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Abstract 16 

Street dust resuspension is one of the main sources of particulate matter with impacts on air 17 

quality, health and climate. This research was aimed to determine the concentration, source, 18 

and health risk of polycyclic aromatic hydrocarbons (PAHs) in street dust of Mashhad city. To 19 

this end, PAHs were measured in 84 dust samples using gas chromatography coupled to mass 20 

spectrometry (GC-MS). The source of PAHs was identified using diagnostic ratios (DRs), 21 

positive matrix factorization (PMF), and principal component analysis (PCA). The measured 22 

PAHs demonstrated different spatial concentrations (from 1,005 µg kg-1 to 9,138.96 µg kg-1) 23 

and showed higher levels in summer (1,206.21-9,138.96 µg kg-1), although 4-ring PAHs 24 

exhibited maximum levels in both summer and winter. The findings revealed that the dust-25 

deposited PAHs are predominantly emitted through combustion of fossil fuels (such as diesel 26 

and gasoline) and natural gas. The total incremental lifetime cancer risk (ILCR) was assessed 27 

https://www.mendeley.com/profiles/susanne-charlesworth/


by considering three possible exposure routes separately for children and adults, and revealed 28 

carcinogenic risk values of 2.24E-06 and 2.14E-06, respectively. for children and adults in both 29 

seasons, about two times higher than the baseline value (1.0E-06). 30 

Keywords: street dust, PAHs, air pollution, source apportionment, health risk assessment. 31 

 32 

Introduction 33 

     Street dust can be considered as an archive of various urban air pollutants and could 34 

represent air quality (Alves et al., 2019). The street dust in urban areas contains a heterogeneous 35 

mixture of particles mainly produced by anthropogenic causes, such as vehicle exhausts, brake 36 

wears, tire debris, building demolitions, construction materials, wear of road pavement material 37 

or asphalt, and lubricant oil spill (Pant and Harrison, 2013). Due to the small size of 38 

resuspended dust particles and their intrinsic mobility, both direct (such as inhalation and 39 

ingestion) and indirect (such as skin) exposure cause human health risks (Zhen et al., 2020). 40 

Therefore, it is of high importance to measure the concentration of pollutants in street dust, 41 

identify their sources, and assess the potential hazards (Alves et al., 2019).  42 

     Polycyclic aromatic hydrocarbons (PAHs) are one the most ubiquitous classes of persistent 43 

organic pollutants (POPs) mainly found in urban environments (Liu et al., 2019). Due to their 44 

severe toxicity and prevalence, 16 PAHs have been identified as high priority pollutants by the 45 

United States Environmental Protection Agency (USEPA) (Ali et al., 2020). These organic 46 

molecules have attracted serious attention because of their carcinogenic and mutagenic nature 47 

(Huo et al., 2019) as well as remarkable environmental persistence (Liu et al., 2019; Wang et 48 

al., 2017). In the urban environments, PAHs are predominately released through incomple te 49 

combustion of organic materials (e.g., liquid fossil fuel, crude oil, and gas) by vehicles and 50 

power plants and spill of petroleum-based products by industrial and waste treatment processes 51 



(Dong and Lee, 2009). Moreover, atmospheric precipitation (rain, snow, fog), as well as 52 

aerosols and gases, is another source of PAHs in urban areas (Franco et al., 2017; Škrbić et al., 53 

2019). Depending on the emitting sources, two categories of PAHs with two or more fused 54 

benzene rings arranged in various configurations are produced; molecules with 2-3 rings are 55 

mainly produced by petrogenic sources but the others by pyrogenic ones (Moeinaddini et al., 56 

2014b).  57 

       PAHs can bound to street dust and other particulate matters because of their semi-volat ile 58 

feature; that is, these organic molecules could accumulate in eventually harmful quantit ies. 59 

Surface dust resuspension by wind or vehicle motion and, in turn, exposure to the dust-bound 60 

PAHs could induce adverse human health risks, especially in metropolitans (Pant and Harrison, 61 

2013; Škrbić et al., 2019). Previous research reported a wide variety of health risks caused by 62 

PAHs, including skin, lung, bladder, and gastrointestinal cancers, DNA damages, cataracts, 63 

kidney dysfunctions, and liver diseases (Kim et al., 2013). Hence, characterizing the origin and 64 

dominant sources as well as the distribution and concentration of PAHs in the street dust is of 65 

high importance to design appropriate risk assessments and management strategies (Garcia et 66 

al., 2014; Ghanavati et al., 2019; Moeinaddini et al., 2014a; Pant and Harrison, 2013; Teixeira 67 

et al., 2015; Wang et al., 2017). Source apportionment of PAHs is performed through different 68 

approaches. Source apportionment of PAHs is performed through different approaches (Aldabe 69 

et al., 2011; Javed et al., 2019; Teixeira et al., 2015; Teixeira et al., 2013; Zheng et al., 2017). 70 

One of the methods is the Positive Matrix Factorization (PMF) model that mathematica l ly 71 

apportions the sources of PAHs based on the concentrations measured at the receptor site (Li 72 

et al., 2017; Teixeira et al., 2015; Teixeira et al., 2013; Zheng et al., 2017). 73 

     Mashhad is the largest and second largest religious city in Iran and the world, respectively. 74 

Concerning air quality, this metropolitan ranks the second polluted city in Iran because of its 75 

increasing constant population and industrial activity as well as attracting over 20 million 76 



foreign tourists and pilgrims from Azerbaijan, Bahrain, Kuwait, Iraq, Lebanon, Pakistan, 77 

Afghanistan, and Qatar which annually visit the city (Azari and Arintono, 2012; Talebian and 78 

Riza, 2020). Despite the crucial national and international importance of Mashhad city, there 79 

remains a paucity of evidence concerning the contamination of the USEPA's 16 priority PAHs 80 

in the urban area. Therefore, the present research was aimed to quantitatively and qualitative ly 81 

assess the concentration of PAHs in street dust of Mashhad, analyze the spatio-temporal 82 

variation and distribution of PAHs, identify the PAHs sources using DRs (diagnostic ratios), 83 

PCA (principal component analysis), and PMF (positive matrix factorization), and determine 84 

the human health risk of PAHs through the incremental lifetime cancer risk (ILCR) method. 85 

2. Material and methods 86 

2.1. Study area and Sampling  87 

     Mashhad city is located in the north-east of Iran (36° 21' 28" N; 59° 33' 20" E), about 985 88 

m above sea level (Fig. 1). The area has a temperate climate and annually experiences 270-300 89 

days of thermal inversion. Street dust was collected from 42 locations with five replicates in 90 

September 2018 and January 2019 (Fig. 1). The sampling was performed in dry weather, and 91 

the collected dust was kept in a solvent-wrapped aluminum foil bag and stored at −20 °C until 92 

the laboratory analysis (Azimi et al., 2018; Najmeddin and Keshavarzi, 2019). The samples 93 

were dried at room temperature using a desiccator and then passed through a stainless steel 94 

sieve (63 µm mesh). The sieved dust samples were stored at −4 °C in a refrigerator for PAHs 95 

analyses (Dong and Lee, 2009; Škrbić et al., 2019). 96 



 97 
 98 
Fig. 1. Study area and sampling site locations in the city of Mashhad, Northeastern Iran. 99 

 100 

2.2. Material and chemicals  101 

         To measure PAHs concentrations, a mixture of the following 16 USEPA priority PAHs 102 

was used: Naphthalene (Nap), Acenaphthylene (Acy), Acenaphthene (Ace), Fluorene (Flo), 103 

Phenanthrene (Phe), Anthracene (Ant), Fluoranthene (Flt), Pyrene (Pyr), Benzo(a)anthracene 104 

(BaA), Chrysene (Chr), Benzo(b)fluoranthene (BbF), Benzo(k)fluoranthene (BkF), Benzo (a) 105 

pyrene (BaP), Indeno (1,2,3,cd), pyrene (InP), Dibenzo(a,h)anthracene (DahA), 106 

Benzo(ghi)perylene (BghiP). For quality control of the protocol, a mixture of recovery 107 

surrogates containing 200 µg kg–1 of naphthalene-d8, phenanthrene-d10, chrysene-d12, and 108 

perylene-d12 was used as the internal standard. The standard solutions were obtained from 109 

Sigma-Aldrich, and the organic reagents including acetone, methanol, dichloromethane, and n-110 

hexane used during the analysis were HPLC-grade and purchased from Merck (Darmstadt, 111 

Germany). 112 



2. 3. PAH extraction and analysis         113 

    The PAHs were extracted and measured based on the method described by Zakariaa et al 114 

(2000), with some modifications. The dust samples were Soxhlet extracted using 100 ml of 115 

dichloromethane for 12 h (Zakaria et al., 2000). About 5 g dust collected at each station was 116 

freeze dried for 72 h and then 100 µL of the surrogate internal standard mixture (i.e., 117 

naphthalene-d8, phenanthrene-d10, chrysene-d12, and perylene-d12) was added to the samples. 118 

The dust samples were Soxhlet with 100 mL dichloromethane for 12 hours. The obtained 119 

supernatant was evaporated using a rotary. The concentrated extract was further evaporated to 120 

0.1 ml using a nitrogen blowing instrument and then kept in a refrigerator at 4 °C. To remove 121 

any organic contaminant, the glassware were rinsed with methanol, acetone, and hexane and 122 

then kept in an oven at 60 °C for 2 h.  123 

      The concentrations of PAHs were determined using an Agilent gas chromatography (Model 124 

7890A) coupled to a quadrupole mass spectrometer (GC–MS; Model 5975C MSD). The GC-125 

MS instrument was equipped with a fused silica capillary column covered with 5% 126 

phenylmethyl siloxane (Agilent DB-5MS). The target PAHs were detected according to their 127 

m/z and retention times in the selected ion monitoring (SIM) mode (Aceves and Grimalt, 1993; 128 

Azimi et al., 2018). The GC-MS condition was optimized at 70eV ionization potential with the 129 

source at 200 °C and electron multiplier voltage at ~ 2000 eV. The injection port was 130 

maintained at 310 °C and operated in split-less mode (splitter valve off by 1 min). The column 131 

temperature was adjusted at 70 °C for 2 min, increased to 150 °C  (30 °C min-1) and then to 132 

310 °C (4 °C min-1),  maintaining the isothermal conditions for 10 min. Helium was used as 133 

the carrier gas at a constant pressure of 15 psi.  134 

2.3. Method validation 135 

      The quality assurance and quality control of the method used for measuring the PAHs levels 136 

were determined using the laboratory blanks and spiked recoveries during the sample 137 



collection, preservation, and analysis (Bakhtiari et al., 2009; Zakaria et al., 2000). About 200 138 

μl of the above-mentioned surrogate internal standard, containing 5 ppm of a mixture of 139 

naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12, and perylene-d4, was 140 

spiked to determine the recovery of the target PAHs. Constituents of the spiked surrogate 141 

internal standard demonstrated a recovery between 87% and 104%. PAHs showed a recovery 142 

between 87% and 104% in summer and 84% and 107% in winter. The protocol performance 143 

was assessed using relative standard deviation (RSD); the RSD was measured through 144 

analyzing five replicates of the same sample and showed a value of <9% for all of the PAHs.  145 

2. 4. Source apportionment techniques 146 

2. 4.1. Diagnostic ratios and Principal component analysis (PCA) 147 

       Diagnostic ratios of PAHs including Phe/Ant, BbF/BkF, BaP/BghiP, InP/BghiP, Pyr/BaP, 148 

BaA/(BaA+Chr), Flt/(Flt+Pyr) and InP/(InP+BghiP) were used to identify the pyrogenic and 149 

anthropogenic possible sources of PAHs in the street dust samples (Moeinaddini et al., 2014b; 150 

Mon et al., 2020; Ravindra et al., 2008). Principal component analysis (PCA) was applied to 151 

identify patterns and associations of individual PAHs. Kaiser-Meyer-Olkin (KMO) test and 152 

Bartlett test were used to determine the adequacy of data for Factor Analysis (FA); KMO value 153 

of >0.6 was considered suitable for FA of the PAHs in summer and winter (Moeinaddini et al., 154 

2014b). Moreover, Varimax rotation besides PCA (eigenvalues >1) was used for source 155 

grouping, and PAHs with a factor loading of >0.5 were selected as the representative species 156 

of the factor (Ravindra et al., 2008; Wang et al., 2011a). 157 

2. 4.2. Positive matrix factorization (PMF)  158 

       The US EPA’s PMF model software (version 5.0: https:// www.epa.gov / sites / production 159 

/ files / 2015 - 02 / documents / pmf_5.0_user_guide.pdf) was also used to identify the source 160 

apportionment and to quantify the major dust sources in the study area (USEPA, 2014). Total 161 

concentrations of PAHs were used as input data. The uncertainties of the target PAHs were 162 



calculated according to the values of method detection limits (MDL) (2014), see more details 163 

in the supplementary file (section A1). The model was bootstrapped by 100 runs with a 164 

minimum correlation of 0.7, and random seed. Three to seven factors were assessed and the 165 

optimal factor was selected based on the Q value slope versus the factors’ numbers (Javed et 166 

al., 2019; Lang et al., 2015; Teixeira et al., 2015).  167 

2. 5. Human health and cancer risk assessment  168 

     The toxic equivalency factor (TEF) was used to estimate the potential carcinogenic risk of 169 

the target PAHs in the dust samples. To this end, Benzo[a]pyrene (BaP) was applied as the 170 

reference molecule with a TEF value of 1, and this index was determined for other PAHs 171 

(Nisbet and Lagoy, 1992). The toxic equivalent quantities (TEQs) for the street dust was 172 

calculated as follows:  173 

TEQs = ∑ 𝐶𝑖 × 𝑇𝐸𝐹𝑖                                                                                                                      (1) 174 

Where Ci is the concentration of PAHi and TEFi is the corresponding toxic equivalency factor 175 

value. TEF values of the measured PAHs were adopted from two previously published reports, 176 

see Table 1 (Malcolm and Dobson, 1994; Nisbet and Lagoy, 1992). 177 

       The potential cancer risk of the measured PAHs was determined using the incrementa l 178 

lifetime cancer risks from the main exposure routes including ingestion, inhalation, and dermal 179 

contact (ILCRs; equations 2–5) (EPA, 1991). The ILCRs of ingestion, dermal contact, and 180 

inhalation were calculated using the following equations (Ma et al., 2017; Martuzevicius et al., 181 

2011): 182 

ILCRsIngestion =

CS × (CSFingestion  ×  √BW
70

3

) × IRingestion × EF × ED

BW × AT × 106
     (2) 183 



ILCRsDermal =

CS × (CSFDermal  × √BW
70

3

) × SA × AF × ABS × EF × ED

BW × AT × 106
     (3) 184 

ILCRsInhalation =

CS × (CSFinhalation  ×  √BW
70

3

) × IR inhalation × EF × ED

BW × AT × PEF
     (4) 185 

Carcinogenic Risk =  ILCRIngestion +  ILCRDermal  +  ILCRInhalation       (5) 186 

     Where CS is the sum of converted PAH concentrations based on toxic equivalents of BaP 187 

using the TEFs; CSF, cancer slope factor (mg kg–1 day–1); BW, body weight (kg); AT, average 188 

life span (day); EF, exposure frequency (day year–1); ED, exposure duration (year); IRInhalation, 189 

inhalation rate (m3 day–1); IRIngestion, dust intake rate (mg day–1); SA, dermal surface exposure 190 

(cm2); AF, dermal adherence factor (mg cm–2); ABS, dermal adsorption fraction; and PEF, 191 

particle emission factor (m3 kg–1). Table S1 shows the other parameters (supplementary 192 

section). 193 

3. Results and discussion 194 

3.1. PAH concentrations and spatial distribution 195 

        Total concentration of the 16 PAHs (ΣPAH) demonstrated a range between 1,206.21-196 

9,138.96 µg kg-1 dw (Avg. 2771.19 µg kg-1 dw) and between 1,005-7864.77 µg kg-1 dw (Avg. 197 

2369.89 µg kg-1 dw) in the dust samples collected in summer and winter, respectively (Table 1 198 

and Fig. 2). Irrespective of this seasonal difference, the target PAHs exhibited a similar 199 

proportion among all of the locations (Fig. 2). Six locations (S5, S36, S42, S39, and S40) of 200 

the study area exhibited higher ΣPAH levels in summer. These locations are the nearby regions 201 

with high traffic density and air pollution, including underpass of the holy shrine (Imam Reza), 202 

airport, railway station, and bus terminal. The higher levels of PAHs at these locations could 203 

be ascribed to the public transport systems and passenger vehicles of the pilgrims and tourists 204 

(over 20 million) being annually attracted to Mashhad city in summer. According to the 205 



transportation statistics annual report of Mashhad, fuel consumption (gasoline and diesel) is 206 

significantly increased during summer, due to the influx of summer tourists and pilgrims 207 

(Talebian and Riza, 2020). However, the lowest levels of ΣPAHs were measured in the 208 

residential locations and this could stem from the combustion of natural gas that produces lower 209 

PAHs in comparison to solid and liquid fuels. The levels of dust-bound ∑PAHs were higher 210 

than those reported previously for some urban areas of Iranian cities such as Bushehr (1,116.2 211 

µg kg-1 dw, (Keshavarzi et al., 2020)), Isfahan (1,074.6 µg kg-1 dw, (Soltani et al., 2015)) and 212 

Ahvaz (1,031.5 µg kg-1 dw, (Najmeddin and Keshavarzi, 2019)) but lower than those measured 213 

in Lanzhou, China (Jiang et al., 2014), Tokyo, Japan (Takada et al., 1991), Newcastle, UK 214 

(Lorenzi et al., 2011), Cairo,Egypt (Hassanien and Abdel-Latif, 2008) and Ulsan, Korea (Dong 215 

and Lee, 2009) (See Table S2; supplementary data).  216 

 217 

 218 
 219 
Fig. 2. Box-plot of percentage concentration for the PAHs in Mashhad street dust samples in summer (blue) and 220 
winter (red). 221 
 222 

The ∑PAHs in dust samples exhibited higher levels when compare to those of previous 223 

reported for some urban areas of Egypt, 27-379 µg kg-1 (Mostafa et al., 2009); Kuala Lumpur, 224 

116-332 µg kg-1 (Omar et al., 2002); and Jalalabad, 288 µg kg-1  (Khpalwak et al., 2019) and 225 



forest areas of the Alps (77-501 µg kg-1 , 185 µg kg-1) (Belis et al., 2009) but showed lower 226 

concentrations than those measured in Guangzhou, 840-12400 µg kg-1(Wang et al., 2011b); 227 

Xian, 500-48000 µg kg-1 (Wang et al., 2016); and Nepal, 747-4910 µg kg-(Yadav et al., 2018). 228 

Table 1. Concentration, statistical parameters, and toxicity aspects of PAHs in the street dust of 229 

Mashhad in summer and winter. 230 

  Summer Winter 

Compound TEF Min Max  Mean Median SD Min Max  Mean Median 

Nap 0.001 28.49 271.73 53.45 40.97 39.06 33.45 214.74 57.65 53.89 

Acy 0.001 11.47 237.24 23.59 15.71 34.62 11.04 156.04 21.36 16.14 

Ace 0.001 22.14 215.56 35.01 27.06 29.68 17.07 194.41 29.05 24.13 

Flo 0.001 77.95 713.56 130.20 116.68 94.83 72.09 588.20 113.79 96.39 

Phe 0.001 126.64 995.51 268.85 261.77 138.03 90.79 1254.83 207.01 175.86 

Ant 0.01 129.43 797.05 199.83 181.67 99.13 41.18 297.51 95.59 85.03 

Flt 0.001 132.58 563.98 266.28 253.28 88.00 123.82 545.07 241.53 231.54 

Pyr 0.001 135.99 985.05 327.02 299.15 152.91 128.84 793.45 289.84 255.88 

BaA 0.1 25.24 859.03 242.54 212.99 176.26 32.29 706.06 201.98 181.69 

Chry 0.01 100.05 611.13 239.86 214.68 109.55 108.80 644.63 222.67 197.95 

BbF 0.1 13.71 502.25 146.24 134.32 88.98 54.73 358.18 150.86 158.57 

BkF 0.1 11.25 473.70 99.39 93.05 73.89 42.22 329.38 107.98 99.61 

BaP 1 51.32 641.24 168.96 166.49 95.97 52.93 517.05 169.15 163.73 

DahA 1 69.11 223.39 118.86 115.57 38.19 22.87 360.54 108.66 87.34 

InP 0.1 63.42 479.63 182.81 175.88 75.02 54.70 272.52 139.45 140.46 

BghiP 0.01 107.28 568.89 268.35 244.98 111.27 74.92 715.52 212.36 177.37 

∑PAHs  1206.21 9138.96 2771.19 2571.50 1294.89 1005.00 7864.77 2369.86 2285.13 

2–3 rings  19.87 35.35 26.19 25.44 4.47 15.01 34.40 22.09 21.84 

4 rings  29.60 45.56 38.35 39.26 4.33 33.54 49.04 40.42 40.97 

5-6 rings  28.21 41.90 35.46 35.33 3.27 30.58 44.81 37.45 38.06 

TEQ  150.32 1350.46 420.66 409.07 198.36 127.07 901.96 371.81 371.85 

 231 

The observed differences in the dust–bounded PAHs concentrations among these areas could 232 

be associated with the economical level, industrial structure, traffic density, population, 233 

precipitation, meteorological condition, and the particle size of street dust (Hussain et al., 2015) 234 

(See Table S2; supplementary data). 235 

Higher levels of PAHs were detected in summer than that of in winter, and this finding could 236 

be linked to the heavy washout in winter, thereby eliminating the adsorbed PAHs from street 237 

surface (Gope et al. 2018). According to ∑PAHs concentrations, soil is categorized into four 238 

classes as follows: uncontaminated, ∑PAHs < 200 ng g-1; weakly contaminated, ∑PAHs = 239 

200–600 ng g-1; contaminated, ∑PAHs = 600–1000 ng g-1; and heavily contaminated, ∑PAHs 240 



> 1000 ng g-1 (Maliszewska-Kordybach, 1996). Accordingly, the street dust in the studied area 241 

of Mashhad could be classified as heavily PAHs contaminated dust. 242 

 3.2. Composition of dust PAHs  243 

  PAHs composition of street dust in urban environments could reveal the sources and potential 244 

risk to human health. According to their molecular structure, the measured PAHs were 245 

categorized into three groups and exhibited the seasonal percentages in the order of 4 rings 246 

(summer, 38.35%; winter, 40.42%)> 5–6 rings (summer, 35.46 %; winter, 37.45%)> and 2–3 247 

rings (summer, 26.19%; winter, 22.09%) (Table 1 and Fig. 2.). Possible explanations for this 248 

might be ascribed to higher volatility of the 2-3 ring molecules than high molecular weight 249 

(HMW) PAHs as well as higher tendency of HMW-PAHs to adhere to street dust (Chung et 250 

al., 2007; Keshavarzi et al., 2020; Wang et al., 2011a). Moreover, the observed higher levels 251 

of HMW-PAHs could reveal their sources from petroleum fuel combustion (Liu et al., 2007; 252 

Najmeddin et al., 2018; Wang et al., 2017). In accordance with the present results, previous 253 

studies have detected higher concentrations of HMW-PAHs in street dust from various urban 254 

areas. The findings were largely attributed to pyrogenic sources (especially vehicle exhaust 255 

emissions) (Bandowe and Nkansah, 2016), non-exhaust sources (e.g., brake wear, asphalt, 256 

petroleum, and oil emissions from automobiles and motorbikes) (Majumdar et al., 2012), and 257 

biomass burning (Tobiszewski and Namieśnik, 2012).  258 

    Among the sampling locations, the street dust collected at S5 displayed different PAHs 259 

composition (about 68%; 2-3 rings and 4 rings). The 2–3 ring molecules demonstrated the 260 

highest percentage (35.35% in summer and 34.40% in winter), followed by 4 rings (33.04% in 261 

summer and 34.19% in winter), and 5–6 rings (31.61% in summer and 31.40% in winter). This 262 

result may be explained by the fact that this station (the holy shrine underpass) always undergo 263 

heavy automobile traffic where vehicles slow down or stop whereupon their engines run at 264 



lower temperatures (Song et al., 2005). The holy shrine underpass receives no sun radiation, 265 

especially UV radiation and have lower temperature in comparison with the surrounded streets. 266 

Accordingly, the dust-bounded PAHs in the underpass are subjected to lower photo-267 

degradation during both summer and winter (Škrbić et al., 2019).  268 

3.4. PAHs sources  269 

  The characteristic ratios of Flt/Flt+Pyr, Ant/Ant+Phe, InP/InP+Bghi, BaA/BaA+Chr, 270 

BbF/BkF, BaP/BghiP, InP/BghiP, and Pyr/BaP are presented in Table S3 and Fig. 3. The values 271 

of <0.4, 0.4–0.5, and >0.5 for Flt/Flt+Pyr indicate the presence of petroleum, liquid fossil fuel 272 

combustion, and biomass and coal combustion sources, respectively, (Jiang et al., 2014; 273 

Tobiszewski and Namieśnik, 2012).  274 

 275 
 276 
Fig. 3. Triangular diagram of diagnostic ratios based on PAH parents and isomers for source identification in 277 
Mashhad street dust samples (a) in summer and (b) winter 278 
 279 



BaA/(BaA+Chr) ratios of <0.2, 0.2-0.35, and >0.35, respectively, reflect the origin of PAHs 280 

from petrogenic material, coal combustion, and vehicular emission. In the present study, 281 

Flt/Flt+Pyr showed a value of 0.46 for the collected dust samples in both summer and winter 282 

and suggested that liquid fossil fuel combustion was the major pyrogenic source of the PAHs. 283 

The BaA/(BaA+Chr) ratio of 0.46 in summer and 0.45 in winter revealed the strong 284 

contribution of vehicles to PAHs emission in the study area. InP/(InP+BghiP) ratio in both 285 

seasons showed a value of 0.41, suggesting the meaningful contribution of vehicles as well as 286 

diesel and petroleum combustions as the emission sources in the area (Jafarabadi et al., 2017; 287 

Jiang et al., 2014; Yunker et al., 2002). Further three indices (BbF/BkF ratio of >0.5; 288 

BaP/BghiP ratio of >0.5; and Pyr/BaP ratio of >1) also confirmed the association between 289 

diesel/gasoline combustion and the street dust PAHs (Table S3)  (Caricchia et al., 1999), and 290 

all of the ratios highlighted pyrogenic materials, especially liquid fossil fuel combustion, as the 291 

major sources of the target PAHs in Mashhad city. Cluster analysis was performed to identify 292 

the temporal correlation among the PAHs and/or sampling stations (Fig. 4). Due to their 293 

different scales, the variables (i.e., PAHs and stations) were standardized and illustrated by a 294 

dual dendrogram. The horizontal and vertical axes, respectively, illustrate the clustering of 295 

sampling sites according to PAHs and the similarities among the stations. The detected PAHs 296 

showed a fairly similar distribution across the area in both summer and winter. Cluster analys is 297 

distinguished two major groups of detected PAHs in both seasons. The low molecular weight 298 

PAHs with 2–3 rings (Acy, Ace, Flo, Phe, Nap, and Ant) that are abundant in petrogenic 299 

sources and mainly produced by petroleum sources were clustered into a separate group. 300 

However, the molecules with 4 rings (BaA, Flt, Chry, and Pyr) and 5-6 (BbF, BkF, Bap, DahA, 301 

InP, and BghiP) rings were categorized in another group and these PAHs are usually detected 302 

in pyrogenic source, e.g., combustion of coal, wood, vehicle fuel and waste tire (Liu et al., 303 

2009). As to sampling site clustering, two main groups were observed; location S5 (group 1) 304 



was related to the dust samples collected from the underpass of the holy shrine and showed a 305 

great distance from the other groups or subgroups. Subgroup 2 demonstrated the sites around 306 

the city across which diesel-powered trucks and gasoline-powered private cars pass all day and 307 

all night. Subgroup 3 showed higher PAHs concentrations than subgroups 1 and 2 and was 308 

related to the city center with dense traffic by gasoline-fuelled cars as well as the airport, bus 309 

terminal, and railway station. Subgroup 4 covers the areas with medium and low traffic 310 

densities, especially residential buildings. The cluster analysis revealed a close correlation 311 

between the PAHs distribution pattern in the street dust and regional traffic status.   312 

 313 

 314 
Fig. 4. Heat-map (DHCA) showing correlations between PAHs and street dust samples (a) in summer 315 
and (b) winter, from Mashhad, Northeast Iran.  Note: Samples are labelled and clustered at columns 316 
and rows as highest value (light to dark red), moderate value (light to dark green and yellow) and lowest 317 
value (light to dark blue). 318 
         319 
3.3. Source apportionment using PCA and PMF  320 



       PCA has been used to locate the major sources of air pollutants. In this research, PCA with 321 

the varimax rotation classified the 16 PAH congeners into three factors that accounted for 91% 322 

and 89% of the total data variance in summer and winter, respectively (Table 2 and  323 

Fig. 5). Factor 1 contributes 40% in summer and 39.01% in winter of the total variance and 324 

shows a strong association between Nap, Acy, Ace, Flo, Phe, Ant, BkF, and Bap, indicat ing 325 

the presence of fossil fuel, biomass and oil combustion sources (Khalili et al., 1995; Larsen 326 

and Baker, 2003; Zhang et al., 2017) and Flo, Phe and Ant as markers of oil combustion 327 

(Caricchia et al., 1999; Dong and Lee, 2009; Harrison et al., 1996). In accordance with the 328 

present results, previous studies have demonstrated relatively high factor loadings for Ace, 329 

Acy, and Phe from wood and fossil fuels such as liquefied petroleum gas and coal combustion 330 

(Ghanavati et al., 2019; Guo et al., 2003; Škrbić et al., 2019; Soltani et al., 2015) and identified 331 

BkF and BbF as markers of fossil fuel combustion (Park et al., 2002; Sulong et al., 2019; 332 

Tobiszewski and Namieśnik, 2012). Factor 2 accounts for 34.33% of the total variance in 333 

summer and 34.27% in winter and is characterized by high loadings of HMW-PAHs (Chr, 334 

BaA, Flt, Pyr, BaP, InP, and BghiP), suggesting vehicle-related sources such as diesel and 335 

gasoline [33, 67, 74, 75, 76, 77]. Factor 3 accounts for 16.76% of total variance in summer and 336 

15.67% in winter and was correlated with HMW-PAHs (BaA, Chr, BbF, DahA, and InP). The 337 

third factor recognized the proportion of natural gas combustion and steel and power plants 338 

(Moeinaddini et al., 2014a; Ravindra et al., 2008; Yang et al., 1998). Due to lower pressure of 339 

natural gas in cold seasons, industrial plants (station 23) in Mashhad mainly utilize gasoline 340 

instead of natural gas, thereby emitting higher levels of PHAs during winter.   341 

 342 



 343 
Fig. 5. Biplot illustrating PCA for PAHs in street dust samples (a) in summer and (b) winter, from 344 
Mashhad, Northeast Iran.   345 
 346 
Moreover, the residents mainly use natural gas to heat houses and offices in winter. These 347 

results seem to be consistent with other research which attributed high concentration of BbF to 348 

heavy oil combustion and DahA to power plants as well as BaP, BaA, BeP to steel industry 349 

(Wang et al., 2011a). The PCA analysis ranked liquid fossil fuel combustion and vehicular 350 



emission as the first sources of the PAHs in the study area and identified similar pattern for 351 

their concentrations in summer and winter.  352 

Table 2. The results of principal component analysis (PCA) for PAHs in summer and winter. 353 
 354 

 355 
PAH factor 

 Summer Winter 

 1 2 3 1 2 3 

Nap 0.82 0.42 0.22 0.87 0.37 0.26 

Acy 0.93 0.25 0.23 0.93 0.19 0.28 

Ace 0.93 0.22 0.23 0.92 0.20 0.28 

Flo 0.90 0.34 0.24 0.90 0.31 0.26 

Phe 0.68 0.59 0.37 0.84 0.39 0.32 

Ant 0.79 0.28 0.52 0.45 0.30 0.75 

Flt 0.30 0.84 0.36 0.40 0.74 0.45 

Pyr 0.48 0.79 0.33 0.49 0.75 0.33 

BaA 0.35 0.73 0.52 0.37 0.66 0.56 

Chr 0.32 0.59 0.58 0.42 0.67 0.51 

BbF 0.46 0.49 0.63 0.47 0.74 0.22 

BkF 0.68 0.48 0.42 0.61 0.68 0.15 

BaP 0.63 0.65 0.32 0.55 0.74 0.25 

DahA 0.26 0.37 0.80 0.30 0.45 0.75 

InP 0.43 0.60 0.53 -0.10 0.84 0.22 

BghiP 0.23 0.92 0.21 0.50 0.69 0.35 
a Values in bold/italics are for factor loading values >0.5 and indicate important factors for each component 356 

 357 

    As a receptor-based model, PMF has been widely used for source apportionment of various 358 

environmental pollutants (Gope et al., 2020; Teixeira et al., 2013; Xia et al., 2020). The optimal 359 

number of factors for PMF analysis was determined by resetting the number of sources (from 360 

3 to 7) and produced a Q value close to the number of freedom degrees, indicating an 361 

appropriate uncertainty in the modeling input. The factors provided the minimum Q (Robust)/ 362 

Qexp value were considered as the optimum ones. Four appropriate factors were identified by 363 

the PMF model. The PMF model demonstrated different results from those observed by PCA. 364 

Regardless of season, PMF model displayed four major emission factors for the target PAHs: 365 

1) gasoline combustion, 2) petrogenic source, 3) diesel combustion, and 4) natural gas, fossil 366 

fuel, and biomass combustion (Fig. 6a).  367 

In summer, Factor 1 displayed high loads of Flt, Pyr, BaA, Chr, BaP, BbF, InP, and BghiP 368 

(about 34% of the total PAHs) (Fang et al., 2004; Khalili et al., 1995; Zhen et al., 2020).  369 

Petrogenic source (Factor 2) emitted 7.5% of the total d PAHs, characterized by high Nap, Acy, 370 



Ace, and Flo (2-3 ring) [29]. The third factor was predominately composed of Nap, Acy, Ace, 371 

Flo, Ant, Flt, Chr, DahA, and BghiP (about 30.2% of the total PAHs) in summer, suggesting 372 

diesel combustion as the third source (Hassanien and Abdel-Latif, 2008; Keshavarzi et al., 373 

2020; Moeinaddini et al., 2014b; Ravindra et al., 2006). Factor 4 was predominately weighted 374 

in Nap, Acy, Ace, Flo, BbF, and BkF (about 28.3% of the total PAHs), indicating natural gas, 375 

fossil fuel, and biomass combustion as the main sources (Harrison et al., 1996; Park et al., 376 

2002; Škrbić et al., 2019; Wang et al., 2011a). Ant is the typical marker for natural gas 377 

combustion (Harrison et al., 1996) whereas Acy, Ace, and Flo are often emitted from diffuse  378 

point sources (Ghanavati et al., 2019; Moeinaddini et al., 2014a). For winter, fairly similar 379 

emission sources of the PAHs (fossil fuel and biomass combustion, diesel combustion source, 380 

natural gas combustion and stationary sources, gasoline combustion source) were recognized 381 

by the model (Fig. 6b). Factor 1 was characterized by high loadings of Ant, Phe, BaA, Chr, 382 

BaP, BbF, BkF, and DahA (21.2% of the ∑PAHs), which are considered as good markers of 383 

natural gas, fossil fuel and biomass combustion (Harrison et al., 1996; Park et al., 2002; Škrbić 384 

et al., 2019; Tobiszewski and Namieśnik, 2012). Factor 2 was predominately loaded on Nap, 385 

Acy, Ace, Flt, Pyr, Chr, BaP, DahA, and BghiP (about 37.7% of the ∑PAHs) which were 386 

identified as typical products of diesel combustion (Fang et al., 2004; Khalili et al., 1995; 387 

Simoneit, 1984; Zhen et al., 2020). The third source was mostly associated with Nap, Acy, 388 

Ace, Flo, and Phe (about 11.9% of the ∑PAHs), suggesting that source 3 might represent the 389 

petrogenic source. Source 4 had significant loadings on Ant, Flt, Pyr, BaA, BbF, BkF, InP, and 390 

BghiP (about 29.1% of the ∑PAHs) which are usually associated with gasoline combustion 391 

(Fang et al., 2004; Khalili et al., 1995; Ravindra et al., 2008). Although the source 392 

apportionment technique showed extremely similar potential sources PAHs in summer and 393 

winter, the contribution of some sources was different between the two seasons. Gasoline 394 

combustion displayed a greater contribution in summer than that of in winter, and this could 395 



stem from the significant presence of tourist’s car in summer. However, diesel combustion 396 

showed a larger proportion in PAHs emission in winter because the combined cycle power 397 

plants use both natural gas and gasoline to produce electricity when the pressure of natural gas 398 

in supplying pipelines is low.   399 

a.  

b.  
 400 

Fig. 6.  contribution (%) of each factor to total PAH burden in street dust and Fingerprinting of 401 

each PAHs in street dust of Mashhad, Iran in summer (a) and winter (b). 402 

3.4. Health risk assessment of street dust PAH contamination  403 

     Due to the high toxicity of PAHs to human health, the ever-increasing concentration of these 404 

molecules has raised concerns worldwide. Exposure to dust-bounded PAHs through different 405 
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pathways including ingestion, dermal contact, and inhalation is inevitable in urban 406 

environments [29]. The present study assessed the potential toxicity of 16 priority PAHs in the 407 

street dust of Mashhad city. TEQ of the dust samples was determined according to TEF [47]. 408 

To manage the risk of dust-bounded PAHs in urban areas, it is recommended to reduce the 409 

accumulation of HMW PAHs, especially DahA and BaP, on street surface (Ma et al., 2017). 410 

ILCR index was applied to estimate the potential cancer risk via simultaneous 411 

inhalation/dermal/oral exposure to the street dust PAHs in Mashhad. ILCR values of ≤10−6 and 412 

>10-4, respectively, indicate negligible and high potential cancer risk (Liao and Chiang, 2006). 413 

According to the daily exposure levels in both summer and winter, the ingestion, dermal, and 414 

inhalation ILCRs for adults and children were estimated, respectively, about 10 -7, 10-7, and 10-415 

11, suggesting lower carcinogenic risk of the PAHs through inhalation (Table 3). The ILCR 416 

ingestion showed higher value for children as compared to the other routes, and it has been 417 

speculated that hand-to-mouth activity of children makes them the most sensitive 418 

subpopulation to PAHs (Jiang et al., 2014; Xu et al., 2016). Moreover, the street dust PHAs 419 

showed higher potential to cause cancer through dermal exposure, whereas the potential risk 420 

via inhalation was almost negligible. Overall, these findings highlight the carcinogenic risk of 421 

the PAHs (with ILCR of 10-6) for the permanent residents and tourists of Mashhad, and the 422 

value was higher than the baseline of acceptable risk. The children and adults suffer long- term 423 

dermal and ingestion exposure to fairly high potential carcinogenic levels of street dust PAHs, 424 

especially in summer. Similar findings were previously reported about the relative significance 425 

of human exposure pathways to street dust PAHs (Gope et al., 2018; Jiang et al., 2014; Soltani 426 

et al., 2015). Seasonal variation in the concentration of street dust PAHs should be presumed 427 

to prove accurate risk characterization. Higher levels of PAHs were measured in summer than 428 

that of in winter, and this finding may be explained by the heavy washout and runoff in winter 429 

and thus removing the street particulates and the adsorbed PAHs.  430 



Table 3. The incremental lifetime cancer risk (ILCR) for children and adults in street dust of Mashhad 431 

in summer and winter. 432 

 Exposure 
pathways 

Children Adults 
 ICLR ingestion ICLR inhalation ICLR Dermal Cancer risk ICLR ingestion ICLR inhalation ICLR Dermal 

Summer Min 3.70E-07 7.18E-12 4.61E-07 8.31E-07 2.89E-07 2.24E-11 5.13E-07 
Max 3.32E-06 6.45E-11 4.14E-06 7.47E-06 2.60E-06 2.01E-10 4.61E-06 

Mean 1.08E-06 2.09E-11 1.34E-06 2.42E-06 8.41E-07 6.52E-11 1.49E-06 
Winter Min 3.13E-07 6.06E-12 3.90E-07 7.03E-07 2.44E-07 1.89E-11 4.34E-07 

Max 2.22E-06 4.31E-11 2.77E-06 4.99E-06 1.73E-06 1.34E-10 3.08E-06 
Mean 9.15E-07 1.77E-11 1.14E-06 2.06E-06 7.15E-07 5.54E-11 1.27E-06 

Both season Min 3.13E-07 6.07E-12 3.90E-07 7.03E-07 2.44E-07 1.89E-11 4.34E-07 
Max 3.32E-06 6.45E-11 4.14E-06 7.47E-06 2.60E-06 2.01E-10 4.61E-06 

Mean 9.96E-07 1.93E-11 1.24E-06 2.24E-06 7.78E-07 6.03E-11 1.38E-06 

 433 

4. Conclusion 434 

This research investigated the occurrence and distribution of USEPA regulated 16 PAHs in 435 

street dust of Mashhad city, assessed their concentrations and health risk to human health, as 436 

well as identified the contamination sources. Higher levels of ∑PAHs were measured in the 437 

street dust samples collected in summer, which could stem from massive summer tourist and 438 

pilgrim flows and, in turn, heavy traffic and high levels of the PAHs (especially 4-ring ones) 439 

in the area around the holy shrine. The diagnostic ratios analysis, PMF model, and PCA 440 

suggested that PAHs in the surface street dust samples were originated from diesel and gasoline 441 

combustion, petrogenic sources, and fossil fuel and natural gas combustion. The ILCR values 442 

indicated high potential risk of the PAHs for the citizens and tourists, mainly via dermal 443 

exposure. Taken together, these results suggest that diesel- and gasoline-powered vehicles are 444 

the predominant emitting sources of the PAHs in Mashhad, and this research has shed a 445 

contemporary light on the contentious issue of persistent organic pollutants caused by diesel-  446 

and gasoline-powered vehicles as well as diesel and petroleum combustions. Technica l 447 

improvement in the performance of diesel and gasoline vehicles could reduce the pollut ion, 448 

and the findings might be useful to manage the environmental air quality in similar urban areas 449 

across the world, especially World Heritage Sites, or those with high tourist attraction. The 450 



observed high concentrations of ∑PAHs in the city center and the holy shrine parking could be 451 

also ascribed to vehicular traffic, mainly by passenger buses. Supportively, researches argued 452 

that slow-moving vehicles made a major contribution in the PAHs emission in urban areas. 453 

 454 
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