summarized. The types of textual data collected are not necessarily identical
because this may also include data integration [111]. However, preprocessing
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applied to the collected data requires computation resources if performed
individually and locally. Therefore, a participative strategy or task sharing
across mobile units is needed to mitigate the cost as discussed in [113]. One
of applicable activity in participative strategy is data discretization [54]. It is
one of the feature space simplification techniques [55] where continuous data
are summarized into a fixed set of intervals. This strategy aims to associate
numerical values with certain intervals and is commonly found in supervised
learning. Pedestrian activities and environmental conditions during an evac-
uation can be categorized using supervised learning. The attribute and data
samples of the evacuation process can be determined and aggregated, respec-
tively.

4.2.3. Hierarchical-offloading data preparation

The hierarchical strategy regulates how data are prepared by performing task
assignments. In this activity, a task will be decomposed into less-complicated
sub-tasks and will be then delegated to different computing units. Com-
pared to previous offloading strategies, this approach will no longer output
the enhanced data, but rather learning information. In the context of Deep
Learning, the learning process consists of interconnected layers performing
different computations. The output of one layer becomes the input of the
next layer. As an example, consider the application of Convolutional Neural
Network (CNN) on crowd counting activity. CNN is one of machine learning
techniques that uses the properties of natural signal, such as shared weights,
pooling, and layer stacking [92]. The strategy comprises of layers of convo-
lutional operation blocks that operates on different portion of input data.
According to [112], the more advanced an approach is, the more layer the
approach has. In such a case, due to the complex mechanism and the depth
of processing layers, relying on the central unit will result in a long processing
queue leading to high latency.

In order to reduce the running time of learning processes, some studies
[114, 115, 116] designed strategies to decompose and allocate the workload
to end-devices and central servers. The workload allocation can be achieved
either by implementing static [114] or flexible partitioning [115, 116]. While
the former strategy distributes learning tasks to end-devices and computing
facilities based on its complexity, the latter one reconstructs learning layers
so that end-devices can work in parallel. Although both approaches are
suitable for low resource devices, the second one leaves a smaller memory
footprint and less communication cost. FADE can adopt this mechanism so
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that UAVs can compute the data more independently. This is also relevant
where communication channels during a natural disaster can be less reliable
or even not available.

5. Exchange and Communication Functionality in FADE

5.1. Information Broker

Disaster management is an exhausting process where diverse and expensive
computing tasks are performed by various fog service components. Inter-
action between elements, shown in Fig. 5, is crucial and requires scalable
data exchange management. In this section, we refer Information Broker to
a sub-functionality that controls how data are circulated during evacuation.
Communications that occur during the process involves the acquisition and
process layers in the Data Management framework. We explain the various
communication (data exchange) modes in FADE as follows:

• Mobile-to-mobile (M2M) units communications : This communication
scheme covers two types of data transmission, namely coordination and
transactional messages. While the former packets comprise of naviga-
tion controls, relayed command messages, or evacuation instructions,
the latter includes raw and pre-processed data as explained in Section
4.2. The communication that takes place in this mode tends to be
intensive and vital to the mission’s success. On-field data are impor-
tant to analyze the effect of disaster and to predict evacuees’ mobility
pattern.

• Mobile-to-processing (M2P) units communications: A bi-directional ex-
change of transactional and coordination occurs between mobile and
processing units. In such a context, mobile units upload their pre-
processed data for computing processes. These units can also trans-
mit their vital information, such as the remaining power and current
communication signal level, to a central facility for regular tracking
purposes. Meanwhile, communications initiated by processing units
include computing results, such as routing decision information or den-
sity information. Additionally, these units instruct new tracking way-
points or monitoring locations that can dynamically change according
to a disaster event.
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• Processing-to-processing (P2P) units communications : Collaboration
signaling at main processing units mainly involves transactional data,
including short-term computing data and long-term data archive. The
immediate data produced are partial results of the algorithms executed
in computing facilities. Meanwhile, the archive mainly contributes to
future usage and analytics purposes.

Figure 5: Diagrammatic processing blocks for Exchange and Communications functional-
ity.

Looking at the above three communication patterns during the evacua-
tion process, computing services such as fog infrastructure require a scalable
communication capability. Herein the ability to carry out data transmission
during increasing traffic is crucial. High-latency message dispatch and system
failure are the two most common problems that must be avoided. Various
input data types handled by FADE will add further complexity because the
different types require different processing.

In light of the above-mentioned challenges, information broker aims to
provide an integrated service of message handling and dispatch activities.
This service is a one-stop support where the message is retrieved and sub-
sequently propagated to relevant receivers. Alternatively, this functionality
also can be seen as a middleware layer that bridges the data and communi-
cation management. Data exchange will also be configured to minimize the
effort of various devices and communication management. The holistic con-
cept used in middleware [119] is one approach that sees this pervasive device

20



setup as an integrated facility. This principle proposed an abstraction layer
that provides seamless access to the data transmission and persistent stor-
age. In disaster management, this layer should inherit standard middleware
specifications [119, 57], such as:

• Interoperability : A message handling service should provide a common
interface to different data providers or types.

• High throughput : Transmission and reception of messages should be of
low latency and minimally impact the process block. Synchronous data
transfers where the sender waits for an end-point response should be
avoided.

• High reliability : The service should be able to operate when needed
without having an unexpected failure or a halt. This can be linked
with an alternative backup procedure or a fault recovery capability.

5.1.1. Communication Scheme

One of the crucial aspects of the information broker functionality is setting
up the communication pattern. From the OSI network layer perspective, a
transmission setup can be categorized into unicast, multicast, or broadcast.
The unicast pattern involves one-on-one data transmission. This delivery
can be identified by looking into the packet source and destination address.
Meanwhile, multicast and broadcast pattern disseminates data to several
destinations simultaneously. The usage of these patterns in a natural disaster
was highlighted in [6]. In such a setup, the communication among civilians
used a unicast pathway, while the contacts between government and civilian
use broadcast transmission. Despite this demonstration, each of these setups
has its characteristics and should be carefully examined to accommodate
various data provider’s performance metrics, such as packet arrival time,
length, category, and priority. As investigated in [120] and [121], multicast
and broadcast can potentially deteriorate the system performance when the
network is highly dense. These studies showed that unicast data transmission
tends to have a lower delay and drop probability.

While the above-mentioned mechanisms focus on the network layer, Publish-
subscribe (Pub/Sub) [56] is a high-level communication strategy that can
simplify mass data dissemination. Compared to the three previously men-
tioned patterns, Pub/Sub does not require an explicit declaration of receiver
address. Instead, the messages will be handled and disseminated by an event
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service. This setup is similar to multicast communications where two roles,
producer and consumer, exchange messages according to its topic. The pro-
ducer composes a message within its category, and then, an event service will
propagate it to interested receivers. In order to receive messages, these end-
points should specify and subscribe to one of the categories beforehand. Such
a configuration can deliver multiple messages avoiding unnecessary message
flooding.

Other benefits of Pub/Sub configuration are time, space, and synchro-
nization decoupling [56]. Producer and consumer are loosely coupled in time
because these actors are not necessarily connected all the time. In such a case,
a producer can still emit messages while a consumer is offline. Pub/Sub also
acts as a message proxy where producers and consumers do not know each
other. Meanwhile, synchronization decoupling enables connectivity where a
producer can continuously publish events and consumers can asynchronously
retrieve it.

There is a diverse development of Pub/Sub services stemming from the
notion of topic. Eugster et al. [56] specified three Pub/Sub variations,
namely topic-based, content-based, and type-based. Content-based Pub/Sub
requires subscribers to declare its interest on the actual contents of events.
This subscription facilitates a subscriber to specifically configure event notifi-
cation based on its intrinsic property rather than an explicit pre-determined
label. Meanwhile, type-based Pub/Sub provides subscribers to access not
only an event content but also its structure. Pub/Sub usage was mentioned
in [119] as event-based middleware but it is only limited to a topic-based
subscription. In fact, its implementation can be extended to a core com-
munication technology in the service-oriented middleware. Not only can
Pub/Sub dispatch a message to end-point devices, but also it propagates a
coordination message to an underlying element, such as a storage service or
a Quality-of-Service (QoS) management.

5.1.2. Networking Architecture

Infrastructure plays an important role to support information broker func-
tionality with an increasing data traffic. Typical setup, host-to-host IP-based
transmission, mainly considers packet delivery based on the device address,
and it is difficult to catch up with the content-oriented delivery [122, 123].
The performance of a conventional communication setup often suffers from
high data traffic produced by heterogeneous devices [124]. Traffic engineer-
ing with network functionalities decoupling [57, 125] and alternative IP-based
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networking [122, 123] have been envisioned and increasingly popular to tackle
such challenges. In the following parts, we discuss the concepts and the FADE
usage of two emerging networking capabilities, namely software-defined net-
working and information-centric networking.

Software-Defined Networking (SDN) enables a separate implemen-
tation of three key components in network switching, i.e., control, data, and
management/application planes. In contrast to the conventional networking
setups, the SDN main logic unit can be deployed at a centralized facility or
distributed locations. The control plane contains a logic processor and two
configuration interfaces, namely North-bound and South-bound Application
Programming Interfaces (API). The North-bound API connects the upper
layer, application, with the control plane via a high-level user interface. This
API typically helps users to configure network policies and management,
such as QoS, routing, monitoring, and traffic engineering [125]. On the other
hand, the South-bound API bridges the coordination between the control
and the third layer, data plane. In this API, the technical device-related
configuration is delivered from the network intelligence component to data
switching devices. The instruction for these middleboxes is commonly writ-
ten in OpenFlow (OF) syntaxes in order to support interoperability across
vendors.

The availability of programming interface in SDN offers flexibility in net-
work management, thus making it able to support a higher network function-
ality, such as fine-grained access control, traffic engineering, and network vir-
tualization [58]. Furthermore, SDN is envisaged to enhance traffic engineer-
ing in four areas, such as flow management, fault tolerance, topology update,
and traffic analysis [125]. In a typical SDN implementation, network policy
can be written in high-level languages [59, 60, 61] or logic-arithmetic expres-
sions [62], which are then translated into OpenFlow instructions. Among
these languages, Pyretic[61] enables modularity in SDN by its policies-as-
functions approach. Due to this capability, SDN has been extensively ap-
plied to highly-demanding networks, such as urban sensing [46, 57, 126] and
VANET [127].

Considering the implication of SDN on various network management,
several possible adoptions to FADE are listed in Table 5. Firstly, the de-
vice group control in SDN can enable network devices to be categorized and
aggregated based on the device types. Motivated by the two distinct in-
terfaces in SDN, namely the Northbound and Southbound, the authors in
[126] conceptualized mapping of physical network entities, intelligent capa-
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bilities, and high-level application access. The study suggested a dedicated
controller based on the network device group, and then applied optimization
computation at each controller. Similarly, reference [127] devised a VANET
application in which the term ”layer” is a reminiscent of an SDN component.
In this study, an ITS system composed of wireless nodes, Road-Side Units
(RSUs), and Road-Side Unit Controller (RSUCs) maps their functionalities
into the data plane and controller of the SDN.

The second possible adoption is an SDN-based middleware service as pro-
posed in [57, 63]. SPF, the abbreviation of Sieve, Process, Forward, [57] was
originally motivated by the similarity property between the IoT and SDN
concepts, namely simultaneous information processing and data dissemina-
tion. In this framework, an IoT application is described as a service that
is accessible on-demand and managed with priority levels. The framework
replaces the original functionality of Open Networking’s SDN architecture,
i.e., the Data Plane, with a middleware-inspired principle, i.e., Informa-
tion Processing and Dissemination Plane. This new functionality that re-
sides in the SDN’s Programmable Gateway is controlled by SPF instructions
and is responsible for processing messages based on its priority, and tags
through the Information Processor. The processed messages are optionally
applied content-wise filtering, usually referred to as Sieve. A collection of
data-processing pipelines further process more complex computation, such
as video processing and Optical Character Recognition (OCR). This step is
called Process. The final step, i.e., Forward, disseminates the content to rel-
evant parties. Reflecting to this study, FADE can adopt the SPF capability
to circulate on-field evacuation data based on using early processing via an
SDN’s programmable component. Thus, a lower latency data exchange can
be achieved since the computation load is spread throughout the network
components.

Lastly, the third viable endorsement is an SDN-based Pub/Sub com-
munication pattern. Briefly discussed in Section 5.1.1, Pub/Sub is a data
transmission strategy that allows some entities for producing information
with several topics and letting other parties to consume messages with pre-
ferred topics. Not only does this mechanism reduce the complexities in the
implementation process, but also it offers high potential to improve appli-
cations’ responsiveness to certain events [64]. PLEROMA [64] exploits this
undeveloped improvement with an SDN-specific Pub/Sub configuration. To
this end, the network flow updates should be constrained to latency effi-
ciency, bandwidth usage, and cost efficiency. A content-based subscription
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Table 5: State-of-the-art SDN-based Technologies

Reference Aspect Possible FADE Adoption(s)

[126, 127] Device group
control

Data plane for each physical devices
Categorical grouping of physical devices
Unique control plane for each device group

[57, 63]
Middleware
service

Configurable and programmable gateways at data
plane
Service-based level prioritization
Unique dispatch channel with parameter specifi-
cation

[64, 65, 66]
Pub/Sub
dissemination

Pub/Sub message push from data plane
Multiple optimum independent Pub/Sub flows

model is used in this algorithm to achieve this aim. The model consists
of a set of attribute pairs referred to as possible events which publishers
disseminate. Then, through a subspace relationship between publisher and
subscription/advertisement, a packet with a certain header and length is dis-
seminated as an event. The controller must install the flow rules on each
switch along the path between the publisher and the subscriber. Meanwhile,
the authors in [65] integrated an SDN component with another Pub/Sub
middleware, namely Object Management Data Group’s Distribution Service
(DDS). The algorithm allows programmable data plane to have the mobil-
ity management, the dynamic channel configuration, and the rapid client
association.

Information-centric Networking (ICN) is one of the future network-
ing projects that include various sub-project milestones, such as Named-
data Networking (NDN), Content-centric Networking (CCN) [123], and oth-
ers cited in [122]. This project mainly aims to focus more on information
transmission rather than end-point communications. ICN prefers multicast
mechanisms and in-network storage by labeling the message content in the
network layer.

The ICN concept is an ideal alternative for a data-exchange functionality
of FADE where on-field information itself is more important than the source
of data. One of the ICN properties, i.e., processing and forwarding can be
based on the message interest. The transmission will no longer require to
mention the destination address as replaced by the device interest [123].
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5.2. Cache Management

Cache management is another important component in data exchange due
to the high-volume data circulation as a product of information transmission
and analytics features. This is similar to Big Data subject where massive
live raw data are processed and prepared by a real-time messaging service
[128]. Then, these data are passed to stream processing platforms for further
operations. Due to the vast amount of incoming data and low-latency output
requirement, a highly-durable and fault-tolerant data processor is required.
Motivated by this existing field implementation, cache management in FADE
should be robust and scalable to support the the short-term computation.
For this purpose, a distributed streaming platform is powerful to handle
the high data load. The reliability of this technology was investigated in
[68] where three primary platforms were run under billions of records. The
authors focused on two main performance metrics, such as throughput and
latency, using proposed penalty factor formula.

In FADE, cache management does not only handle streaming processing
for transactional data, such as sensor data or people’s movement, but also
manage long-term data maintenance. For this reason, this functionality re-
quires a scalable data storage solution that can process a high input data
traffic. A NoSQL solution, e.g., MongoDB and others cited in [67] offers
unstructured data storing due to their reduced effort with the data modifica-
tion characteristics. Besides, it requires a lower cost because of its ”scale-out”
scheme. NoSQL-based data management such as Redis, MongoDB, Cassan-
dra [69] and HBase [70] can process high data inputs leveraging a distributed
storage and processing scheme over multiple storage. Similarly, FADE can
also utilize a distributed streaming platform, namely Spark [71], Samza [72],
Kafka [73], and Storm [74] for cache management purposes.

6. Intelligence Functionality in FADE

Intelligence functionality mainly handles all the important calculation pro-
cesses in FADE, which include routing decision algorithms and system met-
ric optimization. The routing mechanism primarily concerns how to identify
and allocate evacuees using the available resources. Meanwhile, the metric
optimization governs how computing components are configured to achieve
optimal computation goals. Fig. 6 illustrates the interaction between the
sub-elements within Intelligence functionality.
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6.1. Metrics Processing

System measurement and configuration requires a careful attention since a
high volume of data and computation tasks is done during an evacuation
process. Measurement will determine how well the current resources can
serve the current requests while the configuration is a set of actions that are
executed to manage computing facilities to achieve the goals. These goals
are usually related to QoS, which commonly mentions various performance
metrics [129]. In FADE, we mainly highlight the following metrics.

• Throughput: The maximum number of valid responses that can be
served by a system.

• Response time: The time difference between the request sent and the
system response received.

• Availability: The amount of time that a system can provide services
with an expected performance level.

Figure 6: Processing within Intelligence functionality.

Kashani et al. [129] found that the system-wide QoS performance can
be solved by different approaches. According to the study, QoS-management
can be classified into three groups, namely communication, resource/service,
and application. While the communication management maintains the net-
work resource, the service management concerns about the governance in
computing. Meanwhile, the third group exploits the fog configuration so
that certain applications can work and satisfy the QoS requirement. Among
these three categories, the first two are the most relevant approach to FADE.
We will elaborate the discussion on this classification to match the utilization
in FADE in Sections 6.1.1 to 6.1.2.
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6.1.1. Network management in FADE

In FADE, network conditions, including M2M and M2P communications, are
measured and managed carefully. M2M transmission management includes
the transmission of data captures and message coordination. These types
of communication require a minimum delay and a high packet delivery rate.
Meanwhile, M2P data exchange covers the data transmission of M2M and
decision. This data exchange can utilize delay-sensitive or minimum-latency
algorithms that leverage transport [75, 76, 77, 78, 79, 80, 81] or application
[82, 83, 79, 84, 85] layers.

One approach for optimizing the final transmission time is by minimizing
the hop-to-hop delay, which is achievable by improving the default transport-
layer mechanism [75]. In [75], the authors designed a multicast protocol for
multi-rate MANET that considers both the end-to-end and one-hop trans-
mission times on its forwarding table. The study focused on how to obtain
the optimal sum of transmission time by minimizing neighboring devices
blocking time caused by a high number of accesses. Meanwhile, the work in
[76] investigated the caching mechanism effect on the network capacity. The
strategy shows that different popularity levels of circulated packets affect the
distribution model. Such a condition requires a caching strategy so that the
network capacity can be further improved.

The second feasible method to optimize the end-to-end transmission delay
time is by creating high-level rules or policies. In such a case, algorithms are
applied to all IoT devices to manage how data are circulated. Reference [84]
focused on the availability aspect by improving the system network lifetime.
The IoT network lifetime is one of the crucial issues since the device has a
limited amount of energy resources. In that work, the authors proposed a
mechanism to form an inter-cluster cooperation within the IoT network to
minimize the energy spent on the transmission, which in turn contributes
to the system availability. Similarly, the work in [83] designed an algorithm
for task scheduling in IoT that considers the device mobility and the task
execution. The study formulated mixed-integer linear programming (MILP),
which was then solved using both the offline and online strategies.

6.1.2. Service management in FADE

Service management mainly concerns with the throughput and availability of
the core system. Expensive computation done at the processing unit requires
careful management so that the QoS requirement can be fulfilled. To that
end, various strategies to maintain a proper working system can be used,
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including resource allocation [130, 25, 26, 131, 132, 133], task scheduling
[134, 135, 136], or provisioning [137, 138, 139].

Herein resource allocation determines how computation should be carried
out either locally or shared with Fog Nodes (FN). Most of the strategies listed
in Table 6 evaluate the efficiency of the offloading process by considering
various objective and constraint metrics. A study by [131] considered a
three-tier computing scheme where IoT, Fog and Edge devices can contribute
to complex and demanding requests. This work devised an algorithm that
adaptively allocate the optimum computing load to a tier of the system. The
principle of this algorithm is calculating the unit slot allocation to achieve
the minimum application loss and delay. It then accommodates non-uniform
cloud capabilities by specifying the average processing rate and time. The
strategy utilizes Lyapunov optimization to solve task allocation considering
a three-way tradeoff among the average response time, the average cost, and
the average of application loss. Similarly, Liu et al. [132] used a weighted
approach to solve a non-linear problem in a three-tier topology. It then
automatically arranged cloud offloading whenever the request rate is higher
than the fog capability.

Table 6: Offloading Optimization Strategies in Fog Environment

Source
Metrics Target

(node)
Comm.
model

Topology
(Tier)

Formulation
Objective(s) Constraint(s)

[130] energy, latency rate,
deadline

Single OMA 2 NLP

[25] energy power System
NOMA

2 MINLP

[26] energy, latency latency,
power

Single N/A 2 NLP

[131] latency, cost,
loss

latency,
loss

System N/A 3 NLP

[132] energy, latency,
cost

rate,
deadline

Single
NOMA

3 NLP

[136] throughput,
task comple-
tion

latency,
capacity

System N/A 3 MINLP

[133] energy, latency latency System N/A Fog-fog NLP

Note. NLP = Non-linear Programming; MINLP = Mixed-Integer NLP

A slightly different scenario was used in [130, 25, 26] where a two-tier
topology was considered as a computation offloading scheme. Reference [130]
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tried to minimize each offloading decision by looking into the available (idle)
CPU as well as the proportion of CPU usage if the task is being offloaded.
Meanwhile, an algorithm to decide whether to offload a certain task (par-
titioned workload) to the fog units was devised in [25]. It attempted to
minimize the average of the system energy usage using an improved genetic
algorithm that approximately solves an NP-hard allocation problem. In con-
trast to [88, 25], the work in [26] introduced a fairness factor to evaluate task
allocation between FNs. In this scenario, one client was associated with one
FN, and the client could choose which FN is suitable for offloading.

Task scheduling strategies have been studied in the fog environment to
manage task execution. Li et al. [134] designed a scheduling strategy based
on deep-reinforcement learning to solve a hierarchical fog structure. The
meta-heuristic learning-based solution offers flexible scheduling as it was not
specifically designed for one topology. Meanwhile, a genetic algorithm-based
solution was proposed in [25] to solve a mixed-integer nonlinear programming
problem of Non-orthogonal Multiple Access (NOMA) in the fog environment.
Ni et al. [135] devised a method of Petri net-based dynamic-task handover
between fog-cloud system. The strategy considers price and time cost of
computation tasks as input for predicting task completion time. The result
is then used as input for a dynamic resource allocation algorithm.

Provisioning as a type of potential service management in FADE mainly
aims to determine the optimum decision of an application deployment as a
multi-tier setup [137, 139] to minimize the cost and meet the QoS require-
ment [138]. In [137], dynamic placement can be formulated as a non-linear
programming problem and solved using a greedy algorithm. Similarly, Yao et
al. [138] formulated a deployment problem as a multi-objective optimization
problem and solved it using an approximation method. A slightly different
strategy was used in [139] where the problem was solved using two-stage al-
gorithms. The first step provided a possible deterministic solution while the
second one obtained the final solution using a heuristic approach.

6.2. Optimum Calculation

6.2.1. Crowd counting

Crowd counting is an activity of object detection and counting from an im-
age at a certain crowd scene [112]. This work shows that this technique is
pre-requisite for a crowd analysis where the number of people and density
on a single scene can be estimated. Many applications have applied this
technique for critical missions [140, 141] and city planning [142, 143]. As a
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solution to which a computing facility for evacuation is dynamically deploy-
able and scalable, this capability is a key to estimate the road density and
allocate evacuees to a certain part of the network to avoid traffic congestion.
There are two main categories of crowd counting according to [112], namely
conventional- and CNN-based.

The conventional strategy includes three approaches [112], i.e., detection-
based counting [86], regression-based counting [87, 88, 89], and density estimation-
based counting[90, 91]. In a detection-based approach, an object is recognized
by its parts, such as head-shoulder [86] or as a whole [48, 144, 145, 146]. Fast
whole-human detection is mainly enabled by the unique descriptors extracted
from the human data [112]. This approach, however, is unable to perform
well under conditions of high-density crowds and high background-clutters
[93]. Meanwhile, Regression-based algorithms [87, 88, 89] obtain features
mapping from a local image patch after completing both the global and lo-
cal feature extractions. Meanwhile, the detection-based approach attempts
to avoid the hard task of learning and localization by incorporating spatial
information. Such information is obtainable from a learning process between
local patch features and object density maps.

The CNN (Convolutional Neural Network), commonly known as
ConvNet [92], is a method that utilizes learning network capability with the
input of image patches or the whole images. As one of the deep learning
technologies, learning is done by taking a lot of raw data inputs and letting
the algorithm discover the required model for detection or representation [92,
93]. This is enabled by trained convolutional weights [147]. The algorithm
is designed to process various data arrays of which size can be used for
different processing purposes [92]. For instance, a 1D array is used for signal
processing; a 2D array is required for image/audio processing purpose; and a
3D array is applicable for video processing. This algorithm takes benefits of
the properties in natural signals, such as local connections, shared weights,
pooling, and the use of many layers [92]. Because of this robustness, the
algorithm has been adopted in a wide range of applications, such as object
detection [147, 93, 148], classification[94, 1], and face detection [95].

A convolutional layer can be formally denoted by Xi = Wi ⊗ [Xi−1, 1]
T

where Xi is the feature map of the input and the output of the ith layer,
Wi = [Wi1,Wi2, . . . ,Wik, bi] corresponds to filter parameters of the ith layer
with bi acting as bias and ⊗ denoting a convolution operation [93]. The
fully-connected layer was obtained in [93] by yim = WimX(i−1) + bm where
Wim represents the mth filter of the ith layer. In an image processing applica-
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tion, a CNN-based algorithm typically uses interconnected processing layers.
There are two types of layers used for this purpose, namely convolutional
and pooling. As described in [92], the convolutional layer is organized into
feature maps where each unit is linked to local patches in the feature maps of
the previous layer via a set of weights called a filter bank. Then, the output
of this layer becomes the input of the non-linear layer. The units that belong
to a feature map share the same filter bank. Different feature maps within a
layer use different filter banks. The main reason behind such arrangement is
local groups of values in the image data that are likely to correlate and the
local statistics invariant to location. Then, the convolution method using the
feature map is applied on the filtering operation. Because the filter process-
ing in each layer produces a higher dimension, the pooling layer reduces the
feature map based on the operation of local patch data, which are typically
maximum (max-pool). Commonly, a CNN architecture utilizes two or three
stacked stages of convolution, non-linearity, and pooling [92, 147].

The CNN-based approach in [112] was grouped by model setup into basic
and advanced techniques. According to this study, basic CNN [147, 93] incor-
porates a default functionality of CNN stages in terms of layers. Such a setup
utilizes the basic setup of a convolutional network to detect the number of ob-
ject given data input. Meanwhile, advanced CNN algorithms configure their
layers to improve the network’s robustness, lower error results, or combine the
crowd counting process with additional tasks, such as foreground-background
separation and crowd speed estimation. To achieve these objectives, these al-
gorithms utilized various resolutions or scales [149, 150], local-global contex-
tual information [151, 152], or multiple factors, such as deep-shallow network
combinations [153].

6.2.2. Routing management

Massive evacuation during disaster events from the affected population to a
shelter or safe area [1, 3] requires a careful planning and execution due to the
presence of a huge number of road usages [4]. The developed plan should con-
sider randomness in factors that might affect the evacuation support, such as
the evacuees’ compliance, the rate of evacuation, the unexpected traffic loads,
and the current road network condition [4]. As described in this study, a pre-
computed evacuation plan, such as [1, 3], is less-realistic and less-feasible due
to issues such as the possibility of congested recommendation route, the grow-
ing problem-complexity, and the less-detailed assumption in the model. To
cope with these limitations, online or or-demand evacuation systems, such
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as [8, 4], were proposed. These studies offered active responses for an on-
going evacuation process by providing scalable communication platforms [8]
or a real-time road management [4] integrated with Intelligent Traffic System
(ITS).

This sub-functionality of FADE has the main responsibility to decide the
optimum route for each group of evacuees using relevant transportation man-
agement strategies, such as trip assessment [154, 155, 156, 157, 158], traffic
assignment [159, 160], or flow prediction [161, 162, 163, 164]. The routing
management is one of the crucial aspects to mitigate traffic congestion dur-
ing a disaster as the road network capacity and demands can drastically
change over time [4]. Since the road network is composed of smaller road
sections, the aforementioned management schemes can give additional sup-
ports in terms of traveling time variability and mobility profile. Compared
to [8], FADE aims to provide an online or on-demand solution with less de-
pendency on the availability of ITS. To achieve such a goal, as mentioned
in Section 4, some UAVs can be dispatched to different parts of the affected
population. These units will act as an evacuation assistance with various
degrees of involvement depending on the hazard levels. The usage of multi-
ple hazard event models [165, 166] in the deployment plan will improve the
UAVs dispatch decision.

7. Analytics Functionality in FADE

Analytics process of FADE (Fig. 7) can take place on different tier of the
system, e.g. cloud and/or fog units, where computing resources are vastly
available. In Analytics functionality, computed solution from Section 6.2
or stored trajectory-data are computed either to dynamically configure the
subsystems of FADE or predict upcoming request characteristics. Generally,
the enabling technology in this functionality is algorithms with forecasting
or prediction capabilities.

7.1. Reconfiguration

Reconfiguration is a key activity that enables the infrastructure adjustment
under a highly dynamic environment. Fluctuation of the incoming data or
other coordination messages can change rapidly depending on the current
evacuation conditions. As an example, road destruction or blockage during
a multi-hazard disaster event [165] can result in the evacuation re-routing.
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Table 7: State-of-the-art Normal Traffic Management Summary

Aim Reference Main concept(s) used

Network
qual-
ity
assessment

[154] New maximum equilibrium model proposal for dynamic
OD reconfiguration.

[155] Road partitioning using α-Cut on density peak graph
(DPG) produced from clustering and link aggregation.

[156] Correlation analysis between space and time using pro-
posed function to discover local and global measure.

[157] Evaluation on network scalability using TSI and NAI in-
dicators via proposed large-scale high-frequency data pro-
cessing model.

[158] Hybrid algorithm implementation on tripartite graph to
rank node importance.

Traffic
assignment

[159] Traffic flow regulation based on daily-basis stochastic
model.

[160] Traffic light scheduling system using proposed controlling
algorithm.

Time-
basis
traffic
load
prediction

[161] Two-stage prediction framework using spatio-temporal
variable derived from VS-SVR model.

[164,
163]

Traffic forecasting using Deep Learning on transformed
directed-graph traffic-flow

[162] Day-to-day traffic flow estimation using statistical method.

Figure 7: Processing diagram for Analytics functionality.

After optimizing the traffic assignment using one of the approaches in Sec-
tion 6.2.2, some evacuation groups can join another cluster on the rerouted
path. As a result, a network surge will be likely to happen because more
people are being monitored and UAVs coordination will be more intensive.
Alternatively, the network utilization can also be lower whenever an evac-
uation group could reach a safe point. This increase or decrease should be
monitored and configured so that energy or computing resources can be im-
proved. Although a scalable data exchange in Section 5.1 has been carefully
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designed, human intervention might not keep up with unexpected changes.
Improvement in the transmission control and traffic engineering that lever-
ages intelligent capability should be considered to assist human execution.

7.1.1. Congestion Control

Congestion control is a way to manage the network usage so that its per-
formance can be maintained during any circumstances. It was proposed as
a response of internet meltdown in a few decades ago by providing a back-
off mechanism whenever a congested transmission occurred [167]. It is also
one of the necessary and powerful features [167] in the network because it
manages the number of packets transmitted [104]. However, its implemen-
tation is still limited in certain scenarios and requires a further development
for intermediary devices [167, 168]. Congestion control implementation on
end-devices tends to be a reactive approach, which means that the proposed
strategy works after the occurrence of congestion. As initially specified in
[167], two additional congestion controls at router devices were proposed,
namely queue management and scheduling algorithms. Queue management
controls the packet queue length by dropping packets whenever necessary
or appropriate. On the other hand, the scheduling algorithms manage the
order of packets transmission and are mainly used to manage the allocation
of bandwidth among flows. Furthermore, according to the aforementioned
work, typical queue management applies a ”tail drop” strategy where packets
are received and kept in the buffer until its full capacity, and dropped if it
reaches enough capacity.

RED [169], an Active Queue Management (AQM)-based strategy, was
formulated to address the conventional strategy in estimating the average
queue size and determining a packet decision. Since then, more and more
research was conducted to improve the AQM [170, 168]. The work in [170]
classified previously proposed strategies into two groups, namely end-system-
based and router-based. Router-based strategies run and process the queue
at a router-level while the end-system-based algorithms aim at the end-to-
end flow definition and implement it at the end-devices. Between these two,
FADE is more suitable to the second option as the decision whether to use
flow and control or not is determined by the end-devices. The purpose of
queue management in this study is to provide fairness at some relaxed degrees
to allow unresponsive flows to gain more bandwidth as long as they do not
deteriorate others. Strategies such as LQD [96], BRED [97], FRED [98],
SRED [99], CHOKe [100], SFB [101], BLACK [102] and CARE [103] can
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be further realized by the programmability feature of the next-generation
network infrastructures, such as SDN or NFV [168].

The aforementioned router-based algorithms were developed based on the
heuristic principle of which parameters should be tuned manually. As a conse-
quence, the produced action does not adequately represent time-varying and
non-linear network conditions [171], and can thus quickly result in system
instability. Some algorithms [98, 103] might have limitations on the scalabil-
ity due to its per-flow information and sample capture [170]. Furthermore,
according to [170], the techniques in [102, 100, 101] have the potential of
penalty mismanagement due to a simplified or absence of flow information.
An alternative to these heuristic concepts is neuron-based AQM strategies
that offer solutions that can not be solved by conventional rule-based pro-
gramming [171]. In addition, this work suggested that algorithms such as
NN-RED [172], Neuron PID [173], NRL [174] and AN-AQM [175], have
provided various improvement to heuristic-based in terms of adaptability,
behavior transparency and stability.

7.1.2. Network Prediction

Machine learning (ML) usage in network [104, 105] has enabled diverse
management capabilities to assist or automate human involvement. Accord-
ing to [104], one possible implementation of ML in network is traffic predic-
tion, which can be either a pure Time Series Forecasting (TSF) or Non-TSF
problem. While TSF strategies build a regression model capable of drawing
accurate time-to-time correlation traffic volumes, Non-TSF predicts traffic
using various methods and features [104]. Between these two classifications,
ML utilization for the FADE network is more related to the Non-TSF problem
where traffic is likely to be unpredictable and dynamically evolve depending
on the evacuation progress.

A method based on the frequency domain was used for the network flow
analysis in [20]. This work focused on predicting incoming and outgoing
traffic volumes on the inter-data center link. Similarly, the work in [107]
utilized a regression technique using Bayes Rule and RNN with LSTM on
temporal dynamic information. The strategy aims to predict future traffic
volumes based on the current flow count. Alternatively, an online Bayesian
Moment Matching (oBMM) was used in [106] to predict the size of flow and
to detect an elephant flow. The method considered various features, such as
communicating device IP address and port, protocol, server versus client, and
initial three packets size after establishing a connection. Detected elephant
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and mice flows offer further routing optimization where each flow can be
allocated to a different path [106]. In such cases, mice and elephant flows
were configured with equal-cost multi-path routing and least congested path,
respectively.

7.2. Trend Analysis

In this part, the strategies for historical mobility data pre-processing aiming
at evacuation modelling and transactional data post-processing are discussed.
This section differs from Section 6.2.2 in that part mainly concerns with the
optimal calculation using real-time data. The preparation activity objectives
of trend analysis are to obtain daily travel models of a local citizen, typical
traveling time, and critical nodes that often cause traffic congestion. Mean-
while, the post-processing task manages, discovers, and learns exchanged
data during and after evacuation. The learning and discovery activity im-
proves variables and models to better represent the affected population. Due
to the absence of the region-specific citizen behavior, this activity will help
improve prediction capability for future usage.

Trajectory mining offers a wide range of capabilities on managing mobility
data, such as derivation, pre-processing, management, and other higher-level
tasks [41]. According to the study, the high-level task in mining activity
includes pattern mining, outlier detection, and classification. The usage of
trajectory mining was applied to reveal valuable trip knowledge, such as des-
tination prediction [16, 17, 18, 19, 20], point-of-interest discovery [40, 108],
and route optimization [176]. To this end, researchers have exploited various
inputs, including Spatio-temporal [20] and semantic/annotated [16, 108] in-
formation using stochastic [17, 20, 177] to learning [176, 18] techniques. The
following section will categorize the analysis in details and review relevant
studies.

7.2.1. Trajectory Formulation

The initial step in the analysis is a model formulation which leads to
different subsequent processes. The model construction may utilize existing
data such as stored timestamped-geospatial data provided from a commu-
nication trace [41], or a visual capture [178]. Data with time and location
information highly represent traveling situations as people change positions
over time. Such data representation is also called as Spatio-temporal model.
Another trajectory representation, Social model, is formulated based on la-
belled human interaction records derived from real-life analysis.
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Table 8: Summary of Trajectory Analysis strategies.

Ref. Aim(s) Primary Technique(s) used
[16] To predict trajectory destination given col-

lected trajectory data and temporal sensitiv-
ity issue.

A clustering algorithm applied on a
semantic-based probability model.

[17] To improve trajectory prediction result given
a sub-trajectory query.

A two-dimensional Gaussian
mixture-based prediction model.

[18] To estimate a travel destination given various
external features.

An improved Recurrent Neural Net-
work technique applied on Deep
Learning.

[19] To predict the destination of a sub-trajectory
query considering time sensitivity.

A Markov model with a time-based
transition state.

[20] To improve trajectory prediction result given
incomplete/insufficient collected trajectory
data and temporal sensitivity issue.

A Markov chain-based learning
model and a derived tensor-based
prediction model.

[40] To group travel destination spots based on
their popularity.

A clustering algorithm applied on
a trajectory partition with a stable
stationary point.

[108] To discover hidden factors from given time-
interval travel.

A similarity measurement method
applied on filtered sub-trajectory
data.

[176] To discover travel pattern, and to estimate
future travel based on known regular routes.

A probability-based movement pat-
tern matching technique applied on
a constructed pattern tree.
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A spatio-temporal model records trajectory information as a point-to-
point location in a chronological order, which creates sequential information
illustrating people’s movement. Each entry of this model lists visited loca-
tions along with their time duration. A simple model using directed graph
was defined in [41] where each pair of starting and termination point is con-
nected with an arrow. The connector is then labelled with a number indi-
cating the travel duration. Meanwhile, in [17], a tuple-based model is used
to record all objects position at each time interval. Then, its time assump-
tion is eliminated to solve a limitation on trajectory sampling during two
consecutive times, and to produce a piece-wise segment.

A social model considers additional metrics derived from preference /
semantic labeling [108, 179, 16] or a social interaction score [180]. In [108],
a set of categories and its factors determining human decision were listed.
Then, each factor’s significance was calculated using linear model estimation.
Finally, the basic utility function was estimated using a linear regression
technique to estimate each category’s significant factors under a certain er-
ror rate. Meanwhile, a variation of this model, the Lifestyle-based Trajectory
Model, was devised in [180] by taking into account three principal compo-
nents, namely topic-specific location generation distribution, lifestyle-specific
topic transition distribution, and user-specific lifestyle selection distribution.
Consequently, the model can derive useful information, such as the proba-
bility of a topic being produced at a certain location and the user’s degree
preference over a lifestyle.

7.2.2. Pattern Processing

The next step in analytics is model processing that aims to cluster trajectory
or predict the trip destination. Trajectory clustering aims to seek the repre-
sentation of common paths shared by different moving objects [41]. Mean-
while, trip destination prediction resolves the end-point of trajectory given
a certain input. FADE makes use of these strategies for two goals, namely
to group people’s moving behaviors around the affected location so that the
traffic management can avoid congestion and estimate how many trips are
made to a certain critical location. To achieve these goals, previous studies
proposed different strategies, such as stochastic model or process [177, 17, 20],
graph clustering [181] and learning algorithms [18].

The similarity of multiple trajectories for a grouping purpose was investi-
gated in [181]. The study tried to gain hidden information that exploits close
spatial and temporal aspects of several trajectories. The motivation behind
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this clue finding was that some data points in multiple trajectories could be
different in terms of time and position but actually, these trajectories capture
the mutual behavior of a user. For this particular reason, the study initially
calculated a similarity score between trips then generated a clue graph based
on the rating. Finally, the study did a graph matching to discover trajectory
clusters.

A Gaussian mixture model-based strategy was used in [17] to classify his-
torical trip data and, subsequently, to predict the final destination. The algo-
rithm initially calculates two scores and determines which trajectory belongs
to which cluster. Then, based on the clustering map, the final destination
of a query is determined by calculating a weighted sum of the mean final
destination of each cluster.

Alternatively, a learning algorithm to determine the final destination was
devised in [18]. The study offers a novel Bi-directional LSTM strategy,
namely TALL, to accommodate the latent feature of preceding and follow-
ing location given trajectory data. The usage of the learning algorithm was
motivated by the fact that the Bayes rule-based strategies have accuracy
limitations on sparse trajectory data and smaller granularity grids.

8. Input Acquisition and Extract Functionality in FADE

Data acquisition and extraction of raw image and sensing data requires care-
ful treatment due to several factors. Raw data transmission during a high-
demand access scenario will likely to suffer from latency and drop rate. As
a consequence, devices will need to retransmit, which can cause more access
to a communication channel at the cost of extra energy expenditure. In fact,
not all sensing nodes or assistant units can afford this process because of the
energy left. Therefore, some adjustments on the data process and extraction
are required to manage these trade-offs properly.

A more complex computation is required within this functionality to min-
imize the system-wide energy, communication, and computation spending.
Rather than separating task execution at a certain network level, mobile and
fog units should share the proportional amount of jobs. For instance, data
acquisition includes not only capture and transmission at the edge devices
but also error checking and reception in the core network. In this case, the
capture and error checking can be done at both levels. Data processing and
extraction spanning from all the preparatory steps to the partial process
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should be done at both ends. The following subsection further explains the
required adjustments to improve the trade-offs.

8.1. Component Adjustment

Input transformation includes process decomposition that distributes
the acquisition and extract process to the edge and core network units. Re-
ferring to the offloading mechanism discussed in Section 4.2, FADE should
retrieve input as information rather than a raw form using an offloading
mechanism. Since crowd-analysis is a vital task in the evacuation manage-
ment, the acquire and process functionality can be specifically designed for
this purpose. The CNN-based algorithms as cited in [112] compose of vari-
ous depths of convolutional, pooling, and max-layers. Rather than assigning
computation tasks to mobile fog nodes, mobile devices should be allocated
some parts of the task as demonstrated in [114, 116, 115]. This will result in
a lower resource usage and queue at the main computing facility.

Flow management can mitigate the traffic congestion by the transmis-
sion timing management and traffic classification. In the timing management,
the input can be acquired periodically or tentatively using a frame differenc-
ing algorithm as proposed in [117]. Without this setup, rapid retransmission
will potentially deteriorate the network performance due to channel usage
and gateways flooding. Additionally, the buffer capacity at the other side
of the network is limited for receiving transmitted data from all units. Al-
though the middleware capability mentioned in Section 5, such as message
broker [73, 182], was carefully benchmarked in [183], there is no estimation of
capacity or bottleneck. Meanwhile, traffic classification collects the network
traffic and classifies them into different groups using SDN [184, 185, 58].

In-network computation offers a complex task to be offloaded at the
network layer with three implementation prerequisites, i.e., it must reduce
traffic significantly, have minimal application changes, and guarantee the
result correctness [60]. This concept is typically facilitated by network pro-
gramming implemented within the SDN. Due to its dynamic policy updates
resulting from an event-based response [58], SDN is considered as a plausible
option to perform complex computation jobs, such as distributed applica-
tions, caching distributed key-value stores, network diagnostics, and aggre-
gation functions in data-centric processing [185]. Even some machine learning
and graph analytics can run at the network level [60].
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8.2. Stateful and Event-driven Network Programming

SDN facilitates more advanced network management through a programming
script generated into flow rules. Despite all strengths mentioned in Section
5.1.2, the absence of a global variable representing the network conditions
has resulted in several flaws in the SDN implementation. Firstly, due to the
delay in rebuilding flow tables, mistreatment on processed packets is likely
to occur. Secondly, any requests received by the switching devices will be
forwarded to and hold at the controller during the rebuilding process.

The event-driven networking that is facilitated by the stateful program-
ming language has tackled the traditional SDN limitation by providing a
persistent global array [186, 58]. This information container gives access to
flow-associated information on the topology and possibly applies rules result-
ing from a particular event. However, not all stateful network programming
languages can guarantee consistency during the dynamic updates, react to
a particular event at the data plane level, or update the protocol automat-
ically [58]. Event-driven networking, i.e. SNetKAT [58], constructs a Net-
work Event Structure that can hold consistency network properties during
the transition between two network configurations.

Network-level computation facilitated by one of the network programming
languages, i.e., P4, was demonstrated in [60]. Herein the DAIET proposal
[60] was motivated by a possibility to do aggregation independently with
several caveats. Firstly, the available resources, such as computation power
and storage capacity, are limited. Secondly, it requires a specific application-
network mapping where each step of computation must be associated with
certain devices via flow rules. Despite these provisions, stateful programming
can offer many opportunities for flow management via scripted instructions.
Table 9 lists available stateful network programming languages with their
known benefits and caveats.

9. Open Challenges and Directions

9.1. Exchange and Communication

Machine learning strategy on Traffic Management could be more utilized and
tailored specifically for FADE based on certain requirements. This is mainly
motivated by the fact that the characteristics of transmitted data are quite
predictable. Trajectory patterns and frequencies of natural disasters in a
certain location are unique, and, thus, can be learned over time. Therefore,
a location- or disaster-specific machine learning using the pre-collected data
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Table 9: Stateful Network Programming Language

Name Strength Caveats Up-
date

Event-
driven?

Maple
[187]

Network-wide forward-
ing behaviors

Non-reusable f function can po-
tentially result in higher runtime.

P �

Policies are applied in
conjunction with others

Difficult f function parallelization
poses a challenge to implementa-
tion speedup.

Merlin
[188]

Constructs for
wider scope of
network
management

Small runtime, called negotiators,
is needed to accommodate dy-
namic policy update.

P �

Path constraint expression is
available to tune scope matching
flexibly.

Flowlog
[189]

Syntax is a
reminiscent of
SQL

Unclear network behavior during
reconfiguration P �
No loop and recursive construct is
available.
Proactive compilation is per-
formed occasionally.
Forwarding rules compilation out-
put might not work when tu-
ples refer to any external table
sources.

Stateful
NetKAT
[58]

Consistent network up-
dates application with
consistency properties
hold during reconfgura-
tion.

Users needs to master the basic
of Boolean and Kleene algebra ex-
pression.

P �

SNAP
[186]

High-level
language

TCP policy rules addition might
produce a surge of compilation
time.

R �

Stateful operators may be par-
tially compatible to some hard-
ware.
MILP creation requires a longer
time than the solution.

P4CEP
[185]

High portability
due to P4
support

Synchronizing access to global
state is not easy. R �
Unable to directly handle global
state of registers.
Loop construct is not available.
Action invocation is not a direct
process.

Note. R = reactive; P proactive flow updates
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is a viable option for optimized solution. Additionally, the image/text data
transmission used in the system should have a different QoS setup to improve
the network efficiency [11]. This motivates the optimization of supervised
learning to train and test a network traffic model [105] adopted from large-
scale evacuation scenarios [8], such as music concert, fair, and expo. After
the model is generated, a testbed can be developed to see how well the traffic
management handles massive traffic.

The ML usage on network reconfiguration can be further improved when
combined with stateful [186, 189, 185, 187] and event-driven programming
[58] in SDN. The learning process can predict the network current situation
using input provided by these frameworks. Then, using the reactive rule
compilation, the output of calculation taking in the form of metrics will be
used to generate flow updates.

Transient connectivity during the evacuation process can risk computa-
tion latency due to the input retransmission. This is the case of MFUs [11]
with limited computation and power resources. In this communication setup,
MFUs are deployed within the transmission distance of MAUs and serve the
dispatched MAUs. The communication quality between these two groups of
units can be severely impacted by weather conditions and power outages of
one communicating side. Future research can incorporate this parameter in
designing the offloading decision algorithm so that a more realistic result can
be obtained.

9.2. Computation Offloading

Unidentical resources of mobile units - CNN has been used in crowd counting
and crowd-analysis and outperformed conventional strategies. If FADE im-
plementation decides to streamline data preparation and intelligence, CNN
computation can be offloaded hierarchically using strategies mentioned in
Section 4.2.3. Dynamic-offloading learning strategies such as [115, 116] con-
sider task partition only based on the hardware specifications, such as CPU
or RAM of the computing units. However, this could risk a system failure
due to non-uniform resource remaining that is caused by weather conditions,
rerouted travels, or crowdsourcing approaches [8, 9]. It can also lead to a
challenging situation for CNN-based crowd-analysis as mentioned in Section
6.2.1.

Inference layer partitioning was proposed in [115, 116] to distribute the
learning process requests across end-devices and fog nodes. However, none
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of these studies have taken into account the remaining battery for model as-
signment. Each computing device may not be able to complete the task due
to power outages. Learning model partition and computation on resource-
limited devices such as MAUs should be implemented in real life for bench-
marking purposes. The testbed on interactions between a certain compu-
tation layer and CPU usage [113] will help researchers finely tune model
distribution and estimate the power usage.

Adaptive preprocessing configuration can assign independent tasks that
compute the orthogonal models [115, 116]. However, the depth of these
models should be defined based on two principle aspects: (1) performance
metrics, e.g., latency, task completion time, and unit’s computation capabil-
ity, as computation objectives and (2) energy consumption as a constraint.
The dynamic allocation under energy constraints is a critical task as it can
prolong the system’s lifetime and allow more effective responses to the dis-
aster events. On the other hand, at the same time, relying on the minimized
energy consumption might compromise the computation’s accuracy. There-
fore, it is also interesting to reformulate the problem as a trade-off between
energy availability and computation capability. The existing algorithms pro-
vided in [114] seem to be a static invocation of such capability.

9.3. Learning Process

Model minimization using Binary Neural Network (BNN) [190, 191, 192]
can reduce the computation required on the learning process. The BNN
uses a 1-bit model, which has a proportional factor of 32x compared to the
traditional 32-bit type. As a consequence, multiplication of the activation
layer and 1-bit weight can be replaced by bit-wise operation, making the
processing time less. Additionally, XNOR operation in the BNN has been
able to expedite the neural network process. Even though BNN usage has
been common in the edge-based learning process because of the complexity
and space reduction, its implementation has been exclusively found in image
classification and object detection. Therefore, further research is required to
investigate its feasibility for crowd counting.

Application sub-steps mapping on SDN has enabled in-network compu-
tation [60] to speed up the application that uses simple arithmetic/logic
operation and commutative/associative function. This work has shown some
potential advantages, such as latency reduction, throughput increase on cer-
tain operations, and traffic decrease. Regardless of its promising results on
machine learning and graph analytics [60], in-network computation requires
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a detailed mapping between each calculation step and middleboxes for rule
flow updates. Future research can improve this mapping requirement by
taking into account the One Big Switch approach used in [186, 189].

Supervised learning results of crowd counting depend heavily on the qual-
ity of the dataset despite the lower error rates [112]. The process of detecting
and counting pedestrians on a single image requires a dataset that contains
various density levels, no mislabeled samples, and generalization [112]. An
adequate generalization could model the global context information that min-
imizes the overfitting in learning and increases the performance. In the case
of a simplified learning network, e.g., AlexNet, the training data can be fur-
ther improved by adding negative samples in which the ground truth count
is set to zero [93]. This adaptation can improve the performance significantly
up to 50% [93].

Outlier data detected from trajectory analysis could be used as an al-
ternative path during the evacuation process. The fact that some people
discover unusual ways is worth capturing. Compared to a typical mobility
pattern, this unique path could promote a better traveling time under differ-
ent circumstances. Therefore, the analytics part can store and prepare this
data as a substitute option during the path computation process.

Algorithm-hardware alignment offers various potential benefits to the ef-
ficiency of an embedded learning process. As reported in [193], it can solve
the memory and computational bottleneck, thus making it able to reduce
the energy consumption. To that end, a learning algorithm should be en-
hanced or exploited by taking the hardware architecture into consideration.
The inference process exhibits typical characteristics, such as specific data
flow, robustness to approximations or fault introductions, and considerable
sparsity [193]. The inference at separate locations [115, 114, 116] can be
further improved by putting different types of processed data and using the
specialized hardware. An energy-efficient platform with a good performance
is critical for the inference process during disruptive scenarios.

10. Conclusion

Disaster evacuation guidance has shown as a powerful tool to mitigate
the number of casualties as it can analyze traffic bottlenecks and output the
optimum evacuation paths. The subject’s importance becomes more crit-
ical as infrastructure is much less certain and available, but the demand
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increases suddenly, especially when a multi-hazard scenario occurs. Mean-
while, mobile fog infrastructure has been developed to support delay-sensitive
applications through its localized service and scalable computing capability,
making it a feasible option for authorities at natural disaster hotspots. Its
scalability feature comes from a mixture of intelligent and resourceful com-
putation, coming from diverse technologies. Motivated by the importance of
evacuation guidance and the diverse element of mobile fog computing, this
study has presented a comprehensive review of supporting technologies for
a fog-enabled evacuation service under an umbrella called FADE. We have
designed a top-down structure for logical functionalities that administers var-
ious technologies used in a fog environment, focusing on the state-of-the-art
communication, computation mechanisms, and analytics capability to antic-
ipate disruptive scenarios. Finally, this study has presented several research
challenges spanning from intelligent data communication, offloading strate-
gies to hidden information learning processes.
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