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Abstract: Information Geometry is a useful tool to study and compare the solutions of a Stochastic
Differential Equations (SDEs) for non-equilibrium systems. As an alternative method to solving
the Fokker–Planck equation, we propose a new method to calculate time-dependent probability
density functions (PDFs) and to study Information Geometry using Monte Carlo (MC) simulation of
SDEs. Specifically, we develop a new MC SDE method to overcome the challenges in calculating a
time-dependent PDF and information geometric diagnostics and to speed up simulations by utilizing
GPU computing. Using MC SDE simulations, we reproduce Information Geometric scaling relations
found from the Fokker–Planck method for the case of a stochastic process with linear and cubic
damping terms. We showcase the advantage of MC SDE simulation over FPE solvers by calculating
unequal time joint PDFs. For the linear process with a linear damping force, joint PDF is found
to be a Gaussian. In contrast, for the cubic process with a cubic damping force, joint PDF exhibits
a bimodal structure, even in a stationary state. This suggests a finite memory time induced by a
nonlinear force. Furthermore, several power-law scalings in the characteristics of bimodal PDFs are
identified and investigated.

Keywords: information geometry; information length; stochastic differential equation; Langevin
equation; Monte Carlo; GPU; simulation; Fokker–Planck equation; Milstein; non-linear SDE

1. Introduction

Stochastic Differential Equations (SDEs) (Equation (5)) are used to model various
phenomena in nature, including Brownian motion, asset pricing, population dynamics,
COVID-19 spread and interaction [1–6], and various other non-equilibrium processes. Due
to their stochasticity, SDEs do not have an unique solution, but a distribution of solutions.
A Fokker–Planck Equation (FPE) [7] is a Partial Differential Equation (PDE) that describes
how the probability density of solutions of a SDE evolves with time.

Comparing solutions of different SDEs can be achieved by looking at different statis-
tics of the solutions like mean and variance. However, when we are interested in large
fluctuations and extreme events in the solutions, simple statistics might not suffice. In
such cases, quantifying and comparing the time evolution of probability density functions
(PDFs) of solutions will provide us with more information [8]. The time evolution of PDFs
can be studied and compared through the framework of information geometry [9], wherein
PDFs are considered as points on a Riemannian manifold and their time evolution can be
considered as a motion on this manifold. In general, in order to have a manifold structure
on the probability space in information geometry, we need to define a metric. Several
different metrics can be defined on a probability space [10–13].

Different metrics have different physical and mathematical significance. For example,
the Wasserstein metric (also known as the Earth mover’s distance) naturally comes up
in optimal transport problems [14]; the Ruppeiner metric is based on the geometry of
equilibrium thermodynamics [13]. In this work, we use a metric related to the Fisher
Information [15], known as the Fisher Information metric [16,17].

Entropy 2022, 24, 1113. https://doi.org/10.3390/e24081113 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24081113
https://doi.org/10.3390/e24081113
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-9500-3014
https://orcid.org/0000-0001-5607-6635
https://doi.org/10.3390/e24081113
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24081113?type=check_update&version=1


Entropy 2022, 24, 1113 2 of 19

gjk(θ) :=
∫

X

∂ log p(x; {θ})
∂θj

∂ log p(x; {θ})
∂θk

p(x; {θ})dx (1)

Here, p(x; {θ}) denotes a continuous family of PDFs parametrized by parameters {θ}.
This metric was used to physically represent the number of statistically distinguishable
states [11,18,19]. Note that two Gaussians with same standard deviation but different
means are statistically indistinguishable, if the difference in their means are much smaller
than their standard deviation.

If a time-dependent PDF p(x, t) is considered as a continuous family of PDFs parame-
terized by a single parameter, time t, the scalar metric can be given by:

g(t) =
∫

dx
1

p(x, t)

[
∂p(x, t)

∂t

]2

(2)

However, time in classical mechanics is a passive quantity that cannot be changed by
an external control. The infinitesimal distance dL on the manifold is then given by
dL2 = g(t)dt2. Here, L is the Information Length defined by:

L(t) :=
∫ t

0
dt1

√∫
dx

1
p(x, t1)

[
∂p(x, t1)

∂t1

]2

(3)

The Information Length L represents the dimensionless distance, which measures the
total distance traveled on the manifold, or the total number of distinguishable states a
system passes through during the course of its evolution. It has previously been used in
optimization problems [20]. It was also used to study dynamical systems, thermodynamics,
phase transitions, memory effects, and self-organization [21–28].

The gradient of L, limdt→0 dL/dt ≡ Γ, then represents a velocity on this manifold

Γ(t) :=

√∫
dx

1
p(x, t)

[
∂p(x, t)

∂t

]2

(4)

Note that we use the notation Γ instead of
√

g to make it clear that it is a quantity defined
for a time-dependent PDF. Γ represents the rate of change of statistically distinguishable
states in a time-evolving PDF, and is sometimes referred to in the literature [29–31] as the
Information Rate. Note that in information theory [32], the term “Information Rate” is used
for the rate at which information is passed over the channel [33].

As for the physical significance of Γ, in a non-equilibrium thermodynamic system, Γ is
related to the entropy production [30]. Γ has also been used to study
causality [29] and abrupt changes in the dynamics of a system [8]. Γ2 is equivalent to
the (symmetric) KL divergence of infinitesimally close PDFs, as shown in Appendix E. It
should also be noted that Γ(t) defined by Equation (4) has the dimensions of t−1, and the
time-integral of Γ(t) gives a dimensionless distance L in Equation (3).

Due to the lack of general mathematical techniques to solve SDEs or its associated
FPE, analytical study of SDEs using Information Geometry (Γ and L) has been limited
to a few special cases [24,25,34,35]. To date, numerical studies have relied on solving the
associated FPE [24,34], which has the advantage of generating smooth time-dependent
PDFs and information diagnostics, but has the limitations outlined in Table 1. To overcome
the limitations of a FPE solver, in this work, we develop a Monte Carlo (MC) method to
study time-dependent PDFs and the Information Geometry of SDEs.
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Table 1. Comparison between grid-based FPE solver and MC SDE simulation.

Grid-Based FPE Solver MC SDE Simulation

Accuracy
Depends on grid size. No

well-defined prescription on
choosing grid-size.

Depends on number of
samples(n) [36]. Typically less
accurate for practical sample

sizes.

Boundary condition

Requires carefully chosen
non-trivial boundary

conditions. Cannot handle
discontinuous initial

conditions such as Dirac delta
function.

Requires only an initial
distribution as boundary

condition.

Memory Usage & Runtime

Scales exponentially with
dimension d. O(n1n2 . . . nd).
Here, n1, n2, . . . , nd are the

number of grid points along
each dimension.

Scales linearly with dimension
d. O(nd). Here, n is the

number of samples.

Correlation Study
Cannot study correlations and

associated memory effects
using FPE.

Can study correlations. See
Section 4 for unequal time

joint PDF estimates.

The main aims of this paper are twofold. The first aim is to develop a new MC SDE
simulation method and validate it by recovering the previous results obtained using the
FPE method. The second is to calculate unequal time joint PDFs and investigate the effect
of nonlinear forces on PDF form and various power-scaling relations. The remainder of the
paper is organized as follows: Section 2.1 gives a brief introduction of the theory of MC SDE
simulation. Section 2.2 develops the methods to measure Information Geometry from the
simulation. Using this method, we compare a linear and a nonlinear SDE in Section 3. In
Section 4, we showcase the measurement of joint PDFs of the same variable but at unequal
times, which is not possible using FPE solvers. We then study a type of phase transition
in the joint PDF of the nonlinear SDE and numerically verify its theoretically calculated
scaling relations. Discussions are found in Section 5.

2. Methods
2.1. SDE Simulation

A typical SDE for the variable x in d dimensions has the following form:

d~xt = ~µ(~xt, t) dt + σ(~xt, t).d~Wt (5)

Here,~µ is known as the drift vector (drift coefficient in 1D), D := σ.σT/2 the diffusion
tensor (diffusion coefficient in 1D) and ~Wt is the Weiner process [37]. d~Wt represents an
infinitesimal random noise term, making the equation stochastic. Generalizations to SDEs
can be achieved with more general noise terms and higher-order derivative terms, but are
not pursued here. The associated FPE describes the time evolution of the PDF p(~x, t) of
solutions of the SDE.

∂p(~x, t)
∂t

= −
d

∑
i=1

∂

∂xi
[µi(~x, t)p(~x, t)] +

d

∑
i=1

d

∑
j=1

∂2

∂xi∂xj

[
Dij(~x, t)p(~x, t)

]
(6)

Instead of numerically solving the FPE, in this work, we use a Monte Carlo (MC)
method to estimate p(~x, t) by simulating a large number of instances of an SDE. Explicit
numerical solution of an SDE involves choosing an initial position ~x0 and iteratively
updating it to get the value at time t,~xt. For the MC simulation, we start with a set of initial
positions {~x0} sampled from the desired initial distribution and numerically solve each
of them independently. We can then use the set of samples at time t, {~xt}, to compute the
desired statistics. We can formally write this iteration step as follows:
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~xt+∆t =M
(
~xt,~µ(~xt, t), σ(~xt, t), ∆~Wt, ∆t

)
(7)

Here,M denotes an arbitrary update scheme. There are several methods [38] by which
we can create this update. Throughout this work, we will be working with autonomous
SDEs (~µ and σ do not explicitly depend on time) with diagonal noise (σ is a diagonal
matrix). Therefore, we will use a simple update scheme called the Milstein scheme [39]:

~xt+∆t =~xt +~µ(~xt)∆t + σ(~xt).∆~Wt +
1
2

σ(~xt).σ′(~xt).
((

∆~Wt

)2
− ∆t

)
+O

(
∆t1.5

)
(8)

Here, ∆~Wt is a random sample from N d(0, ∆t). Note that the Milstein scheme is only
accurate up to O(∆t), and this error can accumulate through the course of the simulation.
Therefore, to control the error in the numerical update scheme, we will adaptively choose
the time step ∆t for updates by setting a local error tolerance. Local error at time t is defined
as the deviation between a single step update made with time step ∆t and a two-step
update made with the time step ∆t/2 each.

err(~xt, ∆t) :=

∥∥∥(M(
~xt, ∆~W1, ∆t

2

)
+M

(
~xt+ ∆t

2
, ∆~W2, ∆t

2

))
−M

(
~xt, ∆~Wt, ∆t

)∥∥∥
√

d
(9)

Here, we omitted the dependence ofM on ~µ and σ for brevity. ∆~W1 and ∆~W2 are
chosen in such a way that ∆~W1 + ∆~W2 = ∆~Wt. To satisfy the local error tolerance Tol, we
need to choose ∆t, such that err(~xt, ∆t) < Tol. The exact prescription on how this choice is
made can be found here [40].

Computing Γ requires computing the derivative of P(~xt, t) of the numerical solutions.
Since derivatives are sensitive to numerical noise, we need accurate estimates of the prob-
ability distribution. This is achieved by numerically solving a large number of SDEs (we
use at least 2× 107 samples in this work). This is an impractically large number for most
computers. Numerically finding 2× 107 solutions, with each requiring around 10,000 time
steps (depending on the required accuracy) will require at least 1600 GB of memory, assum-
ing 64-bit floating point values. Additionally, assuming a fast 2 ms per solution, the entire
simulation will take around 11 h if carried out serially. To solve these problems, we use
GPU computing. With GPU computing [41], we can perform updates on a set of values {~xt},
simultaneously using Equation (7) to get {~xt+∆t}. {~xt} can then be removed from memory
after computing the desired statistics, making it memory efficient. As for the runtime, a
GPU-based parallel implementation [42] in Python takes around 4 min to simulate 2× 107

samples for 10,000 time steps on a consumer laptop equipped with Nvidia RTX 2080 GPU.
See Appendix A for detailed scaling relations of simulation runtime.

2.2. Estimating Γ

The form of Γ in Equation (4) makes it unsuitable for numerical computation due
to the presence of p(x, t) term in the denominator, which can become zero. We therefore
rewrite the equation using the redefinition q(x, t) :=

√
p(x, t).

Γ2(t) = 4
∫

dx
[

∂q(x, t)
∂t

]2

(10)

To calculate Γ, we first estimate the PDF using histograms. (It would be more accurate
to use kernel density estimators [43], but that is more computationally expensive). The
derivative in Equation (10) is approximated as a finite difference and the integral as a
Riemann sum. The specific methods and the error estimates are provided in Appendix B.
After computing Γ, information length can be computed from the numerical integration of
Equation (3).
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A major source of error in the estimation of Γ is due to the compact support and
overlap of numerically estimated probability densities. (This will also be a source of error
with numerical FPE solvers). During the simulation, time steps are chosen adaptively by
setting a tolerance for the local numerical error. However, in some regimes, this results in
the system evolving too fast, so that there is little or no overlap between the probability
densities at adjacent time steps (Figure 1). Theoretically, these densities (Figure 1) have
the support of the entire real line, and the only error will be caused by approximating the
derivative and the integral. However, in practice, we are running the MC simulation with a
finite sample size, and computers have finite numerical precision; as such, the estimated
densities have compact support. Figure 2 shows how the amount of overlap between the
densities affects the error in Γ estimate. There are two main sources of sub-optimal overlap:
changes in mean and changes in standard deviation.

Figure 1. Probability density at adjacent time steps for the SDE dxt = −xtdt + 0.1dWt with initial
normal distributionN (105, 10−10). Time steps were chosen adaptively to limit local error to 5× 10−4.
The specific time interval was chosen to showcase the lack of overlap between PDFs.

Figure 2. (left) Error in Γ calculation for two Gaussians with same standard deviation (Std. Dev. = 1)
but with different means. The error estimate of Γ is lowest when ∆Mean ≈ 0.2 Std. Dev. (right) Error
in Γ calculation for two Gaussians with same Mean (Mean = 0) but with different standard deviation.
The error Γ estimate is lowest when ratio of standard deviation is approximately 0.9 or 1.1 (≈0.9−1).
Discretized version of Equation (10) was used for the estimate and PDF was approximated by a
histogram with 703 bins. We considered 2× 107 samples for each distribution. dt is chosen to be 1.
Estimates were repeated 40 times and mean of the error was taken.

Consider ∆t chosen adaptively to satisfy the local error tolerance. Now assume for
some ∆̃t, we get optimal overlap. If ∆̃t > ∆t, we can wait for a few steps before estimating
the Γ. However, if ∆̃t < ∆t, we can choose a ∆̃t as a temporary time step and generate a
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collection of points {~xt+∆̃t} from {~xt} using Equation (7), which results in optimal overlap

between densities. The local error will still be smaller than the tolerance since ∆t < ∆̃t. In
order to derive the value of ∆̃t, we use the Milstein update scheme and restrict ourselves to
the one-dimensional case for simplicity. First, we look at the change in mean value.

xt+∆t = xt + µ(xt)∆t + σ(xt)(xt)∆Wt +
1
2

σ(xt)σ
′(xt)

((
∆W2

t

)
− ∆t

)
+O

(
∆t1.5

)
(11)

Taking the expectation value of both sides, we get:

E[xt+∆t] = E[xt] +E[µ(xt)]∆t +O
(

∆t1.5
)

(12)

Here, we use the fact that E[∆Wt] = 0 and E
[
(∆Wt)

2
]
= ∆t. Note that xt and ∆Wt

are independent random variables. For X and Y, the independent random variables are
E[XY] = E[X]E[Y].

In order to achieve optimal overlap (Figure 2 (left)), we need E[xt+∆t] − E[xt] =
0.2 Std[xt].

∆̃tmean =
0.2 Std[xt]

E[µ(xt)]
(13)

Now to derive the effect on change in standard deviation on ∆̃t, a similar calculation
for Var[xt+∆t] can be performed, which yields:

Var[xt+∆t] = Var[xt] +
(

2 Cov[µ(xt), xt] +E
[
σ2(xt)

])
∆t +O

(
∆t1.5

)
(14)

Now, in order to achieve optimal overlap, we need Var[xt+∆t]/ Var[xt] = 0.9±2

(Figure 2 (right)). 0.9+2 when Var[xt+∆t] < Var[xt] and 0.9−2 when Var[xt+∆t] > Var[xt].

∆̃tstd = Var[xt]

∣∣∣∣ 0.92 − 1
2 Cov[µ(xt), xt] +E[σ2(xt)]

∣∣∣∣ (15)

Note that we have only considered the first and second moments here. It is potentially
possible to improve the accuracy of the Γ estimate by considering higher moments. How-
ever, this improvement will be marginal, since overlap between two distributions is most
affected by its first and second moments.

After calculating both the time steps ∆̃tmean and ∆̃tstd, we take the minimum of the
two to perform the update on {xt} to get {xt+∆̃t}, where ∆̃t = min

(
∆̃tmean, ∆̃tstd

)
. After

the estimation, the Γ {xt+∆̃t} is discarded and we continue the simulation with {xt+∆t}.
This prevents any significant slowing in the simulation if ∆̃t� ∆t. Note that calculating
∆̃tmean and ∆̃tstd using the entire set of points {xt}will be computationally expensive. Only
a small subset is used to perform this calculation.

After Γ is estimated, we can calculate the information length by approximating the
integral as a Riemann sum.

Looking at Figure 3, it can be seen than the percentage error in Γ blows up towards
the end of the simulation. This is when the system approaches a stationary state and
the probability density stops evolving. The exact Γ reaches zero, whereas the numerical
estimate will have a small nonzero error (Figure 4). Even though the percentage error in
Γ becomes large, the absolute error remains small (Figure 2 (left)) and will have minimal
contribution to the error in Information Length calculation. However, when the initial
distribution is ’closer’ to the stationary distribution (small x0 values in Figure 3), the
absolute value of Information Length will be small, and the error in Γ estimate will have a
more significant contribution to the Information Length calculation.
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Figure 3. Error in estimated (left) Γ and (right) L by simulating 2 × 107 parallel instances of
the Equation dxt = −1.0xtdt + 0.1dWt with initial values sampled from the normal distribution
N (x0, 10−10) and computing the PDFs using histograms with 703 bins. The local error tolerance was
5× 10−4. Note that an initial step size ∆t = 10−14 was chosen to produce more frequent estimates in
the initial part of the simulation. See Appendix D for exact solution.

Figure 4. The Γ of (left) Linear SDE and (right) Cubic SDE for different initial conditionsN (x0, 10−10),
as described in Section 3. Note that towards the end of the range of t, the values will be dominated
by errors, as shown in Figure 3. Therefore instead of dropping to zero, they will have a finite nonzero
value. For exact solution of Linear SDE, see Appendix D.

It is to be noted that measuring Γ of multi-dimensional problems is a significant
computational challenge which requires further investigation. MC SDE simulation is better
at handling such problems compared with FPE solvers due to its linear scaling with number
of dimensions. However, this comes at the price of accuracy when estimating PDFs of
higher dimensional problems. It is still possible to accurately study Γ from marginal PDFs
of multi-dimensional problems using MC SDE simulation.

A python implementation of SDE Simulation, along with the Γ measurement used in
this work, can be found here [42].

3. Linear vs. Cubic Statistics

In this section, we will use methods developed in the previous section and study
nonlinear damping of the Information Geometry of a stochastic process. We will compare
the Ornstein–Uhlenbeck process [44], a model for prototypical linear driven dissipative
process, defined by linear SDE:

dxt = −θxtdt + σdWt (16)

with a cubic SDE defined by the equation:

dxt = −θx3
t dt + σdWt (17)
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The cubic damping term has been previously used to model CO2 emissions [45], phase
transitions [24], and self-organized shear flows [46].

Throughout this section, unless otherwise stated, we restrict ourselves to the values
θ = 1.0 and σ = 0.1. The initial distribution is always N

(
x0, 10−10), and we run the SDE

simulation from t = 0 to t = 100. The data in this section were generated using 2× 107

samples, and PDF was approximated by a histogram with 703 bins, which was chosen
using an empirical formula 2.59 3

√
n. The time steps were adaptively chosen by setting local

error tolerance at 5× 10−4.
Two of the simplest statistics that can be measured are the mean and the standard

deviation of the distribution (Figures 5 and 6). The trends in mean can be readily seen by
taking expectation value on both sides of Equations (16) and (17). For the linear SDE, we
have dE[xt] = −θE[xt]dt, which can be solved to get E[xt] = x0e−t. For the Cubic SDE, we
can follow similar steps:

dE[xt] = −θE
[

x3
t

]
dt (18)

dE[xt] ≈ −θE[xt]
3dt (19)

=⇒ E[xt] ≈
1√

1
x2

0
+ 2θt

(20)

Figure 5. The mean of the distribution for different initial conditions N (x0, 10−10) of (left) linear
SDE and (right) cubic SDE.

Figure 6. The standard deviation of the distribution for different initial conditions N (x0, 10−10) of
(left) linear SDE and (right) cubic SDE. Note that for the linear SDE, all the lines overlap.

The approximate solution of the mean value of Cubic SDE is only valid when the stan-
dard deviation of the distribution is much smaller than the mean (Appendix C). Note that
in Equation (20), when 1/x2

0 � θt, E[xt] ≈ (2θt)−0.5, making the trajectory independent of
x0. This can be seen in Figure 5 (right), when all the lines merge into one. However, around
t = 5, the approximation fails, since the value of the standard deviation (Figure 6 (right))
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and the mean (Figure 5 (right)) becomes comparable. Therefore, the curves fail to follow
the same trajectory E[xt] ≈ (2θt)−0.5 for t > 5.

The trends in standard deviation of the Linear SDE are readily explained by
Equation (A14), which does not depend on initial mean position x0, but only on the
initial standard deviation, the drift coefficient, and the diffusion coefficient. As we write
this paper, no exact analytic solution exists for the Cubic SDE. However, an approximate
analytic treatment can be found here [47].

We define the asymptotic Information Length (L∞) to be the Information Length it
took for the system to reach the stationary state of its PDF.

L∞ := L(t→ ∞) (21)

Analytically, a SDE reaches its stationary state as t→ ∞. However, numerically, we see
that the probability density stops evolving after a finite time. We can see this from Figure 7,
as L becomes a constant. Lwill still continue to increase slightly due to numerical error, but
this contribution will be negligible, as shown in Figure 3. L∞ measures how many statistically
distinguishable states the system passes through to reach its stationary state. From Figure 6, it
is evident that, compared to the linear SDE, the PDF of the cubic SDE undergoes a lot more
change before reaching its stationary state, for larger values of x0. For small values of x0, the
trend in standard deviation is similar between linear and cubic SDEs, since the initial evolution
of the cubic process is Gaussian. This is confirmed in Figure 7, which shows that for large
values of x0, L∞ is significantly larger for the cubic SDE for same values of x0 and, for small x0
values, the L∞ values are comparable.

Figure 7. The Information Length of (left) linear SDE and (right) cubic SDE for different initial
conditions N (x0, 10−10). For exact solution of linear SDE, see Appendix D.

Information Length Scaling

In Figure 7, we have already seen that L∞ depends on x0 and has different behavior
for linear and cubic SDEs. In [47], by numerically solving the FPE (also analytically for
the linear SDE), it was shown that for large values of x0, L∞ shows different scaling
behavior for linear and cubic SDEs. For the linear SDE, L∞ ∼ x0. For the cubic SDE,
L∞ ∼ xm

0 , where 1.5 < m < 1.9. We reproduce this result in Figure 8. Note that, since
L∞ is a dimensionless quantity, it is not possible to derive these values theoretically using
dimensional analysis. In the absence of general analytic tools to study this property,
numerical methods are indispensable.
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Figure 8. Scaling behavior of L∞ with respect to x0 for linear and cubic SDE with θ = 1.0 and σ = 0.1.

4. Unequal Time Joint PDF: Bimodality for Cubic Force

A clear advantage of MC SDE Simulation over solving FPE is the ability to compute
the unequal time joint PDFs P(x(t1), x(t2)). Unequal time joint PDFs have been previously
used for causality and to establish causal relations. In this section, we showcase the ability
of MC SDE simulation to estimate P(x(t1), x(t2)) and study its properties.

4.1. Unequal Time PDFs in the Stationary State

For the linear SDE P(x(t1), x(t2)) is always a Gaussian, but with a covariance matrix
that depends on t1 and t2. However, for the cubic SDE, we see the emergence of a bimodal
distribution (Figure 9 (right)) depending on t1 and t2 values. This behavior prevails even
after the system has reached its stationary state, but now only depends on the difference
∆t := t2 − t1. The bimodality indicates a finite memory induced by the non-linearity. In
order to further study this behavior, we first ensure the system has reached a stationary state
by simulating from t = 0 to t = 1500 with a sample size of 8× 107 for the cubic process.
After setting t1 = 1500, t2 values are chosen from the data generated by further simulating
the system for 300 time units. The PDF was approximated by a histogram with 60× 60 bins.
The time steps were adaptively chosen by setting the local error tolerance as 0.01σ.

Figure 9. P(x(t1), x(t2)) for (left) linear SDE with t1 = 200 and t2 = 207 and (right) cubic SDE with
t1 = 1500 and t2 = 1507. For both the SDEs, γ = 1.0 and σ = 0.1. Both SDEs have reached their
stationary states.
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Note that, because of the symmetry of diffusion term and the drift term, the bimodality
of P(x(t1), x(t2)) for cubic SDE is always symmetric with respect to the line x(t1) = x(t2).
Therefore to make the numerical study of the bimodality easier, we restrict our attention to
the diagonal of the joint probability density P(x(t1) = x(t2)), which is then normalized to
integrate to one.

To quantify the bimodality of P(x(t1) = x(t2)), we use the following fitting function
to perform a nonlinear fit and estimate the parameters.

P(x(t1) = x(t2)) = a

[
exp

(
−
( x

c

)4
)
+ b exp

(
−
(

x− e
d

)2
)
+ b exp

(
−
(

x + e
d

)2
)]

(22)

To motivate this fitting function, note that for ∆t = 0, we get a purely quartic expo-
nential, since it is nothing but the stationary state Ps(x) of the cubic SDE. For ∆t → ∞,
the correlation between points reaches zero, P(x(t1), x(t2)) ∼ Ps(x1(t1))Ps(x2(t2)), the
product of two independent stationary distributions. The quadratic exponential terms
are motivated by Gaussian distribution of the noise, and are found to describe the data
accurately. There are two quadratic exponential terms, since the SDE is symmetric about
the point x = 0 and the bimodal peaks occur symmetrically on opposite sides.

In the fitting function, Parameter a is a measure of the overall height of the density
curve. Parameter b represents the ratio of contribution from the quadratic exponential to
the quartic exponential, and denotes the degree of bimodality. Parameter e is the location
of the peaks. Parameter c is a measure of the overall spread of the density function, while
parameter d is a measure of the spread of bimodal peaks. Note that a nonzero value for
parameter e and b denotes bimodality in the distribution.

From Figure 10, we can see that the joint PDF becomes bimodal for a range of ∆t values,
since parameters b and e have nonzero values. The standard deviation of the quadratic
term denoted by parameter d is almost a constant for a fixed σ, whereas the location of
the bimodal peak denoted by parameter e changes slightly, but never becomes zero. That
means that while transitioning from a bimodal to a unimodal distribution, the bimodal
peaks do not continuously merge into one another, but slowly become less prominent and
eventually disappear, as inferred from the value of parameter b. The artifacts towards
the end of the curves of parameters b and e are due to the fact that it is not possible to
consistently fit parameters b and e when there is negligible contribution from the quadratic
exponential term as b→ 0.

Figure 10. Cont.
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Figure 10. Panels show the values of a, b, c, d and e parameters of Equation (22), obtained through
nonlinear function fitting at each time point t2, expressed as a function of ∆t := t2 − t1 for different
noise levels σ. To ensure the density function p(x, t) for the cubic process reached a stationary state,
we chose t1 = 1500. Note that for parameters b, d and e, the domain of the plots is restricted to the
region where parameter b is nonzero. Noise starts dominating outside this region, since there is
negligible contribution from the quadratic terms, and nonlinear fit cannot find a consistent unique
value for these parameters.

The values of parameter a and c in Figure 10 can be understood by first considering the
∆t → 0 and ∆t → ∞ limits. For ∆t → 0, we have P(x(t1), x(t2)) = δ(x(t1)− x(t2))Ps(x),
where Ps(x) is the stationary state. The diagonal of joint PDF then becomes P(x(t1) = x(t2)) =
Ps(x) := as exp

(
−(x/cs)4). Here, after integrating x, we can find, as ≈ 0.55/cs for all values of σ,

which can be numerically verified. When ∆t→ ∞, since there is no correlation, P(x(t1), x(t2)) =
Ps(x(t1))Ps(x(t2)). The normalized diagonal then becomes P(x(t1) = x(t2)) ∼ exp

(
−2(x/cs)4).

The normalization factor can be derived by integrating out x. Therefore, when ∆t → ∞, we
have a = 21/4as and c = cs/21/4, which agrees with numerical results. For intermediate ∆t
values, there will be correlation, and the behavior cannot be easily explained.

The trends in Figure 10 for different σ values can be explained by looking at scaling
relations. For the cubic equation, we have dxt = −θx3

t dt + σdWt. Looking at the individual
terms, we can infer the dimensions, θ ∼ x−2t−1 and σ ∼ x1t−1/2. Therefore, we expect the
following scaling relations:

t ∼ 1
θ1/2σ

(23)

x ∼ θ−1/2σ1/2 (24)

These relations are numerically verified in Figure 11 for a fixed value of θ, for param-
eters a, c, d, e, and the relationship between noise and ∆t, corresponding to peak value
of parameter b. Note that a ∼ σ0.5 in Figure 11, because parameter a is a normalization
constant.

∫
ap(x)dx = 1 =⇒ a ∼ x−1 ∼ θ1/2σ−1/2. The peak value of parameter b seems

to be a constant with the value of 1/3. It cannot be derived from simple scaling arguments
alone; further investigation is required to understand its origin.

Figure 11. (left) Scaling behavior of peak poisition of parameter b with respect to noise level σ and
(right) Scaling behavior of parameter values corresponding to the peak position of parameter b.
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4.2. Evolution of Bimodality in the Non-Stationary State

In this section, we will look at how the bimodality in the joint PDF evolves qualitatively
before p(x, t) has reached a stationary state. Since bimodality occurs only for the cubic
process, the following results are for the SDE dxt = −1.0x3

t dt + 0.1dWt. To this end, we
follow the same prescription from Section 4, but with a slightly modified version of the
fitting function (Equation (22)).

P(x(t1) = x(t2)) = a exp
(
−
( x

c

)4
)
+ b exp

(
−
(

x− e
d

)2
)
+ b exp

(
−
(

x + e
d

)2
)

(25)

This modification is made since for some t1 and t2 values, there is no contribution
from the quartic exponential term, unlike in the case of stationary state, where there is
always a quartic exponential contribution to the distribution.

The nonstationary phase exhibits (Figure 12) rich behavior, which asymptotically
transitions to the stationary state behavior as t1 becomes large. For small t1 values, Pa-
rameter a� Parameter b, since P(x(t1), x(t2)) has very little contribution from the quartic
exponential term. This is because the initial distribution is a Gaussian distribution, and
it is slowly evolving towards the quartic exponential distribution in the stationary state.
For larger t1 values, Parameter a starts dominating, since P(x(t1), x(t2)) has predominant
contribution from quartic exponential term, as expected of the system reaching its quartic
exponential stationary state. For some intermediate t1 values, depending on ∆t values,
we see an interesting behavior where P(x(t1), x(t2)) becomes purely a quartic exponential
(Parameter b = 0) twice before becoming a mixture of quadratic and quartic exponential
terms. Further investigation into this behavior is not undertaken at this time, and only
serves to demonstrate the potential capabilities of GPU-accelerated MC SDE simulation for
future work.

Figure 12. Behavior of (left) Parameter a and (right) Parameter b for different t1 and t2 = t1 + ∆t values.

5. Discussion

In this work, we developed a method for fast and accurate study of the Information
Geometry of SDEs using Monte Carlo simulation. We identified the computational chal-
lenges and overcame them by using GPU computing. Specifically, the major limitation
with MC SDE simulation in the estimation of Γ was the sub-optimal overlap of PDFs at
subsequent time points. We solved this problem by developing an interpolation method to
compute PDFs with optimal overlap.

As an application of the new method, we compared the Information Geometry of
SDEs with a linear and a cubic damping force. We were able to reproduce the analytic
results for the linear SDE and the previous numerical results [34] for cubic SDE obtained
using FPE solvers. This was particularly true of large values of x0, L∞ ∼ x0 for the linear
case and L∞ ∼ xm

0 for the cubic case, where m = 1.88 when θ = 1.0 and σ = 0.1. We further
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showcased the advantage of MC SDE simulation over FPE solver by computing the joint
PDF P(x(t1), x(t2)). Unlike the linear SDE, the cubic SDE led to an interesting bimodal PDF
P(x(t1), x(t2)), which was observed even after reaching a stationary state. After reaching
the stationary state P(x(t1), x(t2)) only depends on ∆t = t2 − t1. In the stationary state,
we further studied the bimodality by quantifying it and looking at the power-law scaling
relations with respect to noise levels σ and provided theoretical scaling arguments. The
maximum value of the ratio of quadratic to quartic contribution (Parameter b) is found to
be a constant 1/3 irrespective of the noise levels, which requires further study. Finally, we
qualitatively looked at P(x(t1), x(t2)) in the nonstationary state. The MC SDE simulation
can be an important tool for further studying this behavior.

It is important to note that the methods that we developed here for one stochastic
variable are general, and can be extended for more than one variable, as well as for
investigating different metrics or thermodynamic quantities. These will be addressed in
future work. Furthermore, it will be of interest to investigate fast implementations of Kernel
Density Estimators [48,49] which will improve the accuracy of joint PDF estimates. We note
that in numerical experiments, it was seen that compared with histograms, using Kernel
Density Estimators to estimate PDFs provided 2–5 times reduction in error with identical
PDFs, albeit with a performance trade-off.
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Appendix A. Runtime Scaling

We use the linear O-U process dxt = −θxtdt + σdWt to study the runtime scal-
ing relations of MC SDE simulation. Simulations start with n samples from an initial
distribution N (x0, 10−10). The simulation were run for 100 time units on a worksta-
tion with AMD EPYC 7451 24-Core CPU and Nvidia Titan RTX GPU, using the im-
plementation here [42]. Milstein scheme was used with adaptive time steps with lo-
cal error tolerance Tol. Unless otherwise stated, the parameters will have the values:
x0 = 10, σ = 0.1, θ = 0.1, Tol = 5× 10−4 and n = 2× 106. Note that computation only
involves the MC SDE simulation. Calculating the statistics and probability density will
require additional computation. This might increase the overall computational time, but
the value of the power in the scaling relationship will remain the same.

For MC SDE simulation, as seen in Figure A1, initially the runtime weakly depends
on n since computations are being done in parallel. But when n is significantly larger than
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the number of parallel processors, the computations need to be done in batches and the
runtime scales linearly.

Figure A1. (left) Scaling of runtime with respect to the number of samples n. (right) Scaling of
runtime with respect to local error tolerance Tol.

Without adaptive time stepping, numerical error depends on the choice of step size
∆t. The runtime is expected to scale as ∆t−1. But by setting a local error tolerance we see a
better scaling Tol−0.67 as seen in Figure A1.

From Figure A2, the runtime of MC SDE simulation scales as x0.53
0 with respect to

initial position x0. This is better compared to fixed grid-size FPE solvers where at least an
x1

0 scaling is expected. We also see better than linear runtime scaling with respect to noise
levels. Runtime ∼ D0.34 ∼ σ0.58.

Figure A2. (left) Scaling of runtime with respect to different initial position x0. Note that unlike other
plots in this section, the y-axis is not in log scale. (right) Scaling of runtime with respect to different
noise levels D := σ2/2.

Appendix B. Discretization Error

Differentiation can be approximated by a finite difference:

f ′(t) ≈ f (t + ∆t)− f (t)
∆t

(A1)

Other methods of numerical differentiation exists, but are not suitable for the algo-
rithms in this work. The error in using finite difference to approximate a derivative can be
derived by looking at the Taylor expansion.

f (t + ∆t) = f (t) + f ′(t)∆t +
f ′′(t)∆t2

2
+O(∆t3) (A2)

=⇒ f ′(t) =
f (t + ∆t)− f (t)

∆t
− f ′′(t)∆t

2
+O(∆t2) (A3)
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An integral can be approximate by the Trapezoidal rule:∫ b

a
f (t)dt ≈

N

∑
k=1

f (tk−1) + f (tk)

2
∆tk (A4)

where the interval (a, b) is divided into N sub-interval and ∆tk := tk − tk−1. If the sub-
interval have equal width the error in the approximation can be bounded [50].∣∣∣∣∣

∫ b

a
f (t)dt−

N

∑
k=1

f (tk−1) + f (tk)

2
∆tk

∣∣∣∣∣ ≤ max
a≤t≤b

∣∣ f ′′(t)∣∣ (b− a)3

12N2 (A5)

Appendix C. Jensen’s Equality

Jensen’s inequality states that for a random variable X and convex function ϕ

ϕ(E[X]) ≤ E[ϕ(X)] (A6)

Here we will derive the error term for this inequality. We assume that ϕ is at least
twice differentiable in the domain of interest. Then we can write the Taylor series of ϕ
around µ := E[X] with the remainder term as follows:

ϕ(X) = ϕ(µ) + ϕ′(µ)(X− µ) + ϕ′(µ)(X− µ) +
1
2!

∫ X

µ
(X− t)ϕ′′(t)dt (A7)

Taking expectation on both sides we get:

E[ϕ(X)] = ϕ(µ) +
1
2!
E
[∫ X

µ
(X− t)ϕ′′(t)dt

]
(A8)

For the case of ϕ(X) = X3 we have:

E
[

X3
]
= µ3 + 3E

[∫ X

µ
(X− t)tdt

]
(A9)

= µ3 +
E
[
X3]− µ3

2
(A10)

= µ3 +
µ̃3σ3

2
+

3µσ2

2
(A11)

where µ̃3 is the skewness of the distribution and σ the standard deviation.

Appendix D. OU Process Exact Solution

For the SDE dxt = −γxtdt +
√

2DdWt, if the initial distribution of states p(x, 0) is
given by the following:

p(x, 0) =

√
β0

π
e−β0(x−x0)

2
(A12)

Then at an arbitrary time time t > 0 the probability density if given by [35]:

p(x, t) =

√
β(t)

π
e−β(t)(x−x0e−γt)2

(A13)

1
2β(t)

=
e−2γt

2β0
+

D
(
1− e−2γt)

γ
(A14)

We then use Integrate[] in Mathematica to evaluate Equation (4), which upon simplifi-
cation yields the following closed form expression for Γ:

Γ(t, γ, D, x0, β0) =
√

2γ

√
γ2 − 4β0D(γ− β0D) + γβ0x2

0(γ + 2β0D(e2γt − 1))

(γ + 2β0D(e2γt − 1))2 (A15)
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This expression can be further integrated to get the Information Length.

L(t, γ, D, x0, β0) =
√

2
[
Tanh−1(G)− Tanh-1(W(t)) +F

(
Tanh−1(G/F )− Tanh−1(W(t)/F )

)]
(A16)

W(t) =

√
1 +

γβ0x2
0

(γ− 2β0D)2 (γ + 2β0D(e2γt − 1)) (A17)

G =

√
1 +

γ2β0x2
0

(γ− 2β0D)2 (A18)

F =

√
1 +

γβ0x2
0

γ− 2β0D
(A19)

A detailed analysis of the problem can be found here [34].

Appendix E. Γ From KL Divergence

KL divergence between two PDFs p(x) and q(x) is defined as:

K[p(x) | q(x)] :=
∫

dx p(x) ln
(

p(x)
q(x)

)
(A20)

Now consider a time-dependent PDF p(x, t). The equivalence between KL divergence
and Γ can be shown as below.

lim
dt→0

1
dt2K[p(x, t + dt) | p(x, t)] (A21)

= lim
dt→0

1
dt2

∫
dx p(x, t + dt) ln

(
p(x, t + dt)

p(x, t)

)
(A22)

= lim
dt→0

1
dt2

∫
dx
[

p + (∂t p)dt +
1
2
(∂2

t p)dt2 +O
(

dt3
)]

ln

[
1 +

(∂t p)dt
p

+
1
2

(
∂2

t p
)
dt2

p
+O

(
dt3
)]

(A23)

= lim
dt→0

1
dt2

∫
dx

[
(∂t p)dt +

1
2

(
(∂t p)2

p
+ ∂2

t p

)
dt2 +O

(
dt3
)]

(A24)

= lim
dt→0

1
2

∫
dx

(∂t p)2

p
+O(dt) =

1
2

Γ2(t) (A25)

Note that from Equation (A23) onwards p ≡ p(x, t) for brevity. To simplify
Equation (A24) we use the normalization condition for the PDF

∫
dx p = 1, which

also leads to the conditions
∫

dx ∂t p = 0 and
∫

dx ∂2
t p = 0. Using the same arguments, it

can be shown that:

lim
dt→0

1
dt2K[p(x, t + dt) | p(x, t)] = lim

dt→0

1
dt2K[p(x, t) | p(x, t + dt)] (A26)
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