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ABSTRACT
Inter-individual variability exists in recovery from jetlag following travel across time zones. Part of 
this variation may be due to genetic differences at the variable number tandem repeat (VNTR) 
polymorphism of the PERIOD3 (PER3) gene as this polymorphism has been associated with 
chronotype and sleep, as well as sensitivity to blue light on melatonin suppression. To test this 
hypothesis we conducted a laboratory-based study to compare re-entrainment in males geno-
typed as PER34/4 (n = 8) and PER35/5 (n = 8) following simulated eastward travel across six time 
zones. The recovery strategy included morning blue-enriched light exposure and appropriately- 
timed meals during the first 24 h after simulated travel. Dim light melatonin onset (DLMO), sleep 
characteristics, perceived sleepiness levels (Stanford Sleepiness Scale), and resting metabolic 
parameters were measured during constant routine periods before and after simulated travel. 
While DLMO time was similar between the two groups prior to simulated eastward travel 
(p = .223), it was earlier in the PER35/5 group (17h23 (17h15; 17h37)) than the PER34/4 group 
(18h05 (17h53; 18h12)) afterwards (p = .046). During resynchronisation, perceived sleepiness and 
metabolic parameters were similar to pre-travel in both groups but sleep was more disturbed in 
the PER35/5 group (total sleep time: p = .008, sleep efficiency: p = .008, wake after sleep onset: 
p = .023). The PER3 VNTR genotype may influence the efficacy of re-entrainment following trans- 
meridian travel when blue-enriched light exposure is incorporated into the recovery strategy on 
the first day following travel.
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Introduction

The primary consequence of trans-meridian travel is 
a cluster of symptoms known as jetlag, caused by the 
desynchronization of the internal body clock from the 
environment (Bin et al. 2019; Weingarten and Collop  
2013). Symptoms of jetlag, which are a transient incon-
venience and usually evident following air travel across 
at least two time zones, may include daytime fatigue, 
decreased ability to perform mental and physical tasks, 
reduced alertness, headaches and disturbed sleep (Bin 
et al. 2020, 2019; Kölling et al. 2017). Jetlag symptom 
severity and an individual’s recovery time may vary 
based on the number of time zones crossed, the direc-
tion of travel, timing of flights, nutrition, age, sex, chron-
otype and genetics (Moline et al. 1992; Cingi et al. 2018; 
Janse Van Rensburg et al. 2020a; Zacharko et al. 2020). 
While the general rule is that for every time zone 
crossed, 24 hours of recovery time is required 
(Eastman et al. 2005; Waterhouse et al. 2007; Winget 

et al. 1984) it appears that this recovery time varies 
significantly between individuals (Kölling et al. 2017; 
Lee and Galvez 2012; Waterhouse et al. 2007).

Jetlag recovery strategies aim to realign the innate 
circadian system with the new environmental time as 
fast as possible. Current strategies include timed light 
exposure, manipulation of sleep schedules, meal times 
and the use of sedative or stimulant medication (Arendt  
2009; Bin et al. 2020; Cingi et al. 2018; Janse Van 
Rensburg et al. 2020b). Humans are sensitive to sunlight, 
particularly the shorter wavelength (460 nm) or blue 
light. Carefully timed exposure to blue light has been 
shown to hasten phase shifting of the circadian clock 
(Chellappa et al. 2012; Eastman et al. 2005; Revell et al.  
2005) purportedly by suppressing or stimulating the 
secretion of melatonin by the pineal gland, which in 
turn synchronises the principal circadian clock in the 
suprachiasmatic nuclei to the environment and the per-
ipheral circadian clocks to each other. There is some 
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evidence, however, to suggest that bright artificial light is 
as effective as blue light at phase shifting (Smith and 
Eastman 2009; Smith et al. 2009) and there is significant 
inter-individual variation in the phase shifting response 
to light (Gooley et al. 2011). Regardless, timed light 
exposure has been shown to be one of the most effective 
strategies to resynchronise internal circadian rhythms to 
the environment following trans-meridian travel 
(Eastman et al. 2016; Roach and Sargent 2019).

Individuals differ in the way they recover or re- 
entrain their circadian clocks following trans- 
meridian travel and variation in the human circadian 
clock genes may in part explain this inter-individual 
variation, given their associations with factors such as 
sleep timing (Chellappa et al. 2014; Dijk and Archer  
2010; Hida et al. 2014; Viola et al. 2012) and melatonin 
secretion (Archer et al. 2008; Chellappa et al. 2012; 
Viola et al. 2012). For example, the PERIOD3 (PER3) 
variable number tandem repeat (VNTR) polymorph-
ism, which is associated with chronotype (Archer et al.  
2003; Kunorozva et al. 2012; Pereira et al. 2005), has 
also been associated with sensitivity to blue light. 
Specifically, individuals genotyped as PER35/5 for the 
VNTR polymorphism appear to be more sensitive to 
blue light from an entrainment perspective compared 
to PER34/4 individuals (Chellappa et al. 2012). In addi-
tion, the PER3 VNTR polymorphism has been asso-
ciated with melatonin suppression and the subjective 
and objective alerting action of light (Chellappa et al.  
2012; Lok et al. 2018), as well as with the cognitive 
brain responses to light (Vandewalle et al. 2011). The 
PER34/4 genotype is associated with eveningness (a 
behavioural preference for evening activity) and the 
PER35/5 genotype associated with morningness 
(Archer et al. 2010; Hida et al. 2014; Lázár et al. 2012; 
Nadkarni et al. 2005).

We speculate that the PER3 VNTR genotype may 
account for some of the inter-individual variability 
observed in the phase-shifting responses and subsequent 
re-entrainment following travel across time zones when 
morning blue light exposure is incorporated into the 
recovery strategy. Specifically, we hypothesise that indi-
viduals genotyped as PER35/5 will experience greater 
phase shifts during the first 48 hours of resynchronisa-
tion compared to those genotyped as PER34/4. Thus the 
aim of this study was to compare the re-entrainment 
response of individuals genotyped as PER34/4 and 
PER35/5 following simulated eastward travel across six 
time zones. The re-entrainment strategy included three 
hours of morning blue-enriched light exposure and 
appropriately-timed meals in the new time zone, and 
resynchronisation was based on changes in dim light 
melatonin onset (DLMO) circadian phase.

Methods

Participants

Sixteen males genotyped as either PER35/5 (n = 8) or 
PER34/4 (n = 8) were recruited for this study. Criteria for 
inclusion required that participants (i) be between 18– 
40 years of age, (ii) be free of sleep complaints, (iii) be in 
good self-reported physical and mental health, (iv) habi-
tually sleep between 6 and 10 hours per night, (v) have 
low habitual levels of physical activity, and (vi) have 
either the PER34/4 or PER35/5 VNTR genotype. 
Exclusion criteria were (i) a diagnosed condition requir-
ing chronic medication, (ii) any sleep disorder, (iii) use 
of any chronic medication known to affect sleep, mela-
tonin and/or circadian rhythms in the previous six 
months, (iv) night or rotating shift work in the previous 
three months, (v) trans-meridian travel crossing ≥3 time 
zones within the previous two months, (vi) smoking, 
(vii) normal caffeine consumption greater than 
300 mg∙d−1, (viii) red-green colour blind condition 
(may affect efficacy of blue light therapy (Smith et al.  
2009)), (ix) engaged in any sport/physical activity which 
requires more than two training sessions per week, or (x) 
a body mass index ≥30 kg∙m−2. Relatively inactive parti-
cipants were used as the protocol required long periods 
of sedentary behaviour.

Participants were recruited using flyers, posters and 
radio advertisements. Prior to formal entry into the 
study, participants were screened for eligibility (see 
below). The first eight eligible individuals in each of 
the two genotype categories (PER35/5 and PER34/4) 
were invited to take part in the study. The study was 
approved by the University of Cape Town’s Faculty of 
Health Sciences Human Research Ethics Committee 
(HREC/REF: 360/2014). All participants gave written 
informed consent. The study was performed in accor-
dance with the principles of the Declaration of Helsinki 
(World Medical Association, 2013), the International 
Conference on Harmonisation and South African 
Good Clinical Practice guidelines.

Study overview

Following screening, a run-in period took place two 
weeks prior to the simulated jetlag protocol, to (i) ensure 
participants were not sleep deprived, (ii) verify supple-
ment and medication use pre-trial, and (iii) confirm 
reported physical activity levels. The simulated jetlag 
protocol was an 82 h trial (Figure 1), which took place 
in a sound- and light-proof space comprising two bed-
rooms, a lounge area, bathroom and kitchen. 
Participants reported to the laboratory at 11h30 on 
Day 1 (D1) of the study and were not allowed contact 

2 L. KUNOROZVA ET AL.



(physical or virtual) with the outside world until the end 
of the trial. All times given in this section refer to local 
time (as opposed to phase shifted environmental time). 
The simulated jetlag protocol began at 12h00 on D1 with 
the first 28 h constant routine (CR) period, designed to 
obtain baseline measures of participants’ innate circa-
dian systems. Following this, participants were given an 
8 h sleep opportunity. On waking they began a 24 h day 
in the new time zone (6 h ahead of home time zone). 
This day included 3 h of morning blue light therapy and 
concluded with an 8 h sleep opportunity. This was 
followed by a second 28 h CR period, designed to com-
pare the rate at which the two groups had resynchro-
nised to the new time zone. The trial ended at 22h00 on 
D4. A maximum of three participants were tested at one 
time, and at least one investigator remained with them at 
all times. During periods of wakefulness, participants 
interacted with one another in the lounge area. 
Participants retired to individual or partitioned bed-
rooms for sleep opportunities.

Detailed study procedures

Screening
A total of 117 participants were screened for eligibility 
for this study. Participants completed a questionnaire 
detailing demographics, medical history, medication 
and supplement use, work, travel, sleep, exercise and 
dietary history. The questionnaire also contained the 
Horne-Östberg morningness-eveningness personality 
questionnaire to determine chronotype (Horne and 
Ostberg 1976), the Sleep Timing Questionnaire (Monk 
et al. 2003) and the Pittsburgh Sleep Quality Index 
(PSQI) questionnaire to assess sleep quality (Buysse 

et al. 1989). The questionnaire was designed to deter-
mine eligibility and describe study participants. 
Participants then performed the online Ishihara colour 
blind test (Birch 1997) as colour blindness may nega-
tively influence the efficacy of blue light therapy (Lavric 
and Pompe 2014; Rüger et al. 2013). Based on their 
responses to 24 different plates, the test indicated 
whether participants had (i) normal colour vision, (ii) 
red-green colour blindness or (iii) total colour blindness. 
None of the participants tested positive for red-green 
colour blindness or total colour blindness. The investi-
gator measured the height (m) and weight (kg) of each 
participant to determine body mass index (kg∙m−2).

A buccal cell sample was obtained from 100 partici-
pants and a simple salting out protocol was used to 
extract human genomic DNA (Wen et al. 2000) with 
minor modifications as previously described 
(Kunorozva et al. 2012). The amplification of exon 18 
and the adjacent introns on the PER3 gene was per-
formed with the use of primers described in Archer 
et al. (2003) and Ebisawa et al. (2001) followed by 
restriction with NcoI (Promega, Madison, WI, USA) 
and resolving of the resultant fragments as previously 
described (Kunorozva et al. 2012). In total there were 37 
individuals genotyped as PER34/4, 12 genotyped as 
PER35/5 and 51 genotyped as PER34/5. Those genotyped 
as PER34/4 and PER35/5 were invited to continue with the 
screening process for this study. Once eight eligible 
people in each group were identified, screening was 
stopped. The 16 eligible participants underwent 
a resting metabolic rate (RMR) test following an over-
night fast (described in more detail below). This served 
as a familiarisation test, as well as to calculate partici-
pants’ RMR so that the caloric content of their meals 

Trial starts  28h constant routine 
3h blue-enriched 
light therapy 

Sleep opportunity 

 Trial ends B Breakfast D Dinner E Ensure meal 

L Lunch M 
Saliva sample for 
melatonin 

R
Resting metabolic 
rate test 

S
Stanford
Sleepiness Scale

Figure 1. Raster plot of the simulated jetlag protocol.
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during the simulated jetlag protocol could be optimised 
to meet their requirements.

Run-in period
During the two-week run-in period participants were 
asked to adhere to a regular sleep schedule (i.e., no more 
than 1 h variation between earliest and latest wake-up 
and bedtimes) and to aim for a “time-in-bed” length 1h 
longer than their habitual weekday sleep length to mini-
mise sleep deprivation. They were also asked to keep 
a sleep diary to log their bedtimes and wake-up times, 
medications and supplement use, consumption of alco-
hol- and caffeine- containing products, habitual meal 
timing, and any exercise sessions. Habitual sleep was 
measured continuously in the second week of the run- 
in period using a wrist-worn actigraphy monitor 
(Actiwatch-2; Philips Respironics, Bend, OR, USA). 
Habitual bedtime, wake-up time, time-in-bed (TIB), 
total sleep time (TST), sleep onset latency (SOL), sleep 
efficiency (SE) and wake after sleep onset (WASO) were 
recorded. Participants were not permitted to consume 
alcohol and caffeine or to use non-steroidal anti- 
inflammatories 24 h prior to beginning the simulated 
jetlag trial.

Constant routine protocol
The CR protocol is a standard method used to unmask 
the endogenous circadian components of the physiolo-
gical and behavioural rhythms by removing any rhyth-
mic changes due to an individual’s lifestyle or 
environment (Qian and Fajl 2016; Wright et al. 2015). 
This was achieved by removing environmental, activity, 
meal timing and social zeitgebers. Participants were kept 
under constant temperature (25°C), humidity (49%) and 
dim indoor light conditions (≤10 lux from incandescent 
lamps measured at eye level using a handheld digital 
light meter, Maplin LD 140 Light Meter, model 631, 
UK). During each 28 h CR protocol participants were 
restricted to a regimen of semi-recumbent posture, low 
activity and continuous wakefulness (enforced by the 
investigators) and were given hourly isocaloric nutri-
tional supplements. They were allowed to engage in 
activities such as reading, listening to music (no radio), 
watching TV (not live, only pre-recorded), computer 
work (no internet), and playing board games. Both the 
TV and computer were physically fitted with screen 
filters to block blue-light wavelength (LEE filters 767 
Oklahoma Yellow, Camquip Trading CC, 
Johannesburg, South Africa). The clocks within the 
computers were deactivated so that participants could 
not obtain time cues from the devices. Subjective sleepi-
ness was measured every three hours using the Stanford 
Sleepiness Scale (Hoddes et al. 1972). Saliva samples 

were obtained hourly from 18h00 – 24h00 on D1 and 
13h00 – 22h00 on D4 to measure melatonin concentra-
tions. RMR tests were performed at 06h00 on D2 and D4 
and at 24h00 on D3 (Figure 1).

Simulated 6 h phase shift and new time zone day
Following the 8 h recovery sleep that followed CR1, 
participants were woken up at 24h00 (local time) but 
told that it was 06h00 in their new “time zone,” thus 
simulating eastward travel crossing 6 time zones. Not 
knowing what true local time was, participants were not 
told the degree to which time had been shifted, but they 
were provided with a clock showing the time in the new 
time zone. Room light levels were increased to 80 lux 
(measured at eye level) delivered from incandescent 
bulbs, and participants ate breakfast, lunch, dinner and 
snacks at times appropriate for the new time zone. In 
the hour after waking participants underwent a RMR 
test, followed by 3 h of blue light therapy. During 
this day, participants were free to work, read, play 
games and socialise with each other. The day ended 
with an 8 h sleep opportunity (Figure 1).

Resting metabolic rate test
The RMR tests were conducted using the indirect calori-
metry ventilated hood technique (Quark RMR, Cosmed, 
Rome, Italy). RMR reflects the body’s energy expendi-
ture when completely at rest. It is related to lean body 
mass but can be affected by a number of external factors 
such as lack of sleep, feeding/fasting status, and con-
sumption of stimulants. Factors derived from the RMR 
test include (i) total energy expenditure (TEE), i.e. total 
calories burned by an individual in one day adjusted to 
level of physical activity (i.e., sedentary, moderate, stren-
uous); and (ii) the respiratory exchange ratio (RER), 
which is the ratio between the metabolic production of 
carbon dioxide and the uptake of oxygen and allows for 
the estimation of reliance on fat or carbohydrate for 
energy. Participants were asked to recline quietly while 
oxygen uptake and carbon dioxide production were 
measured at 10 s intervals for 20 min, or until a steady 
state was achieved (<5% change in respiratory exchange 
ratio, RER). Data were averaged over 60s intervals and 
RMR (kcal·day−1) was taken as the mean value over the 
last 10 min. To ensure accuracy, the gas analyser was 
calibrated before each trial was undertaken with a 3 L 
syringe and standard gas mixtures of oxygen (26% O2 

with the balance nitrogen) and carbon dioxide (4% CO2, 
16% O2 and the balance nitrogen) (BOC Special Gas, 
Afrox, Cape Town, South Africa). While the RMR test 
conducted during the screening session was used to 
calculate the caloric content of participants’ meals dur-
ing the simulated jetlag protocol, those conducted 
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during the protocol were used to observe resynchronisa-
tion of the energetic system following the simulated 
phase advance (Figure 1).

Meals
All meals were provided for participants in the labora-
tory for the duration of the 82 h trial. For the CR 
periods, participants were given hourly isocaloric meal 
supplements to remove meal timing and composition 
cues and to ensure correct 24 h energy intake for each 
individual. The supplements were prepared using 
Ensure® Powder (Abbott Nutrition, Johannesburg, 
South Africa) mixed with water, which is a complete 
meal replacement supplement designed to deliver 
approximately 55% carbohydrate, 30% fat and 15% pro-
tein per serving. The exact dosage for each participant 
was based on his RMR, body weight and a metabolic 
equivalent of approximately 1.5 kcal·kg−1·h−1 for the 
28 h period. In the new time zone, participants were 
given standardised breakfast, lunch and dinner meals 
scheduled six-hourly from 24h00 D2–24h00 D3 to coin-
cide with appropriate meal times for the new time zone 
(Figure 1). During this period, participants also had ad- 
libitum access to water and non-caffeinated tea (without 
sugar).

Blue-enriched light therapy
One hour after waking up in the new time zone, parti-
cipants underwent 3 h of blue-enriched light therapy to 
promote synchronisation to the new time zone 
(Figure 1). This time was chosen as it corresponds to 
07h00 – 10h00 in the new time zone and we wanted to 
mimic morning light exposure following trans-meridian 
travel. Cool white light-emitting diode (LED) panels 
(5500–6000 K, model UP-PL3030-18 W, China) were 
mounted on adjustable wooden stands, which delivered 
blue-enriched light (wavelength 450–495 nm) at 
a brightness of 100 lux measured at eye level. 
Participants sat around a table for this period with the 
lights placed 50 cm from their eyes. During this time, 
they were allowed to engage with one another, play 
board or card games, eat breakfast and read novels, but 
were not permitted to nap.

Sleep opportunities
Participants were given two 8 h sleep opportunities 
during the trial. Both the first (SO1) and second (SO2) 
sleep opportunities started at 16h00-24h00 on D2 and 
D3 local time, but 22h00-06h00 in their new time zone 
(Figure 1). Wrist-worn actigraphy was used to measure 
TST, SOL, SE and WASO. Participants were not allowed 
to use any electronic devices or talk to each other during 
the two sleep opportunities. They were required to 

remain in bed until further instructions by the 
investigator.

Dim light melatonin onset analysis
During the two CR periods, whole saliva was collected 
hourly from each participant by passive drool to avoid 
possible interference with the assay from swabs (Kozaki 
et al. 2011), starting ±4 h prior to and continuing to at 
least 4 h after habitual sleep onset (Figure 1). Samples 
were immediately placed in a covered ice box to mini-
mise light exposure. All samples were centrifuged for 
10 min at 3000 x g at 4°C, and the supernatants removed 
and frozen at −20°C within 4 h of collection until sub-
sequent analysis. Melatonin concentration at each time 
point was measured using an enzyme immunoassay kit 
(Salimetrics™ Salivary Melatonin kit 1–3402, Salimetrics 
Europe Ltd, Newmarket, Suffolk, UK), designed and 
validated for the quantitative measurement of salivary 
melatonin in humans. Samples collected from one trial 
were assayed in the same batch to minimise inter-assay 
variability, a standard curve was run for each plate and 
the high and low salivary melatonin controls supplied 
with the kit were included in each assay. Information 
supplied with the kit indicated that the functional sensi-
tivity of the assay was 2.25 pg⋅mL−1 with a coefficient of 
variance below 20%, with good intra- and inter-assay 
precision. DLMO was determined using an absolute 
threshold of 4 pg⋅mL−1 and linear interpolation of the 
time at which the level was reached.

Data and statistical analyses

The Shapiro-Wilk test was performed to determine 
whether data were normally distributed. Data are 
reported as median with interquartile ranges (IQR) or 
95% confidence intervals. Phase shifting for melatonin 
was determined by calculating the DLMO time for each 
individual during CR1 and subtracting that from the 
same individual’s DLMO time during CR2. A positive 
DLMO time difference meant participants had an 
advanced melatonin phase after the 6h phase shift. 
Between groups comparisons were made using one- 
way ANOVA or Mann-Whitney U tests. Categorical 
data were compared using Fisher’s Exact test. Within 
group comparisons were made using Wilcoxon 
matched pairs test. Mixed effects linear regression 
models were used to assess changes in sleepiness levels 
and metabolic parameters over time between groups. 
Data were analysed using STATISTICA version 12 
(Tulsa Oklahoma, USA) and Stata version 15.1 
(StataCorp, College Station, Texas,). Statistical signifi-
cance was accepted for p < .05.

CHRONOBIOLOGY INTERNATIONAL 5



Results

Participant characteristics prior to the trial

Descriptive characteristics of the participants as mea-
sured during screening and the run-in period are shown 
in Table 1. There were no differences in any variables 
between the two groups prior to commencement of the 
trial. The PER34/4 and PER35/5 groups’ actigraphy- 
derived total sleep times were 6.20 h (interquartile 
range (IQR) 1.19 h) and 7.13 h (IQR 2.18 h), respec-
tively, the night prior to the start of the trial (p = .435). 
This value was similar to habitual TIB for the PER35/5 

group (p = .135) but shorter than habitual TIB for the 
PER34/4 group (p = .028).

Changes in sleep characteristics in response to the 
simulated jetlag protocol

Data for SO1 and SO2 are presented in Table 2. During 
SO1, the PER35/5 group slept longer (p = .026) and had 
a better SE (p = .026) than the PER34/4 group. During 
SO2, the PER35/5 group took less time to fall asleep 

(p = .046) than the PER34/4 group. The sleep character-
istics of the PER34/4 group did not differ between SO1 
and SO2. In contrast, the PER35/5 group slept for less 
time (p = .008), had lower SE (p = .008) and longer 
WASO (p = .023) during SO2 compared to SO1.

Changes in sleepiness

Subjective sleepiness data for both groups measured 
every 3 h throughout the trial are presented in 
Figure 2. For CR1, there were no interaction (p = .427) 
or group (p = .787) effects, but there was a time effect 
(p < .001). Post-hoc analysis indicates that for both 
groups, sleepiness measured between 24h00 and 15h00 
(i.e. time points 5–10) differed significantly to that mea-
sured at 12h00 (i.e. time point 1) (p < .001). The PER35/5 

group reached their highest sleepiness levels 6 h earlier 
than the PER34/4 group during CR1. During the day time 
in the new time zone, there were no interaction 
(p = .248), group (p = .473) or time (p = .459) effects. 
Similarly, there were no interaction (p = .818), group 
(p = .713) or time (p = .135) effects during CR2.

Table 1. Participant characteristics measured prior to the trial.
PER34/4 (n = 8) PER35/5 (n = 8) p-value

Age (y) 23.0 (22.5, 27.5) 24.5 (21.5, 27.0) 0.959
Ethnicity (C: A: MA) 3: 4: 1 (38: 50: 12) 6: 2: 0 (75: 25: 0) 0.999
Height (cm) 178.5 (173.3, 182.0) 179.8 (171.8, 183.8) 0.721
Weight (kg) 72.7 (68.0, 87.0) 77.2 (68.3, 88.8) 0.574
BMI (kg∙m−2) 24.09 (21.56, 27.23) 24.49 (20.64, 27.40) 1.000
Body fat (%) 17.7 (14.5, 23.2) 19.9 (14.3, 23.8) 0.878
RMR (kcal∙d−1) 1556 (1391, 1954) 1757 (1380, 1839) 0.574
RER 0.78 (0.74, 0.83) 0.74 (0.70, 0.79) 0.161
HÖ score 45 (37, 58) 48 (45, 59) 0.328
PSQI score 3.5 (2.0, 4.7) 3.5 (2.2, 4.0) 0.798
Training (days·week−1) 1.5 (1.0, 2.0) 1.0 (1.0, 1.3) 0.870
Bedtime (hh:mm) 00:15 (23:39, 01:50) 23:26 (22:48, 23.43)* 0.065
Wake-up time (hh:mm) 08:35 (07:18, 08:58) 07:32 (06:41, 07:37)* 0.354
Time-in-bed (h) 7.19 (6.55, 8.24) 7.53 (7.53, 8.05)* 0.171
Total sleep time (h) 6.20 (6.08, 7.20) 7.13 (6.52, 7.34)* 0.435
Sleep onset latency (min) 7.38 (2.46, 9.51) 1.20 (0.38, 16.02)* 0.943
Sleep efficiency (%) 88.71 (85.60, 89.68) 92.08 (82.43, 96.64)* 0.435
WASO (min) 28.27 (25.47, 42.10) 28.65 (11.81, 33.93)* 0.524

Data are presented as median with interquartile range (IQR; Q1, Q3) or counts. * n = 5. A: African; BMI: body 
mass index; C: Caucasian: HÖ: Horne-Östberg; MA: mixed ancestry; PER3: period 3 gene; PSQI: Pittsburgh Sleep 
Quality Index; RER: respiratory exchange ratio; RMR: resting metabolic rate; WASO: wake after sleep onset. 
Significance was determined using Mann-Whitney U or Fisher’s Exact tests.

Table 2. Sleep characteristics of the PER34/4 and PER35/5 groups during the first (SO1) and second (SO2) sleep opportunities.
SO1 SO2 p-values

PER34/4 PER35/5 PER34/4 PER35/5 p1 p2 p3 p4

TST (h) 7.22 (6.44, 7.39) 7.41 (7.33, 7.49) 6.80 (5.98, 7.22) 7.18 (6.90, 7.34) 0.026 0.203 0.109 0.008
SOL  

(min)
2.00 (1.00, 6.75) 1.75 (1.31, 2.81) 7.00 (5.31, 8.81) 2.63 (1.13, 6.38) 0.823 0.046 0.195 0.344

SE (%) 92.01 (84.32, 95.61) 95.96 (94.55, 97.86) 87.65 (76.64, 92.04) 91.33 (87.59, 94.65) 0.026 0.235 0.109 0.008
WASO (min) 22.50 (15.50, 39.94) 17.13 (9.44, 21.25) 26.38 (23.13, 49.31) 25.83 (21.19, 33.81) 0.223 0.666 0.313 0.023

Data are presented as median with IQR. PER3: period 3 gene, SE: sleep efficiency, SO: sleep opportunity, SOL: sleep onset latency, TST: total sleep time, WASO: 
wake after sleep onset. Significance was determined using Mann-Whitney U and Wilcoxon matched pairs tests. p1: SO1 PER34/4 v PER35/5; p2: SO2 PER34/4 

v PER35/5; p3: SO1 PER34/4 v SO2 PER34/4 and p4: SO1 PER35/5 v SO2 PER35/5.
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Changes in salivary melatonin concentration

Hourly salivary melatonin concentration and DLMO 
data for the two groups measured during CR1 and 
CR2 are presented in Figure 3, and individual melatonin 
profiles are presented in Supplementary Fig. 1. There 
was a 1h50min phase advance in DLMO between CR1 
(19h30 (19h17; 19h42)) and CR2 (17h40 (17h19; 
18h10)), when data for both groups were pooled for 

analysis (Figure 3A,B, p < .001). DLMO was similar 
between the PER34/4 and PER35/5 groups (p = .223) dur-
ing CR1 (i.e. prior to simulated travel). Both the PER34/4 

(Figure 3C) and PER35/5 (Figure 3D) groups displayed 
significant phase advances in DLMO (p = .008 and 
p = .008, respectively). During CR2, however, DLMO 
occurred 42 min earlier in the PER35/5 (17h23 (17h15; 
17h37)) compared to the PER34/4 (18h05 (17h53; 

Figure 2. Changes in perceived sleepiness levels during constant routine (CR) 1, first day in new time zone (TZ) and CR2, as measured 
by the Stanford Sleepiness Scale in the PER34/4 and PER35/5 groups. Data are presented as median with interquartile ranges. 
Significance was determined using mixed effects linear regression models.

Figure 3. Changes in hourly salivary melatonin concentration and dim light melatonin onset (DLMO) during constant routines (CR) 1 
and 2, respectively. A and B: All participants, C: PER34/4 group and D: PER35/5 group. Data are presented as median with interquartile 
ranges (A) or individual data points (B-D). The dotted lines indicates DLMO time for CR1 and CR2 at the DLMO threshold value of 
4 pg⋅ml−1. Significance was determined using Wilcoxon matched pairs test.
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18h12)) group indicating a larger phase advance in the 
PER35/5 group (p = .046).

Changes in metabolic parameters

Figure 4 shows the changes in RMR (A) and RER (B) 
from pre-trial to 06h00 on day 1 in the new time zone 
(i.e. after waking from first recovery sleep after CR1) and 
to 06h00 on day 2 in the new time zone (i.e. after waking 
from sleep following the first day in the new time zone). 
For RMR there were no interaction (p = .938), group 
(p = .540) or time (p = .936) effects. For RER, there were 
no interaction (p = .385) or group (p = .694) effects, but 
there was a time effect (p < .001). Post-hoc analyses 
indicate that for the PER34/4 group, RER measured at 
06h00 on day 1 in the new time zone was lower than that 
measured pre-trial (p = .022) and at 06h00 on day 2 in 
the new time zone (p < .001). For the PER35/5 group, 
RER measured at 06h00 on day 2 in the new time zone 
was higher than that measured pre-trial (p = .009) and at 
06h00 on day 1 in the new time zone (p = .001).

Discussion

The aim of this study was to compare the extent to which 
individuals genotyped as PER34/4 and PER35/5 re-entrain 
to a new time zone following simulated eastward travel 
across six time zones, when morning blue-enriched light 
exposure is incorporated into the resynchronisation strat-
egy during the first day in the new time zone. The main 
finding was that while DLMO phase-advanced in both 
groups within 48 h following simulated eastward travel, 
and the magnitude of the shift was larger (42 min earlier) 
among the PER35/5 than the PER34/4 participants. 
Looking at the individual phase-advance responses, 
every single participant displayed earlier DLMO times 

during the second constant routine, but of the partici-
pants genotyped as PER34/4, only two phase-advanced to 
the same extent as that observed in the PER35/5 group. Of 
these two individuals, one habitually exercised in the 
morning and his HÖ-score was in the moderate morn-
ing-type range, while nothing stood out for the second 
individual. Collectively these data suggest a more rapid 
early re-entrainment response in young males genotyped 
as PER35/5 during resynchronisation to simulated jetlag 
compared to those with the PER34/4 genotype.

There was no difference between the genotype groups in 
their habitual bedtimes prior to the trial. Wake-up time, 
midpoint of sleep, and sleep onset, have been demonstrated 
to be correlated with DLMO (Burgess et al. 2003; Keijzer 
et al. 2011). We note that the difference between DLMO 
and bedtime for this cohort is at the higher end of the 
expected range of 2–4 h (Burgess et al. 2008; Flynn-Evans 
et al. 2017; Kennaway 2020; Micic et al. 2015; Sletten et al.  
2010), and slightly earlier (12–13 h) relative to time after 
waking than has been previously measured (13–14 h) 
(Burgess et al. 2003). This cohort of young males was 
comprised mostly of students and it is thus very likely 
that although their wake-up times were imposed by study 
schedules, their habitual bedtimes were not biologically 
driven, but were indicative of a behavioural delay in sleep 
time driven by social schedules. This indicates that there 
was some level of circadian misalignment within the study 
cohort prior to the start of the experiment.

Chellappa et al. (2012) previously reported that indi-
viduals with the PER35/5 genotype were more sensitive 
to the melatonin suppression and alerting effects of blue 
light. This may explain in part why the PER35/5 group in 
this study had an earlier DLMO in constant routine two 
compared to the PER34/4 group following morning blue- 
enriched light exposure. Blue light increased brain 
responses to a larger extent in individuals with PER35/5 

Figure 4. Changes in resting metabolic rate (A) and respiratory exchange ratio (B) measured before the trial and at 08h00 on days 1 and 
2 in the new time zone. TZ D1 and D2: time zones days 1 and 2 respectively. Data are presented as median with 95% confidence 
intervals. Significance was determined using mixed effects linear regression models.
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genotype compared to PER34/4 only following sleep loss, 
in a study investigating the effects of light on cognitive 
brain function (Vandewalle et al. 2011). Alternatively, 
the differences in DLMO between the two PER3 VNTR 
groups under the same environmental conditions may 
have arisen due to differences in the phase angle of 
entrainment as a result of differences between the timing 
of the circadian clock and external environmental time 
cues (Archer et al. 2018; Dijk and Archer 2010; Lázár 
et al. 2012; Mongrain et al. 2006; Sletten et al. 2015; Viola 
et al. 2012; Wright et al. 2004). Indeed, the melatonin 
profile has been associated with the internal phase of the 
sleep-wake cycle (Arendt 2019; Drake et al. 2015; 
Rajaratnam et al. 2004; Wehr et al. 2001). This does 
not seem likely in the present study, however, since the 
two PER3 VNTR groups had similar DLMO times prior 
to the simulated eastward travel (17 min difference 
between groups) and their habitual sleep timing prior 
to the trial was not different, although we acknowledge 
the potential limitation of our small sample size. Rather 
we speculate that incorporation of morning blue light 
exposure as a part of the resynchronisation strategy may 
be more effective in promoting faster phase shifting in 
young males with the PER35/5 genotype. We propose 
that this phase shifting response relates to the entire 
circadian system rather than melatonin alone. We had 
collected saliva samples for cortisol assessment to com-
plement the melatonin measures of circadian phase. We 
have not shown these data as our sampling strategy did 
not extend late enough to capture the peak for cortisol in 
the PER34/4 group in CR2, and as such we were unable to 
make any meaningful comparisons. The cortisol levels 
were significantly higher in the PER35/5 group compared 
to the PER34/4 group during CR1 and during CR2 which 
was also demonstrated by Wirth et al. (2013).

While the only sleep-related difference between the 
two groups following the day of resynchronisation was 
that the PER35/5 group had a slightly shorter sleep onset 
latency, the changes in total sleep time, sleep efficiency 
and wake after sleep onset time measured in the PER35/5 

group between the two sleep opportunities may reflect 
an earlier shift towards habitual sleep quality markers 
measured before the trial. This means that the PER34/4 

individuals may experience impaired sleep duration and 
efficiency during the early part of their sleep opportunity 
due to attempting to sleep during their wake mainte-
nance zone (Dijk and Czeisler 1994; Lavie 1986; Sletten 
et al. 2015), as a result of the misalignment between their 
sleep time and circadian clock. Measurement of sleep 
patterns over at least another five days, however, would 
provide better insight as to the extent which PER3 
VNTR genotype might impact resynchronisation of 
sleep patterns. Furthermore, since the sleepiness scores 

of the two groups both during the first day of resynchro-
nisation and during the second constant routine period 
were similar, it is possible that, as discussed below, the 
acute effects of sleep deprivation induced by the first 
constant routine (>28 h of continued wakefulness), may 
mask underlying circadian disruption-related effects on 
sleep characteristics or daytime sleepiness in the 
immediate period after simulated eastward travel.

From a metabolic perspective, the PER34/4 group had 
a lower RER (marker of greater reliance on fat as a fuel at 
rest) at 06h00 on day one in the new time zone com-
pared to both pre-trial and on day two in the new time 
zone. In contrast, the PER35/5 group had a higher RER 
(i.e. greater reliance on carbohydrate as a fuel at rest) at 
06h00 on day two in the new time zone compared to 
both pre-trial and at 06h00 on day one in the new time 
zone. This suggests that sleep deprivation, such as that 
induced by the first constant routine, together with 
desynchronisation induced by the simulated eastward 
travel may have affected lipid and carbohydrate meta-
bolism differently in the PER34/4 and PER35/5 indivi-
duals. Specifically, sleep deprivation lowers serum 
leptin concentration (Spiegel et al. 2005), which may 
promote fatty acid oxidation in the mitochondria 
(Ruderman and Saha 2006). Other studies have reported 
a reduction in glucose uptake by peripheral tissues in 
favour of fat oxidation following sleep deprivation 
(Cedernaes et al. 2015; Knutson et al. 2007; Tasali et al.  
2008). Both of these may explain the slight shift to 
elevated fat oxidation, especially in the PER34/4 group 
after the first recovery sleep. The subsequent shift to 
a greater reliance on carbohydrate for fuel at rest in 
both groups may reflect desynchronisation of the meta-
bolic processes, which initially appears to have occurred 
to a similar extent in both groups. Future larger scale 
studies that investigate metabolic shifts following sleep 
deprivation and/or circadian desynchronisation may be 
useful not only for travellers in optimising their diets to 
minimise the effects of jetlag, but also for shift-workers. 
Unfortunately, we are unable to comment on any resyn-
chronisation differences between the two groups beyond 
24h post-simulated travel.

Another observation of this study was that the 
PER35/5 group reached their highest sleepiness levels 
earlier than the PER34/4 participants in the first con-
stant routine period. This could be explained by the 
differential neurobehavioral sensitivity to sleep loss in 
the PER34/4 and PER35/5 genotypes as noted in previous 
sleep deprivation studies (Archer et al. 2010; Groeger 
et al. 2008; Lo et al. 2012; Maire et al. 2014a, 2014b; 
Taillard et al. 2003; Viola et al. 2007). Specifically, the 
PER35/5 genotype has been shown to have a faster 
homeostatic build-up of sleep pressure than the 

CHRONOBIOLOGY INTERNATIONAL 9



PER34/4 genotype (Cajochen et al. 1999; Dijk and 
Archer 2010; Goel et al. 2009; Groeger et al. 2008; 
Van Dongen et al. 2012; Viola et al. 2012), which may 
explain the earlier peak in sleepiness in this group. For 
example, Dijk and Archer (2010), showed enhanced 
alpha activity (a marker of sleepiness) during rapid 
eye movement sleep and higher EEG theta activity 
during wakefulness in individuals with the PER35/5 

genotype, indicative of higher homeostatic sleep pres-
sure. This fits with our observation that the PER35/5 

group had a longer total sleep time and higher effi-
ciency in the first sleep opportunity following constant 
routine 1 compared to the PER34/4 group. Potentially, 
the PER35/5 group was more affected by the sleep 
deprivation during the first constant routine resulting 
in a higher homeostatic sleep drive than the PER34/4 

group. This may still have been present ahead of 
the second sleep opportunity, in which the sleep onset 
latency was quicker in the PER35/5 than PER34/4 group, 
since a short time to fall asleep is a marker of sleep 
debt.

Most studies that have assessed the PER3 VNTR 
genotype distribution in various ethnic groups around 
the world have reported no significant differences in the 
distribution of this genotype (An et al. 2014; Bedini et al.  
2016; Dagmura et al. 2021; Ozsoy et al. 2021; Voinescu 
and Coogan 2012) except in the Papua New Guinea 
population (Nadkarni et al. 2005). As such, males from 
all ethnicities were recruited for this study. Limitations 
for this study include a small sample size, and a lack of 
female participants. Ideally, a randomised crossover 
study in which participants repeated the trial with light 
of a longer wavelength (Blume et al. 2019; Wright et al.  
2004) would have made a good control condition. The 
experiment only examined eastward travel with morn-
ing light exposure. A simulated westward travel with 
evening light exposure may have different findings 
(Phillips et al. 2019; Watson et al. 2018). These future 
studies would provide a full comparison of the effect of 
blue-enriched light in resynchronising the PER34/4 and 
PER35/5 genotypes to a new environment following 
simulated jetlag.

In conclusion, results from this study suggest that the 
two PER3 VNTR groups differed in the magnitude of the 
phase shift of DLMO when blue-enriched light therapy 
was used as part of the re-entrainment strategy after 
simulated eastward travel across 6 time zones. The ear-
lier DLMO of the PER35/5 group compared to the PER34/ 

4 group during the second constant routine suggests that 
they were in the process of re-entraining to the new time 
zone faster. One of the challenges facing individuals 
after eastward travel is being able to fall asleep early in 
the new time zone. Practically, an earlier DLMO in the 

PER35/5 group suggests that they may be able to sleep 
earlier since night-time sleepiness and sleep onset are 
related to DLMO timing.
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