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Méndez-Barrios, and Adrian-Josue Guel-Cortez

Abstract This paper presents the control design for a multi-agent system (MAS) of
land-based mobile robots on wheels formation, that also implements a PI control
for the fastest with no-overshoot response at each agent’s velocity. Regarding the
robot formation tracking control design, a mathematical model constructed from a
geometric approach is applied. In addition, the formation’s asymptotic stability is
guaranteed in the light of Lyapunov’s theory. When discussing the agents’ velocity
control, the mentioned Proportional-Integral %� algorithm is designed by using
different methodologies which include f-stability, _ tuning, and Haalman´s tuning
techniques. Finally, the theoretical results are confirmed by simulations.

1 Introduction

Within robotics research, mobile robotics [2, 3, 11] presents different issues of
interest, such as kinematic modeling, dynamic modeling, motion control, planning,
and environment perception. It also has a wide range of applications which include
maritime exploration, terrain reconnaissance, search and rescue missions, medical
and domestic assistance, to name a few [3]. Within the different scenarios where
mobile robots can be applied, a Multi-Agent System (system that is composed of
multiple intelligent agents/sub-systems interacting with each other) where several
robots work together has significant advantages over the use of a single robot, such as
robustness to failure of individual agents, reconfigurability, and flexibility to perform
much more complex tasks [1]. Nonetheless, one of the problems in robotic multi-
agent systems is the formation control’s design. Specifically, it refers to the problem
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where the relative position and orientation of each of the mobile robots belonging
to the multi-agent system must be controlled according to a formation that follows
a desired trajectory [1]. To solve such a problem, various approaches have been
proposed so far. For instance, the leader-follower [9, 10], virtual leader [8], virtual
structures [6] and cluster space [15] techniques.

Regarding suchmethods, in [10] a leader-follower approach (a reference trajectory
defined by the leader) is used. Besides, in such a work, the internal stability of the
formation is implied by the stability of the control laws of the individual agents. The
problem with this approach is that it does not have good robustness to perturbations.
In [8], the virtual leader approach is used. Here, the agents in the training jointly
synthesize a single, possibly fictitious, leader agent whose trajectory acts as a leader
for the group. This approach improves the robustness to perturbations found in
the leader-follower approach. Besides, in [23], a virtual leader approach that uses
reduction of communication threads between the agents is introduced. By such
communication protocol, the agents are allowed, under certain conditions, to stop
communicating with its neighbors while still avoid collisions between them. As
another example, [15] proposes a geometric interaction between the individual agents
where the formationmodel has state variables that are a function of the state variables
of the individual agents. Finally, in [17], a graph interaction approach is used for the
solution of formation control in multirobot systems using the consensus algorithm.

By taking into account what has already been reported in the literature, this paper
presents a centralized control for the trajectory-tracking of a MAS composed of
two-wheeled land mobile robots. The proposed control algorithm uses a geometric
model for the estimation of the relative positions between the agents without taking
into account their morphology. Furthermore, as a novelty of this work, a low-order
PI type controller that ensures the fastest with no-overshoot response at each agent’s
velocity is implemented. To find such a control, a comparison between different
design methodologies is performed. The analyzed methods are f-stability, _ tuning,
and Haalman´s tuning. In addition, we also apply an empirical tuning method,
where only the stability of the response but not the performance is ensured. Finally,
we briefly discuss the results in the form of numerical simulations.

The paper is organized as follows, Section 2 presents the kinematic model. Then,
Section 3 presents the PI speed control design while including the used mathematical
dynamicalmodel for the description of the agent’s velocity. Finally, Section 4 presents
the geometric model and the formation control for trajectory tracking.

2 Background

In this section, the kinematicmodel of the differential robot (including the constraints
and conditions where it is valid) which is gonna be used for the control design is
presented.

Differential Kinematic Model of a Decentralized Robot Point. Consider a
mobile robot with unicycle or differential configuration (see Fig. 1), and a global
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coordinate axis G =
[
-G , .G

]) . Before constructing the kinematic model of our
differential mobile robot, as in [18], we consider the following set of constrains: the
robot moves on a flat surface, the steering axis of the wheels is always perpendicular
to the ground, there are no flexible elements in the structure, there is no sliding
between the wheel and the ground, in addition to disregarding any type of friction.
Then, from Fig. 1, G represents the position on the -G axis, H the position on the .G
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(b) {-, / }G Plane View Di-
agram.

(c) Differential Mobile Robot
Prototype.

Fig. 1: Schematic of the Differential Mobile Robot for the Holonomic Model.

axis, i the orientation of the robot concerning the -G axis, l! the angular velocity
of the left wheel, l' the angular velocity of the right wheel, A the radius of the
wheels, and 2; the perpendicular distance between the two wheels. Thus, the direct
differential kinematics of a decentralized point % whose position and velocity is
separated by a distance 0 from the robot’s drive axis (see Fig. 1) are defined by

¤G (C)
¤H (C)
¤i (C)

 =

cos (i (C)) −0 sin (i (C))
sin (i (C)) 0 cos (i (C))
0 1


[
E (C)
l (C)

]
. (1)

Therefore, we will consider G, H, and i to be our states and E, and l to be our inputs.
It is worth mentioning that this type of model is holonomic. This because the point
%(G% , H%) has no velocity constraints in the plane G =

[
-G , .G

]) .
3 Robot Speed Control Analysis and Design

The previous section presented the kinematic model that will be used for the forma-
tion’s control but do not introduce the mathematical model utilized for the agents’
velocity control. For such a purpose, this section describes the different performed
tuning techniques for the %� agents’ velocity controls and the implemented system
identification method to obtain the dynamical model which describes each wheel’s
velocity in a mobile robot.

System parameter’s identification. The experimental platform consists of a
robot built with the necessary peripherals. In brief, the robot has a differential drive
which consists of a chassis, a pair of independently moving motorized rigid wheels,
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and a freewheel (see Fig. 1c). To describe the mobile robot velocity dynamics, we
consider a first-order model with time-delay [20] as follows

� (B) = Ω (B)
+ (B) =

:4−ℎB

)B + 1 , (2)

where the outputΩ (B) is the angular velocity, the input+ (B) is the reference voltage,
and the constants : > 0 is the open-loop system gain, ℎ > 0 is the system delay
and ) ∈ R \ {0} is the time constant. The parameters from the transfer function
(2) are found by a system’s parameter identification algorithm that uses the Particle
Swarm Optimization (PSO) method (for further details, see [7, 19]). As a result, the
following plants are obtained

�' (B) =
1.06464−0.084B

0.056B + 1 , �! (B) =
1.12574−0.0954B

0.0333B + 1 . (3)

Where, �' and �! are the transfer functions for the right and left wheel of the
mobile robot, respectively.

3.1 PI Controls design

An important part of the formation control corresponds to the agent’s velocity control
design. Here, we explain some of the different methods that can be used for such a
task. The comparison between these methods when applied to the system is given in
Section 5.

PIf controller. Based on the concept of B86<0-stability and the theory of D-
partitions [4, 5, 12, 13], we can design %� controllers that allows us to obtain
the maximum achievable exponential decay in the closed-loop system response. A
controller designed for such a goal is called PIf. Here, to obtain the PIf controller
gains, we have used a design formula that can be found at [21]. Furthermore, in
Fig 2, here we show the stability regions for the plants �' and �! . In the Figures,
the level curves describe regions that contain different exponential decays, being the
smaller one the region with the PIf controller gains.

Remark 1 Instead of using the PIf control, we can simply use a PI controller whose
gains are arbitrarily chose from the stability areas shown in the Fig. 2. Such PI control
would give us a stable closed-loop system response.

PI_ controller. A control that takes into account the uncertainty of the estimated
system parameters would be of great benefit. A common alternative, to find such
robust controller corresponds to the Lambda tuning technique (see, for further details
[22]). In this regard, a PI control designed by such technique would be called PI_
and its gains will be given by the following rules

 2 =
)

: (ℎ + _) , )8 = ), (4)
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(a) Right Motor. (b) Left Motor.

Fig. 2: Stability Region in the Parametric Plane  ? vs  8 of the Differential Mobile
Robot.

where _ is a factor that affects the speed in the response. In brief, increasing its value
decreases the speed, and vice versa. The author recommends _ ≈ 3) to obtain a
robust controller [22].

PIH controller. Another popular method is the so-called Haalman method [14].
Such technique was designed for the iron rolling industry to provide a critically
damped response with good reference tracking performance. This technique accept-
ably works in systems of type (2). The PIH controller constants are obtained from
[16] the following equations

 2 =
2)
3:ℎ

, )8 = ). (5)

The main feature of the Haalman tuning method is that the poles and zeros of the
process cancel with the poles and zeros of the controller. Nonetheless, as a drawback,
often poor results may be observed for rejection of load disturbances when using the
controller gains obtained by this method.

4 Two Robot Formation Control Analysis and Design

In this section, we first obtain the kinematicmodel of the formationwhen considering
only two robots (see Fig. 3). In Fig. 3, %� represents the center of the formation,
%8 with 8 ∈ {1, 2} is the decentralized point of each robot, Φ� corresponds to
the orientation of the formation concerning the -G axis, q8 with 8 ∈ {1, 2} is the
orientation of each robot concerning the -G axis, and � is the Euclidean distance
between the robots. Therefore, the geometric model in matrix form is as follows
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Fig. 3: Two Robot Formation Scheme.


G�
H�
�

Φ�

 =
[
G1 + G2
2

H1 + H2
2

√
(G2 − G1)2 + (H2 − H1)2 tan−1

(
H2 − H1
G2 − G1

)])
. (6)

Note that, by considering the geometric model, the differential kinematic model of
the formation is obtained by computing the time derivatives of each of the previous
equations [15]. Now, to meet the trajectory tracking goal, the block diagram shown
in Fig. 4 is proposed. As it can be seen, the tracking control is applied for the total
formation while each robot uses an individual tracking control algorithm. For the
tracking control, the following result holds

Theorem 1 (Tracking Trajectory Control) By considering the control law

¤qA4 5 = J† ( ¤p3 +Ke) . (7)

The system (7) is Asymptotically Stable if and only if K is a positive definite diagonal
matrix.

Formation
Controller

Formation
Kinematics

p3 e

p

1
B

1
B

+
- ¤p32

¤p31 p31

p32

Robot 1

Robot 2
+

+

-

-
¤qA4 51

¤qA4 52

+
-

+
-

¤q1

¤q2

p1

p2

Robot 2
Controller

Robot 1
Kinematics

Robot 2
Kinematics

¤p3
e1

e2

PI

PI

Robot 1
Controller

Fig. 4: Block Diagram for Trajectory Tracking Control of the Formation of Two
Mobile Robots
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5 Numerical Results

First, simulations were performed to observe the performance of the speed response
in the different controllers. The results are shown in Fig. 5. From the results, it is clear
that the responsewith the highest speed and least over impulse corresponds to the sys-
tem controlled by a PIf algorithm. Thus, the speed control of each differentialmobile
robot in our formation uses this type of control. For the formation control, the group
follows a trajectory parameterized by G3 (C) = 0.1C, and H3 (C) = 0.5 sin (0.1 · C).
The simulation results of the robotic formation are shown in Fig, 6, where a correct
motion response of the formation for trajectory tracking is clearly depicted. From
Fig. 6, we can also see that the errors oscillate ±6 cm in the two axes of the plane, this
allows us to conclude that the asymptotic stability is fulfilled. In addition, the error
does converge to zero to a large extent. Finally, from the simulation, no collision
between the agents is verified.
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(a) Right Motor.
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(b) Left Motor.

Fig. 5: Closed Loop Response of PI Controllers.
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Fig. 6: Response to Trajectory Tracking Control for a Sine function.
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6 Concluding remarks

In this work, we have presented a methodology for the formation trajectory tracking
control of a Multi-agent System (two mobile robots) by taking a geometrical ap-
proach. The methodology also applies the fastest with no-overshoot velocity control
at each robot in the formation. This is achieved by a simple PI control tuned using
different techniques. In this regard, the velocity control responses were compared,
selecting the most optimal for our needs. In addition, according to our results, the
used geometric approach permits us to not take into account the configuration of the
mobile robot. This would enable us to consider different mobile robot configurations
like differential, tricycles, Ackerman, or any combination between them within the
multi-agent system. Finally, the presented numerical results permit us to conclude,
that the proposed algorithm operates as expected. Leaving us with the opportunity
to think of an experimental validation as part of the future work.
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