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Abstract 

Concerns for fossil fuel price volatility, environmental pollution and energy inefficiency drive the 

formulation of energy policies aimed at attaining energy security. We use a theoretical framework 

which integrates key elements of energy security into the context of natural capital theory to investigate 

the causal relationship between Nasdaq clean energy stock price and a range of variables including oil 

price, natural gas prices, carbon price and energy efficiency. Our ARDL results reveal that clean energy 

stock price is jointly and individually explained by the variables representing some elements of energy 

security. Carbon price and energy efficiency emerged as the most important elements of energy security 

driving the on-going transition from conventional to clean energy sources. Consequently, governments 

should take environmental sustainability and energy efficiency very seriously when formulating energy 

policies in the pursuit of energy security and the way they stimulate substitutions between clean energy 

sources and hydrocarbons. 
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1. Introduction 
Evidently, the world is experiencing a gradual paradigm shift from non-renewable 

energy sources, mainly fossil fuels, to renewable energy sources (Waziri, Hassan, and 

Kouhy 2018; Khan, Hou, and Le 2021a, 2021b). This shift is notably propelled by the 

drive to pursue sustainability (Costanza and Daly 1992; Missemer 2018; Hassan 

2019b) and energy security (Winzer 2012). In the context of natural capital theory 

(NCT), as a key theory underpinning sustainable development, substitutability 

condition for sustainability is one of the key facilitators of this paradigm shift (van 

Geldrop and Withagen 2000; Hassan 2019a). As another critical driver of the 

paradigm shift, energy security is vigorously pursued by developed countries that are 

vulnerable to fossil energy price volatility and its consequent negative environmental 

impacts (Yergins 2006; Winzer 2012; Khan and Hou 2021b). To address these 

problems and ensure the attainment of optimal energy efficiency, many advanced 

economies formulate energy policies. Energy policies, mainly formulated at national 

level, are deliberate efforts put in place to strategically influence the elements of 

energy security such as hydro- carbon prices, energy efficiency and environmental 

sustainability, to ensure efficient energy supply and utilisation (Lucas, Francés, and 

González 2016; Galinis et al. 2020). In this regard, Win- zer (2012) enumerates 

efficiency, sustainability and energy prices as the principal pillars of the European 

Union’s energy policy. These policies are designed to influence energy consumption 

pat- terns in many advanced countries such that fossil fuel energy sources are replaced 

by clean energy sources. Furthermore, the outcomes of the implementation of energy 

policies targeting the pursuit of energy security manifest in the form of changes in 



energy-related variables such as clean energy stock performance, clean energy 

consumption, fossil fuel prices, fossil fuel consumption and energy efficiency. 

Despite the importance of energy security in the context described above, only a few 

studies explore the topic in examining the link between fossil fuel prices and clean 

energy stock performance (see, Henriques and Sadorsky 2008; Kumar, Managi, and 

Matsuda 2012; Sadorsky 2012; Pham 2019). These studies generally highlight the 

importance of energy security in motivating their research. For instance, Henriques 

and Sadorsky (2008) emphasise that energy security concerns such as rapidly 

diminishing supply; political instabilities in the oil and gas exporting countries and oil 

price volatility induce investments in clean energy companies’ stocks. Similarly, 

Kumar, Managi, and Matsuda (2012) vaguely introduce energy security in their paper 

while providing back- ground information and establishing the justification for their 

study. Additionally, when establishing the justification for his study, Sadorsky (2012) 

mentions energy security as one of the key drivers which propel fast growth of the 

renewable energy segment of the overall energy sector. More recently, Pham (2019) 

focuses on the evaluation of alternative energy sources which emerge to strengthen 

energy security and environmental wellbeing issues. However, none of these studies 

has gone into more depth in unpacking and incorporating energy security concerns 

within any specific theoretical framework to underpin their research. Following a 

careful review of the relevant literature; we identify three key elements of energy 

security (oil and gas prices, energy efficiency and environmental sustainability). We 

then integrate these elements into the context of NCT to develop a framework to 



underpin our study. As such, examining the role of energy security via its three key 

elements in stimulating a substitution between the conventional and clean energy 

sources is the key motivation for our study. 

There has been a growing concern for energy security stemming from fossil fuel 

prices’ volatility and the adverse environmental impacts associated thereto. Fossil fuel 

prices represent the independent prices of the three hydrocarbons, namely crude oil, 

natural gas and coal (Song et al. 2019a, 2019b; Sun et al. 2019). Two dominant 

international oil prices, Brent and West Texas Intermediate (WTI), are mainly used as 

the benchmarks for the determination of crude oil prices across the world. While WTI 

dominates the American region, Brent is used by OPEC 

members, European countries and several other countries around the globe. Due to the 

high similarity between the two, they are often used interchangeably by researchers to 

represent global oil price. In this study, we use Brent oil future to represent oil price 

to partly proxy for fossil fuel as an element of energy security. However, to represent 

the natural gas aspect, we employ natural gas price from four gas markets. They 

include Henry Hub, National Balancing Point (NBP), Title Transfer Facility (TTF) 

and Zeebrugge (ZEE). Additionally, we develop and use a simple composite gas price 

index which integrates the prices from the three European natural gas markets (NBP, 

TTF and ZEE). Following this choice and the development of the composite gas price 

index, our study exhibits features which set it apart from the rest of the studies in the 

research area. 



Another important motivation for our paper relates to the inclusion of carbon price as 

a potential determinant of clean energy stock performance. Within the literature 

occupied with the relationship between fossil fuel prices and clean energy stock 

performance, only Kumar, Managi, and Matsuda (2012) include carbon price as a key 

explanatory variable. The authors, however, fail to document a significant relationship 

between carbon price and clean energy stock price. Like Kumar, Managi, and Matsuda 

(2012), we also include carbon price to capture concern for environmental 

sustainability. However, our motivation for including the variable extends to 

identifying carbon price to represent environmental sustainability concern as a key 

element of energy security. Furthermore, carbon price represents an important link 

between energy security and NCT. Consequently, we suspect that a change in carbon 

price will trigger a substitution between clean energy and fossil fuels in an energy mix 

and a resultant change in clean energy stock price. 

Furthermore, attaining energy efficiency is among the key objectives which drive the 

pursuit of energy security. Consistent with NCT, this stems from the fact that the 

current generation ought to 

be efficient in harnessing and utilising energy resources so that we do not encroach 

into the ability of future generation to benefit fro¶m these resources. These include 

renewable energy resources as Harte (1995, 158) observes: ‘… continued exploitation 

in excess of natural regeneration rate can turn potential renewable resources into non-

renewable resources.’ This motivates our inclusion of the variable, clean energy 

efficiency, to represent energy efficiency. Also consistent with the relevant literature, 



we include the variable to control for the investors’ categorisation of clean energy 

companies as technology companies (Henriques and Sadorsky 2008; Kumar, Managi, 

and Matsuda 2012) 

Therefore, informed by insights from NCT, this paper investigates whether the three 

elements of energy security identified above, which are operationalised by five 

variables (Brent oil price, natural gas price index, Henry hub price, carbon price and 

energy efficiency), jointly and/or individually explain variations in Nasdaq clean 

energy stock price. Thus, the purpose of the investigation is to establish whether the 

causal relationships stimulate substitutions between conventional and clean energy 

sources. The rest of the paper is organised as follows. Section 2 reviews the relevant 

literature and develops the theoretical framework for the study. Section 3 focuses on 

the methodology of the paper. Section 4 presents empirical results and these are 

discussed in the subsequent section 5. Section 6 presents our concluding remarks and 

policy implications.  

2. Literature review and theoretical underpinnings 

2. 1. Energy security  
Energy security became a matter of national concern and strategy since the early 

1900s. For instance, during the 1st World War, United Kingdom had to rely on the 

insecure supply of petroleum from Persia to make its ships faster than those of 

Germany (Yergins 2006). During that period, the insecurity referred to was mainly 

related to uncertainties concerning the supply of oil, the inefficiency of coal and the 

safety of oil as a new source of power (Yergins 2006). Notably, these remained the 



key elements of energy security until the incident of the initial oil crises in the 1970s 

occurred. Thus, modern concern for energy security was invoked by the first oil crises 

(Blum and Legey 2012) which specifically occurred in 1973 when the Arab members 

of OPEC placed an oil embargo on various advanced countries (Gasser 2020). This 

caused global oil price to shoot up by 300% – from $3 to $12 per barrel (Gasser 2020). 

The key lesson from this event is that the use of oil supply restriction as a political 

weapon exposed the vulnerability of advanced economies to energy insecurity. 

Yergins (2006) predicted that the challenge of energy security would escalate as the 

world’s energy markets became more integrated. Consistent with this prediction, 

energy security has become a complex and a multidimensional concept which lacks a 

specific definition applicable to all situations. For this reason, the concept has been 

described as blurred, lacks universal interpretation and is elusive (Checchi, Behrens, 

and Egenhofer 2009; Winzer 2012; Kruyt et al. 2009). Thus, Kruyt et al. (2009, 2166) 

describe the concept as having ‘… rather elusive nature and it is highly context 

dependent.’ For example, the perception of energy security by oil and gas net-energy-

importing countries differs from the way net-energy-exporting countries view the 

concept. Consequently, the definition of energy security as the availability of energy 

sources at affordable prices (Abdo and Kouhy 2016; Song et al. 2019a, 2019b) applies 

to oil and gas net-importing countries. However, for the oil and gas exporting 

countries such as Iran, Nigeria and Saudi Arabia, energy security extends to include 

economic security where a decline in oil and/or gas price may lead to financial 



difficulties. It is imperative to clarify that our paper is concerned with the conception 

of energy security from the net-energy-importing countries’ perspective.   

In their seminal paper, while trying to demonstrate the complex nature of energy 

security, Ang, Choong, and Ng (2015) add dynamism to the context-dependent nature. 

The authors specifically derive seven key energy security themes1 from 83 energy 

security definitions. In this regard, Galinis et al. (2020) highlight four principal 

elements in the provision of energy services, namely, afford- ability (price), efficiency, 

energy security and sustainability. Technically, the other three elements have a strong 

connection to energy security as their absence or weakness signals a concern for 

energy security. For example, if the affordability of oil is threatened by an excessive 

hike in its price, this indicates that oil-dependent countries are vulnerable to energy 

insecurity. However, on top of affordability and sustainability, Le and Nguyen (2019) 

identify availability, accessibility and acceptability as three additional aspects of 

energy security. Furthermore, Matsumoto, Doum- pos, and Andriosopoulos (2018) 

contend that these elements are used by policymakers to form indicators which inform 

national energy policies. 

From the foregoing discussion, a closer look at the relevant literature shows that oil 

and gas prices, energy efficiency and environmental sustainability have been variously 

recognised as important elements of energy security (Yergins 2006; Abdo and Kouhy 

2016; Ang, Choong, and Ng 2015; 

Le and Nguyen 2019; Zaman and Kalirajan 2019; Galinis et al. 2020). In addition, 

these elements have been identified as parts of the critical factors studied, analyzed 



and shaped to inform the for- mulation of energy policies in facilitating the provision 

of the needed energy supplies and services in an economy (Winzer 2012). In 

particular, our paper focuses on the relationship that may exist between such key 

elements of energy security as prices of fossil fuels (particularly, oil and gas), 

environmental sustainability and energy efficiency on the one hand, and clean energy 

stock price on the other hand.  

2. 2.  Oil and gas price and clean energy stock performance nexus 

On a broad spectrum, various studies have empirically examined the relationship 

between fossil fuel prices and clean energy stock performance but results reported so 

far remain mixed and rather inconclusive. Evidently, two principal measurement 

strategies for clean energy stock performance seem to be responsible for the mixed 

results. In measuring clean energy stock performance, while most studies use price 

indexes (Henriques and Sadorsky, 2008; Kumar et al., 2012; Sadorsky, 2012; Managi 

and Okimoto, 2013; Kocaarslan and Soytas, 2019; Sun et al., 2019; Pham, 2019), 

some others employ stock returns (Dutta, 2007; Reboredo and Ugolini, 2018; Kyritsis 

and Serletis, 2019; Xia et al. 2019; Shao and Zhang, 2020).  

Apparently, those who use clean energy stock price indexes have mainly employed 

WilderHill Clean Energy Index and have consistently documented similar results. For 

instance, Henriques and Sadorsky (2008) establish a weak positive relationship 

between oil price and clean energy stock price with causation flowing from oil price 

to alternative energy stock performance. An important implication of this result is that, 

oil price volatility as a key element of energy security induces fluctuations in the 



production, consumption and investment in alternative energy. Sadorky (2012) reports 

a similar but stronger positive relationship. An important implication drawn by 

Sadorky (2012, p.254) from the significant positive correlation they report between 

oil price and clean energy stock price is as follows: “the results of this paper show that 

a portfolio of clean energy stocks and oil futures can be built and that oil futures can 

be used to hedge an investment in clean energy stock prices.” Similarly, Kumar et al. 

(2012) report an independent significant positive effects of oil price and technology 

stock price on clean energy stock price, specifically noting that rising oil prices 

stimulate substituting clean energy sources for conventional sources. It is important 

to note that the authors employ two more clean energy price indexes in addition to 

WilderHill Clean Energy Index. Similarly, Managi and Okimoto (2013), who use 

Markov-switching VAR, also document a significant positive relation between oil 

price and clean energy stock price. Although, Bondia et al. (2016) did not find 

association between oil price and energy stock price in the long-run, they document a 

significant positive relationship between the two variables in the short-run. In the 

same vein, Kocaarslan and Soytas (2019) and Song et al. (2019) examine the dynamic 

conditional correlation between oil price and clean energy stock performance and 

technology stock prices, and report a significant positive relationship. Also, Song et 

al. (2019a, 2019b)’s results imply that crude oil price has a stronger positive impact 

on renewable energy stock performance than natural gas and coal prices. 

However, in the category of studies that use stock price to measurement performance, 

Sun et al. (2019) document a differing result. Thus, they analyze the effect of 



composite price index on the stock price of new energy companies and report a mild 

effect of the combined prices of the three fossil fuels on newly quoted energy stock 

prices. This deviant finding may be attributed to the fact that the authors use a price 

index different from WilderHill Clean Energy Index. Pham (2019) is another study 

within this category that deviates from the dominant approach. Specifically, Pham 

(2019) differs from the previous studies in two ways. Pham (2019) is the only study, 

to the best of our knowledge, which uses the disaggregation of three Nasdaq OMX 

indexes in measuring clean energy stock performance. Secondly, the study reports 

varying relationships between indices in the renewable energy sub-sectors and oil 

price. A more recent study, also with a divergent result, conducted by Zhang, Cai, and 

Yang (2020) reports heterogeneous relationships across quantiles and investment 

horizons regarding the effect of oil price on renewable energy stock performance. 

Unlike Henriques and Sadorsky (2008), the authors find that oil price has a strong 

ability to predict renewable energy stock prices in the long run. 

We encounter mixed results within the extant literature that employ stock returns to 

measure clean energy stock performance. For instance, Kyritsis and Serletis (2019) 

establish absence of statistically significant relationship between oil price uncertainty 

and clean energy stock returns. However, the authors document asymmetric 

relationship between oil price and clean energy stock returns. In contrast, however, 

Dutta (2017) discovers that oil price uncertainty has a significant positive impact on 

clean energy returns. Still within the same category, Reboredo and Ugolini (2018) 

examine the effect of quantile price fluctuations in oil, natural gas, coal and electricity 



on the quantiles of clean energy stock returns. The authors document empirical 

evidence showing that whilst oil price appears to be the major determinant of stock 

return in the US, electricity price is the key determinant in the EU States. However, 

Shao and Zhang (2019) focus on the effect of oil price fluctuations on clean energy 

metal price returns and finds that oil price had positive spill over effect on seven clean 

energy metal stock returns.  

Considering the overall category of studies that used price indexes, only four studies 

reported results divergent from the dominant positive relationship between oil price 

and clean energy stock price. However, Henriques and Sadorsky (2008) is the only 

study that documented a weak positive relationship between oil price and clean energy 

stock price within the category of studies that specifically employed WilderHill Clean 

Energy Index. All other studies which used this index documented a significant 

positive relationship. In a different context, heterogeneous relationships across clean 

energy sub-sectors (Pham 2019) and quantile/investment horizons (Zhang, Cai, and 

Yang 2020) have been documented. The few studies that measured clean energy 

performance via returns reported results which are a mixture of significant positive, 

insignificant positive and heterogeneous (a combination of positive, negative, 

insignificant, symmetric and/or asymmetric). Evidently, the review in this section 

informs our conclusion that so far findings in the area are rather inconclusive.  

2. 3. Theoretical Framework: the natural capital theory (NCT) 
Substitutability condition for sustainability is conceptualized, within the context of 

NCT, to explain the rationale behind the paradigm shift that underlies the ongoing 



transition from non-renewable to renewable energy resources (see Figure 1). Thus, in 

advocating for sustainability, NCT states that substituting the harnessing and 

consumption of exhaustible natural resources with non-depreciable renewable natural 

capital to the extent that we, at the very least, keep the aggregate stock of natural 

capital intact facilitates sustainable development (Pearce, 1988; Costanza and Daly, 

1992; Harte, 1995; Ekins et al, 2003; Barbier, 2019). According to this theory, it is 

when we implement this that we are able to achieve our present needs without 

compromising the ability of the future generations to achieve their needs (van Geldrop 

and Withagen, 2000; Fenichel and Hashida, 2019). On this note, Pearce (1988) 

equates the attainment of sustainable development to ensuring ‘constancy of natural 

capital stock’. This implies maintenance of natural capital at the level at which 

humanity meets it by never allowing it to depreciate (Solow, 1974; Kornafel and 

Telega, 2020). Elaborating on the constancy of natural of natural capital, Costanza 

and Daly (1992; p.7) note that “A minimum necessary condition for sustainability is 

the maintenance of the total natural capital stock at or above the current level.”   

Various studies allude to the close substitutability between fossil fuels and clean 

energy sources in articulating and discussing the causes and the implications of the 

nexus between fossil fuel prices and clean energy stock performance (Henriques and 

Sadorsky, 2008; Kumar et al., 2012; Xia et al., 2019; Kocaarslan and Soytas, 2019; 

Kocaarslan and Soytas, 2019b; Song et al., 2019). For example, Henriques and 

Sadorsky (2008) argue that higher oil price and shortages in its supply induce 

substituting fossil fuels with alternative energy options. Similarly, the positive 



relationship hypothesized between oil price and alternative energy stock price by 

Kumar et al. (2012) is premised on the substitutability between the two competing 

energy sources. In articulating the implications of their findings, Xia et al. (2019) 

contend that fossil fuels and renewable energy have strong substitution relationship. 

Similarly, the studies by both Managi and Okimoto (2013) and Kocaarslan and Soytas 

(2019) refer to fossil fuels and renewable energy sources as close substitutes.  

The close substitution between the two competing energy sources, which underpins 

the relationship between fossil fuel prices and renewable energy stock prices (Managi 

and Okimoto, 2013; Kumar et al., 2012), is linked to the substitutability condition for 

sustainability as advocated by the NCT via certain key elements of energy security. 

In reality, the substitution between fossil fuels and renewable energy sources is mainly 

driven by the elements of energy security such as energy prices, energy efficiency, 

climate change and environmental sustainability. Changes in fossil fuel prices may 

impact investments in renewable energy options in two ways. Firstly, increases in 

fossil fuel prices incentivise searching for a cheaper alternative to maintain 

affordability of energy. Secondly, reductions in fossil fuel prices motivate 

consumptions, thus increases emissions and cost of production due to carbon prices 

and tariffs; thus motivate investing in a more sustainable sources of energy. Therefore, 

this paper argues that in pursuit of energy security the society substitutes renewable 

energy away from fossil fuels in terms of production, consumption and investment. 

As such, changes in the elements (such as fossil fuel price, environmental conditions, 

and energy efficiency) stimulate increases in the consumption, production and 



investments in clean energy. This translates into rises in the clean energy stock 

performance (clean energy stock return or clean energy price).    

Figure 1 shows how NCT classifies energy resources into exhaustible, renewable and 

ecosystem services and advocates substitutability as an important condition for 

achieving sustainability (Costanza and Dalley, 1992; Berkes and Folke, 1992; Harte, 

1995; Fenichel and Hashida, 2019; Barbier, 2019). The Figure is a diagrammatic 

representation of our theoretical framework which advocates that in pursuit of energy 

security people, entities and governments substitute clean energy sources for fossil 

fuels. In this scenario, as shown in Figure 1, the elements of energy security would in 

differing individual ways and, perhaps in a joint way, affect the substitution between 

non-renewable and renewable energies. Unlike oil and gas, the clean energies such as 

solar, biofuel, wind energy etc, do not have specific markets where their prices could 

be determined. We can only see the reflection of their prices via their stock energy 

performances. For instance, it is argued that when stock prices of clean energies are 

rising as the prices of fossil fuels are increasing, it is an indication of a substitution 

away from fossil fuel to clean energy sources (Henrique and Sadorsky, 2008; Kumar 

et al, 2012; Managi and Okimoto, 2013). 

3. Material and method 
In this section, we describe the nature of the dependent and the independent variables 

and the various sources from which data on these variables are gathered. Next, we 

present statistical descriptions of the time-series data for each variable. Finally, we 



specify the appropriate time-series regression model based on the results of the 

conventional and breakpoint unit root tests. 

 

Figure 1 Theoretical framework. Source: Authors’ creation, 2021 

3. 1.  Variables and data sources 

3.1.1  Clean energy stock price index (CEI) 

CEI, as the dependent variable in this study, is one of the key indexes that belongs to 

NASDAQ OMX Green Economy Sector Index Family. It tracks the price-related 
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performance of companies from around the world included in the NASDAQ OMX 

Green Economy Index1. According to NASDAQ (2015, p.9)  

Clean Energy Focused Index is designed to track sectors of the Green 

Economy specifically enabling the advancement of energy generation via non-

fossil-based sources inclusive of the sectors renewable energy generation, 

clean energy efficiency, advanced materials and bio/clean fuels.  

The index began at the base value of 1000 on 10th October 2010. Data on this variable 

were collected from the NADAQ Global Indexes.  

3.1.2  Oil price (OPR) 

We use Brent oil futures to measure crude oil price. Choosing this price is informed 

by its wide usage as a benchmark in the international oil markets located in the Middle 

East, Europe and Africa. Brent is also used as the benchmark for pricing by the OPEC 

member countries considered as a powerful group that plays a significant role in the 

determination of international oil price. Brent crude oil is very similar to West Texas 

Intermediate (WTI) as the two are denominated in US dollar; are both light and their 

prices are highly correlated. Daily data on both Brent and WTI prices were collected 

from Investing.com. 

3.1.3 Gas price index (GPI) and Henry Hub Natural gas price (HUB)    

Unlike the two key international crude oil prices (Brent & WTI), international markets 

for natural gas are segmented and less unified (de Jong and Schneider, 2009).  

However, there are four dominant natural gas markets to which most international 

natural gas prices are bench-marked. They are Henry Hub (HUB) (United States), 

 
1 These are indexes whose computations are based on market capitalizations. 



National Balancing Point (BP) (United Kingdom), Title Transfer Facility (TTF) and 

Zeebrugge (Continental Europe). Following this choice, our study exhibits a feature 

that sets it apart from the rest of the studies in this research area as we develop and 

use a simple composite gas price index which integrates the prices from the three 

European natural gas markets. Daily data for HUB price were collected from the US 

Energy Information Administration (EIA). However, daily data on NBP, ZEE and 

TTF prices were collected from Energy Market Price. In order to avaid 

multicollinearity, we decided to develop a simple composite price index that integrates 

the daily spot prices from the four markets into one. More specifically, we follow the 

steps outlined below to develop the gas price index. 

In the first step, we calculate and examine the correlation amongst the four prices pair-

wise. With correlation coefficient values of 0.97 (NBP and TTF), 0.99 (NBP and ZEE) 

and 0.97 (TTF and ZEE), we established that prices from the three European markets 

are highly correlated. An examination of their graphical representation shows high 

similarity as well. However, with Pearson’s correlation coefficients of 0.53 (HUB and 

NBP), 0.47 (HUB and TTF) and 0.54 (HUB and ZEE), it is evident that Henry Hub 

price is quite different from prices in the three European markets. Secondly, we 

express the prices from the three European markets in the same scale such that the 

value of each price ranges between 0 and 1 by dividing each price by the maximum 

value in the series. The result of this exercise, not reported here, confirms that prices 

in NBP, ZEE and TTF for their maximum values at 1 occurred on the same date, 28th 

March 2013. But on this date the value of HUB was 0.6544. We take a simple average 



of the prices from the three European markets to generate the GPI and include the 

price from the Henry hub market as a separate variable. 

3.1.3  Carbon emission futures (CEF) 

Carbon emission futures are price quotations of carbon emission reduction contracts 

existing in the emissions trading markets. it is a derivative whose contract prices 

reflect the prices at which carbon emission reductions will be bought and sold. A rise 

in the price of CEF suggests that intensive-carbon-emission firms are buying more 

carbon emission reductions to meet their targets, thus implies an extensive production 

and consumption of fossil fuels. This encourages cleaner production including more 

usage of clean energy sources. Falling CEF prices implies the reverse. Daily data on 

this variable was sourced from Investing.com.  

3.1.4  Clean energy efficiency (CEE) 

In the main, we include the NASDAQ energy efficiency index to represent the 

efficiency element of energy security. The key components of this index suggest 

intensive use of advanced technology. The index started at the base value of 1000 on 

10/13/2010. This very date marks the start date of the time period covered by our 

study. Additionally, technology companies stock performance is usually included to 

control for the clean energy firms’ being essentially recognised as companies that use 

highly advanced technology. As energy efficiency index reflects the use of advanced 

technology by clean energy companies (Henriques and Sadorsky, 2008, Kumar et al., 

2012), we included this index to more directly control for this feature. Daily data 

concerning this variable were collected from NASDAQ Global Indexes. 



3.1.5  Volume of clean energy stock traded (VTD). 

The inclusion of the quantity of clean energy stock bought and sold on the floor of 

NASDAQ security market is based on the reasoning that the number stock traded on 

daily basis may affect the dependent variables. Additionally, the volume traded may 

be affected by fossil fuel prices and the price of CEF. Data on this variable were 

collected from the NASDAQ Global Index. 

3. 2.  Data description 
In this section, we present descriptive statistics, line graphs and Pearson’s correlation 

matrix to provide information on the nature of our time-series dataset. While Table 1 

presents the mean, median, maximum and standard deviation for each variable; Figure 

1 presents the line graph for each variable and Table 3 provides information on pair-

wise Pearson’s correlations. All variables, except GPI which is in a ratio form, were 

transformed to natural logarithms before computing the descriptive statistics and 

generating the line graphs.   

Table1 Descriptive statistics 

Statistics/Variables ln(CEI) ln(OPR) ln(HUB) GPI ln(CEF) (CEE) ln(VTD) 

 Mean 6.9572 4.3684 1.1734 0.6978 1.9804 7.0767 12.1226 

 Median 6.9775 4.6215 1.1913 0.7310 1.8825 7.0876 12.2415 

 Maximum 7.2659 4.8414 1.8163 1.0000 3.2359 7.3415 13.2023 

 Minimum 6.6130 3.3279 0.4941 0.3615 0.9933 6.7162 9.3518 

 Std. Dev. 0.1437 0.3986 0.2460 0.1577 0.4910 0.1247 0.5942 

 Observations 1,710 1,710 1,710 1,710 1,710 1,710 1,710 

 

A careful observation of the line graphs in Figure 1 shows that six out of the seven 

variables are likely to be integrated of order one, I(1). However, the logarithmic form 

of VTD seems likely to be integrated of order 0, I(0).  



3. 3.  Model specification 
Consistent with previous literature clean energy performance as a function of such 

regressors as fossil fuel prices and other control variables are generally modelled as 

follows: 

𝐴𝐸𝑃𝑡 = 𝛿0 + 𝛿𝑖𝐹𝐹𝑃𝑡 + 𝛿𝑗𝐶𝑉𝑡 + 𝜖𝑡                                                     

(1) 

Where 𝐴𝐸𝑃𝑡  denotes the alternative energy stock performance in question;  𝐹𝐹𝑃𝑡 

represents a vector of fossil fuel prices (such as crude oil, natural gas and coal) and 

𝐶𝑉𝑅𝑡 a vector of other relevant regressors. While 𝛿0 is the time invariant constant, 𝛿 

denotes the coefficients of the regressors in the model, 𝑖 =  1, 2 ,3 … . . 𝑛 𝑎𝑛𝑑 𝑗 =

𝑛 + 1, 𝑛 + 2 … … . 𝑛 + 𝑚  

Kumar et al (2012) introduce carbon price as an additional explanatory variable in the 

model such that it becomes: 

𝐴𝐸𝑃𝑡 = 𝛿0 + 𝛿𝑖𝐹𝐹𝑃𝑡 + 𝛿𝑗𝐶𝑉𝑅𝑡 + 𝛿𝑘𝐶𝑃𝑅𝑡 + 𝜖𝑡                                        

(2) 

Where 𝐶𝑃𝑅𝑡 represents the carbon price and 𝑘 = 𝑚 + 1. 

Recently, McNown et al. (2018) assessed the application of the famous Pesaran et 

al.’s (2001) ARDL model and identified some problems associated with its 

implementation by various studies. The authors called the attention of researchers to 

the fact that if not implemented with caution, the Pesaran et. al. (2001) bounds 

cointegration test in ARDL may lead to incorrect conclusion. They implied two 



options researchers may choose from in order to produce ARDL cointegration test 

results that are not misleading. In the first option, McNown et al. (2018) clarify and 

remind us that Pesaran et al. (2001) lay down four conditions that must be satisfied 

before we conclude that two or more variables are cointegrated. These conditions are. 

(i) The dependent variable is known to be I(1) with high degree of certainty.  

(ii) Both F-bounds test on the lag level of all variables and the t-bounds test 

on lag level of the dependent variable reject the null hypothesis of ‘no level 

relationship’.  

there is no feedback at the levels from the dependent to the independent variables so 

that the independent variables are weakly exogenous. 

Table 2 Correlation matrix 

Variables ln(CEI) ln(OPR) ln(HUB) GPI ln(CEF) (CEE) ln(VTD) 

ln(CEI)  1.0000       
ln(BRT)  -0.5487 1.0000      
ln(HUB)  0.0060 0.6369 1.0000     
GPI  -0.5711 0.8337 0.5485 1.0000    
ln(CEF)  -0.3272 0.2848 0.2353 0.1769 1.0000   
ln(CEE)  0.9696 -0.4310 0.0675 -0.4338 -0.4595 1.0000  
ln(VTD)  0.1375 -0.2191 -0.1538 -0.1893 -0.1147 0.1183 1.0000 

 

However, McNown, Sam, and Goh (2018) conclude that treating regressors as 

dependent variables in a system of ARDL equations (see, for example, Marques, 

Fuinhas, and Menegaki 2016) thereby making them weakly endogenous does not 

affect the validity of ARDL results under Pesaran, Shin, and Smith (2001). 

Consequently, this rules out the need to meet the requirement of condition (iii).3 The 

second option relates to the use of the bootstrap ARDL method introduced by 



McNown, Sam, and Goh (2018). In this paper, we choose the first option and use 

relevant econometric tests to determine whether conditions (i) and (ii) outlined above 

are violated or not. 

3. 4.  Unit root tests 
Establishing the stationarity status of each variable in a time-series dataset is among 

the key factors to consider in determining the appropriate regression model to use. To 

ensure that we satisfy the first condition, we conduct four unit root tests on the 

independent and the dependent variables. Thus, we subject all the variables in our 

model to Augmented Dickey Fuller (ADF) test, Phillips Perron (PP) test, 

KwiatKowski-Phillips-Schmidt-Smith (KPSS) test and the Perron and Vogelsang 

(1992) breakpoint unit root test.  

Table 3 Conventional unit root tests 

Variabl

e 

ADF PP KPSS 
Stationarit

y Status Level 1st Diff. Level 1st Diff. Level 
1st 

Diff. 

ln(CEI) -1.0170 

-

38.3959**

* 

-0.7936 

-

38.3068**

* 

3.3500**

* 
0.1337 I(1) 

ln(OPR

) 
-0.7876 

-

44.1709**

* 

-0.7525 

-

44.0982**

* 

 

4.1848**

* 

0.1627 I(1) 

ln(HU

B) 
-2.3352 

-

43.2608**

* 

-2.2500 

-

43.2891**

* 

 

1.3425**

* 

0.0461 I(1) 

GPI -1.4709 

-

45.6133**

* 

-1.4322 

-

45.8838**

* 

3.3864**

* 
0.1393 I(1) 

ln(CEF

) 
-2.0748 

-

27.9690**

* 

-2.4504 

-

75.2675**

* 

 

2.3220**

* 

0.1470 I(1) 

ln(CEE

) 
-1.5384 

-

39.3713**

* 

-1.4458 

-

39.4070**

* 

 

8.5563**

* 

0.1180 I(1) 

ln(VTD

) 

-

3.5946**

* 

-

23.9137**

* 

-

28.9396**

* 

-

313.174**

* 

 0.378595 0.1278 I(0) 

***significant @ 1%, **significant @ 5%, *significant @ 10%, 



Table 3 presents three unit root tests that are known to perform well with large samples 

(Diebold and Kilian, 2000). Results reported in the Table reveal that all the three tests 

show that six out of the seven variables, including CEI, are I(1). However, ln(VTD) is 

shown to be an I(0) variable by all the three tests.   

A careful examination of ln(OPR) and ln(CEF) graphs it is obvious that they are 

characterized by significant structural breaks. Other variables that may have structural 

breaks, but not as pronounced as those of ln(OPR) and ln(CEF), include ln(HUB), 

ln(CEI) and ln(CEE). Tursoy and Faisal (2018) remind us that conventional unit root 

tests such as ADF, PP, NG-Perron and KPSS do not take structural break into 

consideration in processing data for variables to produce the relevant test statistics. 

For this reason, the tests might produce misleading results if the variables being tested 

are characterized by structural breaks (Perron, 1997; Murthy and Okunade, 2016; Sun 

et al., 2017). Consistent with Sun et al. (2017) and Tursoy and Faisal (2016), we 

conduct and present breakpoint unit root test on each variable and the results are 

presented in Table 4.  

Table 4 Breakpoint unit root test 

Variables  
Level First Difference Stationarity 

Status t-Statistic Break date t-statistic Break date 

ln(CEI) -2.642 6/24/2013 -38.9363*** 8/8/2011 I(1) 

ln(OPR)  -4.6613** 9/29/2014 -44.8038*** 1/22/2016 I(0) 

ln(HUB) -3.4161 11/20/2014 -43.6061*** 2/19/2014 I(1) 

GPI -4.0964 1/24/2014 -48.7293*** 12/27/2016 I(1) 

ln(CEF) -4.2211* 11/16/2011 -58.3022*** 12/10/2010 Inconclusive 

ln(CEE) -3.1015 11/14/2012 -40.0393*** 8/18/2011 I(1) 

ln(VTD) -40.0393*** 12/16/2010 -61.6148*** 12/16/2010 I(0) 

***significant @ 0.1%, **significant @ 1%, *significant @ 5%, 



The results of the breakpoint unit root test serve three purses. Firstly, it enables us to 

confirm that none of the variables is I(2). Secondly, it assists in double checking that 

the dependent variable ln(CEI) is definitely I(1) and not I(0). Thirdly, it helps to 

identify ln(OPR) and ln(CEF) as the variables that are likely stationary at level due to 

presence of significant structural breaks. In view of the results relating to the third 

purpose, we generate two dummy variables, BRK1 and BRK2 for inclusion in our 

ARDL model to account for the significant breaks associated with ln(OPR) and 

ln(CEF) respectively. 

As all the three conventional unit root tests (ADF, PP and KPSS) as well as the Perron 

and Vogelsang (1992) breakpoint unit root tests have shown that the dependent 

variable, ln(CEI), is I(1), we believe that we satisfy the condition of the dependent 

being strictly I(1). The results of the three conventional unit root tests presented in 

Table 3 show a mixture of six I(1) and one I(0) variables, and the Breakpoint unit root 

test results in Table 4 show a mixture of four I(1), two I(0) and one inconclusive case. 

We interpret this as a strong indication to use ARDL to estimate our model. 

3. 5.  The ARDL model specification  
Given the standard ARDL specification (see, Pesaran et al., 2001; Narayan, 2004) we 

specify the following model: 



∆ 𝑙𝑛(𝐶𝐸𝐼)𝑡

= 𝛼0 + ∑ 𝛼1𝑖

𝑝

𝑖=1

∆ 𝑙𝑛(𝐶𝐸𝐼)𝑡−𝑖 + ∑ 𝛼2𝑖

𝑞

𝑖=0

∆ 𝑙𝑛(𝑂𝑃𝑅)𝑡−𝑖 + ∑ 𝛼3𝑖

𝑟

𝑖=0

∆(𝐻𝑈𝐵)𝑡−𝑖

+ ∑ 𝛼4𝑖

𝑠

𝑖=0

∆(𝐺𝑃𝐼)𝑡−𝑖 + ∑ 𝛼5𝑖

𝑢

𝑖=0

∆ 𝑙𝑛(𝐶𝐸𝐹)𝑡−𝑖 + ∑ 𝛼6𝑖

𝑣

𝑖=0

∆𝑙𝑛(𝐶𝐸𝐸)𝑡−𝑖

+ ∑ 𝛼7𝑖

𝑤

𝑖=0

∆𝑙𝑛(𝑉𝑇𝐷)𝑡−𝑖 + 𝛼8𝐵𝑅𝐾1𝑡 + 𝛼9𝐵𝑅𝐾2𝑡 + 𝜆1 𝑙𝑛(𝐶𝐸𝐼)𝑡−1 + 𝜆2 𝑙𝑛(𝑂𝑃𝑅)𝑡−1

+ 𝜆3(𝐻𝑈𝐵)𝑡−1 + 𝜆4(𝐺𝑃𝐼)𝑡−1 + 𝜆5𝑙𝑛(𝐶𝐸𝐹)𝑡−1 + 𝜆6𝑙𝑛(𝐶𝐸𝐸)𝑡−1 + 𝜆7𝑙𝑛(𝑉𝑇𝐷)𝑡−1

+ 𝜇𝑖𝑡                                                                                                                                             (3) 

Where:  ∆ represents difference operator;  𝑙𝑛 represents natural logarithm operator 

and 𝑝, 𝑞, 𝑟, 𝑠, 𝑢, 𝑣, 𝑤 are the variables’ lag limits. 

After estimating the ARDL model specified in equation (3), its goodness of fit is 

assessed and subjected to the relevant diagnostic tests. We then proceed with long run 

cointegration tests, if the model is found to be structurally and dynamically stable; its 

residuals are not serially correlated and it does not suffer from severe 

heteroskedasticity. In doing so, firstly, we conduct bounds F-test on the lagged levels 

of the dependent and the independent variables. Secondly, we conduct bounds t-test 

on the lagged level of the dependent variable only. If and only if both bounds test (F-

test and t-test) reject the ‘no level relationship’ null hypothesis, we proceed to estimate 

the long run and the short run models (see, McNown et al., 2018). 

Thus, the long run model, normally used to estimate level relationships, is specified 

as follows. 



𝑙𝑛(𝐶𝐸𝐼)𝑡 = 𝛼0 + ∑ 𝛼1𝑖

𝑝

𝑖=1

𝑙𝑛(𝐶𝐸𝐼)𝑡−𝑖 + ∑ 𝛼2𝑖

𝑞

𝑖=0

𝑙𝑛(𝑂𝑃𝑅)𝑡−𝑖 + ∑ 𝛼3𝑖

𝑟

𝑖=0

(𝐻𝑈𝐵)𝑡−𝑖

+ ∑ 𝛼4𝑖

𝑠

𝑖=0

(𝐺𝑃𝐼)𝑡−𝑖 + ∑ 𝛼5𝑖

𝑢

𝑖=0

𝑙𝑛(𝐶𝐸𝐹)𝑡−𝑖 + ∑ 𝛼6𝑖

𝑣

𝑖=0

𝑙𝑛(𝐶𝐸𝐸)𝑡−𝑖

+ ∑ 𝛼7𝑖

𝑤

𝑖=0

∆𝑙𝑛(𝑉𝑇𝐷)𝑡−𝑖 + 𝜐𝑡                 (4) 

However, the short run error correction model is specified as follows. 

∆ 𝑙𝑛(𝐶𝐸𝐼)𝑡 = 𝛼0 + ∑ 𝛼1𝑖

𝑝

𝑖=1

∆ 𝑙𝑛(𝐶𝐸𝐼)𝑡−𝑖 + ∑ 𝛼2𝑖

𝑞

𝑖=0

∆ 𝑙𝑛(𝑂𝑃𝑅)𝑡−𝑖 + ∑ 𝛼3𝑖

𝑟

𝑖=0

∆(𝐻𝑈𝐵)𝑡−𝑖

+ ∑ 𝛼4𝑖

𝑠

𝑖=0

∆(𝐺𝑃𝐼)𝑡−𝑖 + ∑ 𝛼5𝑖

𝑢

𝑖=0

∆ 𝑙𝑛(𝐶𝐸𝐹)𝑡−𝑖 + ∑ 𝛼6𝑖

𝑣

𝑖=0

∆𝑙𝑛(𝐶𝐸𝐸)𝑡−𝑖

+ ∑ 𝛼7𝑖

𝑤

𝑖=0

∆𝑙𝑛(𝑉𝑇𝐷)𝑡−𝑖𝛼8𝐵𝑅𝐾1𝑡 + 𝛼9𝐵𝑅𝐾2𝑡 + 𝜑𝐸𝐶𝑇𝑡−1

+ 𝜗𝑡                                  (5) 

The short run model is an error correction model that presents the dynamic 

relationship between the dependent and the independent variables in an ARDL 

regression. It estimates the first difference stationery relationship between the 

dependent and the independent variables. Unlike the long run level model, it includes 

the lags of the dependent and the independent variables. The error correction term 

(ECT) measures the speed at which variables re-adjust from short run shocks to revert 

back to long run relationship.  

4. Empirical results 

4.1 The base-line ARDL model 

We manoeuvre through the standard vector autoregressive (VAR) model to determine 

the maximum lags to include in the ARDL estimation for each variable. This is done 

via the lag selection criteria option available under the standard VAR. The summary 



of the maximum lag lengths for the VAR model and each variable are presented in 

Table 5 below. 

Table 5 shows that the optimal lag length for the standard VAR model is 6. Similarly, 

the table reports the optimal lag length of the dependent variable (lnCEI) as 6 and the 

highest maximum lag length amongst the independent variables as also 6 (lnCEE’s 

lag length). We, therefore, input 6 in the EVIEWS ARDL equation estimation option 

for both the dependent variable and the regressors to estimate our underlying ARDL 

model. The summary of the estimated results for the selected ARDL model is 

presented in Table 6. The model exhibits very impressive goodness of fit with an 

adjusted R-squared of 99.98% and an overall model F-statistic significant at below 

1% alpha level. 

It is evident from the results presented in Table 6 that our model is free from serial 

correlation. A careful observation of Figure 2 will show that CUSUMSQ graph is not 

as perfectly stable as the CUSUM graph, but most of the time it remains within the 

5% upper and lower bounds. Thus, whenever the CUSSUMSQ strays off and appears 

on or slightly beyond the boundary, it quickly returns back inside. CUSUMSQs with 

similar behaviour were reported by previous studies. For instance, Rahman and 

Kashem (2017) report a similar CUSUMSQ plot which is slightly outside the 5% 

bounds for a brief while. Similarly, two of the CUSUMSQs reported by Ozturk and 

Acaravci (2011) are at some points slightly outside the 5% boundaries. However, both 

studies concluded that their models were in general stable, because their CUSUMSQs 

were only slightly outside the 5% lines and that all other relevant tests confirm the 

stability of their ARDL models. Therefore, similar to these studies, except for the 

slight instability portrayed by the CUSUMSQ, all other relevant tests for stability 

including Ramsey Reset test, CUSUM test and recursive coefficients (see, Appendix 

VIII) confirm the coefficients and dynamic stabilities of our ARDL model. 

  

Tables 5. Maximum lags for the variables.  



Variable Lag length 

The VAR model 6 

lnCEI 6 

lnOPR 2 

lnHUB 3 

GPI 2 

lnCEF 5 

lnCEE 6 

lnVTD 2 

Lag selection method: Akaike Information Criterion (AIC).  

 

  



Table 6 Summary of the ARDL Model 

Model selected: ARDL (2, 2, 0, 0, 1, 2, 1) 

Goodness of fit and diagnostic tests 

Adjusted R-squared  99.98% 

Model F-statistic  469.11*** 

Breusch-Godfrey Serial Correlation LM Test:  
F-statistic - 1 lag 0.0445 

F-statistic - 2 lags 0.0695 

Heteroskedasticity Tests:   
White 0.6549 

ARCHѱ 2.3332** 

Ramsey RESET Test 2.0431 

CUSUM (see, Figure 2) Stable 

CUSUMSQ (see, Figure 2) Stable 

 Selected Model: ARDL(2, 2, 0, 0, 1, 2, 1); Model selection method: AIC; ***significant @ 1%, **significant @ 

5%, *significant @ 10%;  ѱWhite-Hinkley (HC1) heteroskedasticity consistent standard errors and covariance 

 

Figure 2 Line graphs 

6.6

6.7

6.8

6.9

7.0

7.1

7.2

7.3

11 12 13 14 15 16 17

LOG(CEI)

3.2

3.6

4.0

4.4

4.8

5.2

11 12 13 14 15 16 17

LOG(BRT)

0.4

0.8

1.2

1.6

2.0

11 12 13 14 15 16 17

LOG(HUB)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

11 12 13 14 15 16 17

GPI

0.5

1.0

1.5

2.0

2.5

3.0

3.5

11 12 13 14 15 16 17

LOG(CEF)

6.7

6.8

6.9

7.0

7.1

7.2

7.3

7.4

11 12 13 14 15 16 17

LOG(CEE)

9

10

11

12

13

14

11 12 13 14 15 16 17

LOG(VTD)

 



 

Figure 3: CUSUM and CUSUMSQ 

 

The insignificance of the Ramsey RESET test statistic is an indication that no important variable has 

been omitted and that the model is correctly specified. We report two tests for heteroskedasticity with 

White test showing evidence of heteroskedasticity while the ARCH test statistic appears significant at 

5% showing evidence of non-constant variance. For this reason, we estimate our baseline ARDL model 

while invoking heteroskedasticity consistent standard errors (Figure 3 ). 

 

4.2 Bounds cointegration test  

 

In this section, we present two bounds cointegration tests to establish whether the 

dependent variable, ln(CEI), is having a long run cointegrating relationship with any 

of the independent variables in the model. The first bounds test is a joint F-test on the 

lagged level of the dependent and the independent variables (Pesaran et al., 2001; 

McNown et al., 2018). The second test is a t-test on the coefficient of the lagged level 

of the dependent variable only. 



The results reported in Table 7 test the null hypothesis 𝐻0: 𝜆1 = 𝜆2 = 𝜆3 = 𝜆4 = 𝜆5 =

𝜆6 = 𝜆7 = 0 against the alternative hypothesis 𝐻1: 𝜆1 ≠ 𝜆2 ≠ 𝜆3 ≠ 𝜆4 ≠ 𝜆5 ≠ 𝜆6 ≠

𝜆7 ≠ 0. Since the joint F-statistic exceeds the upper critical value at 1% level of 

significance, we therefore reject the null hypothesis of ‘no level relationship’ and 

conclude that CEI has a significant level relationship with at least one of the 

regressors.  

To test the significance of the coefficient on the lagged level of the dependent variable, 

we present the result of bounds t-test in Table 7. The t-statistic tests the null hypothesis 

𝐻0: 𝜆1 = 0 against the alternative hypothesis 𝐻0: 𝜆1 ≠ 0.  As the t-statistic falls 

outside the upper bound at 1% level of significance, we rejection the ‘no level 

relationship’ null hypothesis. This reinforces the bounds F-test result and we, 

therefore, conclude that ln(CEI) is cointegrated with at least one regressor in the 

model.  

 

5. The long run relationship 

 

Following the rejection of the ‘no level relationship’ null hypothesis by both the joint 

F-test and t-test, we establish the existence of cointegration relationship between 

ln(CEI) and, at least, one of the independent variables in our model. This econometric 

evidence informs our estimation of the long run level relationships between ln(CEI) 

and the rest of the independent variables as presented in Table 8.  

Table 7: Joint F-test on the lagged levels of all variables 



  Value Signif. I(0) I(1) 

F-statistic 4.7139*** 10% 2.12 3.23 

Number of variables 6 5% 2.45 3.61 

    1% 3.15 4.43 

***significant @ 1%, **significant @ 5%, *significant @ 10% 

 

Table 8 t-bounds test on the lagged level of the dependent variable. 

  Value Signif. I(0) I(1) 

t-statistic -5.7545*** 10% -2.57 -4.04 

Number of variables 1 5% -2.86 -4.38 

    1% -3.43 -4.99 

***significant @ 1%, **significant @ 5%, *significant @ 10% 

 

The results in the table show that all the independent variables are individually 

significantly associated with ln(CEI). Thus, the coefficients of Henry Hub Natural gas 

price (HUB), carbon emission futures (CEF) and clean energy efficiency (CEE) are 

individually positive and statistically significant. 

6. The short run dynamics 

The short run model is an error correction model which presents the dynamic 

relationship between the dependent and the independent variables in an ARDL 

regression. It estimates the first difference stationery relationship between the 

dependent and the independent variables. Unlike the long run level model, it includes 

the lags of the dependent and independent variables.    

Results in Table 10 present the relationships between all the independent variables 

which appear in the main ARDL model at one or more lags. Thus, lnHUB and GPI 

which appear at 0 lag in the underlying ARDL are excluded from the error correction 

model. Therefore, only lnOPR, lnCEF and lnCEE appear in the results of the short-



run error correction model in Table 10. Evidently, the coefficients of all the three 

variables are positive and statistically significant. 

Table 9 Long run relationships 

Variable Coefficient Std. Error 

ln(OPR) -0.0633*** 0.0203 

ln(HUB) 0.0525** 0.0225 

GPI -0.0924** 0.0442 

ln(CEF) 0.0282** 0.0109 

ln(CEE) 1.1077*** 0.0513 

ln(VTD) -0.0171** 0.0085 

***significant @ 1%, **significant @ 5%, *significant @ 10% 
 

Conversely, however, the coefficients of oil price (OPR), gas price index (GPI) and 

volume of clean energy stock traded (VTD) are negative and individually statistically 

significant. 

 

Table 10 Short run dynamics 

Variable Coefficient Std. Error 

∆ln(CEI(-1)) 0.0984*** 0.0237 

∆ln(OPR) 0.0085*** 0.0029 

∆ln(OPR(-1)) 0.0049* 0.0029 

∆ln(CEF) 0.0021*** 0.0007 

∆ln(CEE) 0.8684*** 0.0048 

∆ln(CEE(-1)) -0.0679*** 0.0211 

∆ln(VTD) -0.000115 0.0001 

BRK1 0.000149 0.0003 

BRK2 0.000155 0.0007 

ECT(-1) -0.0146*** 0.0025 

Constant -0.0066*** 0.0011 

Adjusted R-squared   95.72% 

   

***significant @ 1%, **significant @ 5%, *significant @ 10% 

 



4.5 Error-correction-based Granger causality  

Granger causality tests the pair of null hypotheses that 𝑥𝑡 does not cause 𝑦𝑡 and 𝑦𝑡 

does not cause 𝑥𝑡 through a pair of equations (Rahman and Kashem, 2017). However, 

Odhiambo (2009) contends that the conventional Granger causality test may not be 

appropriate in an ARDL environment and recommends the use of error-correction-

based Granger causality test. Therefore, following Odhiambo (2007, 2009) and 

Narayan and Smyth (2008), we use the Granger causality approach that incorporates 

the error-correction term into each equation in the pair. However, we only estimate 

and report pair-wise Granger causality between ln(CEI) and ln(CEF), and between 

ln(CEI) and ln(CEE), as we only encounter evidence of cointegration in these two 

cases (see, Odhiambo, 2009 Rahman and Kashem, 2017). In this regard, the two 

relevant pairs of error-correction-based Granger causality equations are presented as 

follows. 

Ln(CEI) and ln(CEF) 

𝑙𝑛(𝐶𝐸𝐼)𝑡 = 𝛼0 + ∑ 𝛼1𝑖

𝑝

𝑖=1

𝑙𝑛(𝐶𝐸𝐼)𝑡−𝑖 + ∑ 𝛼2𝑖

𝑞

𝑖=0

𝑙𝑛(𝐶𝐸𝐹)𝑡−𝑖 + 𝜑𝐸𝐶𝑇𝑡−1

+ 𝜖𝑡                                 (6) 

𝑙𝑛(𝐶𝐸𝐹)𝑡 = 𝛽0 + ∑ 𝛽
1𝑖

𝑝

𝑖=1

𝑙𝑛(𝐶𝐸𝐹)𝑡−𝑖 + ∑ 𝛽
2𝑖

𝑞

𝑖=0

𝑙𝑛(𝐶𝐸𝐼)𝑡−𝑖 + 𝜑𝐸𝐶𝑇𝑡−1

+ 𝜀𝑡                                (7) 

ln(CEI) and ln(CEE) 

𝑙𝑛(𝐶𝐸𝐼)𝑡 = 𝛾0 + ∑ 𝛾
1𝑖

𝑝

𝑖=1

𝑙𝑛(𝐶𝐸𝐼)𝑡−𝑖 + ∑ 𝛾
2𝑖

𝑞

𝑖=0

𝑙𝑛(𝐶𝐸𝐸)𝑡−𝑖 + 𝜑𝐸𝐶𝑇𝑡−1

+ 𝜖𝑡                                 (8) 



𝑙𝑛(𝐶𝐸𝐸)𝑡 = 𝜃0 + ∑ 𝜃1𝑖

𝑝

𝑖=1

𝑙𝑛(𝐶𝐸𝐸)𝑡−𝑖 + ∑ 𝜃2𝑖

𝑞

𝑖=0

𝑙𝑛(𝐶𝐸𝐼)𝑡−𝑖 + 𝜑𝐸𝐶𝑇𝑡−1

+ 𝜀𝑡                                (9) 

Table 11 presents the results of the pair-wise Granger causality for the two 

cointegrated cases specified above. 

Table 11 Pair-wise error-correction-based Granger causality 

Short-run Long-run Joint-strong 

F-stat t-stat on ECTt-1 F-stat 
(Prob.) (Prob.) (Prob.) 

 

Dependent variable: ΔlnCEI 

Independent variables: (with causality running to ΔlnCEI).                         −3.0938*** 

              ¶(0.0020) 

 
 
                                           ECTt-1 

ΔlnOPR                       1.7945                                                       4.568*** 
(0.1665)                                                       (0.0034) 

 ΔlnHUB                     0.3460                                                       3.3599** 
(0.7076)                                                       (0.0181) 

ΔGIP                         0.5397                                                       3.5038** 
(0.5830)                                                       (0.0149) 

  ΔlnCEF                     5.8005***                                                  3.5672*** 
(0.0031)                                                       (0.0005) 

Δln(CEE)                     178.9***                                                303.3*** 
(0.0000)                                                       (0.0000) 

 

Dependent variables: ΔlnCEE 

Independent variables (with causality running to ΔlnCEE).                        −4.0874*** 

               ¶  (0.0000) 

 
ECTt-1 

ΔlnCEI                       122.2***                                                255.80*** 
(0.0000)                                                       (0.0000) 

   

***significant @ 1%, **significant @ 5%, *significant @ 10% 

 

Table 11 presents the types of causalities (short-run, long-run and joint-strong) usually 

estimated within the framework of ARDL. The results of the three variations of the 

error-correction-based Granger causality tests in Table 11 show that long-run 

causality flows jointly and individually from OPR, HUB, GPI, CEF and CEE to CEI. 

It is also evident from the table that there is a short-run causality running from CEF 

and CEE to CEI. Thus, apart from CEF and CEE, none of the regressors Granger 



causes CEI in the short run. Furthermore, there is a causal flow running from CEI 

back to CEE and this implies bidirectional causality between CEE and CEI in both the 

short and the long run. 

5  Discussion of results 
The theoretical framework we have designed and used in this study by integrating 

energy security elements into the context of NCT, is particularly unique. The 

framework advocates that oil and natural gas prices, energy efficiency and carbon 

price individually and jointly explain the substitution between conventional and clean 

energy sources. Our study particularly argues that this is evident in changes in clean 

energy stock performance. 

We document a significant relationship between oil price and clean energy stock price 

in both the short run and the long run. In the short run, the stationary oil price at first 

difference and its first lag are significantly positively related to clean energy stock 

price. Consistent with NCT, this implies a close substitution between the two 

variables. As our result fails to establish a causation between them, the substitution in 

the short run could flow from either energy source. This means that an increase in oil 

price may lead to a substitution away from oil to clean energy leading to an increase 

in clean energy stock price. The reverse may hold true with the price increase 

originating from clean energy stocks. Conversely, however, our long run level model 

reveals a significant positive relationship between the two variables with no definite 

causal flow from either variable. This is consistent with the finding reported by Bondia 

et al. (2016). The possible explanation that could be offered here is that the transition 

going-on from oil to clean energy sources might be one of the key reasons for the 



recent crash in oil price. Thus, as clean energy is substituted for oil, it is expected that, 

on the longer term, the stock performance of clean energy will increase and the price 

of oil will fall. This result is particularly consistent with the finding documented by 

Kocaarslan and Soytas (2019), especially in relation to variation in the nature of the 

relationship from short to long run. 

Two measures of natural gas price, namely HUB and GPI, are used in this study. As 

the price from Henry Hub market is starkly different from the prices in NBP, TTF and 

ZEE, we include HUB as a separate gas price in our ARDL model. However, because 

prices in NBP, TTF and ZEE are highly similar in terms of behaviour and structure, 

we integrate them to form a simple composite price index (GIP). Incidentally, both 

variables are excluded from the error correction model because they are included in 

the main ARDL model at 0 lags. Therefore, we only encounter the variables featuring 

in the long run model with HUB exhibiting a significant positive relationship with 

CEI, and GPI a significant negative one. No evidence of causality is found in both 

cases. The positive relationship between HUB and CEI implies that in the US 

substitution away from natural gas to clean energy sources takes place over the long 

run as the price of natural gas increases leading to a better clean energy stocks 

performance. The reverse may hold true as the price of natural gas in the region falls. 

However, the significant negative relationship between GPI and CEI suggests that in 

Europe moving away from the consumption of natural gas by transitioning over to 

clean energy sources raises clean energy stock price and lower the prices of natural 



gas in the three markets. This finding is closely related to the significant positive 

association between CEF and CEI discussed in the next paragraph.  

Carbon emission futures is cointegrated with CEI; it is significantly positively 

associated with CEI in both the short and the long run and is Granger caused by, and 

in turn, Granger causes CEI. This result suggests that progress in attaining 

environmental sustainability raises the price of carbon emission futures and this in 

turn propels transition to clean energy sources and a boost in clean energy stock price. 

We expect that the reverse holds true. This finding is also closely linked to the long 

run significant negative relationship between clean energy stock price on the one 

hand, and OPR and GPI, on the other hand. Thus, CEF is one of the major factors that 

stimulates increases in clean energy stock price which in turn drives down the price 

of oil as well natural gas prices in the European markets. This finding is inconsistent 

with the result of insignificant relationship reported by Kumar et al. (2012).  

The variable, energy efficiency, is included to play a dual role in this study. Its first 

role is to proxy for energy efficiency as an important element of energy security. In 

this regard, CEE is significantly positively associated with CEI in both the short run 

and the long run. In addition, the two variables are cointegrated and the causal flow 

between them is bidirectional. This implies that as an important element of energy 

security, CEE drives substituting clean energy for fossil fuels and in so doing leads to 

a rise in the price of clean energy stocks. The second role of energy efficiency variable 

is to serve as a control for the high-level similarity between clean energy stocks and 

technology companies’ stocks. In this regard, and consistent with the previous 



literature (see, Henrique and Sadorsky, 2008; Kumar et al., 2012; Managi and 

Okimoto, 2013), the short and the long run positive relationship between CEE and 

CEI implies that investors consider clean energy companies as high technology 

companies, and therefore, treat their stocks as such.  

6 Conclusion and policy implications 
We develop and use a theoretical framework that integrates concerns for energy 

security into the context of NCT. Three important elements of energy security (fossil 

fuel prices, energy efficiency and environmental sustainability) are shown to stir-up 

substitution between fossil fuels and clean energy sources. The result of this 

stimulation manifests as changes in the price of clean energy stock. Unlike 

hydrocarbon energy sources, clean energy sources do not have specific market within 

which their prices could be ascertained. Therefore, clean energy stock quotations or 

indices existing within stock markets are the only means through which we may 

observe the reflection of the changes in clean energy values. Consequently, we use 

ARDL which accounts for structural breaks to investigate the relationship between 

the five variables representing the three elements of energy security and clean energy 

stock price.  

Firstly, we document that the five variables representing the three elements of energy 

security significantly jointly explain variations in clean energy stock price. However, 

relationships with clean energy stock price at individual level vary across the five 

variables. Carbon emission future and energy efficiency emerged as the most 

important elements of energy security which explain variations in clean energy price 



in both the short and the long run. This implies that individuals, companies and 

governments take environmental sustainability and energy efficiency very seriously 

in their pursuit of energy security and the way in which they substitute clean energy 

for oil and gas or vice versa. Secondly, on the link between oil price and clean energy 

stock price, the relationship appears positive and explains energy substitution which 

could be in favour of either energy source. However, this positive relation re-adjusts 

back to a negative relationship in the long run indicating a significant transition away 

from oil to clean energy sources. Thirdly, we establish that natural gas prices in the 

three European market are related with CEI differently compared to the way natural 

gas price in the US gas market is related with CEI. In the US, a rise in the Henry Hub 

natural gas price stimulates changes in substitution between natural gas energy and 

clean energy sources thereby driving changes in the clean energy stock price.  

However, in Europe, including the UK, it is the transitioning to clean energy sources, 

induced by progress in environmental sustainability, that drives up the price of clean 

energy stock price which in turn forces down natural gas prices in NBP, TTF and ZEE 

markets. The fall in prices in the three markets, in turn, signals a rise in clean energy 

stock price. 

Finally, we end the conclusion by outlining three important implications of our 

findings. Firstly, our findings suggest that elements of energy security, most especially 

carbon emission and energy efficiency, are important drivers of the on-going energy 

transition from conventional to clean energy sources. This means that provision of 

clean and efficient energy in ensuring the environ- mental well-being of the planet, 



earth, is considered important both at present and in the future. Secondly, when 

formulating energy policies which incorporate energy security concerns, governments 

should carefully consider and stimulate the elements of energy security that are 

relevant to their respective economies. This is because our study has shown that the 

variables representing the elements of energy security are important stimulators of the 

on-going transition to cleaner energy sources. Furthermore, this facilitates the 

realisation of energy policy objectives; for example, achieving environmental 

sustainability, encouraging investments in clean energy stocks or hedging against 

fossil fuel prices volatility. Thirdly, when formulating strategies for the flotation of 

their stocks in any stock market, clean energy companies should carefully consider 

the joint and individual effects of oil price, relevant gas prices, carbon price and energy 

efficiency on clean energy stock prices. For, it is evident that these variables 

operationalise the behaviour of the key elements of energy security as they affect clean 

energy stock price. This becomes pertinent with investors’ increasing ethical 

consciousness of the need for corporations to demonstrate sustainable practices and 

behaviours. This signifies the need for corporations listed on international capital 

markets to incorporate United Nation’s sustainable development goals into their 

missions and operations. 

Notes 

1. The themes include availability, infrastructure, prices, societal effect, environment, 

governance and efficiency (see, Ang, Choong, and Ng 2015). 

2. These are indexes whose computations are based on market capitalizations. 

3. On this note, McNown, Sam, and Goh (2018, 10) state that ‘One of the objectives of this study 

is to evaluate the performances of the ARDL bounds test when the weakly exogenous 

regressors assumption is violated. Based on Monte Carlo simulation evidence presented here, 

it is found that the tests underlying the PSS ARDL bounds testing approach are not affected 

by the violation of this assumption’. 
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Appendices 

Appendix 1. Alternative estimation method – Generalised Method of Moments (GMM) 
 

Dependent variable: lnCEI 
Method: Generalised Method of 

Moments Date: 10/23/2020¶Time: 
18:14 
Sample (adjusted): 11/11/2010–7/31/2017 
Included observations: 1709 after 
adjustments 
Sequential 1-step weighting matrix & coefficient iteration 

Estimation weighting matrix: HAC (Bartlett kernel, Newey-West fixed bandwidth = 

8.0) Standard errors & covariance computed using estimation weighting matrix 
Convergence achieved after 12 iterations 
Instrument specification: lnCEIt -1 lnOPRt-1 lnHUBt -1 GPIt -1 lnCEFt -1 lnCEE t -1 lnVTDt-1 
Constant added to instrument list 

Lagged dependent variable & regressors added to instrument list 

Lagged dependent variable & regressors added to instrument list 

Variable Coefficient Std. Error t-Statistic Prob. 

lnOPR 
lnHUB 
GPI 
lnCEF 

−0.054983 0.021531 
¶0.085571 0.019800 
−0.178193 0.053018 
¶0.042050 0.008904 

−2.553641 0.0107 
¶4.321819 0.0000 
−3.360981 0.0008 
¶4.722398 0.0000 
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lnCEE 1.007477 0.007522 133.9295 0.0000 
lnVTD 0.000732 0.000376 1.945307 0.0519 
AR(1) 0.960418 0.006915 138.8973 0.0000 
R-squared 0.998748 Mean dependent var 6.957266 
Adjusted R-squared 0.998743 S.D. dependent var 0.143714 
S.E. of regression 0.005095Sum squared resid 0.044177 
Durbin-Watson stat 2.238261 J-statistic 4.318795 
Instrument rank 8 Prob(J-statistic) 0.037694 
Inverted AR Roots 0.96 

We estimate the GMM model to further check the robustness of our ARDL long-run results and the models are highly similar in terms of signs 

and significance. 
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