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Reinforcement Learning for Security Aware
Computation Offloading in Satellite Networks
Saurav Sthapit, Subhash Lakshminarayana, Ligang He, Gregory Epiphaniou and Carsten Maple

Abstract—The rise of NewSpace provides a platform for small and medium businesses to commercially launch and operate satellites
in space. In contrast to traditional satellites, NewSpace provides the opportunity for delivering computing platforms in space. However,
computational resources within space are usually expensive and satellites may not be able to compute all computational tasks locally.
Computation Offloading (CO), a popular practice in Edge/Fog computing, could prove effective in saving energy and time in this
resource-limited space ecosystem. However, CO alters the threat and risk profile of the system. In this paper we analyse security
issues in space systems and propose a security-aware algorithm for CO. Our method is based on the reinforcement learning
technique, Deep Deterministic Policy Gradient (DDPG). We show, using Monte-Carlo simulations, that our algorithm is effective under
a variety of environment and network conditions and provide novel insights into the challenge of optimised location of computation.

Index Terms—Computation Offloading, IOT, Cyber-Security, NewSpace, Reinforcement Learning, LEO satellites.
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1 INTRODUCTION

THe space industry is experiencing rapid growth cur-
rently, thanks to lowering technological and economic

barriers to entry. Commercial Off-the-Shelf (COTS) hard-
ware such as Nvidia Jetson 1 and Xilinx Virtex FPGA are
readily available along with the plethora of software and
support [1], [2], [3]. Similarly, Software Defined Network-
ing (SDN) [4], [5] is continuing to revolutionise the way
we connect, making it easier, more flexible and cheaper.
Advances such as these have led to new commercial com-
panies, including relatively Small and Medium Enterprises
(SMEs), entering the space industry that has previously been
restricted to large non-commercial organisations such as Na-
tional Aeronautics and Space Administration (NASA). This
new environment has been coined as the ‘NewSpace’ [6]. The
NewSpace ecosystem comprises of thousands of satellites of
all sizes, and contrary to traditional satellites, the satellites
such as Cubesats [7] can be as small as 10× 10× 10 cm3. In
this new paradigm, instead of acting solitary, the satellites
may form a cluster or a constellation, communicate with
each other, and jointly serve the users on the earth surface.

In terms of applications, satellites used to be limited
to relaying information from one point to another. Such
architecture is commonly referred as bent-pipe architecture
[8]. However, modern satellites are intelligent; instead of
being simple relays, they can sense, process and act intelli-
gently [9]. For example, a satellite can autonomously collect

• S. Sthapit, G. Epiphaniou and C. Maple are with the Warwick
Manufacturing Group, University of Warwick, UK

• S. Lakshminarayana is with the School of Engineering, University of
Warwick, UK

• L. He is with the Department of Computer Science, University of
Warwick, UK

E-mail: { saurav.sthapit, subhash.lakshminarayana, ligang.he, gre-
gory.epiphaniou, cm } @warwick.ac.uk

1. https://developer.nvidia.com/embedded/jetson-developer-kits

space debris or dock itself without human intervention
[10]. Satellites are also able to continuously monitor the
environment using multiple sensors. In such cases, it is
desirable to process the raw data in the orbit itself rather
than transferring all of the data to Earth [11]. However,
this extra computation will add to the existing sensing and
processing of the sensor data and not all of the satellites may
be able to handle them [12] due to limitations in energy and
computational power.

Satellites, such as Cubesats will have to rely on other
nearby satellites or space stations for processing their sensor
data. Attempts have already been made to address these
challenges. Recently, super computer satellites as small as
a kitchen microwave are being launched in space [13].
The objective of such super computer satellites is to offer
‘computing as a service’ to other satellites in order to process
the sensor data while in orbit. This process of offloading
computation is already common in terrestrial computations
for edge devices and is commonly referred to as Computa-
tion Offloading (CO). While CO in space is similar to CO on
Earth in many respects, there exist some unique challenges.
These include, (1) the server in space may not be as powerful
as the server on Earth. This implies that there is a non-
trivial queuing and computation delay at the server, which
is not present in terrestrial applications. (2) The satellite
network is very dynamic, especially in the Low Earth Orbit
(LEO) orbit. Hence, the topology of the satellite network
will be changing rapidly. (3) CO in space requires data to be
transmitted to a different platform (satellite). This additional
communication requirement will raise security risks, such as
eavesdropping (from nearby satellites), data modification,
and/or preventing the offloading satellite from accessing
such service. Decisions regarding whether to offload and
the level of security measures to be used in exchanging the
data (between the server and the client satellite) are not
trivial decisions. Careful consideration of the environment
is required to assess if such offloading is beneficial in terms
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of time, energy, and the security risks incurred.
In this work, we explore CO in the context of satellites

and NewSpace with the awareness of security threats in
space. We formulate the security-aware CO problem as a
multi-objective optimisation problem and jointly minimise
the time, energy and security cost of the system using a
Reinforcement Learning (RL) framework. Since our formu-
lation involves decision variables that are continuous, we
use the Deep Deterministic Policy Gradient (DDPG) method
to solve the RL problem, as it can be directly applied to con-
tinuous action spaces, and avoids the need for discretisation
[14]. Our results show that even in the presence of wireless
communications security threats, it is possible to offload
computation and increase the efficiency of the system. The
main contributions of the paper are as follows:

• A new examination of the space landscape for com-
munications security.

• The formulation of the security-aware CO problem
within New space as a multi-objective problem.

• The development of a new DDPG-based solution
to solve the problem and analysis of its efficacy in
comparison to an state of the art Deep Q-Network
(DQN) based solution.

We note that while there is extensive literature
in wireless communications related to resource alloca-
tion/scheduling [15], [16], [17], security [18], [19], compu-
tational offloading [20], [21], [22], [23], [24], [25], etc., the
focus of all these works is on terrestrial mobile networks.
In contrast, our work considers inter-satellite communi-
cations while incorporating the aforementioned domain-
specific features. To the best of our knowledge, this work is
the first to consider security-aware offloading in a satellite
environment, and this is one of our important contributions.

The paper is structured as follows. Section 2 describes
the satellite architecture, inter-satellite communication and
various security risks in space applications. In Section 3,
we define the basics of CO including the local execution
and remote execution. Section 4 presents an overview the
system, formulates the problem and presents our solution.
In Section 5, we present the experimental results. Finally, we
conclude the paper in Section 6.

2 SATELLITE ARCHITECTURE

In this section, we present a brief overview of the satellite
architecture, the communication requirements, and present
the current and future applications for satellite networks.

2.1 Constellations
Traditionally, satellites were designed to operate in a soli-
tary environment and their data flow followed a bent-pipe
architecture where an earth station transmits the data to the
satellite in the uplink. The satellite amplifies the signal and
transmits it to another Earth station in the downlink. An
example is the usage of geo-stationary satellite for voice calls
[26]. Due to their high altitude (36,000 km), the area covered
by a geo-stationary satellite can be large. Hence, only a few
of them are necessary to cover the entire earth. However,
as their distance is large, the communication delay is large
as well. Typical Round Trip Time (RTT) for a geo-stationary

satellite can be more than 600 ms [27]. To minimise this
delay, the satellites have to orbit the earth at a much lower
altitude. However, this means only a fraction of the earth’s
region can be covered at any time and many satellites would
be necessary for global coverage. For example, Iridium
network system operating at 760 km (LEO) requires 66
satellites to cover the entire earth’s surface [28]. Such a
satellite formation can work solitary or in a constellation.
According to [26], [29], there are three common types of
formations of satellites namely:

• Trailing: In this formation, satellites share the same
orbit, but are separated by a specific distance.

• Cluster/ Swarm: Satellites in this formation fly in
close proximity to each other but in their own orbits.

• Constellation: A set of satellites organised in different
orbital planes that cover the entire earth. Reference
[30] presents a large scale constellation design frame-
work for Internet of Space Things (IOST).

2.2 Communication
The wireless communication refers to the transmission and
reception of the data between a satellite and other entities.
A satellite may communicate with

1) other satellites and space station,
2) earth bound entities, and
3) planetary rovers.

The satellites may not only communicate to other satellites
in the formations described above but also between the
satellites in LEO, Medium Earth Orbit (mEO) and geo
stationary (GEO) orbits [31], [32]. The reader may refer to
[29], [31], [33], [34] for a comprehensive surveys on inter
satellite communication system.

2.3 Computing in space
The small and nano satellite constellations can be used for
various applications. For example, the satellite mesh can
be used as a backhaul network providing high-speed, low
latency communication links [9]. It could be particularly
useful in remote areas where the terrestrial network does
provide coverage. Reference [28] shows how the network
load can be anticipated based on the geographical location
and uses communication links between LEO satellites, as
well as LEO and GEO satellites to improve the Quality of
Service (QOS) for the end users in their communication
needs.

The small and nano-satellites can provide a computa-
tional platform in space [35], [36]. It could process data gen-
erated by itself. For example, satellites and their networks
can be used for sensing the earth. [9] referred to monitor-
ing and reconnaissance capabilities of satellite networks as
“Eyes in the sky”. Satellites equipped with sensors such as
cameras can monitor the earth’s surface 24×7. However, not
all data that is acquired is useful due to various reasons. For
example, if the interest is monitoring assets in an urban area,
images of rural areas or oceans are of little interest. Also, if
the images acquired are occluded by the clouds it could of
little to no use [11]. Transmitting all the acquired images
to the earth station can put a strain on the communication
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links as well as on the earth station. The problem would only
exacerbate in the future when more satellites are launched.
If the satellites could pre-process the images and only retain
and transmit the useful images, the resources could be more
manageable. [11] used various deep learning algorithms to
filter out the images that are occluded by the clouds.

In a different scenario, the authors in [37] describe using
satellites to provide continuous Internet of Vehicles (IOV)
services. In this case, the data generated by the vehicles
on the surface of the earth can use edge-computing and
communication services provided by the satellites to com-
municate with other vehicles in the IOV. The satellites
not only act as a low latency communication medium but
also a computing platform. In this work, we assume the
satellites to be resource-limited computation platforms and
the proposed algorithms would benefit such systems.

2.4 Security risks in Space
In space, attacks can be physical/kinetic or cyber [38], and
the impact caused by such attacks depends on the sophis-
tication of the attackers. If the attacker is an individual
with limited capabilities like a hacktivist or an insider with
limited capabilities, the impact may be limited. If the threat
actor is a hostile nation-state or a privileged insider, the
impact will be significantly higher [39]. Consider a defunct
satellite that is out of service but still in orbit. If a hacker
gains access to such a satellite, they may launch an attack on
other satellites and services. The major reasons for concerns
are the following:

• COTS hardware and software may have reported
flaws and threats. Satellites may be in orbit for a long
period of time (years) by which time new vulnera-
bilities could be discovered. It may be impossible or
financially infeasible to apply the patch or update the
software in the orbit,

• SMEs may overlook security in favour of cost-saving,
• hackers and activists also have access to the same

technology (hardware and software) as it is readily
available.

Reference Architecture (RA) is often used to understand
and mitigate the security risks. They can be used in conjunc-
tion with attack trees for security-minded verification [10].
Figure 1 shows a functional RA of a satellite operating in
an orbit. It shows the functional blocks within the satellite
and interfaces for it to interact with the external world. It
also highlights the attack surface of the satellite such as the
Input/Output ports that may be targeted in an attack. In
this work, however, we focus our study on the attacks that
may be directed toward wireless communication. In general,
cyber attacks affect one or more of the three aspects of
security collectively known as the Confidentiality Integrity
Availabilty (CIA) triad.

2.4.1 Confidentiality
Data confidentiality refers to the protection of transmitted
data from passive attacks such as eavesdropping [40]. If
confidential information is being shared without encryption
or poor encryption, a passive attacker may listen to the
communication or use data sniffing techniques to learn the

TABLE 1
Encryption algorithms in literature, their security level and process rate

[45]

Encryption Confidentiality (Sconf ) Process Rate (Mb/s)
IDEA 1.0 11.76
DES 0.85 13.83
Blowfish 0.56 20.87
AES 0.53 22.03
RC4 0.32 37.17

TABLE 2
Different hashing algorithms, their security level and process rate [45]

Encryption Integrity (Sint) Process Rate (Mb/s)
TIGER 1.0 75.76
RipeMD160 0.75 101.01
SHA-1 0.69 109.89
RipeMD128 0.63 119.05
MD5 0.44 172.41

victim’s secrets [41]. Table 1 details various encryption algo-
rithms ranked such that the strongest and slowest algorithm
has the confidentiality score of one and other encryption
algorithms are relative to it [42], [43], [44]. We assume
the confidentiality score (Sconf ) to be directly proportional
to the process rate (i.e. stronger encryption algorithm has
higher security overhead on the processor). In Section 5
we base our decision to select the appropriate encryption
algorithm based on this table.

2.4.2 Integrity
The integrity of the data is compromised when the attacker
modifies the data from the sender to the receiver. Attacks
such as the man-in-the-middle attack can modify the data,
and the receiver satellite may have no knowledge about it.
In an extreme scenario, if the receiving satellite has a propul-
sion system, the attacker may modify control messages to
move away from their orbit, burn its fuel unnecessarily, or
fatally crash with other nearby satellites [39]. Table 2 details
a number of hashing algorithms to ensure the data has not
been falsified. We used these values in Section 5 to select the
appropriate hashing algorithm.

2.4.3 Availability
Attackers and hackers may try to disrupt the service pro-
vided (by the servers) by employing Denial Of Service
(DOS) attacks or jamming the communication channel. Sim-
ilar to attacks on the Earth’s surface, attackers can affect
the availability of wireless channels by transmitting at the
same time as the legitimate satellite. Satellites sharing the
same channel would be affected. Similarly, the attacker may
target the server by making too many requests so that the
legitimate node cannot be served. We simulate such attacks
on availability in Section 5 by degrading the channel (–see
Figure 2).

3 COMPUTATION OFFLOADING

To understand and mitigate the attacks on communication
systems of satellites and space systems, we study a pro-
cess called Computation Offloading (CO). In Section 2.3,
the application of satellites as a computing platform was
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Fig. 1. Functional reference architecture of a satellite detailing its attack surface [39]

TABLE 3
List of important symbols.

D Job data size.
Eexec Total energy usage for executing the job.
Eoff Total energy usage for offloading the job.
Im Number of instructions a device can execute per second.
Is Number of instructions the server can execute per second.
J Maximum number of jobs in an interval.
Nm Number of servers in queuing model equals number of cores

in the satellite.
Ns Number of servers in queuing model equals number of cores

in the space station.
Pm Instantaneous power of satellite while executing the job.
R Data Rate.
SD Desired security level.
SP Selected security level.
X Number of instructions to execute a job per bit.
Λ Job generation rate.
A set of actions for the Markov Decision Process (MDP).
R Reward function for the MDP.
S set of states for the MDP.
T Transition function for the MDP.
τd Maximum allowed time for completion of a job.
τm Time taken by satellite to execute the job.
r Risk.
u Central Processing Unit (CPU) utilisation.
µ Service rate of the node.

described. However, in NewSpace systems, satellites may
be constrained in terms of their computation and energy
resource, CO will be very useful. CO is a process of delegat-
ing a computationally intensive task to an alternative device
rather than on its own computing platform. This delegation
may be done for achieving various goals such as improving

latency, conserving energy, or both. Many CO algorithms
have been proposed to offload algorithms from the edge
devices to the cloud known as Mobile Cloud Computing
(MCC) as well as to the edge servers known as Mobile Edge
Computing (MEC) [20], [21], [22], [23], [24], [25]. In the con-
text of NewSpace, a satellite may be considered as a resource-
limited device that offloads some of its computation to the
neighbouring satellites, space station or ground station to
save resources. On the other hand, in the future, satellites
may offer such computing services to User Equipment (UE)
such as smartphones and vehicles, similar to services cur-
rently offered by cloud and edge servers. Especially with
LEO satellites constellations such as OneWeb2. and Starlink3

providing high-speed low-latency internet connectivity to
worldwide coverage including remote areas not covered by
cellular services.

Consider a resource-limited satellite such as Cubesats
equipped with a sensor that is operating in the orbit. The
sensor senses its surroundings and readings are sent to the
processor periodically. The readings have to be processed
by a computationally intensive algorithm which requires
computing and energy resources. The satellite can, however,
offload the computing to a nearby satellite or space station
which has a significantly higher computational capability as
well as energy resources. Also, for simplicity consider both
satellite and the space station are static in position relative
to each other for the duration of offloading. However, the
offloading is not always fruitful and depends on the con-

2. www.oneweb.world
3. www.starlink.com
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nection quality to the space station. If the wireless channel
is used by other satellites in the vicinity, transmitting sensor
data can be a lengthy process. Similarly, if the space station
is already busy with other algorithmic jobs, it may take
a long time to service the satellite. Both of these delays
may mean that the satellite misses the threshold time for
completion of the algorithm. Missing the threshold is not
desirable for the satellite and should be avoided as much
as possible. Additionally, the communication between the
satellite and the space station may not be secure. If there
is a rogue (compromised) satellite in the vicinity trying to
attack either passively or actively, they may launch attacks
described in the Section 2.4.

3.1 Job
A job is a computationally intensive algorithm that the
satellite is trying to offload. For example, a pose estimation
algorithm using camera images can be an offloading job. We
define it as a tuple < X,D, τd > where X is the number of
computation cycles per bit required to complete the job, D
is the data requirement of the job, τd is the latest time to
complete the job [21]. Such a job may have a large value
for X and need significant time and energy resources to
complete. In literature, jobs are considered to be offloadable
or not offloadable as well as full or partial offloading [21].
However, for simplicity, we consider all the jobs to be
offloadable and only full offloading is considered. The jobs
are generated on a regular basis as a Poisson process with a
mean arrival rate Λ.

3.2 Local Computation
A job can be processed locally using the satellite’s own
computing platform. In terms of security risk, as it does
not involve any communication. Thus, we assume that such
local computations are risk-free. However, if the device is
already busy, each job has to wait for its turn. We model the
local computation using Queuing Theory. We consider jobs
to be processed on a First Come First Service (FCFS) without
pre-emptive scheduling. The service times are dependent
on the job itself. Also, when the job is offloaded with a
certain security level (–see Tables 1 and 2) it will impact
the processing resources depending on the security level
selected. As the service times for job and security levels can
be significantly different, they can be modelled as hyper-
exponential distribution [46]. Lastly, the number of queue
servers (Nm) is the number of cores in the device.

3.2.1 Time
Time taken by a satellite to execute a job is given by

τm =
X ×D
Im

(1)

where Im is the capability of the satellite to execute in-
structions usually measured in Million Instructions Per
Second (MIPS). Before execution, there is a waiting time
due to queuing which can be estimated using Little’s law.
Although, Im may change depending on several factors
including Dynamic Voltage and Frequency Scaling (DVFS)
we consider a fixed policy such that the Im does not change
over the time.

3.2.2 Energy
The Central Processing Unit (CPU) power is made up of two
parts, the idle power and the running power, as follows:

Pm = u ∗ Pmax + (1− u) ∗ Pidle (2)

where, u, Pmax, Pidle are the utilisation, maximum power
and idle power consumption of the CPU respectively. So,
energy consumed to execute a job can be calculated as

Eexec = Pm × τm. (3)

3.3 Remote Execution
The remote platform could be the other satellites, space
station or ground station. We assume the server hasNs cores
available for computing, each core capable of executing Is
MIPS. Before an algorithm can be executed on the remote
platform, however, the data (possibly code as well) has
to be transferred to the remote platform. However, there
is a risk that one of the CIA aspects is breached while
communicating. So, appropriate levels of security have to be
put into place. Depending on which encryption algorithm
and hashing algorithm is selected (–see Tables 1 and 2),
different levels of security can be maintained. Also, different
algorithmic complexity of the algorithm means they will
incur different times and energy costs which are described
below. Similar to other algorithms in the literature, we
ignore the cost of sending the result back to the device as
the data is of relatively lower size in most cases.

3.3.1 Time
The total time for executing a job on a remote platform can
be estimated as follows:

τs = τsecurity + τcomm + τw (4)

where τsecurity, τcomm, τw represent the times taken by the
offloader to secure, packet, send the data, and wait for
receiving the result respectively. In space, the server may
not be as powerful as the cloud on Earth. Hence there may
be queuing as well. We model the delay in queuing with a
queue similar to the queue in satellite. This is represented by
τw. Similarly, if D is the data size to be transferred/received,
the communication time is given by:

τcomm =
D

R
(5)

where R is the available data rate. However, R may be
shared between other users and effective bandwidth de-
pends on other users’ action. For a device k within N users
sharing the communication channel, effective data rate can
be calculated as

Rk = Bw log2

(
1 +

Gk,k.Pk

σ2 +
∑N
i=1,i6=kGi,k.Pi

)
(6)

where, Bw is the bandwidth, Gi, Pi are the channel gain
and transmit power for user i. As evident from Equation (6),
communication data rate depends on the channel gain and
transmission power, as well as other users transmitting
simultaneously. Herein, ‘other users’ may include any de-
vices trying to communicate on the channel. However, they
could also be jammers trying to disrupt the communication
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between a user and the base station. In that case, the
availability is affected. We account for the availability by
considering the jammed channel as poor network condition.
Instead of calculating the communication rates using the
transmit power and the channel gain, we use a simpler
version based on arbitrary values in [47]. It only depends
on the number of users actively using the channel and drops
off exponentially as the number of users increases. The rates
for different numbers of users are visualised in Figure 2.
The actual number of satellites in the vicinity in space is
random at any point in time. However, if we consider the
satellites are uniformly distributed around the globe, choos-
ing a smaller satellite formation means a lower number
of satellites actively communicating on average. Similarly,
if we consider a larger satellite constellation, the average
number of satellites actively involved in communication
may be higher.

3.3.2 Energy
The energy consumed for offloading can be calculated as:

Eoff = Pc × τcomm + Pmax × τsecurity. (7)

3.3.3 Security Risk
The security risk increases when CO is implemented be-
cause the system is relatively more vulnerable than if the
computation is done locally. Some risks can be mitigated by
choosing appropriate security measures such as encryption.
Similar to [45], [48] we model the risk as Poisson distribu-
tion.

Pk =

{
0, if SD ≤ SP
1− exp−λ

k(SD−SP ) if SD > SP
(8)

where k ∈ {C, I} is the particular security concern, SD
is the security demand of the job, and SP is the chosen
security level. If the security provided is greater than or
equal to the security demand, then the risk is zero. However,
if the chosen security is less than the required level, it is
prone to security breaches. The exact probability of risk
depends on λk which can be different for each server as well
as for confidentiality and integrity. The total probability of
risk such that either confidentiality or integrity is violated is
then given by

Pr = 1−
∏

k∈{C,I}

(1− Pk). (9)

4 PROBLEM FORMULATION

Recall that the state of the system in our problem corre-
sponds to the number of jobs waiting in the queues at the
local queue (at the satellites) and the number of jobs waiting
at the server. For both these queues, the number of jobs
in the next time slot will only depend on the number of
jobs awaiting during the current time slot and the decisions
(offloading/ local computation) taken during the current
time slot. Note that for the local queues at the satellites, the
number of jobs departing the task queue will depend on the
decision taken during the current slot, whereas the number
of new jobs arriving is assumed to be an independent and
identical Poisson process (memoryless). Similarly, for the
queue at the server, the number of new jobs arriving will de-
pend on the decision taken during the current slot, whereas
the departure process only depends on the computational
time at the server. Note that splitting a Poisson process ran-
domly with a fixed probability creates two separate Poisson
processes. Similarly, if two Poisson processes are combined
(for example two satellites may offload to the server in the
same time slot) it results in a Poisson process [46]. Based on
these observations, we note that, given the current state and
action, the next state of the decision process is conditionally
independent of all previous states and actions; in other
words, the state transitions satisfy the Markov property. A
Markov Decision Process (MDP) is a tuple < S ,A,T ,R >
where S is a finite set of states, A a finite set of actions, T a
transition function defined as T : S × A × S → [0, 1] and
R a reward function defined as R : S × T × S → R [49].
We also note that our setup is similar to existing works on
computational offloading [50], [51], [52], which also model
the problem as a MDP and solve it using RL methods. An
RL agent observes the states at discrete intervals and makes
the decision for the next time interval.

Recently, there has been a growing interest in applying
RL to the data and CO problem in terrestrial mobile net-
works. For instance, the problem of minimising the mobile
user’s cost, energy consumption and computation delay by
offloading tasks to a mobile-edge computing server was
considered in [53] and [54], and solved using Deep RL
techniques. RL has been used to solve CO problem in Inter-
net Of Thing (IOT) devices with energy harvesting as well
[25], [55]. The problem of allocating computing and network
resources under varying MEC conditions was considered in
[56]. Reference [57] applied DRL to solve the network utility
maximisation problem in a Virtualised Network Function
(VNF) environment. For a detailed survey on the application
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of RL in CO in wireless networks, we refer the reader to [58].
However, none of these works focus on CO in a satellite en-
vironment and the corresponding domain-specific features.

For this problem, we consider the number of jobs in
the queue of the satellite, the number of jobs in the server,
the number of satellites communicating in the current time
slot, and the number of jobs arriving in the time slot as
the observations of the system. The satellite will not always
know the exact number of jobs the space station is serving.
However, when the server may agree to serve the satellite,
it may send regular updates on its state. In our previous
work we used a proactive and reactive algorithm to send
this information (Node State Information (NSI)) about one’s
state to neighbours [59]. The number of satellites commu-
nicating in a given time slot provides an inclination to
the available bandwidth similar to the feedback channel
gain. For the simulation, we assume that the number of
satellites using the channel is random and independent of
the previous interval but constant throughout the interval.
Let Poff be the probability of offloading to the server. Then,
the time consumption to execute a job can be estimated
using Equations (1) and (4) as follows:

τ = Poffτm + (1− Poff )τs. (10)

Similarly, energy consumption can be estimated as

E = PoffEm + (1− Poff )Es. (11)

While the time and energy consumption can be estimated
from the system state such as the number of jobs in the CPU,
communication, and the server queues, security risk cannot
be observed directly or in advance. However, given enough
data on previous observations and cost, we can estimate
the risk conditions if it is time-invariant. The overall cost of
executing is then given by

Ct =
J∑
j=1

(wtτj + weEj + wrrj)

subject to τ ≤ τd,
(12)

where, J is the maximum number of jobs in an interval,
τj , Ej , and rj are time, energy and risk while executing
job j. rj is the random value sampled using Equation (9)
to represent the risk. wt, we, wr are the weights for time,
energy and risk components. Next, we relax the hard con-
straint on the time deadline to a soft constraint such that
if the constraint isn’t met, we add a large cost to the cost
function whereas when the constraint is met the weight is
zero. Also, as we propose a generic solution, we do not
set these weights to custom values. Instead, we set them
to equal weights. For applications that are specific, the
weights could be adjusted to the application. For example,
in a satellite communication network, when there are not
enough satellites, the destination may not reachable and the
data packets may be dropped. For such applications Delay
Tolerant Network (DTN) routing protocols are used [60].
When CO used on such protocol, the weights on time can
be set to zero.

Ct =
J∑
j=1

(wtτj + weEj + wrRj + wd(τd − τ)) (13)

where,

wd =

{
0, if τd > τ

non negative number, if τd ≤ τ.
(14)

Our objective is to minimise Equation (13) in the long
term.

arg min
Poff ,SLC ,SLI

E

[ ∞∑
t=0

γtCt

]
(15)

where, γ is the discount factor. Our action is a three dimen-
sional vector [Poff , SLC , SLI ] consisting of the probability
to offload a job and the security levels to select to maintain
the confidentiality and integrity of the offloaded data. Simi-
lar to [59], we select the execution platform probabilistically.
The benefit of making such a decision is that the system
does not need to know the exact number of incoming jobs.

4.1 Deep Deterministic Policy Gradient (DDPG)

We use DDPG [61] to solve the optimisation problem stated
in Equation (15). DDPG is a actor-critic based offline method
that uses two separate Deep Neural Networks (DNNs) to
approximate the Q-value network. Its main advantage over
DQN is its ability to work on a continuous action space
[14]. So the probability to offload Poff can be any value
ranging from 0− 1 and need not be discretised. We trained
our reinforcement agent on episodes of simulated data with
each episode lasting 40 seconds. We used the experience
replay method for batch training and ADAM optimiser for
the training purpose [62]. We trained the network for a
maximum of 1000 episodes. To stop the agent from being
greedy and making sub-optimal decisions, we use the ε-
greedy approach whereby the agent makes a random action
with a small probability ε and the rest of the time take
the best (or greedy) action. To balance the exploration and
exploitation for the agent, we gradually lowered the value
of ε.

4.2 Deep Q-Network (DQN)

DQN [63] is the first reinforcement learning algorithm to
demonstrate human level performance on Atari games. [45]
used DQN based algorithm to create security aware CO
algorithm. In order to compare the performance of our pro-
posed DDPG based algorithm, we implemented a similar
DQN based solution for our problem. As DQN works with
a discrete action space, we quantised Poff with a resolution
of 0.2 ranging from 0 to 1. Otherwise, the other training
parameters were left same as the DDPG algorithm described
below.

4.3 Static policies

We compared our proposed DDPG algorithm against three
static policies defined below.

4.3.1 Local Only (LO)

As the name suggests, it cannot offload any job and is
oblivious to network changes and risk states.
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4.3.2 Server Only No Security (SONS)
This policy offloads all the jobs to the server without follow-
ing any security guidelines. So when the risk is high, attacks
are always successful.

4.3.3 Server Only Maximum Security (SOMS)
Similar to the previous policy, it offloads all the jobs. But, it
uses the highest security measures regardless of the network
conditions.

5 SIMULATION RESULTS

In this section, we briefly explain our simulator, parameter
selection and their results. We created our own simulator; all
the code and environment are available at https://github.
com/sausthapit/ComputationOffloadingRL. We used Mat-
lab and Simulink environment which provides toolboxes for
Reinforcement Learning (RL) and event-based simulations.
The simulator also supports RL agents with discrete action
spaces such as Deep Q-Network (DQN).

We assume the maximum number of satellites will be
different in the three formations due to the physical setup. In
particular, the trailing formation occupies the least space (as
the satellites share the same orbit) and has the least number
of satellites. In comparison, the swarm formation has more
satellites (as it involves satellites in different orbital planes).
Lastly, the constellation formation has the largest number
of satellites taking part in the communication (to cover the
entire earth). According to [26], the transmit power for inter-
satellite communication, Pk, is in the range 0.5 W to 2 W. In
the trailing formation, since the satellites are in the same
orbit (and hence close to each other and less interference),
we assume a lower transmit power and set Pcomm = 0.5 W
for the trailing formation. As the swarm and constellation
formations occupy progressively larger areas of space, we
assume Pcomm = 1 W for the swarm formation, and
Pcomm = 2 W for the constellation formation. By default,
we chose the swarm formation for the rest of the simulation
unless specified and we set the following parameters for the
simulation. The idle power (Pidle), execution power (Pmax)
of the satellite is set to 0.1 and 5 watts respectively, process-
ing capability of the satellite (Im) is set to 2.5× 109 Million
Instructions Per Second (MIPS) with Nm = 4. Similarly,
we set the processing capability of the server satellite to
be twice that of the satellite. Also, the number of cores in
the server is higher than the number of cores in the satellite
(i.e. Nm < Ns = 16). The job size is chosen to be 0.2 MB,
and it takes one second to process on the satellite without
the waiting times. For stability, the queues are limited to
finite buffers. The maximum queue length for the Central
Processing Unit (CPU) and communication buffer is set to
20 whereas, for the server, the computation buffer is set to
10. Also, τd is set to 5 seconds. This means if a job has to
wait more than 5 seconds to process it is not useful and
is considered a dropped job. Similarly, if any of the queue
buffers are full when a new job arrives, it is lost as well. In
default settings, we consider on average three jobs arriving
per second and best network setting and lowest risk level.
For the training purposes, we set the weights wt, we, wr, wd
to 1, 1, 10 and 10 respectively. This implies whilst we would
like to improve on execution times and energy, we would
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Fig. 4. Performance for different job arrival rates. Clockwise from top left:
average overall score, average dropped jobs, lost jobs due to security,
and energy consumed.

like to avoid losing jobs and minimise the security attack. In
fact, setting wr and wd to the same large value suggests that
a successful attack is as bad as dropping a job. However, the
weight selection is done arbitrarily and can be tailored to
the application requirement. For applications that are super
sensitive to security threats, it could be even higher. Also,
when measuring the performance instead of evaluating the
actual time elapsed for each job, we count how many jobs
were completed within the time threshold. Once the agent
is trained, we ran 10 Monte-Carlo simulations with random
seeds for each of the settings described below.

5.1 Incoming job rate

We simulated various job rates ranging from three jobs per
second to seven jobs per second. If the satellite is equipped
with a quad-core processor with a service rate of one job per
second, when processing locally, its utilisation is given by

u =
Λ

Nmµ
=

4

4× 1
= 1. (16)

Hence, it is only stable for Λ < 4. Otherwise, the queue
length will continue to grow indefinitely; in this case, as
the buffer is limited, lost. The device is forced to offload
or drop some of its jobs to maintain stability when the job
rate is higher. The network condition is set to the best, risk
level to the lowest, and data size to 0.2 MB. Figure 4 shows
the averaged results for our experiments. The top left figure
shows the overall cost achieved by each of the four policies.
It is evident that the cost is growing for all the policies and
Server Only No Security (SONS) fared the worst. This is due
to the security attacks it has suffered the most which are seen
from the bottom right image. In terms of jobs dropped (–
see Figure 4, top-right), all algorithms were able to process
all the jobs at λ = 3. However, as the arrival rate started
to increase, the local computation suffered and dropped
the most jobs averaging more than two jobs per episode.
Both DQN and Deep Deterministic Policy Gradient (DDPG)
have similar results with DQN using slightly more energy
at lower job arrival setting.
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5.2 Network Environment

We considered three network settings, namely best, medium
and poor represented by green, yellow and red area in the
Figure 2. In the best setting (which is the default setting),
only a few users simultaneously communicate at a given
time slot, whereas in the medium setting, considerably more
users communicate at the same time. Poor settings may
represent a large number of satellites communicating at the
same time or a malicious attacker trying to deliberately jam
the channel. To simulate these settings, we simply use a
uniform random number generator with boundary limits.
Results for a varying network environment is presented in
Figure 5. As expected the Local Only (LO) policy is not
affected by the varying network condition evident by the
horizontal solid red line. Both SONS and Server Only Max-
imum Security (SOMS) policies dropped similar amount of
jobs per episode as seen in the Figure 5 top right. This is
because the satellite is unable to reach the server as the
network condition worsens. However, the cyan dashed line
for the DDPG algorithm shows that even it performed better
than the LO algorithm suggesting that it used both local and
remote resources in an efficient manner. This is evident from
the bottom-left figure where the cyan line is using the most
energy (up to 5J at the worst network condition). In theory,
the DQN should also follow a similar pattern as DDPG but
in this case, when the network worsened, DQN only used
the local resources.

5.3 Risk Levels

In this work, we modelled and simulated risk to emulate the
real scenario of security attacks. In doing so, we changed the
security desired (SD) parameter. The SD sets the security
threshold that needs to be fulfilled to save from attacks.
While SOMS is helpful to prevent unwanted security at-
tacks, it uses vital computational resources, time and energy.
While this may not be a problem when the resources are ad-
equate for example on the Earth’s surface with a substantial
processor and mains-powered device. It can be significantly
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Fig. 6. Algorithm Performance for different risk conditions. Clockwise
from top left: average overall score, average dropped jobs, lost jobs due
to security, and energy consumed.

crucial to save energy and resource in space. Using remain-
ing resources like batteries may mean the satellite or rover
is completely out of service. In order to avoid this scenario,
it is crucial to save as much energy as possible. Our DDPG
algorithm in this instance is able to adapt to the varying
security level in the environment without directly sensing it
and only based on the previous results. Figure 6 shows the
performance of all four policies. As usual, SONS is the only
one subject to successful attacks. The DDPG algorithm used
less energy than the SOMS algorithm when the security
threat is pretty low (≤ 0.5) as seen in the bottom-left image.
However, we also notice that when the threat is significantly
high (0.9) the proposed DDPG algorithm did not offload to
the server and did most of the work itself using significantly
higher energy than the SOMS algorithm. DQN algorithm
on the other hand was able to handle more jobs even when
risk was the worst (– seen in Figure 6 top left) although
more jobs were subject to security attacks. Cases such as
these can be investigated further to reason why a particular
agent is taking such action. One way of teaching the agent
would be by changing the we. Furthermore, the weights
could be adjusted or different agents could be combined
at different environmental settings. For instance, including
the remaining fuel or battery resources into the agent’s
observation. This way the agent can act intelligently and
decide whether to prioritise security or energy resources.

5.4 Data size
The size of data has multiple effects on the performance
of the simulation. As the communication time is directly
proportional to the data size, doubling the data size at least
doubles the transmission time. In addition, our execution
time is also proportional to the data size –see Equation (1).
So, the service rate of the satellite is halved when the data
size is doubled. We present the results in Figure 7. We set the
default data size of the algorithm to be 0.2 MB which could
be the image data that the satellite is transmitting to the
server for further computation. We see from the results that
even under the same network and risk conditions, plenty
of jobs are dropped when the data size is doubled. The LO
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policy dropped on average 2.2 jobs per episode followed
closely by SOMS, then by the SONS. Our DDPG algorithm
dropped the least with an average of only 0.5 jobs per
episode. This improved performance came at a higher cost
of energy. However, it still used less energy than the LO with
had the maximum energy consumption at all data sizes.
However, when the data size is tripled, DDPG algorithm
dropped as many as the 2.7 jobs per episode which were the
worst jointly with the local computing. In terms of overall
cost, SOMS was best at the triple data size.

5.5 Satellite Formations
In Section 2.1, we described three different satellite for-
mations namely leader/ follower, cluster and constellation.
However, in previous sections, we experimented using the
swarm/cluster formation only. The Round Trip Time (RTT)
and the energy consumption can vary relative to the spe-
cific satellite formation [26]. We capture the dynamics of
this offloading scenario in our simulation by considering
different transmission energy costs and varying the number
of satellites in the communication (which in turn varies the
communication data rate and time delay). For the satellites
in the same orbit, the number of satellites would be limited
which would mean the communication delay, as well as
the energy cost, is lower. Similarly, in a cluster of satellites,
the number of satellites transmitting simultaneously can be
higher resulting in lower data rate and higher energy con-
sumption. Finally, in a constellation, the number of satellites
communicating would be still higher due to the larger area
involved.

Figure 8 and Figure 9 shows the results of the simulation
for low and high incoming job rate cases respectively. In the
low job rate case, none of the algorithms dropped any jobs
for the trailing and cluster formation. For the constellation
formation SOMS and SONS policy both dropped approxi-
mately 0.2 jobs per episode. Only SONS algorithms were
subject to successful attacks as seen in the bottom right
figure. However, from the bottom left figure, we see all
the policies saved energy in comparison to the LO policy.
But the savings decreased as the formation changed from

Formation Power (Watt) Maximum Satellites
Trailing 0.5 20
Cluster 1 50
Constellation 2 100

TABLE 4
Simulation parameters for different satellite formations
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Fig. 8. Algorithm Performance for different satellite formations for low in-
coming job rate. Clockwise from top left: average overall score, average
dropped jobs, lost jobs due to security, and energy consumed.

trailing to swarm and constellation. In the simulation setting
when there were significantly more jobs present at the satel-
lite (–see Figure 9, we see the proposed algorithm DDPG
and DQN was able to save energy as well as drop fewer
jobs in comparison to the LO case. The DDPG was superior
to the DQN and others even in the constellation case where
it dropped the least number of jobs.

From Figure 8 and Figure 9, it is also evident that
DDPG is superior among all the policies. Also, it is evident
that trailing formation is beneficial than local only, cluster,
and the constellation formation for Computation Offloading
(CO). This is because the communication channels are better
than other formations. However, for all three formations, we
simulated the same server capacity. As the formation grows
larger in size, it may be possible to scale the server as well.

6 CONCLUSIONS AND FUTURE WORK

In this work, we studied wireless communications security
for space applications. In addition, we applied a useful
tool for future space applications called Computation Of-
floading. We then solved the CO problem using a DDPG
algorithm which is a robust method for solving optimisa-
tion problems in real-time. Through extensive Monte-Carlo
simulations, we show that our algorithm can increase the
performance of space applications. The simulations also
show that the added performance comes with increased
energy consumption. We compared the proposed algorithm
with not only static policies but with previously published
DQN method [44]. In general, the experiments showed that
the DDPG is superior to DQN based method in addition to
static policies. We also experimented on different satellite
formations and show that the proposed algorithm is supe-
rior to the baselines. However, in some settings, such as
when the risk was very high, the DQN agent performed
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better. Further study is necessary to understand the cause
and to understand if multiple agents can be combined to
develop an even better algorithm. For NewSpace system
where nano-satellites could work in swarms and constel-
lations with substantial autonomy, it is vital that satellites
and rovers can trust each other and depend on each other.
The algorithm presented in this paper can find applications
in this new environment. In the future, we would like to
incorporate further contexts such as the remaining energy
resource of the satellites as well as the movement of satellites
and authentication issues.

ACKNOWLEDGMENTS

This work is supported by grant EP/R026092 (FAIR-SPACE
Hub) through UKRI under the Industry Strategic Challenge
Fund (ISCF) for Robotics and AI Hubs in Extreme and
Hazardous Environments

REFERENCES

[1] Xilinx, “RT Kintex UltraScale FPGAs for Ultra High Throughput
and High Bandwidth Applications,” May 2020.
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