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Abstract—Graphic-pattern-based implicit authentication has
been successfully exploited to elevate the security of smartphones.
On-screen pressure is one of the key features in such approach
since it can reveal users’ touch pattern. However, state-of-the-art
approaches rely on a system API to obtain on-screen pressure,
which is not adequately accurate and cannot meet the demands
of robust implicit authentication. To bridge this gap, we propose
PresSafe, a novel implicit authentication system that utilizes
the smartphone’s built-in barometer sensor to measure pressure
during the unlocking process, and to utilize the pressure data in
authentication. A key technical challenge in utilizing barometer
sensing, however, is to understand the user activity through mea-
sured pressure. To overcome this challenge, PresSafe leverages
barometer data along with data from other conventional but
heterogeneous ambient sensors to produce accurate and robust
user activity descriptions. PresSafe utilizes a transfer learning
based hybrid workflow to integrate user activity representation
learning with a lightweight classical authentication algorithm to
obtain a unified model. This approach offloads computational cost
from the terminal and addresses privacy concerns. To ensure
applicability of our approach despite data heterogeneity and
insufficient training data, we utilize a channel-adaptive data
processing mechanism. Extensive experiments utilizing more than
70,000 records from 23 volunteers in 6 different locations show
that PresSafe achieves an FAR of 0.45 %, an FRR of 0.49 %,
and an EER of 0.47 %, which clearly demonstrate its superiority
over several existing solutions.

Index Terms—Implicit authentication, smartphone, barometer,
pressure sensing, transfer learning, heterogenous data, represen-
tation learning.

I. INTRODUCTION

CONCERNS of data security have sparked ages of ex-
ploration of proper security schemes for smartphones.

Customers are already familiar with a series of authentication
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schemes that can be roughly divided into biometrics based
ones and token based ones. The former one requires additional
hardware, and can be easily attacked [1]. Besides, environment
factors, body accessories can prevent it from reading such
biometrics, impacting its performance. On the other hand, the
situation for the latter group of methods can even be worse
[2]–[6].

Over the years, implicit authentication has been studied to
elevate the security. Approaches in [7]–[9] utilize built-in IMU
sensors to obtain a description of users’ behavior for identity
recognition. Furthermore, implicit authentication can be fused
with traditional pattern unlocking approaches [10]–[15] to
form two-factor authentication systems. These systems do not
require costly hardware, are environment-independent, and
can hardly be attacked due to its working mechanism. Since
these systems are imperceptible to users while delivering a
higher security, it has performance advantages over traditional
solutions.

We observe that most smartphone implicit authentication
approaches have one thing in common - they all involve touch
pressure as one of the key features in model building and
classification. It is thus interesting to examine whether the
pressure feature is truly reliable as it seems in these works.
To answer this question, we have conducted a preliminary
and empirical study on several major mobile operating sys-
tems of smartphones. We found that, Apple has discontinued
iPhone’s support for “3D Touch” after 2018 [16], and in the
last three years, none of the globally-launched commercial
Android phones is capable of full-screen force sensing. In
other words, most smartphones do not come with dedicated
pressure sensing structures on their display module, limiting
their ability to provide on-screen pressure detection in a pre-
cise way. As a compromise, authentication methods on these
smartphones rely on an application programming interface
(API) to provide a so-called “pressure” description while the
user is interacting with the phone. However, this solution is
based on an assumption that the harder the user presses, the
bigger the touchpoint traces will be. Through our studies,
we found that this assumption is not reliable and cannot be
met in many real world scenarios. Our studies confirm that
the API is intended for general-purpose use only, but can
hardly serve high precision applications, including implicit
authentication. This observation motivates to develop a more
physical and accurate way to sense the on-screen pressure
during user’s sliding, and utilize it for implicit authentication,
but without the need of any additional hardware modification
to the smartphone.
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Press

Slight deformation

Fig. 1: Illustration of the correlation between the press behav-
ior and the pressure variation inside smartphone.

Through our experiments, which will be elaborated later in
the paper, we observe a clear correlation between the sliding
behavior during the pattern unlocking process and variations
of pressure inside the smartphone’s chassis. We have taken
advantage of this phenomenon (see Fig. 1) to form a more
comprehensive description of the user’s behavior on the basis
of conventional motion based data along with features of on-
screen pressure. By utilizing the fine-grained information in
the touch events with the help of barometer data, we depict
the user’s behavior on the third dimension of the screen (see
Fig. 2c), beyond the conventional 1D and 2D features (see
Fig. 2a, and 2b), elevating the authentication performance by
providing additional information that is mishandled by existing
approaches.

In this paper, we propose PresSafe, an implicit authentica-
tion system for smartphones, which utilizes data from both the
barometer and other conventional ambient sensors to produce
a more robust portrait of user’s behavior. However, despite
the promising power of barometer sensory data, it is not
straightforward to apply it to improve the overall implicit
authentication performance in practice, due to the following
technical challenges.

Challenge 1: Environmental impact and sensor het-
erogeneity. Being an environmental sensor, the barometer
receives contextual information from both the user and the
environment. In our case, the collaboration between the barom-
eter and other conventional ambient sensors further multiplies
the difficulty in data processing. A solution to offset the
adverse effects caused by changes in the environment and the
heterogeneity in sensors, while still being able to retrieve and
utilize information of user’s behavior from the readings, is
necessary.

Challenge 2: Insufficient data and feature extraction.
Behavior information of the user is needed to tune our model,
but excessively repeating this process should be restrained to
ensure good user experience. This situation leads to insuf-
ficiently collected data. Moreover, the conventional manual
feature extraction approach may also result in an unrepresen-
tative feature set. We need to address the side effects from this
end and find proper ways to improve the overall performance
despite insufficient data.

Challenge 3: Balance between performance, computa-
tional cost and privacy. This work is focused on mobile
security while controlling the computational cost and energy
consumption on terminal devices. To avoid intemperate power
consumption of the tuning process, a plausible solution is

to offload part of the training to remote servers. However,
the involved data are highly sensitive since they contain real
user’s behavior information. We need to cautiously offload
computational tasks from the terminal so that it never causes
any compromise of user’s privacy.

We incorporate a series of techniques to address these chal-
lenges, including barometer-assisted on-screen pressure sens-
ing, transfer learning, representation learning, and channel-
adaptive processing. These techniques ensure that more robust
features are learned form a comprehensive user representation,
requiring no dedicated sensors on screen panel but enabling
an elevated overall authentication performance, even with a
smaller set of sensors when compared to competing solutions.
The contributions of this paper can be summarized as follows:

• Instead of using a conventional general-purpose API for
on-screen pressure acquisition, which is not accurate
enough for implicit authentication, this is the first work
to introduce the integration of barometer and other am-
bient sensors during the unlocking process, to produce a
more comprehensive user profile, and achieve improved
robustness and accuracy.

• To address Challenge 1, we present a special data fusion
approach. We use a fusion technique to deal with the
heterogeneity in various sensors for behavior description
collection, and a pre-processing algorithm to offset any
potential impact cased by the changes in the environment
while maintaining effective user information.

• Concerning Challenge 2, a 1D-CNN based representation
learner is proposed. We incorporate a timestep-depthwise-
convolution-based deep learning model to produce a
robust user feature profile in a fashion of representation
learning, so that the physical patterns shared within- and
inter-sensor data are effectively utilized. We also propose
an additional channel-adaptive algorithm to elevate the
performance of feature extraction even when data are
insufficient.

• To deal with Challenge 3, we design a hybrid workflow
with transfer learning and computation offloading, so as
to integrate user activity representation learning with a
lightweight classical authentication algorithm, and offload
most training overhead from terminal devices to cloud in
a privacy-protected manner. In this fashion, we reduce
the local resource consumption while avoiding possible
performance degradation or privacy concerns.

• We develop a prototype on several off-the-shelf smart-
phones and conduct extensive experiments with 23 volun-
teers. On 6 different locations, more than 70,000 samples
are recorded, based on which the performance benchmark
is derived. Experimental results demonstrate that PresSafe
achieves a False Acceptance Rate (FAR) of 0.45 %, a
False Rejection Rate (FRR) of 0.49 %, and an Equal Error
Rate (EER) of 0.47 %, and outperforms several baseline
schemes.

The remainder of this paper is organized as follows. In
Section II, we introduce the background and related works in
the field of smartphone implicit authentication. In Section III,
we use an off-the-shelf smartphone and a dynamometer for a



VOL. NUM, NO. NUM, MONTH YEAR 3

(a) 1D on-screen feature
(elapsed time)

(b) 2D on-screen feature
(with touchpoints traces)

(c) 3D on-screen feature
(with on-screen pressure)

Fig. 2: The illustration of different dimensions of the on-screen feature.

preliminary study on the correlation between the user’s unlock-
ing action and the readings of the barometer. In Section IV,
we explain the framework and workflow of the PresSafe,
and in Section V we elucidate the details of the barometer-
assisted pressure sensing technique that is dedicated to portray
the behavior information during the sliding process. Later
in this paper, Section VI explains the approach to perform
data fusion and data augmentation. Section VII elucidates the
feature extraction process and how we manage to implement
and deploy a neural structure on a terminal device in a privacy
and energy caring manner. Section VIII present the evaluation,
and Section IX is the conclusion of the PresSafe.

II. BACKGROUND AND RELATED WORKS

A. Token-based Explicit Authentication

This type of authentication mechanisms, namely the PIN
(Personal Identification Number), password or pattern unlock-
ing, are the most traditional ways to secure a system. If the
provided token matches the preset one, access will thus be
granted. Widely accepted though, they only provide entry-level
security protection, and hardly provide solutions to a series of
classical attack scenarios, including shoulder surfing attacks
[17], [18], brute-force attacks, smudge attacks [4], [19], etc.

The root cause for this defect lies in the lack of correlation
in the token and the provider’s identity: these schemes do not
verify if the provider is legitimate, but only correctness of
the token. Clearly, every person with a correct token could be
granted access.

B. Biometrics-driven Explicit Authentication

Lately introduced phones usually feature a combination of
different biometric scanners, e.g., fingerprint reader, 2D/3D
facial recognition module, iris scanner, etc. Providing a natural
way to authenticate though, their weaknesses are also obvious.

1) Prone to be attacked. The explicit biometric features
are visible and easy to replay, causing them prone to
be attacked through smudge attacks [20], [21], thermal
attack [22], or replay attack [23].

2) Biometric immutability. Using the same set of biomet-
rics in different systems may cause fatal security failures
if one of these systems is compromised, since the biolog-
ical characteristics can hardly be changed as the human

body matures. The consequence of any compromise of
the biometric credential would be permanent [24].

3) Additional cost. Behind these biometrics-driven solu-
tions, specific hardware modules are required, causing
additional cost and not being available on all kinds of
smartphones.

4) Work scenario requirements. Due to the need to scan
relevant biometrics, these solutions usually hold stringent
requirements on working scenarios [25]. Specifically, due
to the epidemic prevention requirements, performance of
facial recognition systems is usually downgraded when a
mask in on.

These limitations narrow down the scenarios in which the
biometrics-driven solutions are actually applicable.

Admittedly, some recent studies have tried to update the
way to extract biometric features. [2] captures the fingerprint-
induced sonic effect during swipings so as to authenticate the
user. [26] senses lip motion by the reflected ultrasonic signals.
In [27], they use digital accessories to detect the body electric
potentials. [28] relies on vibration captures by accelerometer
to reconstruct the user’s heartbeat signal. [29] use user’s fin-
gerprint to assist in generating private keys. In [30], a dynamic
feature selection for hand-writing is developed to enhance the
authentication performance. However, these solutions are still
not perfect: signals used in these works are generated from
biochemical effect [2], [26], [28], which are weak and are
not directly measured thus needs a high signal-to-noise ratio
environment; or are sent from other devices [27], which face
common problems in machine-to-machine authentication, as in
[31], [32]. The approaches in [29], [30] heavily rely on online
servers and can hardly be performed in an offline manner.

C. Solutions of Implicit Authentication

Implicit authentication refers to the type of techniques
that enable smart devices to recognize its owner not only
from conventional tokens, but also by the behavior the user
demonstrates, especially during the unlocking attempts.

Feng et al. [33] proposed a solution leveraging the RFID
(Radio Frequency Identification) devices to detect walking
pattern features and help the implicit authentication process.
The studies in [34] found the speaking-induced body sound
transmission from the throat and the ear canal could be used
for extracting a sound conduction pattern. Wang et al. [35]
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trying to model biological feature from the deformation caused
by in-ear wearables, and combine this feature with dynamic
motions for user authentication.

The above-mentioned solutions require the user to carry
additional hardware and/or perform designated operation that
is beyond the usual action to operate the phone. Being novel
though, they fail to provide a friendly user interface for the
unlocking process, therefore may not be well received by the
crowd. Based on the fact that graphic credentials can be mem-
orized more easily [36], and around 40 % of the participants in
a work [37] are more willing to use pattern unlocking as the
authentication mechanism on their smartphones, researchers
are also trying to develop solutions for pattern unlocking based
implicit authentication.

Angulo et al. [38] used Random Forest to build the authenti-
cation model, requiring data not only from the owner, but also
from potential attackers. Similarly, Alpar et al. [39] proposed a
histogram-based technique for authentication. These schemes
used multi-class classification algorithms as classifier to de-
termine the user’s identity, which makes them unsuitable for
real applications: multi-class classifiers need data of all labels,
i.e., the intruders and the owners, to get trained. Obviously the
assumption that a device owner being able to obtain behavior
information from intruders in advance, is not reasonable.

New sensors are used in the authentication process, and
relevant algorithms are also developed in works that are more
recent. Liu et al. [13] introduced statistics based schemes
as the authentication module, and utilized accelerometer for
motion detection. They also introduced feature processing
including basic manual extraction and selection, before the
authentication model receives the data. Ku et al. [12] noticed
that the user’s behavior may vary in different scenarios. They
collected two sets of user data: sitting and walking, and found
that the authentication performance would degrade, once the
application scenario is not fixed. Wang et al. [40] proposed a
context-aware module to classify the application scenario, and
send the weighted user data to the corresponding authentica-
tion module. Shi et al. [41] further adopted a polygonal line
weighted strategy. This method takes consistency of unlocking
patterns into account, then analyzes the patterns with different
grains, and enhances the information stored in the patterns’
principal parts though weighting.

Intuitively, there should exist much variance in a user’s
pressing behavior, especially when the user attempts to draw
an unlocking pattern. The prior works used, directly or in-
directly, the pressure on the screen, as one of the key fea-
tures in their classification mechanisms. But according to our
empirical research, the main-stream off-the-shelf smartphones
do not come with dedicated pressure sensing structures on
the display module, resulting in their inability of precise on-
screen pressure detection. Actually, the prior works used an
Android built-in API to obtain a so-called “pressure” feature of
touch events [42], which is not meant for high-end application,
i.e., authentication. The information fetched this way is an
approximation based on the size of touchpoints, making it
unsuitable for authentication tasks.

III. PRELIMINARY AND EMPIRICAL STUDY

In this section, we first discuss the status quo of smartphone
on-screen pressure sensing. Then, we conduct preliminary
experiments to validate the relationship between sliding and
barometer readings.

A. Status Quo of Pressure Sensing on Smartphones

When the user interacts with the phone, on-screen pressure
not only reflects the user’s operating habits, but also captures
the touch process dynamically. Therefore, on-screen pressure
has become a key feature in a number of related studies.

To verify if the pressure feature is accurate enough for
authentication task, we made an investigation on the consumer
electronics marker.1 To the best of our knowledge, no matter
for iOS or Android, none of the commercial phones globally
launched in the last three years are equipped with a dedicated
on-screen pressure sensing structure [16], [43]. Considering
this, researchers in the related works used a workaround to
sense the on-screen pressure.

The workaround is based on an Android API that can
report approximate, so-called “pressure” detection values on
devices without such physical sensors [42], but these values are
highly related to the touchpoint size. As mentioned before, the
relationship between the size of touchpoint and the on-screen
pressure could be loose. If the touch size is directly, and only
related to the on-screen pressure, then this API could work
well. Otherwise, the “pressure” feature obtained in this way
will not work properly in implicit authentication tasks.

We conduct a qualitative experiment using a Galaxy Note
10+, on which a customized Android application is deployed
to capture the pressure resulted from user’s sliding action
through the Android API used in many existing studies. During
the experiment, we try to stable the touching force to the same
minimum level, so that the screen can sense our touch. To
demonstrate if the touchpoint size will be affected by factors
other than the touch pressure, we repeat this process with
different parts of the finger.

From Fig. 3, it is clear that, different contact parts of
the same finger resulted in noticeable differences on the
touchpoint size during the sliding process. Clearly, changing
on touchpoint size has been translated different on-screen
touch pressures, thus affecting the authentication perfor-
mance of the studies which utilize this API. This way of
getting the pressure value is indeed dedicate-sensor-free but
not sufficiently accurate for security applications. We further
discuss this phenomenon in Section V-B.

B. Sliding Operation and the Barometer Readings

We further conduct experiments with the same Galaxy Note
10+, but with the barometer enabled. This additional experi-
ment is for the purpose of exploring any possible relationship

1We focus this study within the field of consumer electronics. This is
because the approach in this paper mainly focuses on solutions that can
directly be applied to off-the-shelf smartphones. We understand that, through
some additional hardware, such as customized wave guide layer or laser
detectors, a more precise pressure sensing can be achieved. But it is also
obvious that, this kind of solutions need additional hardware, thus not being
within reach of the most population.
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Fingertip
Finger pad
Fingertip

Finger pad

Fig. 3: The API-simulated pressure feedback while different
finger parts interacting with the phone. The results are the
average of ten attempts.

between the barometer readings and the pressure on the screen.
In the experiment, we use a zigzag unlocking pattern as the
preset and record the barometer readings during the unlocking
process. When the unlocking process starts, nine dots will be
displayed on the screen (Fig. 4), and the user connects the
dots sequentially with her finger to unlock the phone.

1 2 3

4

5 6 7

LOCKED

Fig. 4: An example of pattern unlocking process.

Through our experiments, we find it interesting that the
feedback value of the barometer vary during the pattern
unlocking process. While the user operating the phone, the
exerted force causes the chassis of the phone to deform, further
impacting its inner air pressure. We record this phenomenon
using the barometer sensor, and link the barometer readings
to the on-screen pressure in a meaningful way, thus hopefully
creating a more robust presentation of user’s behavior.

Although the barometer assisted on-screen pressure sensing
looks promising, we first need to examine if the barometric
pressure profile is adequate to distinguish different users. We
hire six volunteers to repeat drawing the unlocking pattern
on the phone, so as to analyze the properties of the collected
data, as plotted in Fig. 5. Being overlapping partially though
(User 1, 4, 5, 6), it is clear that the spread of such data is
rather limited, and the time sequence essence helps them to
hold significant differences throughout the record.

To check on this point, we use the following methods to
resample and scale the pressure profiles. First, we conduct FFT
(Fast Fourier Transform) transformation to resample all the
concerned data to the same length. Then, we use the following
formula to scale the numerical range of them to [0, 1].

Xscaled = (X −Xmin)/(Xmax −Xmin) (1)
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Fig. 5: On-screen pressure profiles of different users.

The process data are presented in Fig. 6. We use two vertical
red dashed lines to indicate the time interval when different
records reach their first peak, and two blue lines for the first
minimum. It can be observed that those data reflect the touch,
press, and sliding events of the user, and are diversified in
patterns of rhythm, variation, and distribution. Obviously, the
profiles are essentially the portrayal of the user’s operating
behavior, and the time rhythms contained in these data still
help our model differentiate them even after scaling the data
range.
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Fig. 6: Processed on-screen pressure profiles.

We then use distribution analysis and Euclidean distance to
further validate this point. Table I demonstrates the numerical
spread of each single user’s pressure profile. We observe the
mean value of the pressure profile of the six volunteers varies
in a relatively large area, while the variance of it stays low
and stable.

TABLE I: Properties of Data Spread in the On-screen Pressure
Profile

Property Mean2 Variance

Mean 1016.75 0.47

Variance 0.058 0.0036

On the other hand, we first pre-process the collected data
as described above, and calculate the mean recording of five
pressure profiles from user 1 as pref . Then we use another

2This column presents the mean of the corresponding property, i.e., the
mean of each volunteer’s mean value. Similar for the variance column.
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three pressure profiles of user 1, as denoted by ppos1 to ppos3.
Besides, the pressure profiles from other users are also used
for comparison, as denoted by pneg1 to pneg3. The calculated
Euclidean distance of these profiles are presented in Table II.

TABLE II: Euclidean Distances Between Collected Profiles

Sample Euclidean distance to pref Comparison

ppos1 0.49 + 0.00 %

ppos2 0.52 + 7.41 %

ppos3 0.55 + 13.79 %

pneg1 1.71 + 71.52 %

pneg2 1.86 + 73.89 %

pneg3 3.05 + 84.04 %

From the Euclidean results, we observe the pressure profiles
under user 1 show a similar distribution under the time se-
quence, while the data from different users are discriminative.
The distribution also proofs that, for a single user, her profile
data span is narrow and limited, which ensures that the data
will not be mixed up altogether; when the data are mixed
up, the barometric on-screen pressure profile is adequately
discriminative among different users. These conclusions also
apply to the data we collected from other users.

IV. THE PROPOSED SYSTEM

In this section, we present the framework of our proposed
authentication scheme, PresSafe, in detail. Fig. 7 illustrates an
overview of the system, which consists of two main parts: the
training stage and the guarding stage.

A. The Training Stage

Before being used as an authentication system, PresSafe
requires the device owner’s behavior information for prepro-
cessing and model training. The main steps are as follows:

1) Pre-training. Since the local computational and energy
resource could both be limited for the phones, we partially
offload the training process to the cloud by pre-training a
representation learner remotely, in order to ensure privacy of
such sensitive user data. In our designed workflow, the training
process does not involve any real data from the device owner,
but uses a combination of desensitized data from volunteers.
In real applications, this part can be done in advance, so this
model is pre-installed and distributed with the devices.

2) Local fine-tuning. When initializing the smartphone’s
security system, the device owner will be required to enter
her behavior information by simply operating the preferred
graphic unlocking pattern for a few times. In this process, a
set of sensors will be invoked to capture continuous readings.

When the initiating process is done, the generated behavior
description will be processed by the data augmentation mod-
ule, simulating the owner’s unlocking behavior in different
scenarios. Then the augmented descriptions will be reshaped to
form a three-dimensional array to fit the timestep-depthwise-
convolution-based structure, i.e., the feature extractor. After
a slight local fine-tuning of the feature extractor, the top few

layers will be discarded and the remaining layers will function
as the representation learner. The representation learner can
thus generate a user representation, which will be used for the
training of the authentication module.

B. The Guarding Stage
In this stage, the PresSafe is ready to guard the smartphone

and ensure the safety of data stored on it.
1) Submit the unlocking attempt. The user will first be

guided to finish the pattern, but for only once. During this
process, a set of sensors are used to generate the behavior
description. After this, the description will be translated into
a user representation through the tuned representation learner.

2) Authentication. To validate the user’s identity, our
algorithm will examine the outputs from both the explicit
and implicit module. Only when the explicit unlocking pattern
drawn by the user and the implicit representation both match
the template, access shall be granted. Through this two-factor
implicit authentication approach, we can enhance the device’s
security.

V. BAROMETER-ASSISTED PRESSURE SENSING

A. Analysis of the Barometer Readings
In Section III-B, we have qualitatively discussed the relation

between the barometer readings and the sliding operation.
Results demonstrate that the barometer readings can be used
to capture the deformation caused by the user’s operations and
thus being able to represent the pressure profile. For a further
exploration, we provide an analysis on the barometer readings.

First, to examine if the barometer readings actually capture
the pressure on the screen, we use a digital dynamometer
to measure the force applied to the frontal panel of the
smartphone as in Fig. 8a. The phone is placed on a horizontal
and rigid plane, since we expect no potential deformation from
the holding surface to affect our experiment results. On the
other hand, the dynamometer is hand-held, and its detector
directly contacts with the center of the smartphone’s display
panel. The detector is used to simulate how the finger interacts
with the phone. The values both from the dynamometer and
the barometer are recorded and presented in Fig. 8b.

In this figure, the horizontal axis represents the readings
from the dynamometer and the vertical axis stands for the
variation of barometer readings. To reveal the correlation
between these two features, we use first-order linear regression
to produce a trend line. It can be observed that the variation of
the built-in barometer readings and the dynamometer readings
exhibit a linear correlation.

Considering the correlation between these two events, we
design an adaptive pressure sensing approach without using
extra sensors. Every time when the user interacts with the
phone, there will be a pressure being applied to the screen,
which causes a slight deformation of it. That is, the display
module is sunken inward, leading to a fluctuation of the
internal air pressure inside the chassis. The value reported
by the built-in barometer will then fluctuate accordingly. By
analyzing the trend of the series of readings reported by
barometer, it is now possible to sense the pressure being
applied to the screen.
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Fig. 8: The experiment with the dynamometer and smartphone.

B. Sliding Pressure Sensing

1 2 3

4

5 6 7

Phase 1

Phase 2

Phase 3

Phase 1 Phase 2 Phase 3

Hovering 
Point

Hovering 
Point

Ending

Fig. 9: The process of drawing pattern Z and the corresponding
trend of barometer readings.

Considering that the pattern unlocking is a sliding process,
we further conduct experiments to assess the correlation
between on-screen sliding operations and the variation of
barometer readings. Fig. 9 shows the process of completing
the Z pattern.3 The pressure resulted from different sliding
phase of the pattern drawing process can be captured by the
built-in barometer.

3The participant grips the phone with his right hand, and the unlocking
process is also accomplished with the thumb of the same hand in this
experiment.

Overview of the pattern. According to the dynamic
characteristics, which can be captured by ambient IMU sensors
along with the sliding pressure, the entire unlocking process
can be dissected into the following three phases. Phase 1
contains dots 1-3, which is the beginning part of the sliding.
The swipe direction is very simple, namely from left to right.
Phase 2 contains dots 3-5, and this phase is between two
turning points, i.e., dot 3 and dot 5. Since the finger needs
to turn its direction at the turning points, the time consumed
at these two dots are supposed to be relatively longer, and the
pressure does not show a large variation. Thus, we expect two
obvious hovering point located at the beginning and ending
of phase 2 in the barometer readings. Phase 3 is much like
Phase 1, but the ending part will be different, resulting in an
additional transient response.

Phase 1. The barometer readings during this phase demon-
strate a trend similar to our analysis. It can be inferred that
during phase 1, when the finger moves from the left side of
the screen to the right side, the screen generally becomes more
bent, resulting in a more significant pressure. The air inside the
chassis of the phone also becomes more compressed, causing
the barometer to report higher readings. On dot 3, the finger
has to turn its direction to enter phase 2. Then there comes
the first hovering point in the barometer value.
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Fig. 10: A comparison of the barometer-based and software-
based pressure sensing techniques.

Phase 2. On phase 2, the finger is sliding from the upper
right to the lower left of the area. Since the user performs
the unlocking attempt with the same hand gripping the phone,
the thumb is stretched as it moves away. Therefore, the force
applied by the finger gets weaker, and the depression of the
screen becomes slowly recovered and the compression of the
inside air is gradually eased. Thus, the pressure sensed by
the barometer will become attenuated. The decreasing values
of the barometer support this conjecture. At the end of this
phase, the finger comes across dot 5, where it is going to alter
its direction again. Therefore, there will be another hovering
point.

Phase 3. Phase 3 is the final stage of this pattern. The finger
moves from left to right, so the pressure on the display panel
is similar to that in phase 1. There will be an increasing air
pressure inside the smartphone, resulting escalated barometer
values.

Interestingly, there is an additional transient response from
the barometer, when the finger leaves the screen. This process
is shown in Fig. 9. When the pattern is finished, since the
force applied by the finger disappears, the compression of the
chassis recovers, and there is a brief drop in the value of the
barometer. After a short period, the air pressure returns to the
normal level.

Comparison between API simulated and barometer
assisted on-screen pressure sensing. To demonstrate the
limitation of the traditional software simulated sliding pressure
sensing approach, we collect both barometer readings and the
pressure applied to the smartphone screen, which is based on
the software simulations during the unlocking process of a Z
pattern, in parallel. The results are plotted in Fig. 10.

Previously we have proved the effectiveness of the barome-
ter based sliding pressure sensing approach, as the graph from
this scheme accurately captures the actual activity, and reveals
the variation of the force of the user. On the other hand,
the pressure simulated by the software shows a completely
different trend. This approach simulates pressure values on the
screen panel by the size of the touch point [42], so the results
could be easily affected by the contacting part and angle of
the finger at different moments.

From the above observations, it is safe to say that PresSafe,
which captures the sliding pressure through the variation of
barometer readings, is a highly promising solution balancing

availability and precision. This solution avoids any involve-
ment of dedicated hardware nor additional modifications to
smartphones, thus ensuring the possibly maximum group of
customers being able to benefit from this technology. On the
other hand, it also mitigates the improper pressure detection
method that is common in related works, by providing finer
pressure sensing of the sliding operations.

VI. DATA FUSION AND CHANNEL-ADAPTIVE PROCESS

A. Conventional Behavior Description

For an implicit authentication system, the fundamental is to
get a natural behavioral description during the user’s unlocking
process, which requires not only to sample information from
the traditional interactive interface, i.e., the screen, but also to
unlock the potential and explore more possibilities of ambient
sensors.

In this regard, there are several effective sensors that are
capable of generating the descriptions, e.g., the gyroscope,
the accelerometer, etc. Through our analysis of the collected
data, we find that the unique features of different user’s
unlocking behavior can also be found in the drawing rhythm,
finger movement path, and the pressure applied to the screen
while finger sliding on it. By utilizing these ambient sensors,
along with the exerted pressure sensed by barometer, we can
construct the user’s profile from multiple dimensions and with
different levels of granularity.

To conclude, the behavior description contains the following
information:

1) Plane information. All the behavior descriptions gen-
erated in the smartphone screen space are referred to as plane
information, i.e., the x and y pixel coordinates. This kind of
information reveals the touch preference of the user.

2) Motion information. Since the movement of the user’s
hand has a strong relation with the motion status of the device,
we adopt the data from relevant sensors to represent such
activities, namely the shake, tile, rotation, roll, pitch, and yaw.
Then, the corresponding biometric properties, especially the
ones related to the users’ hands, including the flexibility or
swipe preference, are considered.

3) Pressure information. As discussed in Sec. V, the hold,
squeeze, or touch behavior can result in a force directly exerted
to the chassis of the smartphone. This kind of behavior can
cause a variation of the barometer readings, which can be
recorded and further utilized. We take this feature into account
to mitigate the limitations of conventional API simulated touch
force.

B. Fusion: Combating Sensor Heterogeneity

Since the integration of data both from the barometer and
other ambient sensors is desired, the heterogeneity in the
sensory data should be addressed. First, the sampling processes
of the sensors that are invoked during the unlocking process
are not synchronized. The sampling rate of the barometer is
much lower than that of the IMU sensors, with a gap of up to
3 to 5 times. Second, the sensory data from different sensors
have different physical meanings and different ranges.
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Sensory data, as fetched from different sensors and being
stored in different feature channels in the behavior description,
are represented as a sequence of values

X = (Xd1
1 ,Xd2

2 ,Xd3
3 , · · · ,XdT

T ), (2)

where Xd
i ∈ Rd, for i = 1, 2, · · · , |T |, and d is the

dimensionality of the sensor data (e.g., d = 3, i = 500 in
case of a 3-axis gyroscope reporting 500 samples); T is the
total amount of collected samples, i.e., the count of timesteps.
After concatenating all the sensors’ recordings, the behavior
description B is constructed.

Considering that the sampling rate of each channel (i.e.,
from different sensors) is constant but are different from each
other, we need to ensure the sequential signals share the
same length. Since the signals possess their own physical
connotations, if we use regression to fit them, it will be hard
to determine the proper order of polynomial terms in the
regression process. Instead, we choose to deploy an FFT (Fast
Fourier Transform) based approach to synchronize and align
samples in different channels.

Specifically, we resample the records in different channels
to synchronize their time stamps. The goal of this process is
described as follows.

min

n∑
c=0

d∑
m=0

(E(Xc[m])− S) (3)

where n is the total number of sensors; S is the sync
factor, which will be explained later in this part; E is the
action of acquiring the number of timesteps of the chosen
dimension, whose feedback matches the previously defined T .
For instance, E(X5[1]) represents second dimension of the
6th sensor recordings’ maximum timestep index (index both
starting at 0 for n and d). The goal in this step is to minimize
the accumulated difference between the number of timesteps
of different sensor’s data, and the sync factor S.

To solve problem 3, we need to find the sync factor
S in accordance with the T in different sensor’s different
dimensions. The calculation of S is defined as follows.

S = P{E(Xc[m])} (4)

where c = 0, 1, · · ·n; m = 0, 1, · · · d; P means the
0.8 percentile, which is an empirical setting.

Let Xc[m] be the signal to be up-sampled. Considering T
might be greater than, equal to, or less than S, Algorithm 1
is used to process the signal.

Through our experiments in Section V-A, we observe the
linear correlation between variation of the barometer readings
and the sliding pressure. In the meantime, barometer, being an
environment sensor, can also receive contextual information
from the background that can cause ambiguities. During our
experiments, we find that, first, even when the smartphone is
placed still and not being pressed, the barometer readings still
vary with time. According to our observations, its readings
from a static smartphone could change up to 3hPa in half an
hour. We conjecture that this might be caused by the change
of atmospheric pressure. Second, the barometer reading also
changes as the thermal status of the smartphone shifts. The

Algorithm 1 Process to align the signals.

Input: sync factor, S; raw sensory data, Xc[m];
Output: aligned sensory data, Xc

al[m];
1: while

∑n
c=0

∑d
m=0(E(Xc[m])− S) ̸= 0 do

2: for m = 0, 1, · · · , d do
3: for c = 0, 1, · · · , n do
4: xraw ←Xc[m];
5: T ←E(Xc[m]);
6: if T > S then
7: Xc

al[m]← downsample(xraw, S);
8: else if T = S then
9: Xc

al[m]← xraw;
10: else if T < S then
11: xp ← zero-padding(xraw, S − T );
12: X(ejω)← FFT (xp, S);
13: Xc

al[m]← IFFT (X(ejω), S);
14: end if
15: return Xc

al[m];
16: end for
17: end for
18: end while

room temperature is 13◦C, and we use an infrared thermome-
ter to measure the temperature of the phone, which is 10◦C
initially. After 5 minutes, its temperature rises to 21◦C, which
causes a variation in the internal air pressure up to 2hPa.

The above problems can be mitigated by setting a limit
to the time period of one single enrollment process. Pattern
enrollment for one single attempt cannot take more than 2
minutes, while the normal time consumption of it is usually
less than 20 seconds. Recordings longer than this limit will
be truncated. We propose Algorithm 2 to mitigate the offset
caused by the changes in atmospheric pressure and smartphone
temperature.

Algorithm 2 Process to mitigate the offset in barometer
readings.

Input: aligned sensor data, Xbaro
al [0];

Output: processed barometer data, Xbaro
al [0];

1: Xbaro
al [0]← detrend(Xbaro

al [0]);
2: xinit ←Xbaro

al [0][0];
3: T ←E(Xbaro

al [0]);
4: for t = 0, 1, · · ·T do
5: Xbaro

al eo[0][t]← (Xbaro
al [0][t]− xinit);

6: end for
7: Xbaro

al [0]←Xbaro
al eo[0];

8: return Xbaro
al [0]

In short, detrending and differentiation are applied to the
barometer sensory data Xbaro

al [0] ([0] because barometer
readings are one-dimensional data), so that the trend in the
sequence, if any, is first removed. In addition, the variation
of barometer readings are kept for further analysis, so that the
effects caused by varied starting point of atmospheric pressure
are offset.
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TABLE III: Range of Data in Different Channels of the
Behavior Description

Channel 4 Minimum Maximum

tpX (pixels) 71.72 1411.88

tpY (pixels) 257.77 1440.45

baro (hPa) 1012.37 1026.12

gyrX (◦/s) - 2.68 1.71

gyrY (◦/s) - 4.72 2.62

accX (m/s2) - 8.87 - 0.66

accY (m/s2) - 0.27 9.63

accZ (m/s2) 1.67 8.47

C. Channel-adaptive Data Processing

The amount of training data is always critical for deep
learning to deliver a satisfactory performance. Prior works on
implicit authentication [13], [38], [39] require participants to
repeat data enrollment process multiple times. A long data
enrollment process undoubtedly causes poor user experience,
which urges authentication solutions to take the data acquisi-
tion cost into account.

To ensure good performance under insufficient data, data
augmentation technique is needed to model the differences in
the same user’s behavior in various scenarios. Our intuition is
to use additive noise, e.g., Gaussian noise, to simulate user’s
behavior variations in different scenarios.

Table III shows data sampled from various sensors during
the unlocking process. We notice that the range of gyroscope
readings are very narrow, with an absolute amplitude less
than 5. However, as a result of the atmospheric pressure, the
raw barometer readings are distributed around 1010 mPa. In
addition, the touch positions may vary with the device’s screen
resolutions. Thus, their values span over a rather wide range,
which are distinct from other channels.

Considering the various data ranges, we propose a channel-
adaptive data augmentation mechanism based on jitter signal,
which is a sequence of artificial signal based on Gaussian
noise. Before being applied to each channel, the noise signals
are scaled in advance with the corresponding scaling factor S,
so that the augmented behavior descriptions hardly lose their
original information. The details of this process are provided
in Algorithm 4.

Let mean(x) and std(x) represent the mean and standard
deviation of the input data. Operator F measures the fluctu-
ations in a sequence x(n) as:

F(n) = ln(x(n))− ln(x(n− 1)). (5)

Define the fluctuation weighter W, which combines a
variation of counting function and activation function, so as
to convert the counter result to a probability-like numerical
output using the sigmoid function σ(x) = 1

1+e−x .

4tpX represents the X axis of the touchpoint, baro represents barometer,
gyrX represents the X component of the gyroscope, and accX represents the
X component of the accelerometer.

Algorithm 3 The algorithm of fluctuation weighter W.

Input: sequence data, x;
Output: output value, W(x);

1: counter ← 0;
2: T ←E(x);
3: for n = 1, 2, · · ·T do
4: v(n)←F(x(n));
5: end for
6: for n = 1, 2, · · ·T − 1 do
7: if (sgn(v(n))× sgn(v(n+ 1))) < 0 then
8: counter ← counter + 1;
9: end if

10: end for
11: W(x)← σ(counter);
12: return W(x)

Algorithm 4 The process of channel-adaptive augmentation.

Input: aligned sensor data, Xc
al[m]; jitter signal, J ;

Output: augmented sensor data, Xc
aug[m]; scale factor

U c[m];
1: if U c[m] is void then
2: M c[m]← mean(Xc

al[m]);
3: V c[m]← std(Xc

al[m]);

4: U c[m]← σ(
∑d

m=0(1−10
− V c[m]

Mc[m] )

10×d );
5: end if
6: for m = 0, 1, · · · d do
7: for c = 0, 1, · · ·n do
8: Xc

aug[m]←Xc
al[m]×J×U c[m]×W(Xc

al[m]);
9: end for

10: end for
11: return Xc

aug[m]

Algorithm 4 presents the procedure of only one augmen-
tation process. This process can be performed for multiple
times in order to get a proper amount of data. In conclusion,
this augmentation technique assures that we can synthesize
much more behavior descriptions that can be used to simulate
the user’s action in different scenarios without losing or
overwhelming the raw information contained in some channel
whose original value is small.

VII. HYBRID WORKFLOW AND AUTHENTICATION

To implement an implicit authentication system, one of the
fundamental problems is to acquire a proper description of
the user. However, to implement this through a conventional
approach needs domain knowledge and is time-consuming.
Since we are dealing with privacy-sensitive data on mobile
devices, the balance between energy, convenience, privacy also
need to be carefully considered. In this situation, we propose
a hybrid workflow that is based on transfer learning, so that
user activity representation learning can be integrated with a
lightweight classical authentication algorithm.
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A. The Representation Learner

Most existing works, e.g., [12], [38], [39], required to collect
data of both the device owner and intruder(s) in advance, for
training the multi-class classifier. This requirement diminishes
the value of authentication in real world applications. Some
recent studies [13], [40], [41] applied conventional binary
classifiers to address this problem. But this approach relies
heavily on manually extracted features from the raw data.
Conventional algorithms also have their own drawbacks when
compared to deep learning, though the complex and heavy
computational tasks of deep learning make the training process
of deep learning models unsuitable for local execution, espe-
cially when the terminal is a smartphone. Remote execution,
however, may hurt the security and privacy of user data.

To deal with this dilemma, i.e., Challenge 3, we propose a
hybrid model with a dedicated workflow. Instead of putting all
the authentication on a traditional binary classifier or on a deep
learning based model, we integrate transfer learning and repre-
sentation learning together with traditional machine learning
techniques, so as to partially offload the computational task
from the terminal while addressing privacy concerns, and
taking advantage of both the conventional and light machine
learning algorithms and deep learning models. The structure
of our proposed hybrid model is depicted in Fig. 11.

First, the representation learner is used to bridge the raw
user data and the cascaded classifier algorithm. It takes the
collected data and outputs the corresponding refined user
representations. With the help of user representation, we
can portray the collected user’s behavior information with a
unifying concept, and transform the diversified data collected
from a variety of sensors under this concept, optimizing
the feature extraction process and authentication performance
automatically.

To implement this vision, we propose a timestep-depthwise-
convolution-based structure. We first categorized the input
data as screen-related information, accelerometer-related in-
formation and gyroscope-related information. Then each one
of these groups will first go through the timestep process
unit, in which the data are processed by a time attention
module and a series of 1D convolution on timesteps. Then
the output from the three categories are concatenated, so that
the consolidated data can further be processed in depthwise.
The dimension of the consolidated data is first reduced by a
bottleneck structure to reduce the parameter amount, then the
data are processed by different attention and 1D convolutional
module sets in depthwise. The outputs are added pointwisely
to form a compressed channel information, and then it is again
added by the concatenated timestep information. This process
is expected to gather useful features not only from the view
of timesteps, but also in a depthwise manner.

The output of this model is set as multi-categorized with
softmax as the activation function, and a categorical cross-
entropy as the loss function. This setting is only used during
the model training process: once the parameters are ready,
the several top layers are removed (denoted by R), and
the output from the remaining layers are presented as the
user representation, which can be used by the authentication

module.

B. The Hybrid Workflow and the Implementation of Authenti-
cation

After the generation of user representation, a lightweight
classical authentication module is then cascaded to further
process the information and perform identity recognition. With
the help of binary classifiers, we convert the classification to
an anomaly detection task, avoiding the need of requiring
imposter’s data in advance. The chosen algorithm is the
One-Class Support Vector Machine (OCSVM). It builds the
classification model based on the existing legitimate records
in order to classify new instances as either legitimate or
abnormal.

Then we design a customized hybrid workflow to balance of
the energy, convenience, and privacy. The workflow is shown
as Algorithm 5 and 6. The action of removing several top
layers of a model is denoted by R. With this approach, we
are able to enhance data security and privacy to the possible
highest level, without the need to worry about computational
costs or privacy compromises.

Algorithm 5 Pretraining of the representation learner.

Input: (from volunteers) augmented sensor data, Xaug;
Output: pretrained representation learner, Mpre;

▷ This process happens pre-shipment.
1: while Mpre not converged do
2: Train Mpre with Xaug on servers;
3: end while
4: return Mpre

Algorithm 6 The authentication workflow on terminal device.

Input: (from owner) augmented sensor data, Xaug; (from
undetermined user in an unlocking attempt) aligned
sensor data, Xal; pretrained representation learner, Mpre;

Output: representation extractor, Mex; user representation,
Xre; trained OCSVM model, Mau; user identity, L;

▷ When the registration is launched.
1: while iteration < threshold do
2: Fine-tune Mpre with Xaug locally by a few iterations;
3: end while
4: Mex ←R(Mpre);
5: Xre ←Mex(Xaug);
6: Train Mau with Xre locally;

▷ When an unlocking attempt is launched.
7: Xre ←Mex(Xal);
8: L←Mau(Xre);
9: return L

VIII. EVALUATION

A. Experiment Settings

Patterns. The pattern unlocking tech was first introduced
by Google [44] to enhance the security level of Android
smartphones in 2008, and recent studies [41] have proved that
the following perspectives on pattern unlocking.
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Fig. 11: The structure of the hybrid model.
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Fig. 12: The patterns that are used in our experiments.

1) The longer of the unlocking pattern, the higher the
authentication accuracy.

2) Much information about the behavior features is stored
in the turning corners of an unlocking pattern, while the line
segments barely contribute to authentication.

Based on these analyses, we designed four designated
unlocking patterns for the experiments in this section, which
are illustrated in Fig. 12.

Performance Metrics. The following three metrics are
used to evaluate the performance of PresSafe.

• False Acceptance Rate (FAR) reveals the percentage of
instances in which illegal users are incorrectly accepted
by the authentication system.

• False Rejection Rate (FRR) reveals the percentage of in-
stances in which requests from the actual device owners
are falsely declined.

• Equal Error Rate (EER) is defined as the point on the
receiver operating characteristic curve where FAR equals
FRR. The lower the EER, the more effective the system.

Dataset. To simulate implicit authentication process, we
deployed a dedicated Android application on a Galaxy Note
10+ to collect behavior descriptions from 23 users. Demo-
graphics and other properties of the participants are shown in
Table IV. All participants use their smartphones as an everyday
necessity, and more than three quarters of them are now using
or once used pattern unlocking to secure data.

TABLE IV: Description of the Participants

Specification Property Quantity

Gender Male
Female

14
9

Age
20-22
23-25
25-27

3
17
3

Interact and grip the phone with The same hand
Differnet hands

8
15

Acquisition time

7:00 - 11:00
11:00 - 15:00
15:00 - 19:00
19:00 - 23:00

7
5
6
5

On-site altitude5
50m - 100m
100m - 200m
200m - 450m

12
7
4

During data collection, participants are asked to draw des-
ignated unlocking patterns on a Galaxy Note 10+. For each
pattern, they repeat the drawing for no less than 35 times
to form the dataset. The way to grip the smartphone is not
specified, and they are recommended to use their most favorite
gesture for drawing. In the end, a total of 77,022 behavior
description samples are collected from 812 unlocking attempts
for each unlocking pattern. After the process of adaptive data
augmentation, the amount of behavior description data samples
has been increased by 175 times, to 13,478,850.

Settings. We split the full dataset into a training set and
a validation set with a ratio of 6:4. Then we duplicate the
behavior description in the training set, and remove the data
from one random user. The rest can be seen as the data from
volunteers, as depicted in Fig. 7, which is used to pre-train the
representation learner after the processing techniques proposed
in this paper. For the training part, we also process the full

5On-site altitude refers to the altitude of the place of the corresponding
data are collected.
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TABLE V: Performance Comparison Results

Approach Sensors Involved6 Source of Data7 Classifier8 FAR FRR EER910

Angulo et al. [38] Touch Intruder & Device Owner Random Forest 7.64 % 8.08 % 7.86 %

Liu et al. [13] Touch, Acc Device Owner Statistical
Classifier 3.42 % 14.05 % 8.73 %

Ku et al. [12] Touch, Acc,
Gyr, Mag Intruder & Device Owner Gaussian

Naı̈ve Bayes 1.68 % 3.95 % 2.82 %

Shi et al. [41] Touch, Acc,
Gyr, RV Device Owner One-Class Support

Vector Machine 1.32 % 0.98 % 1.15 %

PresSafe Touch, Acc,
Baro, Gyr Device Owner Hybrid Model 0.45 % 0.49 % 0.47 %

training set using the fusion and channel-adaptive techniques,
and then utilize these data to fine-tune the representation
learner. Once the representation learner is ready, its top layers
are then removed as in Fig. 11, and the remaining structure
generates the corresponding user representation, which is then
taken by the cascaded authentication module for identity
recognition.

To test the performance of our proposed solution, the
validation set is sent to the representation learner directly
to produce user representation, and then the authentication
module will determine the identity of the corresponding user.
Note that the authentication module is an anomaly detector,
and it only takes and generates two kinds of labels, i.e., the
positive one (1), which is taken as the legitimate user, and
the negative one (-1), which is taken as intruders. This way,
proper measurements to deal with the user labels in the dataset
are necessary. For each round while producing the dataset for
pre-training the representation learner, the randomly removed
user is marked as the legitimate user, and the rest as intruders.
While being sent to the authentication module, the user labels
in the relevant dataset are first converted into the binary form,
so that the authentication module can use such data. To get a
more representative result, we enumerate this process, and the
final output score is the mean value to avoid outliers.

B. Overall Performance Comparison

Several pattern-unlcoking-based implicit authentication
schemes are chosen to conduct performance comparison. We
present the details of existing approaches in Table V, including
the data source, classifier, and the reproduced performance. A
clear view of the performance comparison is in Fig. 13.

Due to limited deployed sensors and data processing meth-
ods, the performance of [13], [38] is poorer. The EER of
these two approaches are both higher than 7.5 %, indicating
that they are not the ideal choice in terms of authentication.
The introduction of gyroscope and magnetometer in [12] helps
to reduce EER, but the training process in this work involve

6Acc - Accelerometer, Baro - Barometer, Gyr - Gyroscope, Mag - Mag-
netometer, RV - Rotation Vector Sensor, Touch - Touch screen related
information.

7Data needed for user to train the authentication module.
8The classifier used for authentication. Some work may involve similar

algorithms for other purposes.
9The FAR, FRR and EER of [12], [13], [38], [41] are reproduced results,

which are based on the dataset collected by us.
10The presented FAR, FRR and EER in this table are the mean value of

the results on four preset patterns (Fig. 12) in this experiment.

Argulo et al. [36] Liu et al. [13] Ku et al. [12] Shi et al. [39] PresSafe
0

2

4

6

8

10

12

14

V
al

ue
 (%

)

FAR
FRR
EER

Fig. 13: Performance comparison results.

TABLE VI: On-screen Pressure Sensing Technique Compari-
son

Pressure Resource EER EER Comparison

Barometer-assisted 1.80 % + 0.00 %

API approach 3.78 % + 109.44 %

both the owner and intruder data. This presumption is not
reasonable and obviously restricts its application in the real-
world. Ref. [41] leverages a content-aware module and a
pattern segmentation process, and reduces EER to 1.15 %. But
the pressure sensing technique in Ref. [41] relies on software
simulation and can hardly represent the actual situation. The
best result in this comparison is achieved by our solution,
PresSafe. Although the ambient sensors in our work are more
limited when compared with the existing solutions, PresSafe
achieves an EER of 0.47 %, which is much lower than that
of the baseline schemes. The performance comparison proves
that with the help of the barometer assisted pressure sensing
technique and a series of related approaches, we can elevate
the authentication performance to a higher level.

C. Ablation Study of On-screen Pressure Sensing Technique

To compare the performance of our barometric solution
and the API method, we conduct an ablation study. In this
experiment, the authentication is performed, only using the
on-screen pressure profile, which is captured by the barometer
or the API separately.

Table VI presents the results of the experiment, where
increased value is marked as positive(+). Note that lower EER
indicates a better performance. Compared with our proposed
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Fig. 14: Validation of feature combination, sub-metrics. C1 - C4 represent feature combination 1 - combination 4.

on-screen pressure sensing technique, EER of the conventional
API approach is 109.44 % higher than that of the PresSafe.
The PresSafe still achieves an EER of 1.80 % even when only
relying on the barometer-based on-screen pressure. This result
validates the barometer-based on-screen pressure profile, and
supports our finding in previous empirical experiments. Based
on the experiment results, we conclude that the barometer-
assisted on-screen pressure profile sensing technique does
enhance the overall authentication performance.

D. Validation of Sensor Selection

Implicit authentication heavily relies on the user’s behavior
data to make decisions. To generate proper behavior descrip-
tions, we deployed a set of ambient sensors so that the user’s
actions during the pattern unlocking process can be recorded
at different dimensions. We validate those features involved in
our system by discarding each specific feature.

The combinations are set as follows:
1) Combination 1 (baseline): barometer, gyroscope, ac-

celerometer. This combination is the baseline that is supposed
to present the overall performance of our work.

2) Combination 2: gyroscope, accelerometer.
3) Combination 3: barometer, gyroscope.
4) Combination 4: barometer, accelerometer.
The above readings are sampled from the built-in sensors of

the smartphone used for experiment. All readings are fetched
under the SENSOR DELAY GAME mode, in our case11the
sampling runs under a delay of 20-25 ms. Readings from
the barometer, accelerometer, and gyroscope are floating-point
values, and the readings from accelerometer is an array, which
is consisted of three channels, namely the accX, accY, accZ.
Similarly, the readings from gyroscope are also consisted
of three axes. The results are displayed in Fig. 14. Not
surprisingly, Combination 1 reached the best performance
among all the presets. We also observe that:

First, a sensor set without readings from barometer results in
a drastic deterioration in authentication performance on pattern
L and T. This is mainly because the removal of barometer read-
ings in the behavior description results in the loss of sliding

11Even set to the same delay method, the sampling rate is still device-
specific.

TABLE VII: Binary Classifier Comparison

Classifier FAR FRR EER12 EER
Comparison

13

OCSVM 0.45 % 0.49 % 0.47 % + 0.00 %

IF 2.35 % 2.58 % 2.47 % + 425.53 %

LOF 0.94 % 1.79 % 1.37 % + 191.49 %

pressure information. The comparison proves the importance
of the pressure sensing technique in our solution.

Second, removing accelerometer or gyroscope individually
causes the loss of recordings of the tile and movement status.
We can observe a drop in the overall performance.

Third, the performance in Combination 2 can still match
the comparison studies. We believe this performance proves
the feasibility of our workflow, since the feature extractor
generates proper user representations from raw data.

E. Authentication Module Comparison

We conducted a comparison between three most commonly
used binary classifiers, namely the One-Class Support Vector
Machine (OCSVM), Isolation Forest (IF), and Local Outlier
Factor (LOF). These three binary classifiers can function as the
authentication module mainly because their training does not
involve data from the intruders, thus meeting our workflow’s
requirement.

Table VII shows the results of this comparison. From the
table, it is clear that OCSVM outperforms the other two
classifiers, which is consistent with the finding in related works
[40], [41]. Based on this observation, we choose OCSVM as
the authentication module in the PresSafe.

F. Ablation Study on Channel-adaptive Data Process Module

From our earlier observation, the data augmentation process
is supposed to enhance the generalization and overall perfor-
mance of this system by introducing jitter-added signals to
enhance behavior descriptions. Further, considering the prop-
erties of different channels, signals to be added will be scaled

12The presented FAR, FRR and EER in this table are the mean value of
the results on four preset patterns (Fig. 12) in this experiment.

13Increase in value is marked as positive(+). However, please note that the
lower EER, the better performance.
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Fig. 15: Validation of data augmentation, sub-metrics.

TABLE VIII: Validation of Data Augmentation

Data Augmentation FAR FRR EER

W/ 0.45 % 0.49 % 0.47 %

W/o 2.86 % 3.09 % 2.97 %

with a scaling factor, thus being channel adaptive. To validate
this process, we conduct a performance comparison with or
without data augmentation. Fig. 15 is the sub-metric figure
illustrating the performance, while the values are presented in
Table VIII. The presented FAR, FRR and EER here are the
mean value of the results on four preset patterns (Fig. 12) in
this experiment.

From the results, it is clear that data augmentation helps to
increase the authentication performance. After the augmenta-
tion scheme, FAR is decreased by 84.27 %, FRR by 84.14 %,
and EER by 84.18 %, which indicates that the data augmen-
tation process enhances the system’s overall performance at a
considerable scale.

G. Generalizability of PresSafe

To verify the generalizability of our proposed solution, we
further conduct extensive experiments using different phone
models or in different situations. First, we design a comparison
study to verify if wearing gloves can cause any impacts
on PresSafe. The volunteers wear wool gloves with regular
thickness, and repeat the data collection application for 35
times on the same Galaxy Note 10+, which is used in most
of the experiments throughout this paper. An analysis of the
collected data is presented in Fig. 16.

Wearing gloves causes a larger contact area on the screen,
thus reducing the mean value of the recordings since the force
is distracted. The variance of the four properties on glove-
reading data appears more significant. Range of the glove-
wearing data is also larger. The observations suggest that
the glove-wearing unlocking behavior is a relatively more
unsteady, dynamic process.

Despite the above findings, we notice that the pressure
sensing mechanism still functions well. To explicitly present
the data trend, we use a scaler to process the raw data. The
scaler operation follows Eq. 1 to convert the data column-
wisely, and the processed data are presented in Fig. 17.
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Fig. 16: Box-plot on comparison of the collected data with or
without gloves.
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Fig. 17: Processed barometer readings using the scaler.

It can be seen that the normalized data demonstrate a similar
trend compared to the case of without gloves. The rationale
behind the barometer-aided on-screen pressure sensing still
holds true, no matter what the use-case scenarios is. Fur-
thermore, solutions to properly mitigate the effects of varied
scenarios have already been discussed in [41]. Through our
experiment and analysis, we conclude that, wearing gloves
does not introduce an obvious negative impact on our proposed
authentication approach PresSafe.

Second, we use three other types of phones, i.e., Galaxy S8,
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Galaxy S21, and Xperia 1, to test if the relationship between
the barometric readings and the press events holds true for
different types of smartphones. Fig. 18 demonstrates that, the
barometric relationship underpinning our proposed approach,
namely PresSafe, does holds for these three phones. Albeit
the reactions are not exactly the same, we can still infer press
events from the barometric readings, and further construct the
implicit authentication process.
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Fig. 18: Barometric readings from different types of phones.

Considering the fact that the above phones are all the Ingress
Protection type, i.e., these phones are waterproof models,
we further verify if the previously discussed relationship can
also be observed with non-waterproof models. To do this, we
remove the SIM card tray from the Galaxy Note 10+ and
perform the similar data enrollment process. It can be seen
that, removing SIM card tray results in disintegration of the
sealed chassis, so the phone is not airtight anymore. Fig. 19
shows that barometer readings can no longer reflect the user’s
pressing and sliding actions when the phone is not airtight.
Based on the experiment, it is safe to conclude that, for the
models that are not built airtight, the relationship between
user’s actions and the barometric readings can hardly exist.
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Fig. 19: Barometric readings with the SIM card tray removed.

IX. CONCLUSION

Mobile devices today hold unprecedented amounts of sen-
sitive information, urging heightened security with advanced
authentication approaches while balancing effectiveness and
convenience/user experience. The on-screen pressure sensing
commonly used in the majority of existing solutions lacks
accuracy as it relies on an approximate system API which has
been shown inadequate. In this paper, we proposed PresSafe

to utilize barometer readings to better model and measure on-
screen pressure portrait. We presented a set of experiments to
validate our approach and quantify its advantages, utilizing
70,000 records collected from 23 volunteers in 6 different
locations. Evaluation results showed that PresSafe achieved
an FAR of 0.45 %, an FRR of 0.49 %, and an EER of 0.47
%, which represented a superior performance when compared
with several existing solutions.

Our work can be extended in several ways. First, we could
adopt additional approaches including Generative Adversarial
Networks and other models for data augmentation. This will
be examined in our future work. Also, the devices used for
validating our approach are relatively limited in capabilities
and resources. In future work we will include a broader range
of commercial smartphones from budget to Pro models. Third,
the features of user’s behavior, specifically the sliding and
press inclination of the fingers, usually remain stable and
constant. However, we admit that for a comparatively long
period of time, i.e., over the years, there remains possibilities
that some specific events may cause this behavior to vary. In
this case, we could add some mechanisms to slowly adapt
the representation learner and the authentication module on
regular basis.
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