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Polynomial superlevel set representation 
of the multistationarity region of chemical 
reaction networks
AmirHosein Sadeghimanesh* and Matthew England* 

Introduction
Many problems in applied sciences can be modelled by a parametric polynomial system, 
and therefore to solve such problems we must be able to explore the properties of these 
systems. In particular, we often seek to identify areas of the parameter space where a 
property holds. The contribution of this paper is a new methodology for exploring these.

Motivation: multistationarity regions of CRNs

We are motivated by the problem of understanding the multistationarity behavior of a 
Chemical Reaction Network (CRN). In a CRN, variables represent the concentrations of 
the species. These change as time passes and are studied as part of the field of dynami-
cal systems. This is of polynomial type when the kinetics is assumed to follow the mass 
action rules. The equilibria of such a dynamical system are therefore the solutions to a 
system of polynomial equations. However, the coefficients of the terms on the polynomi-
als may involve some parameters. These parameters are usually the rates under which a 
reaction occurs and the total amounts (thought of as a dependency on the initial concen-
tration of the species).

Both the variables and parameters can only attain non-negative real values. A network 
is called multistationary if there exists a choice of parameters for which the network has 
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more than one equilibrium. There are already many algorithms developed for answering 
the binary question of whether a system can exhibit multistationarity [1–9]. The input of 
these algorithms is a reaction network and the output is the confirmation or rejection of 
the possibility of exhibiting multistationary behavior.

In the case where multistationarity can exist it then becomes important to determine 
the parameters where the network has this behavior. There has been less progress in this 
direction in the literature to date: the present paper offers a promising new development 
for this problem.

Prior work

Reviewing the state of the art in the literature, we see  one vein of work focused on spe-
cific reaction networks, with success following heuristic or manual calculations to find a 
suitable parameter which may not work in generality [10, 11]. Then, in another vein of 
work the system of equations for finding equilibria are solved for many random points 
from the parameter space to approximate the region where the network is multistation-
ary [12–15].

Recently in [16] a new approach to get a description of the multistationarity region is 
proposed. In this method one does not need to solve the system of equations to count 
the number of equilibriums. Instead one computes an integral to get the expected num-
ber of equilibriums when the parameters are following a random distribution. This 
method partitions the parameter region into subsets that are a Cartesian product of 
intervals, called hyperrectangles. By choosing the uniform distribution and computing 
the average number of equilibriums on these hyperrectangles, one can approximate the 
multistationarity region as a union of sub-hyperrectangles. While efficient and widely 
applicable, this list of hyperrectangles does not allow the reader much information or 
intuition about the geometry of this region, such as connectedness or convexity.

Contribution

In this work, we propose using polynomial superlevel sets to approximate the union of 
the hyperrectangles from [16] as a set that can be described by one polynomial. Polyno-
mial superlevel sets are already employed to approximate semi-algebraic sets and have 
been used in control and robust filtering contexts, see [17, 18]. The polynomial super-
level set representation we propose is a more compact representation of the region 
compared to a list of many hyperrectangles each described as a Cartesian product of 
intervals. Further, to check if a point belongs to the region given in this representation 
one can easily just evaluate the polynomial in this point. Further benefits of the polyno-
mial superlevel set description of the region will be explored later.

Organization of the paper

The organization of this paper is as follows. The mathematical framework of reaction 
networks and the definition of the multistationarity region is given first  followed by a 
section containing the notations regarding parametric functions and definitions of the 
sampling and the rectangular representations of the multistationarity region from [19, 
Section 2.4].
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We then define polynomial superlevel sets formally and describe how one can algo-
rithmically find a polynomial superlevel set representation of a set using the sampling 
and the rectangular representations. We demonstrate how to use it to find the polyno-
mial superlevel set representation of the multistationarity region of a reaction network. 
In the final section we discuss methods that sometimes can speed up computation of the 
polynomial superlevel set representation by the help of bisecting algorithms and where 
possible, algorithms for computing the expected number of solutions independently of 
solving the system itself.

Notations

The cardinality of a set A is denoted by #(A) . Let x ∈ Z and n ∈ Z \ {0} . In this paper 
we define x modulo n to be n instead of 0 whenever x is a multiple of n. For a function 
f : A1 → A2 and a point u ∈ A2 , the level set of f is denoted by Lu(f ) and is defined as 
{x ∈ A1 | f (x) = u} . For two points a = (a1, . . . , an) and b = (b1, . . . , bn) in Rn , the nota-
tion [a, b] is used to show the hyperractangle n

i=1[ai, bi] . For a subset S of a hyperrec-
tangle B ⊆ Rn , let Vol(S) denote the normalized volume of S with respect to B, i.e.

When a random vector X = (X1, . . . ,Xn) is distributed by a uniform distribution on a 
set S ⊆ Rn , we write X ∼ U(S) . If X is distributed by a normal distribution with mean 
µ ∈ Rn and variance σ 2 ∈ R>0 , then we write X ∼ N (µ, σ 2) and we mean that X1, . . . ,Xn 
are identically and independently distributed by N (µi, σ

2) . The expectation of g(X) when 
X is distributed by a probability distribution q is denoted by E

(

g(X) | X ∼ q
)

.

Computer information

All computations for the examples of this paper were done on a computer with the 
following information. Processor: Intel(R) Core(TM) i7-10850H CPU 
@2.70GHz 2.71 GHz. Installed memory (RAM): 64.0 GB (63.6 GB usa-
ble). System type: 64-bit Operating System, x64-based processor.

The software and programming languages used for the computations reported in this 
paper had the following version numbers: Maple 2021, Matlab R2021a, YALMIP, 
SeDuMi 1.3, Julia 1.6.2, MCKR 1.0.

Multistationarity region of chemical reaction networks
In this section, we introduce the concepts of reaction network theory that are needed 
throughout the rest of the paper, with the help of a simple gene regulatory network 
example.

One can think of a gene as a unit encoding information for the synthesis of a prod-
uct such as a protein. First, a group of DNA binding proteins called transcription fac-
tors bind a region of the gene called promoter. Now an enzyme called RNA polymerase 
starts reading the gene and produces an RNA until it arrives in the terminator region of 
the gene. The process until here is called the transcription step. After transcription is 
completed, the resulting RNA leaves the nucleus (in eukaryotes) and reaches ribosomes. 
In ribosomes, the second step, called translation, gets started. Ribosomes assemble a 

Vol(S) =
Vol(S)

Vol(B)
.
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protein from amino acids using the manual guide written in the RNA. A gene encod-
ing of a protein recipe is said to be expressed when it gets transcribed to an RNA, and 
the RNA translated to the protein. A gene is not always expressed in a constant rate. 
There might be proteins that bind the transcription factors or the promoter region and, 
as a result, inhibit the RNA polymerase starting the transcription process. On the other 
hand, there might be other proteins in which their binding to the transcription factors or 
the promoter region enhances the transcription.

Consider a simple example from [20, Figure 2], depicted here in Fig. 1a. There are three 
genes with proteins A, B, and C as their final products. Denote their concentrations at 
time t by [A](t),  [B](t) and [C](t) respectively. The concentration of these proteins will 
not remain constant all the time, and we have an Ordinary Differential Equation (ODE) 
system describing the variation of the concentrations as time passes, see Fig. 1b. Each 
protein is degraded with a first-order kinetics with the reaction rate constants kA,d , kB,d 
and kC ,d correspondingly. Protein A activates the expression of the second gene with 
Michaelis-Menten kinetics with the maximum rate kB,max and the Michaelis constant 
k−1
B,A . The third gene gets activated by both proteins A and B together with the product 

of two Michaelis-Menten kinetics, with maximum rate kC ,max and Michaelis constants 
k−1
C ,A and k−1

C ,B . The first gene gets expressed by the rate kA,max in the absence of protein C,  
and protein C has an inhibitory effect on the expression of the first gene, captured by the 
denominator (1+ kA,C [C](t)) in the rate expression.

A solution to the system d[Xi](t)
dt

= 0 (where the Xi s are A, B and C) is called an equilib-
rium of the ODE system. Since the concentration of the proteins can only be non-nega-
tive real numbers, the complex or negative real solutions are not relevant. Sometimes we 
may only consider the positive solutions, for example, if a total consumption of a protein 
is not possible or of no interest. Therefore by steady states we mean positive solutions to 
the system of equations d[Xi](t)

dt
= 0 . The equations in this system are called the steady 

state equations.
Now we are ready to define a reaction network formally. A reaction network, or a net-

work for short, is an ordered pair, N = (S ,R) where S and R are two finite sets called 
the set of species and the set of reactions. In our example, S = {A,B,C} and R contains 
six reactions: three gene expressions and three protein degradations. To each network, 
an ODE is attached with concentration of the species as its variables and the constants 
of the reaction rate expressions as its parameters. In our example, we have 3 such vari-
ables and 10 parameters. To fix the notation assume S = {X1, . . . ,Xn} and that there are 
r constants involved in the reaction rate expressions. Then we use xi instead of [Xi](t) 

Gene 1 Gene 2 Gene 3

(a)

d[A](t)
dt

= kA,max ·
1

1 + kA,C · [C](t)
− kA,d · [A](t)

d[B](t)
dt

= kB,max ·
kB,A · [A](t)

1 + kB,A · [A](t)
− kB,d · [B](t)

d[C](t)
dt

= kC,max ·
kC,A · [A](t)

1 + kC,A · [A](t)
· kC,B · [B](t)
1 + kC,B · [B](t)

− kC,d · [C](t)

(b)

Fig. 1 A regulatory network of 3 genes [20, Figure 2]. a This graph shows the relations between expressions 
of the genes. We denote by  an inhibitory relation and by → a positive relation. b The system of ordinary 
differential equations for the network
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and ki for the i-th parameter. Denote by fi,k(x) the i-th steady state equation where 
x = (x1, . . . , xn) and k = (k1, . . . , kr).

A network with an inflow (injection) or an outflow (extraction or degradation) for at 
least one of its species is called an open network. The network in Fig. 1a is an open net-
work because of the presence of the degradation reactions. A network can also be fully 
or partially conserved.

Consider the simple single reaction network depicted in Fig. 2a. The system of its ODE 
equations is given in Fig.  2b. Because ẋ1 + 2ẋ3 = 0 , the linear combination x1 + 2x3 
should be constant with respect to the time. Therefore there exists a positive constant T1 
such that the relation x1 + 2x3 = T1 holds. Similarly there exist two other positive con-
stants T2 and T3 such that x1 + 2x4 = T2 and x2 + 2x3 = T3 . The values of T1 , T2 and T3 
can be determined by the initial conditions of the ODE system. These linear invariants 
imply that three of the steady state equations are linearly redundant and can be replaced 
by these three linear invariants which are called conservation laws in CRN theory. The 
linear subspace determined by the conservation laws is called the stoichiometric compat-
ibility class. For a more detailed definition of conservation laws see Definition 1 in [19, 
Chapter  2]. One should note that the trajectories of the ODE system are confined to 
stoichiometric compatibility classes. In this case, one only cares about the steady states 
in one stoichiometric compatibility class.

Now we are ready to define the main concept of interest, multistationarity.

Definition 2.1 Consider a network with n species and replace redundant steady state 
equations by conservation laws if there exist any. Let k stands for the vector of constants 
of both the reaction rates and conservation laws and be of the size r. A network is called 
multistationary over B ⊆ Rr if there exists a k ∈ B such that fk(x) = 0 has more than 
one solution in Rn

>0.

Remark 2.2
   

i) One may also consider non-linear invariants such as first integrals as defined in [21, 
Definition 11].

ii) Note that we are not concerned with the choice of the kinetics such as mass-action, 
Michaelis-Menten, Hill function, power-law kinetics and S-systems, or the form of 

2O –
2 + 2H+ k−−→ O2 +H2O2

(a)

dx1

dt
= −2kx2

1x
2
2,

dx3

dt
= kx2

1x
2
2

dx2

dt
= −2kx2

1x
2
2,

dx4

dt
= kx2

1x
2
2

(b)
Fig. 2 A simple example of a closed network consisting of one reaction. a Two molecules of superoxide and 
two hydron atoms react to each other and produce one molecule of dioxygen and a molecule of hydrogen 
perixide. The reaction rate here follows the mass-action kinetics with the reaction rate constant k. b The 
system of ODE equations of the network. The concentrations of O2

− , H+ , O2 and H2O2 are denoted by x1 , x2, x3 
and x4 respectively
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the steady state equations such as polynomial or rational functions. Therefore the 
results of this paper will remain valid and practical for a general reaction network.

From here on the word parameters also includes the constants of the conservation 
laws in addition to the reaction rate constants. To answer the question of whether a net-
work is multistationary or not one can use one of many algorithms available in the litera-
ture, see [1–5, 7, 9] for a few examples. However, to partition the parameter space into 
two subsets, one consisting of the choices of parameters for which fk(x) has more than 
one solution and the other comprising those parameter choices for which fk(x) has at 
most one solution, is a more laborious task which we tackle in this paper.

Definition 2.3 Consider a reaction network with the setting and notation of Defini-
tion 2.1. The set

is called the multistationarity region of the network.

The region B in Definition 2.3 represents the regions of scientific interest. It will usually 
be a hyperrectangle made by the inequality restrictions of the form ki,min < ki < ki,max 
for the parameters. This is because, for example the rate of expression of a gene can not 
be any arbitrary positive number but must be limited; or the constant of conservation 
laws may be limited from above due to the limitation of the materials in the lab.

Prior state‑of‑the‑art for parametric systems of equations
Let fk : Rn → Rm be a parametric function with B ⊆ Rr as its parameter region and u a 
point in Rm . For each choice of the parameters k⋆ ∈ B , the system fk⋆ (x) = u is a non-
parametric system of equations. One can solve this system and look at the cardinality of 
the solution set. For different choices of k⋆ , this number can be different. Therefore we 
define a new function �u

f : B → Z≥0 ∪ {∞} sending k ∈ B to #
(

Lu(f )
)

 , i.e. the size of the 
level set of fk (the set of points in Rn which fk maps to u). Now one can partition B into 
the union of level sets of the map �u

f  . For a general form of fk(x) , finding Li(�u
f ) is a hard 

question.

CAD with respect to discriminant variety

In the case where fk(x) ∈
(

R(k)[x]
)m and A and B are semi-algebraic sets there are a 

variety of tools which can be employed, see for example [22]. In the literature, the 
approach used most commonly (e.g. [10, 23, 24]) is a Cylindrical Algebraic Decom-
position (CAD) computed with respect to the discriminant variety. For a full descrip-
tion of this technique we refer the reader to [25, 26] or the short sketch of the main 
idea in [24, section 3]. Briefly: the discriminant variety of the system fk(x) with the 
domain and codomain restrictions on the semi-algebraic sets A and B is the solution 
set to a new set of (non-parametric) polynomial equations with k as its indetermi-
nants. This new set of polynomials can be computed algorithmically for example 
using Gröbner bases and elimination theory. Then CAD with respect to the discri-
minant variety decomposes B into a finite number of connected semi-algebraic sets 

{k ∈ B | #
(

f −1

k (0) ∩ Rn
>0

)

≥ 2}
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called cells. Each cell has intersection with only one Li(�u
f ) and therefore Li(�u

f ) can 
be expressed as union of a finite number of cells with an exact description of their 
boundaries.

As we see later in this section, in many cases one is only interested in open 
cells (i.e. only those cells which have full dimension [27]). A Maple package, 
RootFinding[Parametric] has implemented an algorithm to compute the 
open CAD with respect to the discriminant variety of a system of parametric poly-
nomial equations and inequalities [28]. From here on in this paper by CAD we mean 
such an open CAD with respect to the discriminant variety.

Both the computation of the discriminant variety and the subsequent decompo-
sition involve the use of algorithms with doubly exponential complexity which can 
cause problems. The number of cells in the decomposition will grow doubly expo-
nentially in the number of parameters of fk(x) [29]; and even computation of the 
discriminant variety itself before any decomposition can be infeasible for moderate 
examples, see e.g. [24]. This makes CAD impractical for studying parametric sys-
tems of polynomial equations with more than a few variables and parameters.

Approximation by sampling

Another approach adopted by scientists is to solve the system fk(x) = u for many 
different choices of k ∈ B [12–15].

Mathematically speaking, this means that B is replaced by a finite set. Then each 
Li(�

u
f ) is expressed as a subset of this finite set. This approach hereafter is referred 

as the sampling representation approach. In contrast with the CAD approach which 
provides an exact description of Li(�u

f ) , the sampling representation approach pro-
vides an approximation. Note that there are different ways to choose the sample 
parameter points for the sampling representation. One way is to arrange all points 
equally distanced like a grid, and another way is to randomly sample from a distribu-
tion such as the uniform distribution on B, which is the one used in this paper. For 
an example of a case where a sampling representation with grid-like parameter sam-
pling is used see [10, Figures 7–12].

Since we are motivated from the application, we should note that in a lab, it is usu-
ally not possible to design the experiment so that the parameter values are exactly 
the numbers that we decide. Therefore when the experiment is designed to have 
k = k⋆ , what happens is that k is a point in a neighborhood of k⋆ and not necessarily 
k⋆ itself. This can happen for example because of errors coming from the measure-
ment tools or the noise from the environment. In such cases picking a point close to 
the boundaries of Li(�u

f ) could lead to a different result than what the experimental-
ist expects, if errors or noise push it over the boundary.

Rectangular representation

A different discretization can be done using a rectangular division of B. For example if 
B is a hyperrectangle [a, b] then a grid on B is achieved by dividing B along each axis to 
equal parts. Then for each sub-hyperrectangle of B in this rectangular division we assign 
the average of the number of solutions of fk(x) = u for several choices of k coming from 



Page 8 of 26Sadeghimanesh and England  BMC Bioinformatics          (2022) 23:391 

the sub-hyperrectangle. This approach hereafter is referred as the rectangular represen-
tation approach. See Fig. 4 to compare the three approaches visually.

Example

Consider the gene regulatory network in [30, Figure 3B], depicted here in Fig. 3a with 
the ODE system in Fig. 3b. This network has one conservation law, x1 + x4 = k8 . There-
fore we consider the system of equations obtained by the first three steady state equa-
tions in the ODE system and the conservation law to study the multistationarity of this 
network. For illustration purpose we fix values of all parameters other than two so we 
can plot the multistationarity region in 2 dimensions. In [30, Figure 4] the reaction rate 
constants other than k3 were fixed to the values listed below.

We fix the values of all parameters other than k3 and k8 to these values also.

(1)k1 = 2.81, k2 = 1, k4 = 0.98, k5 = 2.76, k6 = 1.55, k7 = 46.9.

X
k1−−→ X + P

P
k2−−→ 0

2P
k3−−⇀↽−−
k4

PP

X + PP
k5−−⇀↽−−
k6

XPP

XPP
k7−−→ XPP + P

(a)

dx1

dt
= −k5x1x3 + k6x4,

dx2

dt
= k1x1 − k2x2 − 2k3x2

2 + 2k4x3 + k7x4,

dx3

dt
= k3x

2
2 − k4x3 − k5x1x3 + k6x4,

dx4

dt
= k5x1x3 − k6x4

(b)
Fig. 3 A bistable autoregulatory motif presented in [30, Figure 3B]. a X is a gene, P is a protein that can form a 
dimer PP and then binding to X. The gene X will get expressed and produce P in both forms X and XPP. Finally 
there is a degradation of P. b The ODE system of the gene regulatory network in a. The variables x1, x2, x3 and 
x4 are standing for the concentration of the species X, P, PP and XPP respectively

Fig. 4 Three representations of the multistationarity region of the network in Fig. 3a after fixing all parameter 
values other than k3 and k8 to the values in (1). a CAD gives the exact boundary of L1(�0

f ) and L3(�0
f ) . The 

first one is colored by sky blue and the later one with yellow. b A sampling representation of the parameter 
region B = [(0.0005, 0), (0.001, 2)] by 1000 random points sampled from uniform distribution on B. 78 of 
these points belong to L3(�0

f ) and are colored yellow. The other 922 points belong to L1(�0
f ) and are colored 

by sky blue. c A rectangular representation of B. Each subrectangle is colored with respect to the average 
number of solutions for 10 random points sampled from the uniform distribution on the subrectangle. The 
color bar of the figure is in the right side
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Let B be the rectangle made by the constraints 0.0005 < k3 < 0.001 and 0 < k8 < 2 . 
Using the RootFinding[Parametric] package of Maple we get the exact 
description of the multistationarity region of the network, in 0.12  s, depicted in 
Fig. 4a.

A sampling representation of the multistationarity region is found by solving the 
system of the equations for 1000 points (k3, k8) sampled from the uniform distribu-
tion on [(0.0005,  0),  (0.001,  2)]. We used the vpasolve command from Matlab to 
solve the system numerically. The Matlab code to generate this sampling representa-
tion took 154 s to run, with the output visualised in Fig. 4b.

A rectangular representation is given by dividing [(0.0005,  0),  (0.001,  2)] to 100 
equal sub-rectangles and then solving the system for 10 points (k3, k8) sampled from 
the uniform distribution on each sub-rectangles. The sub-rectangles are colored with 
respect to the average number of solutions. This computation also was done by Mat-
lab and took 166 s, with the output visualised in Fig. 4c.

Polynomial superlevel set representation
Superlevel sets

Definition 4.1 Consider f : Rn → R , an arbitrary function. For a given u ∈ R a super-
level set of f is the set of the form

When u = 1 we drop the index and write only U(f). Naturally, a polynomial superlevel set 
is a superlevel set of a polynomial.

Polynomial sublevel sets are defined similarly as in Definition 4.1 with the only differ-
ence the direction of the inequality. However, in this paper, we only focus on super-
level sets. For d ∈ Z≥0 let Pd denote the set of polynomials of total degree at most d. A 
sum of squares (SOS) polynomial of degree 2d is a polynomial p ∈ P2d such that there 
exist p1, . . . , pm ∈ Pd so that p =

∑m
i=1 p

2
i  . We denote the set of SOS polynomials of 

degree at most 2d by �2d.

Theorem 4.2 ([17, Theorem 2]) Let B ⊆ Rn be a compact set and K a closed subset of B. 
For d ∈ N define

Then there exists a polynomial pd ∈ Sd such that

Furthermore limd→∞ Vol(U(pd)− K ) = 0.

Given a pair (B, K) where B ⊆ Rn is a compact set and K ⊆ B a closed set, and given 
d ∈ N ; we call the polynomial superlevel set U(p) (with p being the polynomial pd ∈ Sd 

Uu(f ) = {x ∈ Rn | f (x) ≥ u}.

Sd = {p ∈ Pd | p ≥ 0 on B, p ≥ 1 on K }.

∫

B
pd(x)dx = inf

{

∫

B
p(x)dx | p ∈ Sd

}

.
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found in Theorem 4.2) the PSS representation of K ⊆ B of degree d. When K is a semi-
algebraic set, one can find pd numerically using a minimization problem subject to some 
positivity constraints [18, Equation 13].

Let B = [aB, bB] and Ki = [aKi , bKi ], i = 1, . . . ,m be some hyperrectangles in Rn such 
that K := ∪m

i=1
Ki ⊆ B . By solving a similar optimization problem it is possible to find the 

PSS representation of K ⊆ B . Let d ∈ N . The goal is to find the coefficients of a polyno-
mial of degree d such that 

∫

B p(x)dx becomes minimum subject to some conditions. 
Before presenting the constraints, let us look at the target function. A polynomial p(x) of 
degree d can be written as 

∑

α∈Nn
d
cαx

α . Here Nn
d is the set of α = (α1, . . . ,αn) ∈ Zn

≥0 

such that 
∑n

i=1 αi ≤ d . Now the integral can be simplified as below.

Since 
∫

B x
αdx are constant real numbers independent of the coefficients of the polyno-

mial, the target function is a linear function on the coefficients of p(x) which are the 
variables of the optimization problem.

Now let us look at the constraints. First of all p(x) has to be nonnegative on B. This can 
be enforced by letting

where r = ⌊d
2
⌋ the largest integer less than or equal to d

2
 . Secondly we need p(x) ≥ 1 on 

K or in other words p(x)− 1 ≥ 0 on K. This holds if and only if p(x)− 1 ≥ 0 on each Ki . 
Therefore for every i = 1, . . . ,m one more constraint of the shape (2) has to be added:

Recall Definition 2.3: the multistationarity region of a network is in fact a superlevel set, 
U2(�

0
f ) . The goal is to find a PSS representation of the set U2(�

0
f ) . One way to accom-

plish this goal is to find a rectangular representation of the multistationarity region and 
then solve the above mentioned SOS optimization problem. The next example illustrates 
this idea. To tackle it we use a Matlab toolbox called YALMIP [31, 32] which can receive 
an SOS optimization problem, process it and use other solvers to solve it. For the solver 
to be used by YALMIP, we chose SeDuMi [33].

Examples

We continue with the example from Fig. 3. Consider the rectangular representation of the 
multistationarity region of that example given in Fig. 4c. To find the PSS representation of 

∫

B
p(x)dx =

∫

B

(

∑

α∈Nn
d

cαx
α
)

dx

=
∑

α∈Nn
d

cα

∫

B
xαdx

=
∑

α∈Nn
d

(

∫

B
xαdx

)

cα .

(2)p(x)−
n

∑

j=1

sB,j(x)
(

xj − aB,j
)(

bB,j − xj
)

∈ �2r , sB,j ∈ �2r−2, j = 1, . . . , n,

p(x)− 1−
n

∑

j=1

sKi ,j(x)
(

xj − aKi ,j

)(

bKi ,j − xj
)

∈ �2r , sKi ,j ∈ �2r−2, j = 1, . . . , n.
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this set, we let B = [(0.0005, 0), (0.0010, 2)] and K be the union of rectangles Ki s such that 
their associated number is greater than or equal to 2. From the 100 sub-rectangles of B, 9 of 
them satisfy this condition. These sub-rectangles are colored orange in Fig. 5. We use the 
YALMIP and SeDuMi packages of Matlab to solve the SOS optimization discussed before 
this example. To report the computation time we add the two times reported in the output of 
YALMIP: the “yalmiptime” and “solvertime”. It takes about 2 s to get the coefficients 
of the polynomial p of the PSS representation of degree 2. Figure 5 shows the plot of U(p).

Unfortunately the same code does not produce a better approximation when we increase 
d, the degree of p, from 2 to 4, 8 or 16. The output from Matlab gives similar figures in these 
cases as Fig. 5.

Consider another gene regulatory example from [19, Chapter 2]. To avoid lengthening 
the text, we only reproduce the system of equations needed to study the multistationarity of 
the network:

We fix all parameters other than k7 and k8 to the following values coming from Equation 
(2.10) of [19, Chapter 2]:

(3)

k1x7x5 − k5x1 = 0 k2x8x6 − k6x2 = 0

k3x1 − k7x3 = 0 k4x2 − k8x4 = 0

k9x7x4 − k11x9 = 0 k10x8x3 − k12x10 = 0

k13x9x4 − k15x11 = 0 k14x10x3 − k16x12 = 0

x5 = k17 x6 = k18
x7 + x9 + x11 = k19 x8 + x10 + x12 = k20.

(4)

k1 = k2 = k3 = k4 = 1, k5 = 0.0082, k6 = 0.0149,

k9 = k10 = 0.01, k11 = k12 = 10000, k13 = 2,

k14 = 25, k15 = 1, k16 = 9, k17 = k18 = k19 = 1,

k20 = 4.

Fig. 5 The PSS approximation of the multistationarity region for the network in Fig. 3a of degree 2 obtained 
by the information of Fig. 4c. The union of orange colored subrectangles is considered as the initial 
approximation of the multistationarity region obtained by the rectangular representation and chosen as the 
set K. The yellow colored area is the difference of U(p)− K  . Remember that the PSS representation of the 
multistationarity region is the yellow region which contains the orange rectangles as well
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We reproduced the rectangular representation of the multistationarity region of this 
network by Matlab, as shown in Fig. 6a. From the 100 sub-rectangles in total, for 28 of 
them the average number of steady states is greater than or equal to 2. Using YALMIP 
and SeDuMi it took between 1 and 2 s to get the polynomials of the PSS representations 
of degrees 2, 4 and 8 represented in Fig.  6b–d respectively. For this example, the PSS 
approximation of degree 4 looks different than that of degree 2, but for degree 8 the plot 
looks similar to degree 4.

Advantages of PSS representation over rectangular representation

It is natural to ask why one should find a PSS representation of the multistationar-
ity region using the rectangular representation given one already has the rectangular 
representation? Let B ⊆ Rr be the parameter region of the form of a hyperrectangle, 
and K ⊆ B be the multistationarity region. In the rectangular representation we have 
K ≃ ∪m

i=1
Ki where Ki = [aKi , bKi ] are hyperrectangles. In the PSS representation we 

have K ≃ U(p) where p is a polynomial of degree d. 

Fig. 6 PSS representations of different degrees for the mulistationarity region of the LacI-TetR gene 
regulatory network using the information we got from the rectangular representation. The union of orange 
colored subrectangles is considered as the approximation of the multistationarity region obtained by the 
rectangular representation and chosen as the set K. The yellow colored area is the difference of U(p)− K  . a 
The rectangular representation of multistationarity region of the network with the system of equations given 
in (3) and some parameters being fixed by the values in (4). b–d PSS representations of the multistationarity 
region of degrees 2, 4 and 8 respectively obtained by the information of Fig. 6a
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1- When r ≥ 4 , plotting K is impossible. In order to save or show the rectangular repre-
sentation one needs to use a matrix of size (m)× (2r) , where each row stands for one 
Ki and the first r columns have the coordinates of the point aKi and the second r col-
umns correspond to the coordinates of the point bKi . However for the PSS represen-

tation one needs to use only a vector of size 
(

r + d
r

)

=
∑d

i=0

(

r − 1+ i
r − 1

)

 , where 
(

r − 1+ i
r − 1

)

 entries are coefficients of the terms of degree i. The terms are ordered 

from smaller total degree to larger and for the terms of the same total degree we use 
the lexicographic order.

2- To test if a point k⋆ ∈ B belongs to K using the rectangular representation one should 
check m conditions of the form k⋆ ∈ Ki which means verifying an inequality on each 
coordinate of the point, i.e. aKi ,j ≤ k⋆j ≤ bKi ,j . If one of the conditions k⋆ ∈ Ki is posi-
tive, then there is no need to check the rest, otherwise all should fail to conclude that 
k⋆  ∈ K  . However, using the PSS representation one needs to check only one condi-
tion of an evaluation form, i.e. p(k⋆) ≥ 1.

3- Recall from the last paragraph of the “Approximation by sampling” Section explain-
ing that parameters near the boundary of the multistationarity region are not suita-
ble choices for an experimentalist. To check the distance of a point k⋆ ∈ B \ K  to the 
boundaries of K using the rectangular representation one should find distance of k⋆ 
from boundaries of each Ki and then taking the minimum. However, using the PSS 
representation, in both cases of k⋆ ∈ B \ K  or k⋆ ∈ K  , one just needs to find the dis-
tance of k⋆ from the algebraic set defined by p(k)− 1 = 0 , for example by Lagrange 
multipliers, as in the next section.

To conclude, if 
(

r + d
r

)

 is considerably smaller than 2mr, then storing the PSS repre-

sentation instead of the initial rectangular representation will save memory without 
loosing information about the multistationarity region.

Approximating the distance of parameter point from the boundary

To illustrate how to approximate distance of a parameter point from the boundaries of 
the multistationarity region using a PSS representation we continue with the example 
from Fig. 3.

Let p be the polynomial of degree 2 in two variables k7 and k8 corresponding to U(p) 
in Fig. 6b. We will approximate distance of the point k⋆ = (0.08, 0.02) from the bound-
ary of the multistationarity region by the distance of k⋆ from the algebraic set defined 
by p(k7, k8)− 1 = 0 . This question is equivalent to minimizing the Euclidean distance 
function of a point (k7, k8) from the point k⋆ subject to the constraint (k7, k8) ∈ L1(p) . 
The target function is 

√

(k7 − 0.08)2 + (k8 − 0.02)2 which gets minimized if and only 
if (k7 − 0.08)2 + (k8 − 0.02)2 gets minimized. An elementary way to solve this minimi-
zation problem is to use the method of Lagrangian multipliers [34, Chapter 7, Theo-
rem 1.13]. Define

F(k7, k8, �) = (k7 − 0.08)2 + (k8 − 0.02)2 + �
(

p(k7, k8)− 1
)

.
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Now we must find the critical points of F(k7, k8, �) . So we should solve the system of 
equations obtained by ∂F

∂k7
= ∂F

∂k8
= ∂F

∂�
= 0 . It takes 0.167 s to solve this system of equa-

tions by the solve command in Maple. It has 4 solutions, from which 2 belong to the 
rectangle B = [(0, 0), (0.1, 0.1)] and the minimum of the target function is obtained 
at the point (0.04499222669,  0.04161251428). The distance of this point from k⋆ is 
0.04114176669.

Constructing a PSS representation from a sampling representation

It is not necessary to have a rectangular representation to get the PSS representation. 
Let B = [aB, bB] be a hyperrectangle and K = {a(1), . . . , a(m)} a finite set. Let d ∈ N , 
and the goal be to find the coefficients of a polynomial of degree d such that 

∫

B p(x)dx 
becomes minimum subject to some conditions. We already saw that the target func-
tion is linear. The constraint p ≥ 1 on K can be enforced by p(a(i)) ≥ 1 for every i, 
which are linear constraints. The positivity of p on B can be enforced by Eq. (2) or by 
adding a large enough number of random points from B and putting the constraint 
p(a) > 0 . The later idea makes the problem solvable by any common linear program-
ming tool. However, here we still use Eq. (2).

Let us illustrate this with our ongoing example. Consider the sampling representa-
tion of the multistationarity region of the network of Example  3.4 given at Fig.  4b. 
To find the PSS representation of this set, we let B = [(0.0005, 0), (0.001, 2)] and K to 
be the set of points for which the system fk(x) = 0 had more than one positive solu-
tion. There are 1000 points from which 78 of them are parameter choices where the 
network has three steady states. Using the YALMIP package of Matlab, it takes less 
than a second to get the coefficients of each of the polynomials p of the PSS represen-
tation of degrees 2, 6 and 10. Figure 7a–c show the plots of U(p) for degrees 2, 6 and 
10 respectively. The plot for degree 6 actually looks worse than the plot for degree 2 
(further away from the actual result in Fig. 4a), although the one for degree 10 looks 
a little better. In all these cases YALMIP finished the computations with a message 
‘Numerical problems (SeDuMi)’ indicating that the solver found the prob-
lem to be numerically ill-posed. Rescaling the parameter region of interest, B, to 
[(0, 0), (1, 1)] and then transforming the PSS polynomial back to the original B allows 
a better PSS approximations via YALMIP. For degrees 2 and 6 the numerical problem 
message is avoided but for degree 10 it remains. The results are shown in Fig. 7d–f.

To demonstrate that the number of free parameters need not be 2 to be able to com-
pute the PSS representation, we repeated the above process with all 8 parameters of the 
system being free in the following hyperrectangle:

Solving the system at 1000 random points uniformly chosen from B takes the same 
amount of time as solving the system at 1000 random points with only 2 of their 

B = [ (1, 0, 0.0005, 0, 1, 1, 40, 0), (4, 2, 0.001, 2, 4, 3, 50, 2) ].
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coordinates varying took time in the previous case. It took about 1.5 s to compute the 
45 coefficients of the polynomial of the PSS representation of degree 2. The polynomial 
found is the following.

p = 0.0232593410k21 − 0.2965863774k22 + 559.9760177000k23

− 0.0618678914k24 + 0.0098179292k25 − 0.0061375489k26

− 0.0036871825k27 − 0.0716829116k28 − 0.0110701085k1k2

− 5.3373104650k1k3 + 0.0186292240k1k4 + 12.5539028600k2k3

+ 0.0051935911k1k5 − 0.0820767495k2k4 + 0.0250525965k1k6

− 0.0649618436k2k5 − 8.2165668850k3k4 + 0.0092355627k1k7

− 0.0310047257k2k6 − 4.2926137530k3k5 − 0.0527315151k1k8

+ 0.0017547696k2k7 − 2.7647028150k3k6 + 0.0288291263k4k5

+ 0.0785940967k2k8 − 0.4049844472k3k7 + 0.0536360086k4k6

+ 12.6014929300k3k8 − 0.0091147734k4k7 + 0.0198800552k5k6

− 0.0567174819k4k8 + 0.0009448114k5k7 − 0.0190068615k5k8

+ 0.0102920949k6k7 + 0.0316830973k6k8 + 0.0022468043k7k8

− 0.6043381476k1 + 0.7152344469k2 + 0.3287484744k4

+ 36.3811699100k3 − 0.0617318336k5 − 0.5940226892k6

+ 0.2987521874k7 + 0.2558883329k8 − 5.0441247030.

Fig. 7 PSS representation of different degrees of the mulistationarity region of the network of Example 3.4 
inside the hyperrectangle B = [(0.0005, 0), (0.001, 2)] using the information we got from the sampling 
representation of the multistationairy region. The orange colored points are the points with three steady 
states and their union is considered as approximation of K. The yellow colored area is the difference of 
U(p)− K  . One expects to see that this difference is getting smaller as the degree increases. However, the 
Matlab code that we wrote using YALMIP and SeDuMi does not behave as expected. a–c gives the PSS 
representation of the original problem of degrees 2, 6 and 10 respectively. d–f gives the PSS representation of 
those degrees for the problem after after rescaling the parameters for better numerical behavior via YALMIP 
and SeDuMi 
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Advantages of PSS representation over the sampling representation

Let us address why one should find a PSS representation of the multistationarity region 
using the sampling representation if one already has a sampling representation. Let 
B ⊆ Rr be the parameter region of the form of a hyperrectangle, K ⊆ B be the multista-
tionarity region. In the sampling representation we have {a(1), . . . , a(m)} ⊆ K  . In the PSS 
representation we have K ≃ U(p) where p is a polynomial of degree d. 

1- When r ≥ 4 , plotting K is impossible. In order to save or show the sampling repre-
sentation one needs to use a matrix of the size m× r , where each row stands for one 
point a(i) and the columns correspond to the coordinates of the points. However, for 

the PSS representation one needs to use a vector of the size 
(

r + d
r

)

 , as explained 

in the first item of the “Advantages of PSS representation over rectangular represen-
tation” section1.

2- To test if a point k⋆ ∈ B belongs to K using the sampling representation is not a 
straightforward task. However, using the PSS representation one needs to verify only 
one condition of the evaluation form, p(k⋆) ≥ 1.

3- To compute the distance of a point k⋆ ∈ B to the boundaries of K, using the sampling 
representation, if k⋆  ∈ K  , one should compute the distance of k⋆ from each point in 
the sampling representation of K and then take the minimum. Using the PSS repre-
sentation, whether k  ∈ K  or not, one just needs to find the distance of k⋆ from the 
algebraic set defined by p(k)− 1 = 0.

In a typical example from CRN theory, r is usually much higher than 2, and therefore 

item 1 is really important. When 
(

r + d
r

)

 is lower than rm, one can use less memory 

by saving the PSS representation instead of keeping all the points of the sampling rep-
resentation in the memory. Further, as items 2 and 3 show, this will not cause a loss of 
information about the multistationarity region.

More involved example

We showed earlier    that the PSS representation can be generated for examples with 
a higher number of parameters than two. There, we let all 8 parameters of the net-
work in Fig. 3a to be free and found the PSS representation of degree two in 8 inde-
terminants. Now we bring another such example which also serves to emphasize 
Remark 2.2 item (ii): that to have a PSS representation of the multistationarity region, 
one does not need to have the right hand side functions of the ODE system to be of 
polynomial or even rational functions.

Consider a gene expression system with 4 species Xi , i = 1, . . . , 4 where these species 
can be m-RNA or protein molecules or other relevant factors, with the ODE system 
as in Fig. 8a which was introduced in [35, Figure 2]. As one can see the right hand side 
functions involve at least a square root, and as a result this system is not polynomial, or 
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even defined by rational functions. Let us fix the parameter values other than the three 
degradation rates βi , i = 2, 3, 4 to the following values, chosen the same as in [35]:

In [35] it is shown that for (β2,β3,β4) = (5, 3, 12) , the network is bistable, with three 
steady states. Here we rename these three parameters by ki, i = 1, 2, 3 respectively, let 
them vary in the 3-dimensional cube B = [(3, 1, 10), (7, 5, 14)] , and look for the multista-
tionary region. I.e. we seek the relation between these three parameters so that the num-
ber of steady states of the network remains the same. Substituting the values into Fig. 8a 
and letting dxi/dt = 0 , i = 1, . . . , 4 gives the following system of equations.

With a simple calculation one can see that the set of positive solutions to the system of 
Eq. (6) is in one to one correspondence with the the set of positive roots of the following 
univariate polynomial:

(5)

α1 = 1, n = 4, v1 = 4, v2 = 8, v3 = 4,

h1,1 = h2,2 = 0.5, h3,3 = 1, h4,4 = 0.75,

g2,1 = g3,2 = g4,3 = 1, β1 = 0.5,

α2 = 1, α3 = 2, α4 = 3.

(6)

4 + 8x4
4

256+x4
4

1√
x1

− 1
2

√
x1 = 0,

x1 − k1
√
x2 = 0,

2x2 − k2x3 = 0,

3x3 − k3
4

√

x34 = 0.

(7)f (y) = 4

√

24k2
1
k2k

3
3
y73 − 144y64 + 256

4

√

24k2
1
k2k

3
3
y9 − 12288.

Fig. 8 A gene expression network with an S-system kinetics that allows Hill terms and exhibits 
multistationary behavior, taken from [35, Figure 2]. a The ODE system of the network. The set of species 
is {X1, X2, X3, X4} . Each equation dxi/dt consists of two terms responsible for production and degradation 
of the species Xi . The right hand side functions are not necessarily of a polynomial type, or even a rational 
function form. b The sampling and PSS representation of the multistationarity region of this network when 
all the parameters other than βi , i = 2, 3, 4 are fixed to the values in (5) and the remaining three parameters 
renamed ki , i = 1, 2, 3 vary in the cube B = [(3, 1, 10), (7, 5, 14)] . The sampling representation consists of the 
orange color points and the PSS representation is the area between the two yellow colored surfaces
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For any positive root of the polynomial in (7), a positive solution for (6) is

By Descartes’ rule of signs it is clear that the polynomial in (7) has 1 or 3 positive roots 
counted by multiplicity for any choice of ki s. To find the sampling representation of the 
multistationarity region of our system we solved the equation f (y) = 0 for 1000 random 
choices of the parameters using Matlab, which took about 8 min. At 532 of these choices 
the polynomial had 3 positive roots. The sampling representation is shown in Fig. 8b, 
with the points where the system has 3 steady states shown as orange spheres. We then 
used the information from the sampling representation to compute the PSS representa-
tion of the multistationarity region of degree two, which took less than 2 s. The resulting 
polynomial is below, with coefficients given to 6 decimal places.

Therefore the PSS representation of the multistationarity region is the set of the points 
(k1, k2, k3) ∈ B that satisfy p(k1, k2, k3) ≥ 1 , which is the region between the two yellow 
surfaces in Fig. 8b. Note that the point (5, 3, 12) corresponding to the value examined in 
[35] is in the middle of this region.

Bisection algorithms for rectangular representation
As shown in the previous section, it is possible to get the PSS representation both from 
the sampling and the rectangular representations. If one needs to solve the system at 
random points and take an average in order to get the rectangular representation, then 
using the rectangular representation does not have much advantage over using the sam-
pling representation for the purpose of finding the PSS representation.

But in some cases it is possible to compute the average number of the solutions with-
out solving the system. One such case is introduced in [16]. Instead of solving the sys-
tem for many points, it is enough to compute one integral called the Kac-Rice integral. 
In this situation, if the computation of the integral is possible and faster than solving 
the system for many random points, then the rectangular representation can be pre-
ferred to the sampling representation. However, one still needs a computation per each 
sub-hyperrectangle of the rectangular representation and this number can grow by the 
number of parameters. If B ⊆ Rr and we divide it along each axis to m equal parts, then 
the number of sub-hyperrectangles in the rectangular representation becomes mr . A 
different approach to build a rectangular decomposition is to use bisection algorithms 
instead of dividing B to equal sub-hyperrectangles. When using a bisection algorithm, 

(x1, x2, x3, x4) =
(

k1

√

k2k3

6
y6,

k2k3

6
y12,

k3

3
y12, y16

)

.

p(k1, k2, k3) = −0.043653k21 − 0.029919k22
−0.013650k23 − 0.082681k1k2 − 0.045005k1k3
− 0.055895k2k3 + 1.226648k1 + 1.271835k2
+0.710556k3 − 8.112402.
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the rectangular decomposition usually contains fewer number of sub-hyperrectangles 
(not necessarily of equal volume).

Two possible number of solutions for a given parameter point

Let us simplify the question. There is a hyperrectangle B ⊆ Rr and a function 
g : B → Z≥0 ∪ {∞} which in our case is �0

f  associated to a parametric function fk(x) . 
Let B be the set containing all sub-hyperrectangles of B. The goal is to express Li(g) or 
U2(g) as a union of sub-hyperrectangles of B. One of the shapes of multistationary net-
works, observed often for realistic models, are bistable networks with a folding type of 
bifurcation, such as in dual phosphorylation cycle [36].

In our settings these networks have one steady state for some choices of parameters 
and three1 steady states for some other choices of the parameters and for a zero measure 
set of parameters in the boundary of the two regions it has two steady states. This was 
the case for the networks studied earlier: the LacI-TetR gene regulatory, and auto-regu-
latory motif   networks. In such cases �0

f  is almost always either 1 or 3. Going back to our 
question, motivated from application, assume Im(g) = {n1, n2} where n1 � n2 . In this 
case for each S ∈ B one of the followings occurs. 

 (i) E
(

g(k) | k ∼ U(S)
)

= n1.

 This can happen if and only if for almost every k ∈ S , g(k) = n1.
 (ii) E

(

g(k) | k ∼ U(S)
)

= n2

 This can happen if and only if for almost every k ∈ S , g(k) = n2.
 (iii) E

(

g(k) | k ∼ U(S)
)

= α, n1 � α � n2.
 This can happen if and only if S ∩ Ln1(g) and S ∩ Ln2(g) both are nonempty and of non-

zero measure.
The proof is straightforward by noting that

Therefore one can compute E
(

g(k) | k ∼ U(B)
)

 . Then if the answer is n1 conclude that 
almost the whole B is a subset of Ln1(g) and if the answer is n2 , conclude that almost 
the whole B is a subset of Ln2(g) . Otherwise we proceed by dividing B along only one 
axis into two equal sub-hyperrectangles. We continue in this fashion until each sub-
hyperrectangle is inside Ln1(g) or Ln2(g) or a termination condition on the length of the 
edges of the sub-hyperrectangles is met. When the termination condition on the edges is 
obtained, we put the sub-hyperrectangle in Lni(g) if E(g(k)) on this sub-hyperrectangle 
is closer to ni . We refer to this approach as the two-value bisection search hereafter. This 
algorithm is formally written in Algorithm 1.

E
(

g(k) | k ∼ U(K )
)

= n1Vol
(

K ∩ Ln1(g)
)

+ n2Vol
(

K ∩ Ln2(g)
)

.

1 Two stable and one unstable, however we do not study stability of the steady states in this paper.
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A similar algorithm was presented in [16, Section  2]. The first difference is that the 
input to the bisection algorithm in [16] is not necessarily a system with two general 
number of solutions. The second difference is that the output, there, is not only the two 
lists Ln1(g) and Ln2(g) (compare Fig. 9d–f with [16, Figure 1c]).

If the length of the edges of B are of different scales, then it is better to replace the ter-
mination condition of Algorithm 1 with the following:

min

{ bS,j − aS,j

bB,j − aB,j
| 1 ≤ j ≤ r

}

≤ ǫ,
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where S = [aS , bS],B = [aB, bB] and 0 < ǫ < 1 . The motivation is that one usually is 
interested in knowing the parameter values with some number of digits of accuracy, 
after writing the number in scientific notation.

We are not going to explain how to use the Kac-Rice integral in the CRN framework as 
it is not the topic of this paper. All algorithms in this paper are independent from the 
choice of the algorithm to compute the expected number of solutions of a parametric 
system on a given parameter region. A simple algorithm to achieve this is to solve the 
system for several random points from the given hyperrectangle according to a random 
distribution of interest and take the average. Thus we may assume the existence of a 
method capable of computing E

(

�0
f (k) | k ∼ q

)

 where q is a distribution on S and then 
find a rectangular representation using two-valued bisection search and afterwards a 
PSS representation.

Example

To illustrate this method we use Example 2.1 of [16], shown here in Fig. 9a, for which the 
Kac-Rice integral is already derived. The system of equations for studying multistation-
arity is given in Fig. 9b. Fixing all values of parameters other than k7 and k8 to the follow-
ing values (similar to the values in [16]), the goal is to find the multistationarity region of 
the network in the rectangle [(0, 0), (5, 5)]:

Figure  9c shows the exact region computed by CAD. Using Algorithm  1 we get the 
approximation of this region represented in Figs. 9d–f. We see that by decreasing the ǫ of 
the termination condition, the approximation is improved. Furthermore using the Kac-
Rice integral given in [16] it takes 1.22, 3.64 and 7.96 s for our code written in Julia to 
compute the approximations in Fig. 9d–f respectively, while solving the system in 1000 
points to get the sampling2 representation in Matlab takes 17.63 s. We used Julia for the 
Kac-Rice integral because it is suggested by [16] as the fastest platform for this computa-
tion. Figure 9g, h show the PSS approximation of degrees 2 and 4 achieved from Fig. 9f. 
One can also generate random points from the rectangular representation and find the 
PSS representation from this sampling approximation. Adding the times for using the 
Kac-Rice integral, two-valued bisection search, generating random points, and comput-
ing PSS representation; all together for this example it took 8.53 s which is less than find-
ing a rectangular representation by solving the system at 140 points. That result is shown 
in Fig. 9i.

Remark 5.1

Note that having fewer hyperrectangles in the rectangular representation obtained by the 
two-valued bisection search does not guarantee a faster speed than the simple approach 
for finding a rectangular representation discussed in the previous section. Consider the 

k1 = 0.7329, k2 = 100, k3 = 73.29, k4 = 50, k5 = 100, k6 = 5.

2 To get the rectangular representation by 100 equal subrectangles and solving for 10 points in each subrectangle, it is 
again necessary to solve the system for 1000 points.
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setting in Algorithm 1. Assume length of all edges of B ⊆ Rr are the same and equal to 2m . 
Let ǫ = 1 and assume E

(

g(k) | k ∼ U(S)
)

 is not getting close enough to n1 or n2 for any 
S in the process of this algorithm. Then the total number of expectations that are needed 
to be computed until the termination of this algorithm is equal to 

∑mr
i=0 2

i . On the other 
hand in the simple approach, by dividing B along each axis to 2m equal parts, the number 
of needed expectations to be computed is 2mr.

Fig. 9 Using two-valued bisection search to get the PSS representation of the multistationarity region. a 
The reaction network under study. This network has two conservation laws, thus two of the six steady state 
equations may be replaced by linear invariants. b The system of equations for studying multistationarity. c 
The CAD representation of the multistationarity region. d–f Approximations of the multistationarity region 
computed by Algorithm 1. g–h PSS representations of degrees 2 and 4 computed from the union of yellow 
rectangles in f as K. i PSS representations of degree 4 computed from 140 sample points from the union of 
yellow rectangles in f as approximation of K
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More general setting

Now consider a more general case where Im(g) = {n1, . . . , ns} ⊆ Z≥0 . In this case we 
can not judge about S ∩ Lni(g) just by looking at E

(

g(k) | k ∼ U(S)
)

 . For example if 
Im(g) = {1, 3, 5} and we receive E

(

g(k) | k ∼ U(S)
)

= 3 , it is not clear that S is an 
almost subset of L3(g) or if almost half of it is inside L1(g) and the other half in L5(g) . So 
now the goal is to find a way to decide when to add S to Li when E

(

g(k) | k ∼ U(S)
)

= i 
and when to not and instead bisect it into two sub-hyperrectangles, as in Algorithm 1.

Note that

Assume {nα1 , . . . , nαt } ⊆ {n1, . . . , ns} such that Vol
(

S ∩ Li(g)
)

�= 0 only for 
i ∈ {nα1 , . . . , nαt } . In that case for any distribution on S which has the same zero measure 
sets as Lebesgue measure’s we have 

∫

S∩Li(g) q(x)dx = 0 if and only if i  ∈ {nα1 , . . . , nαt }.
Returning to our goal assume E

(

g(k) | k ∼ U(S)
)

= ni for some i ∈ {1, . . . , s} . If for 
every j  = i , Vol

(

S ∩ Lnj (g)
)

= 0 , then for any other distribution q on S we have 
∫

S∩Lj(g) q(x)dx = δi,j , where δi,j is 1 if i = j , and 0 for j  = i . Therefore E
(

g(k) | k ∼ q
)

= ni . 

Now again assume that {nα1 , . . . , nαt } ⊆ {n1, . . . , ns} such that Vol
(

S ∩ Lj(g)
)

�= 0 only 
for j ∈ {nα1 , . . . , nαt } . This time let t ≥ 2 . Define the following two sets:

Note that T2 is a set of one dimension lower than dimension of T1 . By varying q one can 
attain any point in T1 by 

( ∫

S∩Ln1 (g)
q(x)dx, . . . ,

∫

S∩Lnt (g)
q(x)dx

)

 and E
(

g(k) | k ∼ q
)

= ni 

if and only if this point belongs to T2 . Therefore by probability one for randomly chosen 
distribution q, we will not get E

(

g(k) | k ∼ q
)

= ni . Hence we proved the following 
lemma.

Lemma 5.2 Let B ⊆ Rr be a hyperrectangle and g : B → {n1, . . . , ns} ⊆ Z≥0 . Assume 
that E

(

g(k) | k ∼ U(B)
)

= ni for some i ∈ {1, . . . , s} . Then with probability one we have 
that B is almost subset of Lni(g) if and only if E

(

g(k) | k ∼ q
)

= ni for a randomly chosen 
distribution q on B with the same zero measure sets as Lebesgue measure’s.

Note that in [16] it is mentioned that the Kac-Rice integral can also be used to com-
pute the expected number of steady states when the parameters are equipped by normal 
distributions. Even without the Kac-Rice integral, one can solve the system of equations 
for random sample parameter points chosen from a (truncated) normal distribution and 
then take the average of the number of solutions. Thus we get Algorithm 2 which we call 
two-step bisection search.

E
(

g(k) | k ∼ U(S)
)

= n1Vol
(

S ∩ Ln1(g)
)

+ · · · + nsVol
(

S ∩ Lns(g)
)

.

T1 = {(x1, . . . , xt) ∈ (0, 1)t | x1 + · · · + xt = 1},
T2 = {(x1, . . . , xt) ∈ (0, 1)t | x1 + · · · + xt = 1, nα1x1 + · · · + nαt xt = ni}.
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Example

Consider the following univariate polynomial of degree 5 with two parameters from [16, 
Section 2.3].

f (x) = x
5 − (k1 + 9

2
)x4 + ( 9

2
k1 + 21

4
)x3 + (− 23

4
k1 + 3

8
)x2

+ ( 15
8
k1 − 23

8
)x + ( 1

100
k2 − 1

16
)
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The equation f (x) = 0 can obtain any number of positive real solutions between 0 and 
5 depending on the choice of the parameters. Using the MCKR application [37] which 
computes the Kac-Rice integral to give the expected number of solutions of a parametric 
system when the parameters are equipped with a random distribution, we have that the 
average number of positive solutions of f (x) = 0 on the two following rectangles is 2 
with at least one decimal place accuracy:

However, only the first rectangle is inside the parameter region where the number of 
positive solutions to the system is invariant and equal to 2. Using MCKR, this time we 
compute the expected number of positive solutions of f (x) = 0 on B2 when the param-
eters are equipped with the truncated normal distribution with mean µ = (2.25, 2.5) and 
variance σ 2 = 0.1 . The result with one digit accuracy after the decimal point is 2.9. Thus 
by Lemma 5.2 we can infer the fact that the number of solutions of the system is not 
invariant in B2 and this set has a non-zero measure subset where the system has some-
thing other than 2 positive solutions.
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