COAA*- An Optimized Obstacle
Avoidance and Navigational
Algorithm for UAVs Operating in
Partially Observable 2D
Environments

Tai, J. J., Phang, S. K. & Wong, F. Y. M.

Author post-print (accepted) deposited by Coventry University’s Repository

Original citation & hyperlink:

Tai, JJ, Phang, SK & Wong, FYM 2021, 'COAA*- An Optimized Obstacle Avoidance and
Navigational Algorithm for UAVs Operating in Partially Observable 2D Environments',
Unmanned Systems, vol. 10, no. 2, pp. 159-174
https://dx.doi.org/10.1142/52301385022500091

DOl 10.1142/52301385022500091
ISSN 2301-3850
ESSN 2301-3869

Publisher: World Scientific Publishing

Electronic version of an article published as Unmanned Systems, vol. 10, no. 2,
pp. 159-174. 10.1142/S2301385022500091 © copyright World Scientific Publishing
Company https://doi.org/10.1142/52301385022500091

Copyright © and Moral Rights are retained by the author(s) and/ or other copyright
owners. A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge. This item cannot be reproduced or quoted extensively
from without first obtaining permission in writing from the copyright holder(s). The
content must not be changed in any way or sold commercially in any format or medium
without the formal permission of the copyright holders.

This document is the author’s post-print version, incorporating any revisions agreed during
the peer-review process. Some differences between the published version and this version
may remain and you are advised to consult the published version if you wish to cite from
it.

October 1, 2021 8:42 output

Unmanned Systems, Vol. 0, No. 0 (2013) 1-16
© World Scientific Publishing Company

COAA* - An Optimized Obstacle Avoidance and Navigational Algorithm
for UAVs Operating in Partially Observable 2D Environments

Jun Jet Tai?, Swee King Phang®*, Felicia Yen Myan Wong?

@ Institute for Future Transport and Cities, Coventry University, Priory St, Coventry CV1 5FB, United Kingdom

bSchool of Computer Sciences and Engineering, Taylor’s University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor,
Malaysia

*Corresponding Author Email: sweeking.phang@taylors.edu.my

Obstacle avoidance and navigation (OAN) algorithms typically employ offline or online methods. The former is fast but requires
knowledge of a global map, while the latter is usually more computationally heavy in explicit solution methods, or is lacking in
configurability in the form of artificial intelligence (AI) enabled agents. In order for OAN algorithms to be brought to mass produced
robots, more specifically for multirotor unmanned aerial vehicles (UAVs), the computational requirement of these algorithms must
be brought low enough such that its computation can be done entirely onboard a companion computer, while being flexible enough
to function without a prior map, as is the case of most real life scenarios. In this paper, a highly configurable algorithm, dubbed
Closest Obstacle Avoidance and A* (COAA*), that is lightweight enough to run on the companion computer of the UAV is
proposed. This algorithm frees up from the conventional drawbacks of offline and online OAN algorithms, while having guaranteed
convergence to a global minimum. The algorithms has been successfully implemented on the Heavy Lift Experimental (HLX) UAV
of the Autonomous Robots Research Cluster in Taylor’s University, and the simulated results match the real results sufficiently to

show that the algorithm has potential for widespread implementation.

Keywords: Obstacle avoidance; navigation; multirotor; unmanned aerial vehicle

1. Introduction

Unmanned Aerial Vehicles (UAVs), commonly known un-
der the encompassing term of ‘drones’, are aerial robots
that are operated remotely, with or without a ground pi-
lot. One of the more popular forms of UAVs are of the
multirotor variant, where a set of four, six, eight or more
propulsion systems are arranged to allow the aircraft to
make very precise maneuvres in 3D space [1]. Coupled with
payload manipulation, these systems end up being very ca-
pable mobile robots in both structured and unstructured
environments [2, 3]. Due to the low-cost and scalable de-
sign, UAVs are very valuable tools in many industries not
limited to photography [4], cinematography [5], agriculture
[6], and security sectors [7].

The main attraction of modern multirotor systems are
the ability to traverse over large open areas using Global
Positioning System (GPS) enabled waypoint flight. For the
most part, these systems perform fine in open-air, where
GPS signal is readily available. However, with the advent
of many new technologies such as 5G networking [8], Al
powered vision processing [9], scalable information frame-
works through blockchain-based Internet-of-Things (IoT),
as well as advanced UAV control algorithms [10], the av-

enue for UAVs to operate in closed, partially observable en-
vironments are opening up. This is especially true in closed
urban landscapes such as Kuala Lumpur, Tokyo, or New
York, as well as indoor environments like factory floors or
within an office building. In these scenarios, tasks such as
same-building delivery, automated search and rescue, auto-
mated inventory keeping, or city-level courier can be per-
formed autonomously with a UAV, alleviating the need for
humans to be in the loop of the system. For this reason,
fully autonomous OAN enabled UAVs are a form of tech-
nology that is actively pursued by many parties.

There are two primary classifications for OAN algo-
rithms, offline and online. Offline methods generally revolve
around the staple path finding method of A* and operate
on a known global map. The global map is first broken
up into a series of nodes, and a path from the beginning
to the end is formulated. In the case of UAV flight, mul-
tiple forms of smoothing functions are then applied over
this path to form a path that can be feasibly flown by a
multirotor aircraft (to avoid having areas with impossible
flight dynamics). Smoothing functions are generally com-
putationally heavy, and hence done offboard on a work-
station PC [11]. This reason, coupled with the need of a
known global map, disallows offline methods to be readily

October 1, 2021 8:42 output

2 Jun Jet Tai, Swee King Phang, and Felicia Yen Myan Wong

used on a resource constrained platform such as a UAV in
a partially observable environment.

By contrast, online OAN algorithms are computation-
ally much simpler, utilizing a series of basic rules or equa-
tions to achieve obstacle avoidance while actively head-
ing towards a target. The simplest form of obstacle avoid-
ance algorithms are derivatives of the famous potential field
method [12]. Examples of this can be seen in unicycle style
robots [13], UAVs [14] and other high speed vehicles [15].
However, these methods do not guarantee global conver-
gence to a target, some may even cause convergence to oc-
cur at a location far from the intended target. Furthermore,
the inherent inability to produce quickly curving trajecto-
ries around any object is a flaw of many quickly computable
potential field. As a direct response to this, vector fields are
also used for obstacle avoidance [16, 17]. These algorithms
are capable of designing flight paths that consider the con-
servation of flight velocity vector, allowing the UAV to take
smooth, curved motions around obstacles. Nevertheless, the
same pitfalls of potential field method still applies to vec-
tor field methods, that the convergence of the robot to the
global minima is not guaranteed. A good reference for ex-
isting heuristically driven and exact OAN algorithms can
be studied in [18].

By modern standards, pure potential field or vector
field methods are almost never used in a standalone fashion
due to the many downsides inherent to these methods. In-
stead, the current trend in OAN seems to favour the use of
deep learning methods [19, 20, 21]. Broadly speaking, these
algorithms typically express the task of OAN as a highly
parameterized deep neural network with sensory inputs and
actuator outputs. The goal of this deep neural network is
to solve the task of OAN through the optimization of a
surrogate scalar reward function. This deep neural network
is then made to solve OAN tasks in simulation on a scale
of 1e6 or more trajectories before a convergent solution is
formed. Because of the flexible and highly configurable ar-
chitectures of deep neural networks and reward function
shaping, almost any form of OAN solving behaviour can
be obtained given a sufficient number of trajectories from
which the algorithm can learn from [22]. For UAVs, some
of these include danger-aware OAN algorithms in a multi
agent setting [23] and behaviour-based or hierarchical rein-
forcement learning agents [24].

While there is no doubt that deep learning based meth-
ods are powerful, they inherently do not provide the re-
quired scalability required for a unified OAN framework -
one that can be utilized across any UAV platform, easily
modifiable through changing of user intuitive variables. For
example, to change the minimum distance the UAV should
maintain between itself and any obstacle, it is not exactly
trivial on how one should do this when given a deep neu-
ral network and its weights. Even if the behaviour of the
network can be tweaked through the reward function, this
would most often require a retraining of the network from
scratch, limiting its deployability when hardware configu-
rations are changed. In contrast to these methods, this pa-
per introduces a heuristically designed algorithm dubbed

Closest Obstacle Avoidance and A* (COAA*) with several
notable advantages over existing OAN algorithms. More
specifically, the algorithm here introduces these benefits:

e The algorithm guarantees convergence to a global
minimum.

e The algorithm is specifically designed for UAV
based platforms, taking into consideration the
unique flight dynamics specific to multirotor plat-
forms.

e The algorithm only requires a partially observable
environment to operate in, and no prior offline map
is needed for the algorithm to work. It is assumed
that the UAV is able to only detect obstacles within
a certain region of observability. In addition, the al-
gorithm can comfortably operate in non-constant
environments, and can be easily modified to oper-
ate in dynamic ones.

2. Hardware Setup

In general, COAA* can operate on most multirotor UAV
platforms with decent companion computer and flight man-
agement unit (FMU) pair. As for the constraint for this re-
search work, the algorithm is targeted towards running on
systems with less than 5 kg takeoff weight while the compu-
tational power must be similar to that of a Raspberry Pi 3B
or better. To realize the project, implementation of COAA*
was done on an Intel UP Squared single board computer
paired to a Pixhawk 4 FMU. The UAV platform used for
the project is a custom-built TAROT 650 class multirotor
known internally as the Heavy Lift Experimental (HLX).
The HLX, Pixhawk 4, and Intel UP Squared are shown in
Fig. 1.

Fig. 1. Top: HLX platform; Bottom Left: Intel UP Squared
single board computer; Bottom Right: Pixhawk 4 FMU

October 1, 2021 8:42 output

COAA* - An Optimized Obstacle Avoidance and Navigational Algorithm for UAVs Operating in Partially Observable 2D Environments 3

Fig. 2. Gazebo environment used to safely sandbox the
firmware before being used on the actual UAV.

To realize accurate localization and tracking, a simple
visual-based localization and mapping system fused with
GPS sensor data is used to inform the UAV of local obsta-
cles while allowing it accurate localization through a stan-
dard off-the-shelf Extended Kalman Filter. Documentation
of the visual localization and mapping algorithm has been
previously documented [25]. As the mapping and localiza-
tion of the UAV is not part of this research, these com-
ponents will not be covered in this manuscript. A custom
UAV flight control system was devised for the project, and
this is detailed in Section 3.

Prior to actual flight testing on the UAV, extensive
testing and simulation was iteratively developed in MAT-
LAB, before porting the algorithm to C+-+ using the
MAVROS library in a Linux environment (Ubuntu 18.04.02
on a PC, Ubuntu Mate on the companion computer). A
simulated environment for visualization is also built in the
GAZEBO simulation environment, shown in Fig. 2.

3. UAYV Control System

For OAN algorithms, good control regimes are paramount
to system performance. Otherwise, there will be no founda-
tion from which the trajectory planning algorithm to build
on. For our implementation, a custom steady state integral
based controller is used for UAV attitude control. This im-
plementation is inspired from motor control regimes and
has also been previously employed on UAVs [26, 27, 10,
28].

We employ the generic two stage control loop intrin-
sic to most UAV controllers, shown here in Fig. 3. The
inputs to the system include the position py, velocity vy,
and acceleration a, reference points relative to the global
frame. The outer-loop controller is then responsible for rep-
resenting the inputs as a global frame acceleration reference
point ag. A simple rotation matrix converts this reference
to the UAV body frame aj,. Thereafter, the inner loop con-
troller is responsible for providing the indvidual throttle
Ughr, alleron ugq;, elevator uere, and rudder u,.,q commands

to the UAV. These commands are converted to individual
motor commands through a mapping matrix before being
sent to the individual speed controllers. Basic feedback is
utilized to make this a closed-loop system.

In our implementation, the outer-loop controller is a
generic PI controller, implemented as an off-the-shelf mod-
ule available in the PX4FMU multirotor firmware. How-
ever, to allow the UAV to track the reference point for
acceleration, the steady-state integral proportional integral
controller (SIPIC) is applied. This solution allows tuning
of the UAV to be eliminated, and replaced with simple tri-
filar pendulum tests to obtain the UAVs moment of inertia
matrix as well as motor tests to obtain motor thrust and
moment coeflicients. For sake of completeness, the block
diagram of the inner loop controller is shown in Fig. 4. For
a more formal derivation, the reader is directed toward its
derivation [10].

4. Algorithm Architecture

To lay the groundwork, assume the UAV has partial ob-
servability of its environment, where it is able to perceive
obstacles within a certain radius Rops. Let Mg(z,y) €
{0,1}(m*") denote the ground truth occupancy grid of a
2D global map of size m x n. The map known to the UAV
itself is denoted as M, (z,y) € {0, 1}™*™ and starts off as
all zeroes. As the UAV explores more of its environment,
My, is updated to more accurately reflect M. Therefore,
as t — oo, M — Mg. With slight abuse of notation, this
describes the ideal case of all simultaneous localization and
mapping (SLAM) algorithms [14, 29]. Additionally, issues
of inaccurate odometrical data O(x, y, &, 9, &, §, ...) and po-
tential of failed loop closures is not a concern of this study.
Given the robustness of modern day perception and esti-
mation techniques of off the shelf FMU systems, this is very
unlikely to pose any issue to the study. Regardless, the de-
sign of the algorithm will be built to accomodate some form
of noisy data, subject to reasonable constraints.

For the purpose of self-preservation, we consider gaps
between obstacles of size less than that a multiple of the size
of the UAV itself, alyayv as non-traversable, where o € R.
The purpose of this is twofold. Firstly, this avoids putting
the UAV in any possibly dangerous position as multirotor
systems can suffer from severe prop wash in closed quar-
ter environments. Secondly, this puts a floor to the mini-
mum recommended size of the occupancy grid used by the
UAV. Should the UAV be of maximum width {4y =1, a
map resolution of approximately 0.5 is sufficient to provide
enough resolution for the algorithm to perform well. This
keeps the storage of the local map in the system memory
efficient, even without data compression, a one kilometer
squared area will only take up approximately 4 MBytes.

A portion of this section will be illustrated using sim-
ulation images taken from MATLAB. For purpose of readi-
bility, the map legend will be described here with reference
to Fig. 5.

October 1, 2021 8:42 output

4 Jun Jet Tai, Swee King Phang, and Felicia Yen Myan Wong

a
Pr 6t Uthr
5 ¢
v, Quter- a. ay Oc Uqi)
> loop Bu/g Ge . Inner-layer | 6 Outer-layer | PV
a; | Controller c Inner Uele D i D i
—r loop ynamics v ynamics
e Controller | Upuq
—
®
Fig. 3. Two stage control for multirotor UAVs.
1
Kl —» —
(@ 8. w]" s B
¥ + E_QJ_’ + + [unil Ugle ururi] !
» K »+ >
@ e v . P
[- Fa) ’_. -
w > Kz
w=I[¢p o ¢I* w
Fig. 4. SIPIC controller used as an inner-loop controller in the UAV.
In the map:- of the UAV is guided by a non-linear cost path finding al-

e z and y axes represent the position of any entity
in the map.

The target location is denoted with the green dia-
mond with the label Target.

Red filled circles represent obstacles in the global
map, M that is reflected in the local map, M.
Red unfilled circles represent obstacles in the global
map, Mq that is not reflected in the local map, M7,
ie: undiscovered obstacles.

Blue circles represent the position of the UAV in 1
second intervals.

Blue arrows represent the heading of the UAV,
Uuav € R?

Dark grey lines represent the closest obstacle to
the drone at a time ¢, while lighter grey arrows
represent the second closest obstacle to the drone
at time .

The simulation engine of the drone is a modified one
used in [30] derived from Newton-Euler equations [31, 32,
33]. The simulation engine is built such that it accepts a
velocity reference as input.

Prior to describing the algorithm in specific, the over-
all architecture of the algorithm is described in Fig. 6. The
overarching strategy of COAA* is to prioritize fast and effi-
cient computation everywhere, and only utilize the compu-
tationally heavy A* algorithm when necessary. The main
operation regime of the algorithm uses a hybrid localized
vector field and potential field method, and the overall path

gorithm that prioritizes free and open area flight.

50
o)
40 o
Ep
=
oF o—
"% o
i
- ~
20 o o
a
o]
o]
10 Target o
00
10 20 30 40 50
X-axis, x (m)
Fig. 5. Visual map used in the the MATLAB simulation.

4.1. Vector Field and Potential Field

Blending

The main operating of regime of the algorithm is reliant
on a hybrid vector and potential field formulation. Firstly,
all vectoral notations are in R?. Let Py denote a target

October 1, 2021 8:42 output

COAA* - An Optimized Obstacle Avoidance and Navigational Algorithm for UAVs Operating in Partially Observable 2D Environments 5

Has the Drone
Reached Target?

Are There Anymore

Waypoints to Target? =hID

No

Identify Next P
Target Waypoint

v

START

' | Identify Direction of Heading
” from Vector Field

v

Compute Target Flight Speed

Reorganize Waypoints

0

Perform Path Finding
Algorithm

Heading

v

Perform Dynamics
Constraining Control, and
Execute Flight

Obstacle
Avoidance
Algorithm

i and Mix with Direction of

No Is Drone Stuck Yes

A
Path

Finding
Algorithm

Y

at Local Minimum?

Fig. 6.

waypoint, and Pp denote the position of the drone. The
algorithm is designed to always look for the two closest
filled positions in the occupancy grid (loosely, these can be
thought of as being obstacles on the map). Let the position
of these two obstacles be O; where i € {1,2}. The reference
heading of the UAV can then be computed through a series
of vector computations:

- Tr-Fo M)
uOZTi - |PT o PO]|
Po — Pp
u = 2
P20 |P0i _PP‘ ()
_ Pr-Pp

Overarching algorithm state architecture.

Intuitively, each vector can be thought of as a vector of
position-to-position of unitary length. Thus, the subscript
O2T; can be read as ‘obstacle-to-target for obstacle i’. Cor-
respondingly, subscripts P20; and T2P are read as ‘drone
position-to-obstacle for obstacle i’ and ‘target-to-position
for the position of the drone’. As stated above, i € {1,2}
for the two closest obstacles to the current drone position.
The vectors are used to compute the angle and vectors:

f; = — atan2(up20, ., P20,)

+ atan2(uozr; ., 02T,)

October 1, 2021 8:42 output

6 Jun Jet Tai, Swee King Phang, and Felicia Yen Myan Wong

u . . ™
P20iy , ifo<f< =
| —UP20; 2

_up20;,y] , if — g <0<0 (5)

vuav, = up20

otherwise

UT2P,
|uT2pP, |’

0; and uyav, are associated to obstacles ¢ € 1,2. Finally,
the reference heading is computed through:

uvuav; - D2 +uyav, - D1 (6)
|luuav, - D2 + uuav, - D1}

uUAVC -

where Dy and D, are simply the Euclidean distance from
Pp to O and O5 respectively.

Graphically, Eq. 1 to Eq. 7 form the individual vector
fields around each obstacle as shown in Fig. 7. Eq. 6 simply
performs a bi-linear interpolation of headings for the two
closest obstacles to the UAV. Note that Eq. 1 to Eq. 6 will
only be computed when there are obstacles within a certain
radius of the UAV, Dy < Dy, and Dy < Djyp. Conse-
quently, when there is only one obstacle within D, f;, we
simply set uyave = uvav,-

-— = 2 @O

Fig. 7. Vector field formed around each obstacle representing
reference velocity heading.

To prevent the UAV from flying through gaps smaller
than Doy, we simply do:

Dprox .
B = f D < D TOX
A={ Dy ! P (7)
0, otherwise
u —Au
wuA, = UAVc UAVc ®)

luvave — A - uUAv]

A is simply a linear scaling factor which flips the heading
vector. Eq. 7 and Eq. 8 form the conditional:

1, if Dprox < D
YOAVr _ J, if Dpox = D (9)

YOAVe | _1, if Dyrox > D
To determine the magnitude of velocity that the UAV
should follow, any continuous function of D; can be used.

In our implementation, we chose the Sigmoid function, rep-
resented in Fig. 8 and has the following formula:

1
1 + eF(=Di+Dpro)

Va = Vmax .

such that the final velocity reference of the UAV is:

Vuav: = uvavy - Vo

< SRS
SIS SOSOSROC
OIS OSSO S
B IR
e tantnigetio’e®,
TERLRALY \\\\ X0 " “
R)
R “\\ (i (!
NIRRT
N
%Q%&\\\\\\\\\“‘\\\“ ¢

\
\ _\\\Q\‘\}\\“{g@\‘

O I AL ALT
R
NSttty
NSO

- S 4
i T
0

Y-position 0 X-position

Fig. 8.
5].

Visual potential field around an obstacle centered at [5,

The formulation given here is novel compared to other
works. The primary advantage is that its formulation is ex-
plicit and does not depend on numerical solvers, allowing
it to be very lightweight.

To compensate for any discontinuities in the flight
velocity profile, the velocity command is first computed
through a first order low pass filter. This filter is repre-
sented in the Laplace domain as:

1
P —— 12
1+ Ks (12)

Vuav, is the velocity command fed to the UAV FMU.
Note that the opportunity for more advanced signal
smoothing algorithms to be applied is readily available as
this is but a simple single-input-single-output (SISO) sys-
tem. In the event that motion sensitive equipment is car-
ried onboard the UAV, switching the smoothing function is
a simple pick and place operation. This further highlights
the strengths of COAA* as a scalable algorithm. This is
in stark constrast to Neural Network or Fuzzy Logic based

Vuave = Vuave -

October 1, 2021 8:42 output

COAA* - An Optimized Obstacle Avoidance and Navigational Algorithm for UAVs Operating in Partially Observable 2D Environments 7

control, where the operational parameters of the algorithm
are encoded within the weights of the network, uninter-
pretable to human designers.

4.2. A* Search Integration

Up to this extent, no notion of how the algorithm will elim-
inate the presence of local minimum is detailed. This will
be the main goal of this section. Two challenges arise. The
first involves allowing the UAV to distinguish points in the
map where it has reached a local minimum. The second in-
volves dealing with the local minimum directly. There are
several methods to solve the first challenge. This ranges
from applying look-ahead searches to identify local mini-
mums to simply applying a moving average window to the
UAV’s velocity profile. In the name of simplicity, we chose
the latter, given by the following equation:

1 t
Vave = T / |VUAVo|dt (13)
ty Ji

or in the discrete domain:
1 i
Vave = N : Z]V |VUAV0| (14)

As soon as Ve goes below a certain threshold, we identify
that the UAV has gotten stuck at a local minimum. This
brings us to the second issue.

Graph search techniques are the core to path find-
ing challenges. Therefore, we employ a modified A* algo-
rithm which includes a herein called ’danger’ cost. Inter-
ested readers are encouraged to explore the its formulation
[34]. This cost denotes the proximity of connected paths
to the obstacles around it. This allows the UAV to pri-
oritize wide open spaces where it is able to fly at higher
flight speeds with minimal risk. Considering that A* oper-
ates on a map, we simply apply the algorithm to the local
map, My, at the time of inference. Since A* is a computa-
tionally expensive algorithm to run, it is only re-executed
when required. Intrinsically, this allows the algorithm to
continually run with more information each time as the
UAV traverses more and more of the map. By this analogy,
as t — oo, the UAV is bound to reach the global minimum.

4.3. Waypoint Generation

While the A* algorithm works to generate a flight path, the
vector and potential field algorithm operates on a series of
waypoints. Although formulating the path as a chain of
many waypoints is possible, this is not efficient and renders
the algorithm to be unrobust to the appearance of smaller
obstacles on the generated flight path of the UAV. To cir-
cumvent this, the path generated by the A* algorithm is
fed through a split-and-merge (SaM) algorithm. At its core,
what a SaM does is iteratively segment a connected path
by evaluating the summed error between a waypoint-based

path and the raw path given by the A* algorithm. Formally,
the steps to the SaM is used here is illustrated in Fig. 9 and
is sequenced as follows:

(1) Put the first and last point from the path, P =
{A,...,B} into a list of waypoints, connecting the
points A and B with a waypoints list, WP = {A, B}.

(2) Form a linear equation of Y = m; X + C; between two
connected points, where the subscript 1 depicts the m
and c values for the equation formed for the first line,
which for the first step is between A and B.

(3) Find the average sum of squared errors of all points
between the points A and B using:

P

1
F=—" — (Y, —mi X, + C;)? (15)
Pip1 =P =

where P; denotes the index of the i-th node from the
waypoints list on the path list.

(4) If the average sum of squared error between two con-
secutive waypoints on the list is more than a threshold
value, take the centre between the two points on the
path list and add it to the waypoints list.

(5) Perform steps 3 and 4 recursively until all the average
sum of squared error values are below the threshold
value.

An example of the implementation above is shown in
Fig. 10.

100

90 & Searched Path

80 &

Generated Waypoints

70 E
60 B

" e (Generated Path
50

40+

30

20 -

0 5;0 T(I)O 1‘50
Fig. 10. Split-and-merge algorithm performed on the path gen-
erated by the A* algorithm.

4.4. Global Convergence of Solution

Given a map with at least one feasible path from a start-
ing point Pg to a target point P, the A* algorithm is
guaranteed to terminate and is complete given at least one
feasible path. When a majority of the world map Mg has
not been explored, the local map M will only have obsta-
cles wherever the UAV has previously observed obstacles
in the global map. Let ng and nj denote the number of
feasible paths from Pg to Pt in the Mg and M}, respec-
tively via the sets Ng and Np. Assuming that all UAV
observations are true to the global map, it is hence given

October 1, 2021 8:42 output

8 Jun Jet Tai, Swee King Phang, and Felicia Yen Myan Wong

Fig. 9.

that |Mp|o < |Mg|o where the ||op operator denotes the LO
norm. To put succinctly, this simply means that the num-
ber of obstacles in the local map will always be less than or
equal to the number of obstacles in the global map. By this
notion, it is therefore easy to see that ny > ng, Ng € N,
and that n;, — ng as My, — Mg.

Whenever the A* function is called, any one of the

feasible paths Ng) in Nz, will be used to reach Pr. If this
turns out to not be a feasible path in Ng, then the UAV
will have to traverse to the unexplored regions in order

to update M7y, such that N}f) is removed from Ng. It is
through this forced exploration that the UAV is pushed to
have constant exploration in the world whenever it is not
at Pr. To this end, the A* algorithm is called whenever
the UAV reaches a local minimum as detailed in Section
4.2.

The next step is to simply prove that this is the only
possible outcome whenever a local minimum is reached.
Doing this is simple, there are two sources to the UAV’s
movement - the vector field and the potential field. At any
point in time, there are no vectorial components that point
away from P-. From this factor alone, local minima do
not exist as the UAV will always move toward Pr. In fact,
without the potential field component of the algorithm, the
algorithm will push the UAV towards flying through walls,
which would be disastrous. The core component prevent-
ing this scenario is the potential field. Potential fields have
zero curl component. This implies that at no point in time
can the UAV enter cyclical local minima - the only ones
that exist are stationary points in the form of zero gradient
points, at this point the UAV is stationary which would
trigger the calling of the A* algorithm. The calling of the
A* algorithm forms new intermediary waypoints for the
UAV, which alter its flight path to take another one of the
feasible paths in Np,.

One caveat to the above is when a waypoint and an
obstacle occupy the same location, which would cause the
UAV to continually fly circles around the obstacle in an
attempt to reach the waypoint within. This however, is
an easy fix, one only needs to ensure that the waypoint
reached distance threshold, Drg - the measure of minimum

Split-and-merge algorithm.

distance from waypoint before the UAV declares that the
waypoint is reached - is more than the proximity allowance,
Dprox. Doing this, the UAV will declare waypoint reached
before it is allowed to enter this special case of cyclical local
minima.

5. Results

Unifying each component of the algorithm yields the ex-
amplary performance shown in Fig. 11 in Simulation. From
here, a performance analysis of the OAN algorithm is done.
At the time of writing, there have been multiple interna-
tional efforts to provide meaningful benchmarks for vari-
ous UAV OAN algorithms [34, 35, 36]. However, not one
of them has been agreed upon to suitably benchmark UAV
OAN algorithms. This is in large part due large variance in
UAV design, from sensor input, actuator type, vehicle ca-
pability, and computational allowance of each UAV setup.
Therefore, COAA* will instead be evaluated in several sce-
narios frequently described in literature.

This section starts by comparing the performance of
COAA* in the real-world with those in simulation. This is
to ensure that the simulated results track real-world results
accurately enough.

After that, an ablation study of sorts will be done on
COAA*. Given that COAA* is a highly scalable and mod-
ifiable algorithm, there exist a whole plethora of hyperpa-
rameters that can be tuned. This study will study which
hyperparameters will provide the highest influence towards
the algorithm performance.

At the end, the algorithm will be put through sev-
eral interesting scenarios of repeatability in simulated real-
world scenarios.

October 1, 2021 8:42 output

COAA* - An Optimized Obstacle Avoidance and Navigational Algorithm for UAVs Operating in Partially Observable 2D Environments 9

Successful obstacle
avoidance and heading to
target even though
obstacle is directly on
planned path

Third time getting stuck, this
path is found after more
information is gathered from
the previous two times

START
a

sfﬁ— UAV performs

A4 obstacle
e avoidance while
heading to target

y-axis, y (m)

First time getting
stuck and performing
A* search

Second time getting
stuck

B X W e
88 W W

. .
10 20 30 40 50
x-axis, x (m)

Fig. 11. Examplary performance of the algorithm demonstrat-
ing each component in simulation.

5.1. Simulated Performance vs. Real-World

Performance

Two different scenario maps were constructed both in sim-
ulation and in real life, as shown in Fig. 14. The maps were
designed to be easily constructed and not require the path
finding implementation to be utilized since the A* algo-
rithm is not subject to variations in dynamics between the
real world and simulation. The chosen target was for the
UAV to reach a waypoint located 15 meters away from the
takeoff point. This small range of flight is largely due to a
lack of allowable flight area at the time of writing. More in
depth analysis of the algorithm in larger real world scenar-
ios will have to be done at a later date.

The algorithm was tested with two sets of parameters,
one set per map, as shown in Table 1.

The data of simulated flight path were then compared
against the actual flight path of the UAV, along with the
velocity data. Fig. 16 shows the actual airborne UAV in
our experimentation in one of the maps. Note that traffic
cones, instead of actual obstacles, are used to represent the
locations of 1 meter wide obstacles as a safety precaution.

Table 1. Hyperparameters used on two separate maps to
compare real world performance with simulated performance.
Hyperparameter Test Set 1 Test Set 2

Proximity Allowance, Dprox 3m 3m
Maximum Velocity, Viax 3m/s 1.5 m/s
Acceleration Time Constant, K 0.5s 0.2s

The 2D trajectories of both maps are shown in Fig. 15.

The velocity profiles are shown in Fig. 12 and Fig. 13. In
the second test case, the UAV stumbled around the 10 to
12 second mark, and this is likely due to controller tracking
error under gusts of wind. In addition, the obstacles in the
real world can only be replicated as accurately as they can
be realistically placed. For this reason, a reasonable amount
of tracking error is to be expected. On a whole, the simu-
lated algorithm somewhat accurately replicates real world
performance.

VELOCITY PLOT
T T T

3 T T T

25

velocity, V (m/s)

— — - x-axis simulated

] — — -y-axis simulated
x-axis real
y-axis real

time, t (seconds)

Fig. 12. Velocity profile for the first test set.

VELOCITY PLOT

’»\
Large Tracking Error |

velocity, V (m/s)

— — - x-axis simulated
x-axis real

time, t (seconds)

VELOCITY PLOT

3 - h
Large tracking error
251
» 2
£
>
_é‘ 15
8
2 9
0.5
0
5B L ‘ ‘ ‘ I
-2 0 2 4 6 8 10 12 14 16 18
time, t (seconds)
Fig. 13. Velocity profile for the second test set.

October 1, 2021 8:42 output

10 Jun Jet Tai, Swee King Phang, and Felicia Yen Myan Wong

200 20
18 181
¢ END o END
16 16
14 ° 14 .
E £
by . >z}
@)
0} 510 ®
= > .

@
@

=]
o

i
s

2 o START 2 o START
6 5 1‘0 1I5 glu 0 5 10 15 20
(ﬂ) x-axis, X (m) (b) x-ais, x (m)

Fig. 14. Maps used to compare the UAV OAN algorithm in simulation and the real world. (a) Map 1. (b) Map 2.

20 20
18 18
16 16
14 14
£ E
g TAZ
{I'S 10 'g 10
> ES
8 8
6l 6 UAV struggles to
follow setpoint
4 4
2t 2 START
(a) 0 J 10 15 20 ®) 0 5 10 15 20

x-axis, x (m) x-axis, X (m)
Fig. 15. 2D trajectory for the flight tests against the simulated results. The red line represents the real world UAV trajectory,
while the blue circles represent the simulated UAV trajectory. (a) Map 1. (b) Map 2.

5.2. Hyperparameter Ablation Study

Once the algorithm has been verified to work in the real
world, a psuedo-ablation study on the algorithm hyperpa-
rameters was done. The main goal of this section is to ana-
lyze the influence of various hyperparameters on the algo-
rithm performance. The evaluation procedure is as follows:

1) List available hyperparameters to be tested.

) Set range of values to test hyperparameters.

) Identify performance metrics.

) Construct experimental maps to test hyperparameters.

) Test all available combinations of hyperparameters on
every map.

6) Gather data and performance metrics.

7) Analyze gathered data with ANOVA and Pearson’s

Correlations Test.

The selected hyperparameters to be tested is shown
in Table 2, while the evaluation metrics are shown in Ta-
Fig. 16. Actual picture taken during the UAV test flights ble 3. The metrics are chosen such that lower is better for

October 1, 2021 8:42 output

COAA* - An Optimized Obstacle Avoidance and Navigational Algorithm for UAVs Operating in Partially Observable 2D Environments

11

Table 2. Hyperparameters used in ablation study and their respective range.

Hyperparameter Range Units Description

Observation Radius, Ros [5, 10, 15, 20] m Observation radius of the UAV.

Proximity Allowance, Dprox [1, 3, 5] m Closest allowable distance between UAV and any
obstacle.

Maximum Velocity, Vimax [3, 5, 7, 10] m/s Maximum allowable flight velocity.

Acceleration Time Constant, K [0.2, 1.0, 2.0, 5.0] S Time constant for velocity profile smoothing

Waypoint Reached Threshold, D1y [1, 3, 5] m Distance between UAV and any waypoint to de-
clare that the waypoint has been reached

Stuck Velocity Threshold, Vaa [0.2, 0.5, 1] m Minimum velocity threshold before UAV is de-

clared to be stuck at a local minimum.

Table 3. Hyperparameters used in ablation study and their respective range.

Performance Metric Symbol Units Upper Lower Flight Characteristics Indicator
Range Range

Mission Completion Time Tc S 400 0 UAV speed
Maximum Proximity Allowance Breach Dpap - 1 0 Safety
Number of A* Runs N Ax - 400 0 Computational requirement
Maximum Jerk Jmax m/873 +o0 0 Physical flight systems demand
Average Jerk Jave m/ s 3 +00 0 Flight smoothness

each one. In addition, a did-not-finish (DNF) criteria was
declared for simulations in which the UAV breaches the
proximity allowance by more than 50%, or when the UAV
fails to traverse the map after getting stuck in a location
whereby its own hyperparameters deem it unable to com-
plete the map. A set of maps created for this study are
shown in Fig. 17, while the properties and description of
each map are shown in Table 4.

The result of the ablation study is a 6-factor, 5-level
analysis involving 1,728 independent interactions varied
across four different maps.

The data gathered is statistical in nature. As a result,
multiple statistical tools can be leveraged to analyze the
data. Two were used in this study. The first is a 5-by-6-way
Analysis of Variance (ANOVA), performed at each level of
the data, on a per map basis. This tool permits the ob-
servation of the significance of each hyperparameter. The
indicator of influence is known as a P-value derived from
an F-value. A lower P-value denotes stronger evidence that
the hyperparameter plays a significant role in influencing
the performance of the algorithm. A statistically significant
P-value of 0.005 is used in this study.

The second tool used is known as Pearson’s Correla-
tion Coefficient. This coefficient is a measure of the strength
and type of association between two variables. A positive
coefficient of greater magnitude denotes a stronger posi-
tive interaction between two variables; vice versa. Pearson’s
Correlation Coeflicient has a range of —1 to 1.

Combined, these two tools allow the visualization of
two things — the significance of influence of a hyperparam-
eter and the type of influence of a hyperparameter. In sum-
mary, we found that the parameter that influences the per-
formance of the algorithm most is the proximity allowance,
Dproz. When set too high, like 5 meters, the algorithm

fails to complete most maps, which is understandable as
the algorithm is no longer allowed to traverse gaps smaller
than 5 meters in width. The second and third highest in-
fluencing hyperparameters are the maximum velocity, Vi,qx
and acceleration time constant, K. Higher values generally
yielded better performance, at the expense of higher de-
mands on the UAV physical systems. A summary of Pear-
son’s Correleation for the hyperparemeter influence on the
algorithm performance is shown in Table. 5, in descending
order of P-value from left to right.

October 1, 2021 8:42 o

utput

12 Jun Jet Tai, Swee King Phang, and Felicia Yen Myan Wong

50

. 50 -
™ START OSTART
i S o 8 45
4t @ o > i g8
o o 40 Hoo
0 o,
35 ¢] o c o o | o
2 O C 35 2/
E - = £ 2
AN @ C L
= o) o ; o £%))
5 Q o o - J 2
‘5 25| o 425 C‘,J :‘.J
X ol 5 5 o o) % o o
L o 0 v o 0
wr g B s ’ i
o] o.
15} 2 o o 15} - 5
O 3 el .
0 o @ 9 o 10 o
)
5 o o & 5t
END END
5 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
a) x-axig, x (m) b) x-axis, X (m)
50 | b ?‘ 0T 8 o o
(o START
45 & 45 R 6
i Oy s 3 ‘_“E C
40 = g & 40 0 %0
g B s 5
By e o = B o
o Q O — le] 5 o
B0 i s D 8 E3or ©
5 000 0000 0070)_‘)_. ::
o = o @95+ 5 O
e = g 3 o o §
o0l 0©0 OO0 5 >onf & e
8 OSTART 8 151000 0 00
" FY00 0 0 o5 ceo0 co OB On o
10 0r s &
I ’_{J
5F END _;h‘u_r_u_x_m‘_,- 0000 O 5F END ol
5 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
C) x-axis, x (m) d) x-axis, x (m)
Fig. 17. (a) ‘Sparse’ map space. (b) ‘Two walls’ map space. (c) ‘Corridor’ map space. (d) ‘Mixed’ map space.
Table 4. Description and purpose list for the four maps used to evaluate hyperparameter performance and

component interaction.

Map Name Description Simulated Space

Sparse Randomly placed obstacles scattered throughout Forest regions with randomly grown trees.
the map space.

Two Wall Almost parallel placed walls staggered from tar- Urban Landscapes.
get location to UAV position. Scattered blocks
throughout the map.

Corridor Series of connected walls of semi-equal separation Indoor location made up of corridors.
distance.

Mixed Mixture of all the different maps. Mixture of everything.

Table 5. Pearson Correlation table of hyperparameter influence
against algorithm performance.
Dprox Vimaax Ky ROBS DWP VGG
Tc 0.7548 -0.4529 -0.0048 0.02300 -0.0303 -0.0340
Dpap | 0.1815 0.04213 0.05617 -0.0207 -0.0077 0.0071
N Ax 0.7325 -0.1515 -0.1091 -0.0637 -0.0197 0.0677
Jmazx 0.4405 0.4900 -0.4131 -0.0700 -0.0287 0.0060
Jave 0.3334 0.4536 -0.2652 -0.1183 -0.0097 -0.0363

October 1, 2021 8:42 output

COAA* - An Optimized Obstacle Avoidance and Navigational Algorithm for UAVs Operating in Partially Observable 2D Environments 13

5.3. Repeated Performance Analysis

This section explores the ability of the algorithm to per-
form in a real world scenario with a properly configured
set of hyperparameters, displayed in Table 6.

Table 6. Hyperparameters used to evaluate

the algorithm in real world-esque simulations.
Hyperparameter Symbol Value
Observation Radius Rops 10 m
Proximity Allowance Dprox 2 m
Maximum Velocity Vimaz 5m/s

Acceleration Time Constant Ky 0.2
Waypoint Reached Threshold Dy p 3 m
Stuck Velocity Threshold Vaa 1m/s

We use the floor plan of a real factory map [37],
adapted for our purpose, shown in Fig. 18. The first run
of the UAV is shown in Fig. 19. At the beginning, the per-
formance of the algorithm behaves suboptimally as it is
largely unaware of its surroundings. A lot of wall searching
is done.

When the algorithm is made to preform the run again,
the UAV is able to immediately take the most optimum
path, as a consequence of having already knowing the map.
Heading to the target is now simply a case of executing a
single A* pass and then following the waypoints generated.
This is shown in Fig. 20. Interestingly, the algorithm opts to
pick the more optimum path, prioritizing speed and safety
as opposed to the first explatory run.

When the map experiences a modification, as in the
case when we close off one of the passage ways the UAV
is allowed to take, exploration once again happens in the
area where the modification is made. This is the case of the
algorithm updating its internal map with new knowledge,
even in a partially observable environment. This example is
shown in Fig. 21. In the case when the map stays the same
and the start and end points are changed, the algorithm,
behaves well as in the case of Fig. 22.

y-axis, y (m)

0 20 40 60 80 100 120 140

x-axis, x (m)
Fig. 18. Factory map adapted for our purpose.

Lots of path finding
and wall searching

90

80

70

E 60
>
' 50
T T
301
20r
10f .
Tight Squeeze
0
0 20 40 60 80 100 120 140
x-axis, x (m)
Fig. 19. First run of the UAV in the factory map. A lot of ex-

ploration occurs as the UAV tries to learn about its surround-
ings.

Less restricted
pathway as
compared to the
first run.

100

90

ot

80

.......................

70

..........................
........

E o0
>
@ 50
x| kT e M
4 40
30
20
10
it
0 20 40 60 80 100 120 140
x-axis, x (m)
Fig. 20. Second run of the UAV in the factory map. No more

exploration is needed as the algorithm figures out the most op-
timum path right from the get go.

October 1, 2021 8:42 output

14 Jun Jet Tai, Swee King Phang, and Felicia Yen Myan Wong

y-axis, y (m)

0 20 40 80 80 100 120 140
x-axis, x (m)
Fig. 21. When the map is changed, the algorithm is able to

suitably adapt to find another appropriate path to reach the
target.

y-axis, y (m)

1] 20 40 60 80 100 120 140
x-axis, x (m)

Fig. 22. When the start and end points are changed, smooth
performance is the direct result of the algorithm having a more
informed local map.

6. Conclusion

In this work, we proposed COAA* - an obstacle avoidance
and navigational algorithm for unmanned aerial vehicles
designed from first principles methods. The design focuses
on a few things, namely, computational efficiency, scalablil-
ity, and versatility. The algorithm emphasises the delayed
usage of computationally expensive operations, namely the
A* algorithm. The scalability is derived from the fact that
every component of the algorithm can be easily swapped
out with another algorithm without much consequence. In
addition, the algorithm is able to cater to a wide variety of
sensor suites as the algorithm simply assumes an occupancy

grid. The obstacle avoidance component of the algorithm
can easily be adapted to be built upon other algorithms
such as object tracking. We have tested the algorithm on
an Intel UP Squared single board computer to validate its
performance, and have then extensively tested the algo-
rithm in a variety of maps with different hyperparemeters
in computer simulation.

References

[1] H. Lee and H. J. Kim, Trajectory tracking control
of multirotors from modelling to experiments: A sur-
vey, International Journal of Control, Automation and
Systems 15(1) (2017) 281-292.

[2] M. Achtelik, A. Bachrach, R. He, S. Prentice and
N. Roy, Stereo vision and laser odometry for au-
tonomous helicopters in gps-denied indoor environ-
ments, SPIE Unmanned Systems Technology XI,
7332 (2009).

[3] D. Cheng, A. C. Charles, S. Srigrarom and H. Hesse,
Morphing concept for multirotor uavs enabling stabil-
ity augmentation and multiple-parcel delivery, AIAA
Scitech 2019 Forum, (2019), p. 1063.

[4] S. M. Adams and C. J. Friedland, A survey of un-
manned aerial vehicle (uav) usage for imagery collec-
tion in disaster research and management, 9th Inter-
national Workshop on Remote Sensing for Disaster
Response, 8 (2011).

[5] I Mademlis, V. Mygdalis, N. Nikolaidis and I. Pitas,
Challenges in autonomous uav cinematography: An
overview, 2018 IEEE International Conference on
Multimedia and Expo (ICME), IEEE (2018), pp. 1-
6.

[6] T. Ad&o, J. Hruska, L. Pddua, J. Bessa, E. Peres,
R. Morais and J. Sousa, Hyperspectral imaging: A re-
view on uav-based sensors, data processing and appli-
cations for agriculture and forestry, Remote Sensing
9(11) (2017) p. 1110.

[7] J. Cho, G. Lim, T. Biobaku, S. Kim and H. Parsaei,
Safety and security management with unmanned
aerial vehicle (uav) in oil and gas industry, Procedia
Manufacturing 3 (2015) 1343-1349.

[8] S. Nunna, A. Kousaridas, M. Ibrahim, M. Dillinger,
C. Thuemmler, H. Feussner and A. Schneider, En-
abling real-time context-aware collaboration through
5g and mobile edge computing, 2015 12th Inter-
national Conference on Information Technology-New
Generations, IEEE (2015), pp. 601-605.

9] K. Lee, J. J. Tai and S. K. Phang, Bobby2:
Buffer based robust high-speed object tracking, arXiv
preprint arXiv:1910.08263 (2019).

[10] J. J. Tai, S. K. Phang and C. L. Hoo, Applica-
tion of steady-state integral proportional integral con-
troller for inner dynamics control loop of multi-rotor
uavs, 2018 Fourth International Conference on Ad-
vances in Computing, Communication € Automation
(ICACCA), IEEE (2018), pp. 1-6.

October 1, 2021 8:42 output

COAA* - An Optimized Obstacle Avoidance and Navigational Algorithm for UAVs Operating in Partially Observable 2D Environments 15

[11]

[12]

[13]

[14]

[15]

[19]

[20]

[25]

S. K. Phang, S. Lai, F. Wang, M. Lan and B. M.
Chen, Systems design and implementation with jerk-
optimized trajectory generation for uav calligraphy,
Mechatronics 30 (2015) 65-75.

O. Khatib, Real-time obstacle avoidance for manipu-
lators and mobile robots, Autonomous robot vehicles,
(Springer, 1986), pp. 396-404.

W. H. Huang, B. R. Fajen, J. R. Fink and W. H. War-
ren, Visual navigation and obstacle avoidance using a
steering potential function, Robotics and Autonomous
Systems 54(4) (2006) 288-299.

D. Fu-guang, J. Peng, B. Xin-qian and W. Hong-
Jian, Auv local path planning based on virtual po-
tential field, IFEE International Conference Mecha-
tronics and Automation, 2005, 4, IEEE (2005), pp.
1711-1716.

T. T. Mac, C. Copot, A. Hernandez and R. De Keyser,
Improved potential field method for unknown ob-
stacle avoidance using uav in indoor environment,
2016 IEEE 14th International Symposium on Applied
Machine Intelligence and Informatics (SAMI), IEEE
(2016), pp. 345-350.

M. Guerra, D. Efimov, G. Zheng and W. Perru-
quetti, Avoiding local minima in the potential field
method using input-to-state stability, Control Engi-
neering Practice 55 (2016) 174-184.

D. Panagou, Motion planning and collision avoid-
ance using navigation vector fields, 2014 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), IEEE (2014), pp. 2513-2518.

M. Radmanesh, M. Kumar, P. H. Guentert and
M. Sarim, Overview of path-planning and obstacle
avoidance algorithms for uavs: a comparative study,
Unmanned systems 6(02) (2018) 95-118.

S.-Y. Shin, Y.-W. Kang and Y.-G. Kim, Reward-
driven u-net training for obstacle avoidance drone, Ez-
pert Systems with Applications 143 (2020) p. 113064.
A. Singla, S. Padakandla and S. Bhatnagar, Memory-
based deep reinforcement learning for obstacle avoid-
ance in uav with limited environment knowledge,
IEEE Transactions on Intelligent Transportation Sys-
tems (2019).

O. Walker, F. Vanegas, F. Gonzalez and S. Koenig, A
deep reinforcement learning framework for uav navi-
gation in indoor environments, 2019 IEEE Aerospace
Conference, IEEE (2019), pp. 1-14.

H. Virani, D. Liu and D. Vincenzi, The effects of re-
wards on autonomous unmanned aerial vehicle (uav)
operations using reinforcement learning, Unmanned
Systems 9(04) (2021) 349-360.

W. Zhang, Y. Zhang and N. Liu, Danger-aware adap-
tive composition of drl agents for self-navigation, Un-
manned Systems 9(01) (2021) 1-9.

J. Li, M. Ran, H. Wang and L. Xie, A behavior-based
mobile robot navigation method with deep reinforce-
ment learning, Unmanned Systems 9(03) (2020) 201—
209.

Z.Y. Ng and S. K. Phang, Development of simultane-

ous localization and mapping algorithm using optical
sensor for multi-rotor nav, AIP Conference Proceed-
ings, 2233(1), AIP Publishing LLC (2020), p. 030007.
C. L. Hoo, S. M. Haris, E. C. Y. Chung and N. A. N.
Mohamed, Steady-state integral proportional integral
controller for pi motor speed controllers, Journal of
Power FElectronics 15(1) (2015) 177-189.

C. L. Hoo and S. M. Haris, Simulation of anti-windup
pi controller, sipic on foc of pmsm, ICIC Ezxpress Let-
ters 10(11) (2016) 2539-2545.

T. L. Chiah, C. Hoo, E. Chin and Y. Chung, Hardware
simulation of a new anti-windup pi control for motor
speed application, J. Fng. Sci. Technol (2017) 43-57.
L. De Filippis, G. Guglieri and F. Quagliotti, A mini-
mum risk approach for path planning of uavs, Journal
of Intelligent & Robotic Systems 61(1-4) (2011) 203
219.

K. Peng, F. Lin, S. K. Phang and B. M. Chen,
Nonlinear flight control design for maneuvering flight
of quadrotors in high speed and large acceleration,
Unmanned Aircraft Systems (ICUAS), 2018 Interna-
tional Conference on, IEEE (2018), pp. 212-221.

S. K. Phang, K. Li, K. H. Yu, B. M. Chen and T. H.
Lee, Systematic design and implementation of a mi-
cro unmanned quadrotor system, Unmanned Systems
2(02) (2014) 121-141.

A. Nemati and M. Kumar, Modeling and control of a
single axis tilting quadcopter, 2014 American Control
Conference, IEEE (2014).

Z. Benic, P. Piljek and D. Kotarski, Mathematical
modelling of unmanned aerial vehicles with four ro-
tors, Interdisciplinary Description of Complexr Sys-
tems, 14, INDEC (2016), pp. 88-100.

S. Kasim, L. Y. Xia, N. Wahid, M. F. M. Fudzee,
H. Mahdin, A. A. Ramli, S. Suparjoh and M. A. Sala-
mat, Indoor navigation using a* algorithm, Interna-
tional Conference on Soft Computing and Data Min-
ing, Springer (2016), pp. 598-607.

P. Reist and R. Tedrake, Simulation-based lqr-trees
with input and state constraints, 2010 IEEE Interna-
tional Conference on Robotics and Automation, IEEE
(2010), pp. 5504-5510.

W. Nowak, A. Zakharov, S. Blumenthal and
E. Prassler, Benchmarks for mobile manipulation and
robust obstacle avoidance and navigation, BRICs De-
liverable D 3 (2010) p. 1.

P. Fletcher, Founding & requirements of starting a
plastics product factory: Case hdmeen lanka (2013).

Jun Jet Tai received his B.Eng. in Me-

October 1, 2021 8:42 output

16 Jun Jet Tai, Swee King Phang, and Felicia Yen Myan Wong

chanical Engineering from Taylor’s University, Malaysia, in
2020. He is currently pursuing his Ph.D. at Coventry Uni-
versity, United Kingdom. Primarily, his research interests
include artificial intelligence and reinforcement learning.
Secondarily, he is interested in state estimation and con-
trol for robotics, primarily of multi-rotor unmanned aerial
systems (UAS).

Jun Jet was a research assistant in Taylor’s University
for 2 years during his undergraduate studies. He has since
presented in several international conferences. He is the
recipient of the Taylor’s University Best Student Award;
EURECA Conference Best High Impact Research Award
2019; team leader of the winning team during the AIR-
BUS Innovation Fun Day 2019 in Kuala Lumpur; and an
invited participant to the CDIO Drone Academy 2018 in
Kanazawa, Japan.

(a2)

- \

Nt
r A
Swee King Phang received his B.Eng.

and Ph.D. degrees in Electrical Engineering from the Na-
tional University of Singapore, Singapore, in 2010 and
2014, respectively. He is currently a Lecturer with Tay-
lor’s University, Subang Jaya, Malaysia. His research inter-
ests include system and control of unmanned aerial systems
(UAS), including modeling and flight controller design of
the UAS, indoor navigation of the UAS, and trajectory op-
timization.

Dr. Phang has authored numerous publications, in-
cluding a book chapter in the Handbook of Unmanned
Aerial Vehicles, multiple peer-reviewed journals and Inter-
national conference proceedings. He is also the recipient
of the Best Paper Award (Guan Zhao-Zhi Award) in the

33rd Chinese Control Conference, Nanjing, China (2013);
finalist of the Best Paper Award in the 14th IEEE Inter-
national Conference on Control and Automation, Alaska,
US (2018); and IET Commendable Paper Award in 13th
International Engineering Research Conference (2019). He
is currently the Cluster Leader of Autonomous Robots Re-
search Cluster at Taylor’s University. Student teams from
his research cluster have won numerous UAS related com-
petitions, which include the champion for the AIRBUS In-
novation Fun Day 2019 in Kuala Lumpur, Malaysia; and
the champion for the CDIO Drone Academy Challenge
2018 in Kanazawa, Japan.

Felicia Yen Myan Wong received her
B.Eng. in Mechanical Engineering from the University of
Nottingham Malaysia Campus and her Ph.D. from the Uni-
versity of Nottingham Ningbo China in 2010 and 2017,
respectively. She is currently a lecturer at Taylor’s Uni-
versity, Subang Jaya, Malaysia teaching design thinking,
material science and project management. A majority of
her research interests, publications in journals and confer-
ence proceedings are about the development of environmen-
tally friendly antifouling technology through surface modi-
fication of topographies to prevent biofouling growth using
benchtop laboratory methods, 3D printing and Computa-
tional Fluid Dynamics. Additionally, she has also applied
her expertise in numerical and statistical analysis to ex-
plore other research areas in the field of biomimicry and
aerodynamics specifically in the design of morphing wings
of aerofoils.

	CA
	DrPhang_Unmanned_Systems_COAA (1)

