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Article 

Smart Blade Flutter Alleviation with Rotational Effect 

Reza Moosavi 

School of Mechanical Engineering, Faculty of Engineering, Environment & Computing, Coventry University, 

Coventry CV1 5FB, UK; reza.moosavi@coventry.ac.uk 

Abstract: The effect of using a piezoelectric material has been shown on postponing the flutter phe-

nomenon on a regular blade with rotational effects in this paper. The system response of a smart 

blade with only flapwise and edgewise plunge and rotational DOFs showed that the oscillations of 

the smart blade can be effectively decayed in a very short time by using efficient piezopatches in the 

flapwise and edgewise plunge DOFs. Furthermore, in a smart blade with five DOFs, it has been 

indicated having piezopatches in flapwise and edgewise plunge DOFs can defer the flutter speed 

by 81.41%, which is a noticeable increase in the flutter speed. Finally, by adding a piezopatch to the 

pitch DOF of a smart blade, it is possible to postpone the flutter speed by 155%, which is a very 

considerable increase. 

Keywords: smart blade; flutter; piezoelectric material 

 

1. Introduction 

In modern blades, because of high flexibility, aeroelastic analysis is crucial. To max-

imize the blade aerodynamic performance, it is very important to control aeroelastic in-

stability [1,2]. The flutter phenomenon is one significant aeroelastic analysis. Flutter can 

affect negatively the blade performance even it can cause to redesign the blade. In modern 

blades, preventing flutter is crucial due to its effect on the long-term durability of the blade 

structure, energy efficiency of the system, operational safety, and performance [3–7]. 

For many years, smart materials as piezoelectric materials have been used in blade 

structures. Piezoelectric materials can operate as actuators and/or sensors on a blade. They 

can perform as dampers and actuators to control the blade aeroelastic behavior. In fact, 

implementing piezoelectric materials can avoid redesigning the blade which can signifi-

cantly delay flutter [8,9]. These materials have been implemented on an adaptive blade 

with active aeroelastic control [10]. They have also been used in honeycomb materials 

[11]. Moreover, they can be implemented as vibration damping to control a plate under 

forcing function and time-dependent boundary moments [12]. In addition, piezoelectric 

materials can perform as flutter controllers by using the finite element method in dam-

aged composite laminates [13]. Those materials can be used to study aeroelastic flutter 

analysis on thick porous plates [14]. Moreover, piezoelectric actuators and sensors have 

been investigated in aeroelastic optimization [15]. The blade’s aeroelastic behavior can be 

effectively modified by implementing piezopatch including a shunt circuit. Previously, 

there were some practical limits in the existing low-frequency range in aeroelastic phe-

nomena because of the large size required inductance for passive aeroelastic control. 

However, nowadays, having a small-size inductor combined with a piezopatch can facil-

itate passive aeroelastic control [16]. Practically because of having too large internal re-

sistance, standard inductors are not appropriate to be combined with a piezopatch for 

resonant shunt applications. By using closed magnetic circuits with high-level-permeabil-

ity materials, it is possible to design large inductance inductors which have high-quality 

factors. 
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Damping in the blade structure without causing any instability can be augmented by 

using shunted piezopatches. Furthermore, shunted piezopatches are simple to apply and 

need little to no power. Their hardware needs piezoelectrics with a simple electric circuit 

which includes a capacitor, an inductor, and a resistor. The shunted piezopatches con-

sume the energy created from the blade vibrations to control the blade aeroelastic vibra-

tion, which can reduce the oscillations of specific frequencies and modes. 

In this paper, the flutter speed of a simple aeroelastic system can be increased by 

using piezoelectric materials. One system is a 2D blade with two piezoelectric patches 

which had flapwise and edgewise plunge DOFs as well as rotational DOFs. Later, another 

system used is a 2D blade including a piezoelectric patch with plunge, pitch, and control 

rotational degrees of freedom (DOFs) subjected to unsteady aerodynamic loads. The work 

objective was to present the effect of piezoelectric patches that can influence effectively a 

simple smart blade system with rotational effects. 

In Section 2, the smart blade equations of motion with flapwise and edgewise plunge 

and rotational DOFs were described to solve those equations to calculate the flapwise and 

edgewise plunge velocities, displacements, electrical currents, and electric charges as well 

as rotational velocities and displacements. Then, the system fixed points and their stability 

around those points were studied to present the system response. Example 1 shows the 

considerable decay in the vibration of a smart blade in comparison to that in the vibration 

of a regular blade. 

Section 3 shows a smart blade with plunge, pitch, and control DOFs and two pie-

zopatches with flapwise and edgewise plunge and rotational DOFs to obtain the equa-

tions of motion under unsteady aerodynamic loads. Solving the system of equations pro-

vides the flapwise and edgewise plunge velocities, displacements, electrical currents, and 

electric charges as well as the pitching velocity, rotation, electrical current, and electric 

charge. Afterwards, by obtaining the flutter speed, we indicated how adding two pie-

zopatches can effectively defer the flutter. 

In Section 4, a smart blade with plunge, pitch, and control DOFs and piezopatches 

with plunge and pitch DOFs are presented. The results showed that the flutter speed can 

even be further raised by having three piezopatches. 

In addition, the smart blade concept presented in this work can be applied to increase 

the performance of renewable energy devices such as wind turbine and marine turbine 

blades [17,18]. 

2. Aeroelastic Analysis of the Smart Blade 

Before investigating the aeroelastic smart blade, it requires investigating the aeroe-

lastic stability of the smart blade. The time response of the aeroelastic system can be writ-

ten as [19]: 

𝐱(𝑡) = ∑ 𝐯𝑖𝑒
𝜆𝑖𝑡𝑏𝑖

𝑛
𝑖=1 , (1) 

where 𝐯𝑖 is the smart blade spatial deformation, 𝑒𝜆𝑖𝑡 is the smart blade temporal defor-

mation, and 𝑏𝑖 is the eigenvector. It is a good idea to study the fixed-point characteristics 

of three smart blades with DOFs in flapwise and edgewise plunge motions separately. 

A Smart Blade with Only Plunge and Rotational DOFs 

A smart blade which has flapwise and edgewise plunge and rotational DOFs is con-

sidered, as shown in Figure 1. 
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Figure 1. A smart blade with flapwise and edgewise plunge and rotational DOFs. 

By assuming a constant rotational velocity, the smart blade equations of motion with 

two plunge and rotational DOFs in free vibrations can be written as below: 

{
 
 
 
 

 
 
 
 
𝑚ℎ̈1 + 𝐶ℎ1ℎ̇1 + 𝐾ℎ1ℎ1 − 𝛽ℎ1𝑞ℎ1 = 0

𝐿ℎ1�̈�ℎ1 + 𝑅ℎ1�̇�ℎ1 +
1

𝐶𝑝ℎ1
𝑞ℎ1 − 𝛽ℎ1ℎ1 = 0

𝑚(ℎ̈2 + 𝑟γ̈) + 𝐶ℎ2ℎ̇2 + 𝐾ℎ2ℎ2 − 𝛽ℎ2𝑞ℎ2 = 0

𝐿ℎ2�̈�ℎ2 + 𝑅ℎ2�̇�ℎ2 +
1

𝐶𝑝ℎ2
𝑞ℎ2 − 𝛽ℎ2ℎ2 = 0

𝑚𝑟γ̈ −
𝑃

𝑟Ω2
�̇� − 𝐶ℎ2ℎ̇2 − 𝐾ℎ2ℎ2 = 0

, (2) 

where the parameters can be as below: 

𝑚 mass of the smart blade 

𝐶ℎ1  flapwise structural damping of the smart blade 

𝐾ℎ1 flapwise structural stiffness 

ℎ1 instantaneous flapwise displacement 

𝛽ℎ1  flapwise plunge electromechanical coupling 

𝑞ℎ1  flapwise plunge electric charge 

𝐿ℎ1  flapwise piezoelectric material plunge inductance 

𝑅ℎ1  flapwise piezoelectric material plunge resistance 

𝐶𝑝ℎ1  flapwise plunge capacitance of the piezoelectric material 

𝑟 distance from the hub 

𝛾 rotational displacement of the smart blade 

𝐶ℎ2  edgewise structural damping of the smart blade 

𝐾ℎ2 edgewise structural stiffness 

ℎ2 instantaneous edgewise displacement 

𝛽ℎ2  edgewise plunge electromechanical coupling 

𝑞ℎ2  edgewise plunge electric charge 

𝐿ℎ2  edgewise piezoelectric material plunge inductance 

𝑅ℎ2  edgewise piezoelectric material plunge resistance 

𝐶𝑝ℎ2  edgewise plunge capacitance of the piezoelectric material 

𝑃 hub force 

Ω rotational speed of the smart blade 

As explained before, the flapwise plunge electromechanical coupling may be calcu-

lated as 𝛽ℎ1 = 𝑒ℎ1 𝐶𝑝ℎ1⁄ , where 𝑒ℎ1  is the flapwise plunge coupling coefficient, and the 

edgewise plunge electromechanical coupling may be calculated as 𝛽ℎ2 = 𝑒ℎ2 𝐶𝑝ℎ2⁄ , where 
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𝑒ℎ2  is the edgewise plunge coupling coefficient. Considering 𝑥1 = ℎ̇1, 𝑥2 = ℎ1, 𝑥3 = �̇�ℎ1 , 

𝑥4 = 𝑞ℎ1 , 𝑥5 = ℎ̇2, 𝑥6 = ℎ2, 𝑥7 = �̇�ℎ2, 𝑥8 = 𝑞ℎ2, 𝑥9 = �̇�, and 𝑥10 = 𝛾, Equation (2) may be 

written as first-order differential equations: 

{
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 �̇�1 = −

𝐶ℎ1
𝑚
𝑥1 −

𝐾ℎ1
𝑚
𝑥2 +

𝛽ℎ1
𝑚
𝑥4

�̇�2 = 𝑥1

�̇�3 = −
𝑅ℎ1
𝐿ℎ1

𝑥3 −
1

𝐶𝑝ℎ1𝐿ℎ1
𝑥4 +

𝛽ℎ1
𝐿ℎ1

𝑥1

�̇�4 = 𝑥3

�̇�5 + 𝑟�̇�9 = −
𝐶ℎ2
𝑚
𝑥5 −

𝐾ℎ2
𝑚
𝑥6 +

𝛽ℎ2
𝑚
𝑥8

�̇�6 = 𝑥5

�̇�7 = −
𝑅ℎ2
𝐿ℎ2

𝑥7 −
1

𝐶𝑝ℎ2𝐿ℎ2
𝑥8 +

𝛽ℎ2
𝐿ℎ2

𝑥6

�̇�8 = 𝑥7

�̇�9 =
𝑃

𝑚𝑟2Ω2
𝑥5 +

𝐶ℎ2
𝑚𝑟

𝑥5 +
𝐾ℎ2
𝑚𝑟

𝑥6

�̇�10 = 𝑥9

.  (3) 

Defining 𝒒 =

[𝑚 𝐶ℎ1 𝐾ℎ1 𝛽ℎ1 𝐿ℎ1 𝑅ℎ1 𝐶𝑝ℎ1 𝐶ℎ2 𝐾ℎ2 𝛽ℎ2 𝐿ℎ2 𝑅ℎ2 𝐶𝑝ℎ2 𝑟 Ω]
𝑇

 and 

𝐱 = [𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10]𝑇 , Equation (3) can be written as: 

[
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 𝑟 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 
 
 

�̇� = 𝐟(𝐱, 𝒒) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 −

𝐶ℎ1
𝑚
𝑥1 −

𝐾ℎ1
𝑚
𝑥2 +

𝛽ℎ1
𝑚
𝑥4

𝑥1

−
𝑅ℎ1
𝐿ℎ1

𝑥3 −
1

𝐶𝑝ℎ1𝐿ℎ1
𝑥4 +

𝛽ℎ1
𝐿ℎ1

𝑥2

𝑥3

−
𝐶ℎ2
𝑚
𝑥5 −

𝐾ℎ2
𝑚
𝑥6 +

𝛽ℎ2
𝑚
𝑥8

𝑥5

−
𝑅ℎ2
𝐿ℎ2

𝑥7 −
1

𝐶𝑝ℎ2𝐿ℎ2
𝑥8 +

𝛽ℎ2
𝐿ℎ2

𝑥6

𝑥7
𝑃

𝑚𝑟2Ω2
𝑥5 +

𝐶ℎ2
𝑚𝑟
𝑥5 +

𝐾ℎ2
𝑚𝑟
𝑥6

𝑥9 ]
 
 
 
 
 
 
 
 
 
 
 
 
 

, (4) 

where 𝐟 presents linear functions, and 𝑥1 , 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 , 𝑥6 , 𝑥7 , 𝑥8 , 𝑥9, and 𝑥10  are 

the smart blade states and represent the system’s flapwise velocity, flapwise displace-

ment, flapwise electrical current, flapwise electric charge response, edgewise velocity, 

edgewise displacement, edgewise electrical current, edgewise electric charge response, 

angular velocity, and angular displacement, respectively. The three aeroelastic smart 

blade system with DOFs had 10 eigenvalues that explained the fixed point stability. The 

static solutions or fixed points of the system are calculated from the following solutions: 

𝐟(𝐱, 𝒒) = 𝟎,     (5) 

or equivalently, 

�̇� = 𝟎.  (6) 

By considering Equations (4) and (6), the following equations can be presented as: 
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𝑩�̇� = 𝑨(𝒒)𝐱,   (7) 

or 

�̇� = 𝑩−1𝑨(𝒒)𝐱, (8) 

where 

𝑩 =

[
 
 
 
 
 
 
 
 
 
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 𝑟 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1]

 
 
 
 
 
 
 
 
 

 , (9) 

𝑨 =

[
 
 
 
 
 
 
 
 
 
 
 
 
 −

𝐶ℎ1
𝑚

−
𝐾ℎ1
𝑚

0
𝛽ℎ1
𝑚

0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0
𝛽ℎ1
𝐿ℎ1

−
𝑅ℎ1
𝐿ℎ1

−
1

𝐶𝑝ℎ1𝐿ℎ1
0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 0 0 −
𝐶ℎ2
𝑚

−
𝐾ℎ2
𝑚

0
𝛽ℎ2
𝑚

0 0

0 0 0 0 1 0 0 0 0 0

0 0 0 0 0
𝛽ℎ2
𝐿ℎ2

−
𝑅ℎ2
𝐿ℎ2

−
1

𝐶𝑝ℎ2𝐿ℎ2
0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0
𝑃

𝑚𝑟2Ω2
+
𝐶ℎ2
𝑚𝑟

𝐾ℎ2
𝑚𝑟

0 0 0 0

0 0 0 0 0 0 0 0 1 0]
 
 
 
 
 
 
 
 
 
 
 
 
 

. (10) 

 

The solution of Equation (8) can be written as Equation (1), where 𝐯𝑖 is the ith eigen-

vector of 𝑩−1𝑨, 𝜆𝑖 is the ith eigenvalue of 𝑩−1𝑨, and 𝑏𝑖 is the ith element of 𝒃 = 𝑽−1𝐱0, 

where 𝑽 is the eigenvector of 𝑩−1𝑨 and 𝐱0 is the initial condition. 

Example 1. A smart blade with flapwise and edgewise plunge and rotational DOFs in the system 

response 

In the first example, a smart blade with only flapwise and edgewise plunge and ro-

tational DOFs (Figure 1) is considered, which has the following characteristics as [8]: 

𝑚 = 0.3872 Kg 𝐶ℎ1 = 0.3237 Ns m⁄  
𝐾ℎ1 = 13380 N m⁄  𝑒ℎ1 = 80 × 10

−3  C m⁄  
𝐶𝑝ℎ1 = 1680 nF 𝐿ℎ1 = 0.1 H 
𝑅ℎ1 = 4050 Ω 𝐶ℎ2 = 0.5 Ns m⁄  
𝐾ℎ2 = 32112 N m⁄  𝑒ℎ2 = 7.55 × 10

−2  C m⁄  
𝐶𝑝ℎ2 = 268 nF 𝐿ℎ2 = 0.1 H 
𝑅ℎ2 = 9050 Ω 𝑃 = 1 N 
𝑟 = 1 m Ω = 10 rad s⁄  

and the initial conditions are as follows: 
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𝑥1(0) = 0.1 m s⁄  𝑥2(0) = 0 m 
𝑥3(0) = 0 A 𝑥4(0) = 0 C 
𝑥5(0) = 0.1 m s⁄  𝑥6(0) = 0 m 
𝑥7(0) = 0 A 𝑥8(0) = 0 C 
𝑥9(0) = 0.1 rad s⁄  𝑥10(0) = 0 rad 

Figure 2 depicts the system response of velocity. The solid line represents the velocity 

of the smart blade, and the dashed line shows the velocity of the regular blade. As indi-

cated in Figure 2, the vibrations can very effectively decay by the piezoelectric patches. 

Both system responses oscillate by decaying their amplitudes with time towards zero, 

which are called as damped responses. From Figure 2, it is clear that the amplitude of the 

smart blade responses can decay much faster than the one of the regular blade responses. 

The flapwise oscillation of the smart blade (Figure 2a) decays for almost 0.4 s; however, 

the flapwise oscillation of the regular blade takes around 12 s to decay. Moreover, the 

edgewise oscillation of the smart blade (Figure 2b) decays 0.2 s; however, the edgewise 

oscillation of the regular blade takes around 8 s to decay. 

  
(a) (b) 

Figure 2. The smart blade system responses of the velocity: (a) flapwise oscillation; (b) edgewise 

oscillation. 

Figure 3 depicts the system response of displacement. The solid line represents the 

displacement of the smart blade, and the dashed line shows the displacement of the reg-

ular blade. As indicated in Figure 3, the vibrations can very effectively decay by the pie-

zoelectric patches. Both system responses oscillate by decaying their amplitudes with time 

towards zero, which are called as damped responses. From Figure 3, it is clear that the 

amplitude of the smart blade responses can decay much faster than the one of the regular 

blade responses. The flapwise oscillation of the smart blade (Figure 3a) decays for almost 

0.4 s; however, the flapwise oscillation of the regular blade takes around 12 s to decay. 

Moreover, the edgewise oscillation of the smart blade (Figure 3b) decays for 0.2 s; how-

ever, the edgewise oscillation of the regular blade takes around 10 s to decay. 
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(a) (b) 

Figure 3. The smart blade system responses of the displacement: (a) flapwise oscillation; (b) edge-

wise oscillation. 

Furthermore, the velocities and the displacements phase plane plots depict the point 
(0,0) recalls the system trajectory, as shown in Figure 4. The flapwise and edgewise tra-

jectories of the smart blade start from the initial displacements and velocities at the far 

top, and it turns to the center of the phase plane, where (0,0) is the fixed point and 𝒙𝐹 =

𝟎. In fact, the phase plane plots indicate that the fixed points draw the smart blade trajec-

tories. 

  
(a) (b) 

Figure 4. Phase plane for the velocity and the displacement: (a) flapwise trajectory; (b) edgewise 

trajectory. 

Likewise, the electrical current and the charge phase plane start at the electrical cur-

rent and charge initial conditions which are zeros, and they turn out counter-clockwise 

until arriving at the maximum values. The trajectories then turn towards the start point 
(0,0), as shown in Figure 5. 



Designs 2022, 6, 98 8 of 22 
 

 

  
(a) (b) 

Figure 5. Phase planes for the electrical current and the charge: (a) flapwise trajectory; (b) edgewise 

trajectory. 

Figure 6 depicts the system response of the rotational velocity. The solid line repre-

sents the rotational velocity of the smart blade, and the dashed line shows the rotational 

velocity of the regular blade. As indicated in Figure 6, the vibrations can very effectively 

decay by the piezoelectric patches. Both system responses oscillate by decaying their am-

plitudes with time towards zero, which are called as damped responses. From Figure 6a, 

it is clear that the amplitude of the smart blade responses can decay much faster than the 

amplitude of the regular blade responses. The oscillation of the rotational velocity of the 

smart blade decays for almost 0.15 s; however, the oscillation of the rotational velocity 

of the regular blade takes around 5 s to decay, and it increases in the equilibrium posi-

tion, as indicated in Figure 6b. 

  
(a) (b) 

Figure 6. The smart blade system responses of the rotational velocity: (a) time interval (0, 1) s; (b) 

time interval (0, 10) s. 

Figure 7 depicts the system response of the rotational displacement. The solid line 

represents the rotational displacement of the smart blade, and the dashed line shows the 

rotational displacement of the regular blade. As indicated in Figure 7, the vibrations can 

very effectively decay by the piezoelectric patches. Both system responses oscillate by de-

caying their amplitudes with time towards zero, which are called as damped responses. 

From Figure 7, it is clear that the amplitude of the smart blade responses decays much 

faster than the amplitude of the regular blade responses. The oscillation of the rotational 
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displacement of the smart blade (Figure 7b) decays for almost 0.2 s; however, the oscil-

lation of the rotational displacement of the regular blade takes around 1 s to decay. 

  
(a) (b) 

Figure 7. The smart blade system responses of the rotational displacement: (a) the rotational dis-

placement of smart and regular blades; (b) the rotational displacement of smart blade. 

However, by considering 𝑃 = 0 in Equation (2), the system response of the rota-

tional displacement can be changed as indicated in Figure 8, in which the mean value of 

the rotational displacement of the regular blade is not increased with the increase in time. 

 

Figure 8. The smart blade system responses of the rotational displacement with 𝑃 = 0. 

3. Smart Blade with Plunge, Pitch, and Control DOFs and Piezopatches with  

Plunge DOFs 

Figure 9 depicts a 2D smart blade with plunge, pitch, and control degrees of freedom. 

In the model, there are an airfoil with two piezoelectric patches in the flapwise and edge-

wise plunge DOFs. The system includes flapwise and edgewise plunge, pitch, and control 

degrees of freedom (DOFs) indicated by ℎ1, ℎ2, 𝛼, and 𝛽, respectively. The control sur-

face angle around its hinge, located at distance 𝑥ℎ from the leading edge, is represented 

by the DOF 𝛽, and the stiffness of the control surface is denoted by 𝐾𝛽 . 



Designs 2022, 6, 98 10 of 22 
 

 

 

Figure 9. A smart blade with plunge, pitch, and control DOFs and a piezopatch in flapwise plunge 

DOFs. 

Using the Lagrange’s equations and the Kirchhoff’s law leads to the equations of mo-

tion as: 

{
 
 
 
 
 

 
 
 
 
 
𝑚ℎ̈1 + 𝑆𝛼ℎ�̈� + 𝑆𝛽�̈� + 𝐶ℎ1ℎ̇1 + 𝐾ℎ1ℎ1 − 𝛽ℎ1𝑞ℎ1 = −𝐿

𝑆𝛼ℎℎ̈1 + 𝐼𝛼�̈� + 𝐼𝛼𝛽�̈� + 𝐶𝛼�̇� + 𝐾𝛼𝛼 = 𝑀𝑥𝑓  

𝑆𝛽ℎ̈1 + 𝐼𝛼𝛽�̈� + 𝐼𝛽�̈� + 𝐶𝛽�̇� + 𝐾𝛽𝛽 = 𝑀𝑥ℎ   

𝐿ℎ1�̈�ℎ1 + 𝑅ℎ1�̇�ℎ1 +
1

𝐶𝑝ℎ1
𝑞
ℎ1
− 𝛽ℎ1ℎ1 = 0

𝑚(ℎ̈2 + 𝑟γ̈) + 𝐶ℎ2ℎ̇2 + 𝐾ℎ2ℎ2 − 𝛽ℎ2𝑞ℎ2 = 0

𝐿ℎ2�̈�ℎ2 + 𝑅ℎ2�̇�ℎ2 +
1

𝐶𝑝ℎ2
𝑞ℎ2 − 𝛽ℎ2ℎ2 = 0

𝑚𝑟γ̈ −
𝑃

𝑟Ω2
�̇� − 𝐶ℎ2ℎ̇2 − 𝐾ℎ2ℎ2 = 0

, (11) 

where 𝑚, 𝐶ℎ1 , 𝐾ℎ1 , ℎ1 , 𝛽ℎ1 , 𝑞ℎ1 , 𝐿ℎ1 , 𝑅ℎ1 , 𝐶𝑝ℎ1 , 𝐶ℎ2 , 𝐾ℎ2 , ℎ2 , 𝛾 , 𝛽ℎ2 , 𝑞ℎ2 , 𝐿ℎ2 , 𝑅ℎ2 , 

𝐶𝑝ℎ2 , 𝑃, 𝑟, and Ω are defined as in Equation (2) and the rest are as follows: 

𝑆𝛼ℎ static mass moment of the blade around the pitch axis 𝑥𝑓 
𝑆𝛽 static mass moment of the control surface around the hinge axis 𝑥ℎ 
𝐼𝛽 control surface moment of the inertia around the hinge axis 
𝐼𝛼𝛽 Product of the inertia of the blade and the control surface 

𝐿 lift 
𝑀𝑥𝑓 pitching moment of the blade around the pitch axis 𝑥𝑓 

𝑀𝑥ℎ pitching moment of the control surface around the hinge axis 𝑥ℎ 

By having unsteady aerodynamics, the lift and moments can be given as follows 

[17,18]: 

𝐿(𝑡) = 𝜌𝑏2(𝑈𝜋�̇� + 𝜋ℎ̈ − 𝜋𝑏𝑎�̈� − 𝑈𝑇4�̇� − 𝑇1𝑏�̈�) 

+2𝜋𝜌𝑏𝑈 (Φ(0)𝑤 − ∫
𝜕Φ(𝑡−𝑡0)

𝜕𝑡0

𝑡

0
𝑤(𝑡0)𝑑𝑡0), 

(12) 

𝑀𝑥𝑓 = −𝜌𝑏2 (−𝑎𝜋𝑏ℎ̈ + 𝜋𝑏2 (
1

8
+ 𝑎2) �̈� − (𝑇7 + (𝑐ℎ − 𝑎)𝑇1)𝑏

2�̈�) 

−𝜌𝑏2 (𝜋 (
1

2
− 𝑎)𝑈𝑏�̇� + (𝑇1 − 𝑇8 − (𝑐ℎ − 𝑎)𝑇4 +

𝑇11
2
)𝑈𝑏�̇�) − 𝜌𝑏2(𝑇4 + 𝑇10)𝑈

2𝛽 

+2𝜌𝑈𝑏2𝜋 (𝑎 +
1

2
) (Φ(0)𝑤 − ∫

𝜕Φ(𝑡−𝑡0)

𝜕𝑡0

𝑡

0
𝑤(𝑡0)𝑑𝑡0), 

(13) 
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𝑀𝑥ℎ = −𝜌𝑏2 (−𝑇1𝑏ℎ̈ + 2𝑇13𝑏
2�̈� −

1

𝜋
𝑇3𝑏

2�̈�) 

−𝜌𝑏2 ((−2𝑇9 − 𝑇1 + 𝑇4 (𝑎 −
1

2
))𝑈𝑏�̇� −

1

2𝜋
𝑈𝑏𝑇4𝑇11�̇�) 

−
𝜌𝑏2𝑈2

𝜋
(𝑇5 − 𝑇4𝑇10)𝛽 − 𝜌𝑏

2𝑈𝑇12 (Φ(0)𝑤 − ∫
𝜕Φ(𝑡−𝑡0)

𝜕𝑡0

𝑡

0
𝑤(𝑡0)𝑑𝑡0) . 

(14) 

Substituting Equations (12)−(14) into Equation (10) provides a set of equations of mo-

tion only in the time-dependent form and can be solved numerically such as using the 

backward finite difference scheme in numerical integration [20]. However, the equations 

of motion can be given as ordinary differential equations by using the exponential form 

of the Wagner function’s approximation. These equations can be solved analytically rather 

than numerically; therefore, they would be much more practical [21,22]. The Wagner func-

tion’s approximation can be presented as: 

Φ(𝑡) = 1 − Ψ1𝑒
−𝜀1𝑈𝑡 𝑏⁄ −Ψ2𝑒

−𝜀2𝑈𝑡 𝑏⁄ , (15) 

where Ψ1 = 0.165, Ψ2 = 0.335, 𝜀1 = 0.0455, and 𝜀2 = 0.3. 

The equations of motion in the full unsteady aeroelastic form can be given as follows: 

(𝑨 + 𝜌𝑩)�̈� + (𝑪 + 𝜌𝑈𝑫)�̇� + (𝑬 + 𝜌𝑈2𝑭)𝒚 + 𝜌𝑈3𝑾 = 𝜌𝑈𝐠Φ̇(𝑡) 

�̇� −𝑾1𝒚 − 𝑈𝑾2𝒘 = 0                       , 
(16) 

where 𝒚 = [ℎ1 𝛼 𝛽 𝑞ℎ1 ℎ2 𝑞ℎ2 𝛾]𝑇  represents the displacement and the charge 

vector, 𝒘 = [𝑤1 ⋯ 𝑤6 0]𝑇  gives the aerodynamic states vector, Φ(𝑡) presents the 

Wagner function, 𝑨 is the inductance and structural mass matrix, 𝑩 represents the aer-

odynamic mass matrix, 𝑬 gives the structural stiffness and resistance matrix, 𝑭 is the 

aerodynamic stiffness matrix, 𝑾 represents the influence matrix of aerodynamic state, 𝐠 

gives the initial condition excitation vector, and 𝑾1 and 𝑾2 present the aerodynamic 

state equation matrices. 

Equations (14) can be formed in purely ordinary differential equations in the first 

order by the following equation: 

�̇� = 𝑸𝐱 + 𝐪Φ̇(𝑡),                           (17) 

where 

𝑸 = [
−𝑴−1(𝑪 + 𝜌𝑈𝑫) −𝑴−1(𝑬 + 𝜌𝑈2𝑭) −𝜌𝑈3𝑴−1𝑾

𝑰7×7 𝟎7×7 𝟎7×6
𝟎6×7 𝑾1 𝑈𝑾2

], (18) 

𝐪 = (
𝜌𝑈𝑴−1𝐠
𝟎13×1

),  (19) 

where 𝐱 = [ℎ̇1 �̇� �̇� �̇�ℎ1 ℎ̇2 �̇�ℎ2 �̇� ℎ1 𝛼 𝛽 𝑞ℎ1 ℎ2 𝑞ℎ2 𝛾 𝑤1 ⋯ 𝑤6]
𝑇
 

is the 20 × 1 state vector, 𝑴 = 𝑨+ 𝜌𝑩, 𝑰7×7  is a 7 × 7 unit matrix, 𝟎7×7  is a 7 × 7 

zero matrix, 𝟎7×6 is a 7 × 6 zero matrix, 𝟎6×7 is a 6 × 7 zero matrix, and 𝟎13×1 is a 

13 × 1 zero vector. The initial condition is 𝐱(0) = 𝐱0. The initial condition 𝐠Φ̇(𝑡), which 

plays an excitation role, can decays exponentially. In this work, in order to reach steady-

state solutions, the initial condition is eliminated; hence, Equation (15) can be written as: 

�̇� = 𝑸𝐱. (20) 

Example 2. A smart blade with plunge, pitch, and control DOFs and a piezopatch in flapwise and 

edgewise plunge DOFs. 
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As the second example, a smart blade with plunge, pitch, and control DOFs (Figure 

10) is considered with the following parameters [19]: 

𝑚 = 13.5 Kg 𝑒ℎ1 = 0.145 C m⁄  

𝑆𝛼ℎ = 0.3375 Kgm 𝐶𝑝ℎ1 = 268 nF 
𝑆𝛽 = 0.1055 Kgm 𝐿ℎ1 = 103 H 
𝐶ℎ1 = 2.1318 Ns m⁄  𝑅ℎ1 = 1274 Ω 
𝐾ℎ1 = 2131.8346 N m⁄  𝐾ℎ2 = 2131.8346 N m⁄  

𝐼𝛼 = 0.0787 Kgm
2 𝐶ℎ2 = 2.1318 Ns m⁄  

𝐼𝛼𝛽 = 0.0136 Kgm
2 𝑒ℎ2 = 0.145 C m⁄  

𝐶𝛼 = 0.1989 Nms rad⁄  𝐶𝑝ℎ2 = 2680 nF 

𝐾𝛼 = 198.9712 Nm rad⁄  𝐿ℎ2 = 103 H 
𝐼𝛽 = 0.0044 Kgm2 𝑅ℎ2 = 1274 Ω 
𝐶𝛽 = 0.0173 Ns m⁄  𝑃 = 1 N 
𝐾𝛽 = 17.3489 N m⁄  𝑟 = 1 m 
Ω = 10 rad s⁄   

Running the simulation gives the flutter speed of 74.2973 m s⁄  which presents an 

81.41% increase in the regular blade flutter speed with the same characteristics without 

piezoelectric patches. Figure 10 shows the regular and smart blade variations of the damp-

ing ratio with respect to the velocity or airspeed of airflow. It is clear that having piezoe-

lectric patches on the blade can effectively increase the flutter speed. 

  
(a) (b) 

Figure 10. Damping ratio versus airspeed: (a) regular blade; (b) smart blade. 

Figure 11 shows the eigenvalues real part versus the velocity of freestream. Again, 

Figure 11b indicates the flutter speed of the smart blade can be effectively increased in 

comparison to that of the regular blade one. 

  
(a) (b) 

Figure 11. Eigenvalues real part versus airspeed: (a) regular blade; (b) smart blade. 
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Figure 12 depicts the imaginary part of eigenvalues versus the freestream velocity. 

Figure 12b indicates the flutter speed of the smart blade can be effectively increased in 

comparison to that of the regular blade one. 

  
(a) (b) 

Figure 12. Eigenvalues imaginary part versus airspeed: (a) regular blade; (b) smart blade. 

Equation (8) can be used to form the matrix 𝑸, and its eigenvalues and eigenvectors 

can be obtained for two different airspeeds, 𝑈 = 10 m s⁄ , and the flutter speed, 𝑈 =

74.2973 m s⁄ . The structural states dynamics of the smart blade can be represented in 

eight complex eigenvalues. The complex eigenvalues of the regular blade are conjugate as 

the complex eigenvalues of the smart blade. Six real eigenvalues belong to the aerody-

namics states dynamics. Moreover, the piezoelectric states dynamics include four real ei-

genvalues. The first three elements of each eigenvector give the structural velocities, and 

the flapwise piezoelectric electrical current is given by the fourth element. structural dis-

placements can be obtained from the next three elements, and the flapwise piezoelectric 

electric charge is given by the eighth element. The edgewise velocity can be obtained from 

the ninth element, the edgewise displacement can be represented by the tenth element, 

the edgewise piezoelectric electric charge is given by the eleventh element, and finally, 

the last next element correspond to aerodynamic state displacements. 

For the three structural modes, the smart blade eigenvalues at 𝑈 = 10 m s⁄  are as 

follows: 

𝜆1 = −1.3460 ± 42.7410𝑖, 𝜆2 = −5.4356 ± 64.2072𝑖, 𝜆3 = −6.2904 ± 110.9803𝑖,  

and its corresponding eigenvectors which represent the smart blade structural mode 

shapes are shown as follows: 

𝜑1 = {

−0.0034
0.3795
0.9249
−0.0005

} , 𝜑2 = {

0.0000
0.0000
0.0000
0.0000

} , 𝜑3 = {

0.0014
0.2027
−0.9792
0.0003

},  

where, in each mode shape, the flapwise plunge displacement is presented by the first 

element, the pitch angle can be indicated by the second element, the control surface angle 

is presented by the third element, and the edgewise plunge displacement is given by the 

last element. Generally, since the degrees of freedom of aeroelastic systems are coupled to 

each other, they cannot occur independently. Mostly, in modes one and two, there are 

control surface and pitch displacements. The smart blade mode one has a significant pitch 

angle in comparison to the regular blade. Figure 13 depicts the deformation of the three 

modes of the smart blade. In addition, the value of the pitch in mode one is high; however, 

the value of the pitch in mode two is zero. 
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(a) (b) 

 
(c) 

Figure 13. The smart blade unsteady plunge−pitch−control mode shapes at 𝑈 = 10 m s⁄ : (a) 𝜔𝑛 =

6.8 Hz; (b) 𝜔𝑛 = 10.3 Hz; (c) 𝜔𝑛 = 17.7 Hz. 

Furthermore, the eigenvalues of the smart blade at an airspeed 𝑈 = 74.2973 m s⁄  

can be as follows: 

𝜆1 = −21.2035 ± 13.2734𝑖, 𝜆2 = −5.4356 ± 64.2072𝑖, 𝜆3 = 0.0000 ± 97.5068𝑖,  

and its corresponding mode shapes are shown as follows: 

𝜑1 = {

0.0494
0.8685
−0.3664
0.0072

}, 𝜑2 = {

0.0000
0.0000
0.0000
0.0000

}, 𝜑3 = {

0.0059
−0.1523
0.9878
0.0011

}.  

The real parts of 𝜆1 is much more negative in comparison to eigenvalues at an air-

speed 𝑈 = 10 m s⁄ , and the value of 𝜆3  real part is almost zero. Moreover, at 𝑈 =

74.2973 m s⁄ , the value of the pitch in mode one is significant, as shown in Figure 14. 
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(a) (b) 

 
(c) 

 

Figure 14. The smart blade unsteady plunge−pitch−control mode shapes at 𝑈 = 74.2973 m s⁄ : (a) 

𝜔𝑛 = 4.0 Hz; (b) 𝜔𝑛 = 10.2 Hz; (c) 𝜔𝑛 = 15.5 Hz. 

In the next section, a smart blade including three DOFs and two piezopatches in the 

plunge and pitch DOFs is used to compare its aeroelastic behavior with a regular blade, 

and investigate how the flutter phenomenon can be postponed more by implementing the 

third piezopatch on a smart blade. 

4. A Smart Blade with Plunge, Pitch, and Control DOFs and Piezopatches in Plunge 

and Pitch DOFs 

In this section, there is a smart blade with plunge, pitch, and control DOFs in which 

there are three piezopatches, two in the flapwise and edgewise plunge DOFs, and the 

third one in pitch DOFs, as shown in Figure 15. The same characteristics of the three smart 

blade are considered in this system. 
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Figure 15. A smart blade with plunge, pitch, and control DOFs and piezopatches in plunge and 

pitch DOFs. 

The smart blade equations of motion can be written by considering the Kirchhoff’s 

law and the Lagrange’s equations as: 

{
 
 
 
 
 
 
 

 
 
 
 
 
 
 
𝑚ℎ̈1 + 𝑆𝛼ℎ�̈� + 𝑆𝛽�̈� + 𝐶ℎ1ℎ̇1 + 𝐾ℎ1ℎ1 − 𝛽ℎ1𝑞ℎ1 = −𝐿

𝑆𝛼ℎℎ̈1 + 𝐼𝛼�̈� + 𝐼𝛼𝛽�̈� + 𝐶𝛼�̇� + 𝐾𝛼𝛼 − 𝛽𝛼𝑞𝛼 = 𝑀𝑥𝑓

𝑆𝛽ℎ̈1 + 𝐼𝛼𝛽�̈� + 𝐼𝛽�̈� + 𝐶𝛽�̇� + 𝐾𝛽𝛽 = 𝑀𝑥ℎ

𝐿ℎ1�̈�ℎ1 + 𝑅ℎ1�̇�ℎ1 +
1

𝐶𝑝ℎ1
𝑞ℎ1 − 𝛽ℎ1ℎ1 = 0

𝑚(ℎ̈2 + 𝑟γ̈) + 𝐶ℎ2ℎ̇2 + 𝐾ℎ2ℎ2 − 𝛽ℎ2𝑞ℎ2 = 0

𝐿ℎ2�̈�ℎ2 + 𝑅ℎ2�̇�ℎ2 +
1

𝐶𝑝ℎ2
𝑞ℎ2 − 𝛽ℎ2ℎ2 = 0

𝐿𝛼�̈�𝛼 + 𝑅𝛼�̇�𝛼 +
1

𝐶𝑝𝛼
𝑞𝛼 − 𝛽𝛼(𝑥𝑓 − 𝑥𝑝)𝛼 = 0

𝑚𝑟γ̈ −
𝑃

𝑟Ω2
�̇� − 𝐶ℎ2ℎ̇2 − 𝐾ℎ2ℎ2 = 0

, (21) 

where 𝑚, 𝑆𝛼ℎ , 𝑆𝛽 , 𝐶ℎ1 , 𝐾ℎ1 , ℎ1 , 𝛽ℎ1 , 𝑞ℎ1 , 𝐿ℎ1 , 𝑅ℎ1 , 𝐶𝑝ℎ1 , 𝐶ℎ2 , 𝐾ℎ2 , ℎ2, 𝑟, 𝛾, 𝛽ℎ2 , 𝑞ℎ2 , 

𝐿ℎ2 , 𝑅ℎ2 , 𝐶𝑝ℎ2 , 𝐿, 𝐼𝛼 , 𝐼𝛼𝛽 , 𝐶𝛼 , 𝐾𝛼 , 𝑀𝑥𝑓 , 𝐼𝛽 , 𝐶𝛽 , 𝐾𝛽 , 𝑀𝑥ℎ , 𝑥𝑓 , 𝑥𝑝, 𝑃, and Ω are defined 

as in Equation (11), 𝐿𝛼 is the piezoelectric material pitch inductance, 𝑅𝛼 is the piezoelec-

tric material pitch resistance, 𝐶𝑝𝛼 is the piezoelectric material pitch capacitance, 𝛽𝛼 is the 

electromechanical coupling of the pitch, and 𝑞𝛼 is the electric charge of the pitch. The 

electromechanical coupling of the pitch, 𝛽𝛼, depends on the coupling coefficient of the 

pitch, 𝑒𝛼, and the capacitance of pitch, 𝐶𝑝𝛼, and it can be obtained by 𝛽𝛼 = 𝑒𝛼 𝐶𝑝𝛼⁄ . 

The aeroelastic equations of motion in the full unsteady form can be written as fol-

lows: 

(𝑨 + 𝜌𝑩)�̈� + (𝑪 + 𝜌𝑈𝑫)�̇� + (𝑬 + 𝜌𝑈2𝑭)𝒚 + 𝜌𝑈3𝑾𝒘 = 𝜌𝑈𝐠Φ̇(𝑡) 

�̇� −𝑾1𝒚 − 𝑈𝑾2𝒘 = 0, 
(22) 

where 𝒚 = [ℎ1 𝛼 𝛽 𝑞ℎ1 ℎ2 𝑞ℎ2
𝑞𝛼 𝛾]𝑇 is the displacement and charge vector. 

In order to represent Equation (22) in purely ordinary differential equations in the 

first-order form, one can use the following equation: 

�̇� = 𝑸𝐱 + 𝐪Φ̇(𝑡), (23) 
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where 

𝑸 = [
−𝑴−1(𝑪 + 𝜌𝑈𝑫) −𝑴−1(𝑬 + 𝜌𝑈2𝑭) −𝜌𝑈3𝑴−1𝑾

𝑰8×8 𝟎8×8 𝟎8×6
𝟎6×8 𝑾1 𝑈𝑾2

],    (24) 

𝐪 = (
𝜌𝑈𝑴−1𝐠
𝟎14×1

), (25) 

where 𝐱 =

[ℎ̇1 �̇� �̇� �̇�ℎ1 �̇�𝛼 ℎ̇2 �̇�ℎ2 �̇� ℎ1 𝛼 𝛽 𝑞ℎ1 𝑞𝛼 ℎ2 𝑞ℎ2 𝛾 𝑤1 ⋯ 𝑤6]
𝑇

 is 

a 21 × 1 state vector, 𝑴 = 𝑨 + 𝜌𝑩, 𝑰8×8  is a 8 × 8 unit matrix, 𝟎8×8  is a 8 × 8 zero 

matrix, 𝟎8×6 is a 8 × 6 zero matrix, 𝟎6×8 is a 6 × 8 zero matrix, and 𝟎14×1 is a 14 × 1 

zero vector. The initial condition is 𝐱(0) = 𝐱0. The initial condition 𝐠Φ̇(𝑡), which plays 

an excitation role, can decay exponentially. In this work, in order to reach steady-state 

solutions, the initial condition is eliminated; hence, Equation (20) can be written as: 

�̇� = 𝑸𝐱. (26) 

Example 3. A smart blade with plunge, pitch, and control DOF and piezopatches in plunge and 

pitch DOFs. 

In this example, one more piezopatch is implemented in the pitch DOFs of the exam-

ple-two smart blade to control vibrations. As shown in Figure 11, a smart blade is consid-

ered which has plunge, pitch, and control DOFs. Furthermore, there are three pie-

zopatches, two in plunge DOFs and one in pitch DOFs. The smart blade has the same 

characteristics for the smart blade of example two. It assumes that 𝑒ℎ1 = 0.145 C m⁄ , 

𝐶𝑝ℎ1 = 2680 nF , 𝐿ℎ1 = 200 H, 𝑅ℎ1 = 2974 Ω, 𝑒ℎ2 = 0.0145 C m⁄ , 𝐶𝑝ℎ2 = 2680 nF , 𝐿ℎ2 =

200 H, and 𝑅ℎ2 = 1274 Ω, the parameters of the pitch piezopatch as the coupling coeffi-

cient of the pitch 𝑒𝛼 = 0.00145 C m⁄ , the piezoelectric material pitch capacitance 𝐶𝑝𝛼 =

268 nF, the piezoelectric material of the pitch inductance 𝐿𝛼 = 200 H, and the piezoelec-

tric material of the pitch resistance 𝑅𝛼 = 574 Ω [19]. 

The results of simulation showed that having one more piezopatch in the pitch DOFs 

can suppress the pitch mode flutter phenomenon, as shown in Figure 16. Therefore, there 

is possibility to remove flutter in the pitch DOFs by possessing three piezopatches, two in 

the plunge DOFs and one in the pitch DOFs. However, the flutter phenomenon appears 

with a higher speed in the flapwise plunge DOFs. 

  
(a) (b) 

Figure 16. The smart blade damping ratio versus airspeed with plunge piezopatches (a) and plunge 

and pitch piezopatches (b). 
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Figure 16 indicates flutter happens at 104.4198 m s⁄  in the control DOFs in the 

smart blade with three piezopatches. The new flutter speed value shows that it is in-

creased by 155% in the smart blade in comparison to the one of a regular blade which 

has the same characteristics without a piezopatch. In addition, the new flutter speed is 

increased by 40.54% in the smart blade in comparison to the one of a smart blade, which 

possesses the same characteristics and only two piezopatches in the flapwise and edge-

wise plunge DOFs. Obviously, implementing three piezopatches can suppress the pitch 

mode flutter phenomenon; however, it appears in the flapwise plunge mode with a higher 

speed, as depicted in Figure 16b. 

Moreover, Figure 17 shows the eigenvalue real parts versus the freestream velocity. 

Figure 17b depicts clearly flutter is removed in the pitch mode but it happens in the flap-

wise plunge mode with a higher speed. It is also clear that the flutter speed of the smart 

blade with three piezopatches is increased in comparison to the flutter speed of the smart 

blade with only two piezopatches. 

  
(a) (b) 

Figure 17. Eigenvalues real part versus airspeed: (a) smart blade with plunge piezopatches; (b) 

smart blade with plunge and pitch piezopatches. 

Furthermore, Figure 18 indicates the eigenvalues imaginary parts versus the 

freestream velocity. According to Figure 18b, it is clear that flutter happens in the flapwise 

plunge mode and the smart blade flutter speed is effectively increased in comparison to 

the regular blade one. 

  
(a) (b) 

Figure 18. Eigenvalues imaginary part versus airspeed: (a) smart blade with plunge piezopatches; 

(b) smart blade with plunge and pitch piezopatches. 

Equation (26) can be used to form the matrix 𝑸. Then, its eigenvalues and eigenvec-

tors can be obtained for two different airspeeds, 𝑈 = 10 m s⁄ , and the flutter speed, 𝑈 =
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104.4198 m s⁄ . The smart blade structural states dynamics can be represented by eight 

complex eigenvalues. Similar to the regular blade eigenvalues, these complex eigenvalues 

are conjugate. Six real eigenvalues are for the aerodynamics states dynamics. Moreover, 

six real eigenvalues represent the piezoelectric states dynamics. The first four eigenvector 

elements provide structural velocities, the next four elements give structural displace-

ments, the next six elements provide aerodynamic state displacements, and finally, the 

last six elements correspond to piezoelectric electric charges. 

At 𝑈 = 10 m s⁄ , the eigenvalues of the smart blade for the three structural modes can 

be as follows: 

𝜆1 = −22.0865 ± 1.4051𝑖, 𝜆2 = −0.1630 ± 17.1215𝑖, 𝜆3 = −2.8733 ± 42.6701𝑖,  

and their corresponding eigenvectors can represent the smart blade structural mode 

shapes as: 

𝜑1 = {

−0.3729
0.3119
0.8688
−0.0498

}, 𝜑2 = {

0.0000
0.0000
0.0000
0.0000

}, 𝜑3 = {

−0.0039
0.3795
0.9248
−0.0054

}, 

Where, in each mode shape, the first element provides the flapwise plunge displacement, 

the second element presents the pitch angle, the third element indicates the control surface 

angle, and the last element provides the edgewise plunge displacement. The degrees of 

freedom of aeroelastic systems are generally coupled to each other and cannot appear in-

dependently. Mainly, flapwise plunge displacements and pitch and control surface angles 

happen in mode one; however, pitch and control surface angles happen in mode three. 

Mode one contains significant positive control surface angles; however, mode three in-

cludes significant negative pitch angles. Figure 19 shows the deformation of the smart 

blade in the three modes. Clearly, the deformations of the smart blade are similar in pitch 

and control with opposite signs in modes one and three. 

  
(a) (b) 
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(c) 

Figure 19. Mode shapes of the smart blade in unsteady plunge, pitch, and control at 𝑈 = 10 m s⁄ : 

(a) 𝜔𝑛 = 3.5 Hz; (b) 𝜔𝑛 = 2.7 Hz; (c) 𝜔𝑛 = 6.8 Hz. 

Furthermore, at an airspeed 𝑈 = 104.4198 m s⁄ , the smart blade eigenvalues can be 

shown as follows: 

𝜆1 = −0.1630 ± 17.1215𝑖, 𝜆2 = −3.1718 ± 43.1546𝑖, 𝜆3 = 0.0000 ± 60.0816𝑖;  

and their corresponding mode shapes are shown as follows: 

𝜑1 = {

0.0000
0.0000
0.0000
0.0000

}, 𝜑2 = {

0.0000
0.0000
0.0000
0.0000

}, 𝜑3 = {

0.0839
−0.2131
0.9732
−0.0100

}.  

The real parts of 𝜆1 and 𝜆3 are much closer in comparison to eigenvalues at an air-

speed 𝑈 = 10 m s⁄ , and the real part of 𝜆1 and 𝜆3 are almost zero. In addition, at 𝑈 =

104.4198 m s⁄ , all mode shape components of 𝜑1 and 𝜑2 become almost zero, and there 

is a significant control angle in mode three, as depicted in Figure 20. 

  
(a) (b) 
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(c) 

Figure 20. Mode shapes of the smart blade in unsteady plunge, pitch, and control at 𝑈 =

104.4198 m s⁄ : (a) 𝜔𝑛 = 1.9 Hz; (b) 𝜔𝑛 = 6.9 Hz; (c) 𝜔𝑛 = 9.6 Hz. 

5. Conclusions 

In this paper, it has been shown how by using piezoelectric patches and considering 

the blade rotational effect, the flutter can be delayed on a smart blade. Section 2 represents 

a smart blade system response with only plunge and rotational DOFs. Clearly, the oscil-

lations of the smart blade can be effectively decayed in a very short time by implementing 

efficient flapwise and edgewise piezopatches. Almost in 0.4 s, the vibration of the smart 

blade flapwise velocity with only plunge and rotational DOFs can be decayed. However, 

the vibration of the regular blade flapwise velocity without a piezoelectric patch needs 

around 12 s to decay. Furthermore, the vibration of the smart blade edgewise velocity 

with only plunge and rotational DOFs can be decayed in 0.2 s; however, the vibration of 

the regular blade edgewise velocity without a piezoelectric patch needs around 8 s to de-

cay. In addition, in 0.4 s, the vibration of the smart blade flapwise displacement with only 

plunge and rotational DOFs can be decayed; however, the vibration of the regular blade 

flapwise displacement without a piezoelectric patch needs around 12 s to decay. Moreo-

ver, the vibration of the smart blade edgewise displacement with only plunge and rota-

tional DOFs can be decayed in 0.2 s; however, the vibration of the regular blade edgewise 

displacement without a piezoelectric patch needs around 10 s to decay. In the rotational 

oscillation, the vibration of the smart blade rotational velocity with only plunge and rota-

tional DOFs can be decayed in 0.15 s; however, the vibration of the regular blade rota-

tional velocity without a piezoelectric patch needs around 5 s to decay. Furthermore, the 

vibration of the smart blade rotational displacement with only plunge and rotational 

DOFs can be decayed in 0.2 s; however, the vibration of the regular blade rotational dis-

placement without a piezoelectric patch needs around 1 s to decay. As explained in Sec-

tion 3, by using two piezopatches in the flapwise and edgewise plunge DOFs of a regular 

blade with three DOFs, the flutter speed can be postponed by 81.41%, which shows that 

the flutter speed is increased to a considerable value. Moreover, the results showed that 

how the flutter can shift from the flapwise plunge mode in a regular blade to the pitch 

mode in a smart blade. Later, it presents the effect of implementing one more piezopatch 

to a smart blade in the pitch DOF on the postponement of the flutter. The flutter speed in 

a smart blade can be postponed by 155%, which is a very considerable value. 
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