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Matrix decomposition by transforming the unit sphere to
an Ellipsoid through Dilation, Rotation and Shearing

Wei-Chi Yang∗‡and AmirHosein Sadeghimanesh†§

Abstract

There are various decompositions of matrices in the literature such as lower-upper,
singular value and polar decompositions to name a few. In this paper we are concerned
with a less standard matrix decomposition for invertible matrices of order 3 with real
entries, called TRD decomposition. In this decomposition an invertible matrix is written
as product of three matrices corresponding to a shear, a rotation and a dilation map that
transform the unit sphere to an ellipsoid. The reason of our interest is the geometric
visualization of this decomposition. We also implemented an algorithm to compute this
decomposition both in Maple and Matlab.

1 Introduction

There are various matrix decompositions that each of them are designed for a specific compu-
tational goal. Probably the most known ones are lower-upper (LU) decomposition [12], which
is suitable for solving a system of linear equations, and Polar and Singular Value decomposi-
tions [1, 4, 11, 13] which are useful in finding the best rank-k approximation or in Quantum
information theory. Here we are interested in a less standard matrix decomposition called TRD
decomposition which might not seem to have a specific advantage for a computational problem,
but instead has an interesting geometric interpratation. This matrix decomposition is intro-
duced in a blog note by Danny Calegari [6]. Let M be a three times three invertible matrix
with real entries. The matrix M can be written as product of three matrices T , R and D,
M = TRD, where D is a diagonalizable matrix with two equal eigenvalues, R is an orthogonal
matrix and finally T is a shear matrix. The product TRD is corresponding to a series of linear
transformations that send the unit sphere to the same ellipsoid that M does. The goal of this
paper is to provide an algorithm to compute this decomposition.

The structure of this paper is as the following. Section 2 contains some elementary defi-
nitions from linear algebra. Section 3 contains a complete discussion on Ellipsoids and their
properties needed for presenting the TRD decomposition in Section 4. The main algorithm is
given in Section 4. Finally we close the paper with some remarks in Section 5.

1.1 Notations

By a vector v ∈ Rn we mean a column vector, i.e. an n× 1 matrix. The ith entry of the vector
v is denoted by vi. Transpose of a matrix M is denoted by M t. A row vector is represented
as transpose of a column vector, i.e. vt. If M is an m × n matrix, then the linear map from

∗Department of Mathematics and Statistics, Radford University, VA 24142, USA
†Research Centre for Computational Sciences and Mathematical Modelling, Coventry University, UK
‡wyang@radford.edu
§AmirHossein.Sadeghimanesh@coventry.ac.uk

1



Rn to Rm, sending a vector v to M · v, is also denoted by M . Let A be a subset of Rn and M
an m × n matrix, The image of A under the linear map M is defined as {M(v) | v ∈ A} and
denoted by M(A). By GLn(R) we mean the general linear group of order n over R which is the
set of invertible n× n matrices with real entries.

Let x1, x2, ..., xn represent the n coordinate variables in Rn, then we define the vector X
to be the column vector (x1, x2, . . . , xn). In R3, instead of x1, x2 and x3 we use x, y and z
respectively. By R[X] we mean the set of polynomials in n variables xis and coefficients from
R. For a set F ⊆ R[X], we denote the set of common solutions of the polynomials in F as a
subset of Rn by V (F ). When the set F contains only one polynomial, say f , We simply write
V (f) instead of V ({f}).

We denote the surface of the unit sphere in Rn by Sn−1. That is Sn−1 = V (
∑n

i=1 x
2
i − 1).

In this work all geometric objects are considered centered at origin.

2 Preliminaries

First we recall definition of several important class of matrices.

Definition 1. A square matrix of order n with real entries, U , is called an orthogonal matrix
if UU t = U tU = In where In is the identity matrix of order n.

An orthogonal matrix is an isometry and geometrically it is corresponding to a rotation,
or a reflection or a combination of these two. Therefore it is also called a rotation matrix. A
matrix is orthogonal if and only if it sends an orthonormal basis of Rn to another orthonormal
basis [1, Result 7.42].

Definition 2. A dilation matrix is a diagonalizable matrix with positive eigenvalues.

The geometric effect of a dilation matrix is scaling a geometric object in the direction of
the eigenvectors of this matrix with the scaling factor of the corresponding eigenvalues.

Definition 3. Let W be a linear subspace of Rn of dimension m where 1 ≤ m ≤ n − 1. Pick
up a basis for W , say {v1, . . . , vm}. Extend this basis to a basis for Rn, denote this basis by
B = {v1, . . . , vm, vm+1, . . . , vn}. A shear matrix keeping W fixed, or also said parallel to W , is
a matrix that its representation in B can be written in the following block form.[

Im M
0 In−m

]
,

where M is an m× (n−m)-matrix.

Lemma 4. An inverse of a shear matrix, is a shear matrix keeping the same subspace fixed.

Proof. Note that a block matrix of the form

[
Im M
0 In−m

]
is invertible and its inverse is[

Im −M
0 In−m

]
.

Remember that a real symmetric matrix has real eigenvalues, and even more, it is orthog-
onally diagonalizable. That is, if M is a square matrix of order n such that M t = M , then
there exist an orthogonal matrix U and a diagonal matrix S with eigenvalues of M on its diag-
onal such that M = USU t. In this paper by positive definite matrix we mean real symmetric
matrices with only positive eigenvalues.
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3 Ellipsoids

3.1 Definition of an ellipsoid

An ellipsoid is usually defined in one of the following two ways [5, Section 2.2.2].

Definition 5. Let M ∈ GLn(R), image of Sn−1 under M is called a non-degenerate ellipsoid
and we denote it by EM .

In this paper, by default, when we say an ellipsoid, we mean a non-degenerate ellipsoid.

Definition 6. Let P be a positive definite matrix of order n. Define fP to be the following
polynomial in R[X].

X tP−1X − 1. (1)

The set V (fP ) is an ellipsoid. We denote this ellipsoid by EP .

The reader should be careful to not confuse these two definitions, as they do not define
the same ellipsoids. More importantly the second definition does not consider every invertible
matrix, the matrix used in Definition 6 needs to be positive definite.

Example 7. Consider the following matrix.

M1 =

 1 2 3
0 1 0
−1 1 0

 . (2)

The image of the unit sphere under M1 which is EM1 defined in Definition 5 is depicted in
Figure 1a and is indeed an ellipsoid. However, if one forget about the conditions in Definition 6
on the matrix and attempt to plot V (fM1) where fM1 is given as in equation 1, then they will
get the geometric shape in Figure 1b which of course is not an ellipsoid. Note that the matrix
M1 here, is not symmetric and thus not positive definite.

(a) (b)

Figure 1: One should not confuse the two definitions of ellipsoids given by a matrix. The
ellipsoid in Definition 5, EM , is defined for any invertible matrix, whereas the ellipsoid in
Definition 6, EP is defined for positive definite matrices.
(a) The ellipsoid EM1 for the matrix M1 given in equation 2.
(b) When one ignores the condition on the matrix in Definition 6 and tries to plot EM1 for M1

in equation 2, they get a non-ellipsoid surface.

Definition 6 explicitly introduces an equation for the ellipsoid EP , but what about the
defining equation of the ellipsoid EM of Definition 5?
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Lemma 8. Let X = (x1, . . . , xn) and F ⊆ R[X]. For any M ∈ GLn(R), the image of V (F )
under M is defined by the same set of polynomials after substituting xi = (M−1X)i for i =
1, . . . , n which we denote it by F |X=M−1X . In other words,

M
(
V (F )

)
= V

(
F |X=M−1X

)
. (3)

Before proving this simple lemma, let us use it to answer the question of “how to find the
defining equation of EM of Definition 5”.

Example 9. In Example 7 we saw that Definition 6 can not assign an ellipsoid to an invertible
matrix that is not positive definite. That of course shows that the two definitions are not the
same, but this alone does not say anything about the case where both definitions are applicable.
In another word, do these two definitions assign the same ellipsoid to a positive definite matrix?
Consider the following matrix.

M2 =

 3 −1 0
−1 2 0
0 0 2

 . (4)

First we write the defining polynomial of EM2.

fM2 = X tM−1
2 X − 1

=
[
x y z

] 2
5

1
5

0
1
5

3
5

0
0 0 1

2

xy
z

− 1

=
2

5
x2 +

2

5
xy +

3

5
y2 +

1

2
z2 − 1.

This ellipsoid, EM2 = V (fM2), is depicted in Figure 2a.
Now we use Lemma 8 to write the defining polynomial of EM2. Note that the substitution

rule given by X = M−1
2 X means that every instance of x in a formula should be replaced by

2
5
x + 1

5
y and similarly y and z being replaced by 1

5
x + 3

5
y and 1

2
z respectively. Noting that the

unit sphere can be written as V (x2 + y2 + z2 − 1), we have the following.

EM2 = M2(S2)
= M2

(
V (x2 + y2 + z2 − 1)

)
= V

(
(x2 + y2 + z2 − 1) |X=M−1

2 X

)
= V

(
(
2

5
x+

1

5
y)2 + (

1

5
x+

3

5
y)2 + (

1

2
z)2 − 1

)
= V (

1

5
x2 +

2

5
xy +

2

5
y2 +

1

4
z2 − 1).

Therefore the defining equation of EM2 is 1
5
x2 + 2

5
xy + 2

5
y2 + 1

4
z2 − 1 = 0. This ellipsoid is

depicted in Figure 2b.

As one can see from Examples 7 and 9, the two definitions are not the same and when both
are applicable they may associate different ellipsoids to the same matrix. In some texts one
defines the associated ellipsoid to a matrix M to be EM (see [3, Exercise 8.13] as an example).
However, we consider EM as the associated ellipsoid to the matrix M when nothing more is
mentioned.

Proof of Lemma 8. Consider the assumptions in the lemma. The proof is simple. One just
need to note that if a substitution rule is defined by sending xi to (NX)i for a matrix N of

4



(a) (b)

Figure 2: For a positive definite matrix, M , the two ellipsoids EM and EM are not the same.
(a) The ellipsoid EM2 for the matrix M2 given in equation 4.
(b) The ellipsoid EM2 for the matrix M2 given in equation 4.

order n and f is a function from Rn to R, then f |X=NX is equal to f ◦ N , where ◦ is the
function composition operator.

u ∈M
(
V (F )

)
⇐⇒ ∃v ∈ V (F ) such that u = Mv

⇐⇒M−1u ∈ V (F )

⇐⇒ ∀f ∈ F : f(M−1u) = 0

⇐⇒ ∀f ∈ F :
(
f ◦M−1)(u) = 0

⇐⇒ ∀g ∈ F |X=M−1X : g(u) = 0

⇐⇒ u ∈ V
(
F |X=M−1X

)
.

Note that we used the assumption that M has an inverse.

The next natural question is if there is any relation between EM and EM . The answer is
positive. This relation is already known (for example see [5, Section 2.2.2]), but we think it is
beneficial for some readers to have a formal proof written somewhere so we bring the following
two propositions.

Proposition 10. Let P be a positive definite matrix of order n. Then EP = EP 2.

Proof. We prove this equality by showing that the defining equations of the two ellipsoids in
the proposition are equal. Note that since P is symmetric we have P t = P , even more, for
every k ∈ Z we have (P k)t = P k.

fP 2 = X t(P 2)−1X − 1

= X t(P−1P−1)X − 1

= X t
(
(P−1)tP−1

)
X − 1

=
(
X t(P−1)t

)
(P−1X)− 1

= (P−1X)t(P−1X)− 1

= (X tX − 1) |X=P−1X

Define g = X tX−1, then we proved that fP 2 = g |X=P−1X . Because V (g) = Sn−1, by Lemma 8
this shows the following

EP 2 = V (fP 2) = V (g |X=P−1X) = P
(
V (g)

)
= P (Sn−1) = EP .

5



Proposition 11. Let M ∈ GLn(R). There exists a positive definite matrix P such that EM is
image of EP under a rotation transformation (a rotation, a reflection or a mixture of the two).

Proof. Let M = U1SU
t
2 be the singular value decomposition of M . Therefore U1 and U2 are

orthogonal matrices and S is a diagonal matrix with positive entries on its diagonal. Define
U3 = U1U

t
2 and P1 = U2SU

t
2, it is easy to verify that U3 is also orthogonal and P1 is a positive

definite and M = U3P1, i.e. this is the polar decomposition of M . Define P2 = P 2
1 , clearly P2

is also positive definite. By Proposition 10 we know that EP1 = EP2 . Thus

EM = M(Sn−1)
=
(
U3P1

)
(Sn−1)

= U3

(
P1(Sn−1)

)
= U3(EP1)

= U3(EP2).

Remember from Section 2 that a rotation transformation is a linear map defined by an orthog-
onal matrix.

3.2 Semi-axes of ellipsoids

Before introducing semi-axes of an ellipsoid, we need the following definition.

Definition 12. Remember the Euclidean distance function.{
d : Rn × Rn → R≥0

(u, v) 7→
√∑n

i=1(ui − vi)2
. (5)

Let A ⊆ Rn, and c ∈ Rn, define dA,c to be the function A → R≥0, sending v ∈ A to d(c, v).
When c = (0, . . . , 0), we drop the emphasis on c and simply write dA. Length of the point (or
vector) v is the Euclidean distance of v from origin, (0, . . . , 0), and is denoted by |v|.

Let us start from a familiar case. Consider an ellipse E in R2. The function dE has four
local extremums, two by two located on same lines passing through the origin, in fact reflection
of each other. Such a pair of points are called antipodal. See Figure 3a for an example. We pick
up one point from each antipodal pair and call them semi-axes of the ellipse. The semi-axes as
vectors are orthogonal and span R2, so they form an orthogonal basis. At one of the semi-axes
dE attains its maximum value, thus it is called the major semi-axis and at the other one dE
attains its minimum so it is called the minor semi-axis.

In R3 we have three semi-axes where the Euclidean distance function has a maximum, a
saddle point and a minimum called major, mean and minor semi-axes. See Figure 3b. In
general for an arbitrary ellipsoid in Rn we have n semi-axes that we can order them by their
length.

A natural question is how to find the coordinates of semi-axes of an ellipsoid given by a
matrix M . One way is to use the defining equation of the ellipsoid which now we know how to
get its formula thanks to Lemma 8. We first remind the following proposition from algebraic
geometry which is not a new result (see [10] for example).

Proposition 13. Let X = (x1, . . . , xn), F = {f1, . . . , fm} ⊆ R[X], A = V (F ) and c ∈ Rn.
The set of critical points of dA,c are the points v ∈ A such that v− c belong to the normal space
of A at v.
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(a) (b)

Figure 3: Semi-axes of ellipsoids.

(a) The ellipse EM for M =

[
2 1
1 4

]
. An ellipsoid in R2 which is an ellipse has two semi-axes.

The function dEM
has four extremums shown in the figure. Two of these points are located

on a line through the origin and the other two on a different line through origin. Therefore
we have two antipodal pairs. From each of these two pairs, one point is selected. The point
where dEM

attains minimum is called the minor semi-axis and the one where dEM
attains its

maximum is called the major semi-axis.
(b) The ellipsoid EM1 for M1 in equation 2. An ellipsoid in R3 has three semi-axes called major,
mean and minor.

Proof. Remember that the tangent space of a manifold A at a point v is the linear space
generated by the direction vectors of the tangent lines to A at v, denoted by TvA, and the
normal space of A at v is the orthogonal complement of TvA, denoted by NvA. We use the
Lagrange multipliers ([9, Chapter 7, Theorem 1.13]) to find the critical points of dA,c.

Define the following new function using the auxiliary variables λi, i = 1, . . . ,m.

φ = d+ λ1f1 + · · ·+ λmfm. (6)

Domain of φ is Rn+m. Its critical points satisfy the following system of equations.

∂φ

∂x1
= · · · = ∂φ

∂xn
=

∂φ

∂λ1
= · · · = ∂φ

∂λm
= 0. (7)

Since d =
∑n

i=1(xi − ci)2, the equation (7) simplifies to the following.

2(x1 − c1) +
m∑
i=1

λi
∂fi
∂x1

= · · · = 2(xn − cn) +
m∑
i=1

λi
∂fi
∂xn

= f1 = · · · = fm = 0. (8)

The condition f1 = · · · = fm = 0 implies x ∈ V (F ). And the rest of the equation (8) gives us
the following.

(x1 − c1, . . . , xn − cn) = −1

2

( m∑
i=1

λi
∂fi
∂x1

, . . . ,
m∑
i=1

λi
∂fi
∂xn

)
=

m∑
i=1

(−λi
2

)
( ∂fi
∂x1

, . . . ,
∂fi
∂xn

)
∈ 〈∇f1, . . . ,∇fm〉 = (TxA)⊥.

That means x− c ⊥ NxA.
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Corollary 14. Let f be the defining polynomial of an ellipsoid, E ⊆ Rn. The semi-axes of E
satisfy the system of equations achieved by letting the 2-minors of the following matrix and f
equal to 0. [

x1 . . . xn
∂f
∂x1

. . . ∂f
∂xn

]
. (9)

Proof. The semi-axes of E are also critical points for dE. Because E = V (f), by Proposition 13,
a point v ∈ E is a critical point for dE if it satisfies v ∈ 〈∇f〉. This is equivalent with the rank
of the following matrix being one.[

v1 . . . vn
∂f
∂x1
|X=v . . . ∂f

∂xn
|X=v

]
. (10)

This is the same matrix as in (9) after the substitution X = v. Because the rank of a matrix
is equal to its determinantal rank, this means that all 2-minors (determinant of the 2 by 2
sub-matrices) must vanish. This together with f = 0, gives us a system of

(
n
2

)
+ 1 polynomial

equations in n variables with the degree of the polynomials at most 2.

Remark 15. Note that Corollary 14 says that the semi-axes are among the solutions to the
introduced system of equations and does not say all of these solutions are semi-axes. Consider
the 2-dimensional case. One can check that when the defining polynomial of the ellipse is
x2

a2
+ y2

b2
− 1, with a 6= b, the solution to the system of equations of Corollary 14 gives four

points, the two pairs of antipodal points, obviously only two of them should be picked up as the
semi-axes which are orthogonal to each other. Now if a = b, all the points on the ellipse which
now is a circle is a solution to the system! Any two of these infinite choices that are orthogonal
to each other can be picked up as the semi-axes.

In general, consider an ellipsoid in Rn, and let v1, . . . , vn be a set of semi-axes for this
ellipsoid. If the length of these semi-axes are all different, then the solution set of the system
in Corollary 14 is a zero-dimensional set, i.e. a finite set of points, or to be more exact, a
set of 2n points. Otherwise, its dimension which is equal to the dimension of the irreducible
component of this algebraic set with the highest dimension, is equal to the maximum number of
semi-axes of the same length.

We will not spend any further on this remark and refer the interested reader to [8, Chapter
9] where they can find several methods to compute dimension of an algebraic set.

Example 16. Consider the matrix M1 in equation (2). By Lemma 8, its defining polynomial
is

f =
1

9
x2 + 3y2 +

10

9
z2 − 2

3
xy +

2

9
xz − 8

9
yz − 1.

The matrix in equation (9) becomes[
x y z

2
9
x− 2

3
y − 2

9
z 6y − 2

3
x− 8

9
z 20

9
z + 2

9
x− 8

9
z

]
.

By Corollary 14, the semi-axes are among the solutions to the following system of equations.
1
9
x2 + 3y2 + 10

9
z2 − 2

3
xy + 2

9
xz − 8

9
yz − 1 = 0,

52
9
xy − 8

3
xz − 2

3
x2 + 2

3
y2 − 2

9
yz = 0,

−8
3
xy + 2xz + 2

9
x2 + 2

3
yz − 2

9
z2 = 0,

−8
3
y2 − 34

9
yz + 2

9
xy + 8

3
z2 + 2

3
xz = 0.

There are various methods developed for solving a system of polynomial equations with sym-
bolic exact solutions such as using Gröbner basis [8, Chapters 2 and 3], resultant techniques [7,
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Chapter 3], or with numeric solutions such as using numerical homotopy methods [2]. Solv-
ing this system we get 6 points shown in Figure 3b. One can use the predefined command
HilbertDimension in the PolynomialIdeals package of Maple to compute the dimension of
the algebraic set which is the solution set of the above system. The result is 0 as expected.

A more linear algebra flavour approach is to use singular value decomposition. Let M ∈
GLn(R). Denote the singular value decomposition of M as U1SU

t
2, where S is a diagonal

matrix with the singular values of M , denoted by σis on its diagonal, ordered from the largest
to the smallest value, U1 and U2 two orthogonal matrices with columns denoted by uis and
vis respectively. uis and vis are called the left and the right singular vectors of M . From [4,
Chapter 3] remember that σ1 is the maximum possible length of Mv for v ∈ Sn−1. The vector
Mv which its length is σ1, is in fact the major semi-axis of the ellipsoid EM = M(Sn−1). Again
from [4, Chapter 3], the first right singular vector of M , v1, is the point v which Mv has length
σ1, and the first left singular vector of M , u1 is 1

σ1
Mv1. Therefore the major semi-axis of EM

is equal to Mv1 or equivalently σ1u
1. Similarly the rest of semi-axes of EM can be computed

as Mvi or σiu
i.

Proposition 17. Let M ∈ GLn(R) and let σ1, . . . , σn to be the singular values of M ordered
from the largest to the smallest and u1, . . . , un be the corresponding left singular vectors of the
σis. The semi-axes of EM ordered by their length are σ1u

1, . . . , σnu
n.

4 TRD decomposition

In this section we restrict ourselves to ellipsoids in R3. For the rest of the section fix the
notation. Let M ∈ GL3(R), E = EM , M = U1SU

t
2 the singular value decomposition with σi,

ui and vis the singular values, singular left vectors and singular right vectors, and A1, A2 and
A3 the major, mean and minor semi-axes of E respectively.

A unique ellipse passes through each two choices of the three semi-axes on the surface of
the ellipsoid. The minor-mean and the mean-major ellipses are the smallest and the largest
possible ellipses on the surface of the ellipsoid. Denote the plane containing the minor-mean
ellipse by π1. By rotating π1 around the vector A2 (see Figure 4) about α for 0 ≤ α ≤ π

2
, we get

a new plane π2 that intersects E in a different ellipse with two semi-axes, one being A2 and the
other A′3 a point on the minor-major ellipse of E. For a unique choice of α, A′3 has the same
length as A2. Clearly if length of A2 and A3 are the same, then α = 0, otherwise α > 0. We
want to use a shear map parallel to the plane π2 to transform E to a new ellipsoid. So before
going any further, we should know how to find this plane. The plane π2 is the plane passing
through the three points; the origin, A2 and A′3. Therefore, we need to find the coordinates of
A′3. This will uniquely determines π2 as well.

There are different ways to do this. A linear algebra flavour one is to use the singular value
decomposition. There exists a vector v4 ∈ S2 such that A′3 = Mv4. Since A′3 belongs to the
minor-major ellipse of E, v4 should be written as λ1v

1 + λ2v
3 for two real scalar values λ1

and λ2. At the same time we want Mv4 to have the same length as A2, therefore we have the
following system of 2 equations with 2 variables.{

|λ1v1 + λ2v
3| = 1,

|λ1Mv1 + λ2Mv3| = σ2.

Equivalently {
|λ1v1 + λ2v

3| = 1,
|λ1σ1u1 + λ2σ3u

3| = σ2.

9



Figure 4: An ellipsoid in R3. The major, mean and minor semi-axes are the points named
A1, A2 and A3 respectively. The minor-mean ellipse is colored in purple, we tilted the plane
containing this ellipse around the line connecting the origin to A2, about α, where 0 ≤ α ≤ π

2

until it intersects the minor-major ellipse (colores in magenta) in A′3, a point with the same
length as A2’s. The ellipse passing through A2 and A′3 is a circle (colored in orange).

A second approach is as follows. The defining equation of the plane containing the minor-major
ellipse can be calculated by first letting v = A1×A3 to be the cross-product of these two vectors.
This vector is the normal vector of the minor-major plane. A plane with the normal vector v
and containing a point u is a solution set of the equation v1(x−u1)+v2(y−u2)+v3(z−u3) = 0.
We can use either A1 or A3 as u. Let g be the linear polynomial in this equation. The point
A′3 that we are looking for satisfies the following system of equations.

f = g = x2 + y2 + z2 − |A2|2 = 0.

Example 18. Consider the matrix M1 in (2). To find the coordinates of the tilted minor using
the first approach, we have to solve the following system of equations (numbers are rounded, for
more exact values see the computation files).{
|λ1(−0.2351,−0.5831,−0.7777) + λ2(−0.6949,−0.4586, 0.5539)| = 1
|3.7955λ1(−0.2351,−0.5831,−0.7777) + 0.5183λ2(−0.6949,−0.4586, 0.5539)| = 1.5251

That can simplify to the following.{
λ21 + λ22 = 1
14.405λ21 + 0.2686λ22 = 2.3259

By solving this system of equations numerically and substituting the solution into λ1A1 + λ2A3

we get (−1.4704, 0.2015,−0.3511). Now using the second approach. The defining polynomial of
EM1 is the following.

f = 3y2 − 8

3
yz +

10

9
z2 +

1

9
x2 − 2

3
xy +

2

9
xz − 1.

For the equation of the plane containing A1 and A3 we can use A2 instead of calculating the
cross product of A1 × A3 as A2 is also orthogonal to both of them. It gives us g = 0.2305x −
0.6706y − 1.3502z. So the alternative system of equations is the following.

f = g = x2 + y2 + z2 − 2.3259 = 0.

This also gives us the same solution (−1.4704, 0.2015,−0.3511).

A shear map parallel to π2 maps E to a new ellipsoid E ′ where two of its semi-axes have the
same length, they are A′3 and A2, but its third semi-axis is on the line normal to π2 and is the
image of the furthest point of E from π2 which is not necessarily A1. Denote this shear map
by TE, the furthest point of E from π2 by A′1, and the image of A′1 under TE by A′′1. If we find
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the coordinates of A′1 and A′′1, then we can find TE by solving the linear system of equations
generated by the following three conditions.

TE(A2) = A2, TE(A′3) = A′3, TE(A′1) = A′′1.

Note that A2, A
′
3 and A′′1 are semi-axes of an ellipsoid, E ′, therefore they form a basis of R3. In

addition to that, A′1 is outside the plane containing A2 and A′3, therefore the set {A2, A
′
3, A

′
1}

is also a basis for R3. This means that the linear system to find entries of TE has a unique
solution.

Theorem 19. Let M ∈ GL3(R), there are a shear matrix T , an orthogonal matrix R, and a
diagonalizable matrix D with two equal eigenvalues, such that M = TRD.

Proof. Let M ∈ GL3(R) and TE to be the shear map that transforms EM to the rotational
ellipsoid (an ellipsoid with two semi-axes of equal length) introduced before this theorem. Let
TEM = UP be the polar decomposition of TEM as in proof of Proposition 11. The matrix U is
an orthogonal matrix and the matrix P is a positive definite matrix. From Section 2 remember
that real symmetric matrices are orthogonally diagonalizable, therefore their singular values
are the same as their eigenvalues. Since the singular values of P and TEM are the same, and
the singular values of TEM are length of semi-axis of a rotational ellipsoid, P has two equal
eigenvalues. Finally, by Lemma 4 the matrix TE is invertible and its inverse is also a shear
map. Let T = T−1E , R = U and D = P , we have M = TRD. This finishes the proof.

An algorithm to compute the TRD decomposition of Theorem 19 is given below, Algo-
rithm 1. We implemented this algorithm both in Maple and Matlab.

In Maple we used LinearAlgebra package for basic linear algebra computations such as
transpose, inverse, cross product, rank etc., for the singular value decomposition we used the
command svd in MTM package. To solve the equations we used the numeric solver command
fsolve. For line 8 of Algorithm 1 we used Maximize command from Optimization package.
The result together with a few more procedures such as finding the defining polynomial of
ellipsoids are wrapped into a new Maple package named Ellipsoids accessible online for free
from https://doi.org/10.5281/zenodo.7021479.

As for the Matlab implementation, we used vpasolve for numerically solving the equations.
For line number 8 of the Algorithm 1 we used Lagrange multipliers technique and vpasolve.
All the equivalent versions of the functions implemented in the Maple package Ellipsoids can
be found in the Matlab script file Ellipsoids accessible online for free from the same Zenodo
repository.

Example 20. Recall the matrix M1 from (2). The TRD decomposition of this matrix is the
following.

T =

 1.5331746196 2.1705784446 −0.9869790414
−0.0730706176 0.7025261487 0.1352636931
0.1273275947 0.5183565054 0.7642992318

 ,
R =

−0.3248257249 −0.1398570971 0.9353759890
0.2027109239 0.9557267312 0.2132948583
−0.9237946362 0.2588945879 −0.2820940669

 ,
D =

 1.4703492210 −0.0810228156 −0.0576003935
−0.0810228156 1.4051711889 −0.0852531757
−0.0576003935 −0.0852531757 1.4644835940

 .
Note that TRD = M , D is diagonalizable with two equal eigenvalues, R is an orthogonal matrix
and T is a shear matrix keeping the plane containing the mean semi-axis of EM1 and the titled
minor.
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Input : M ∈ GL3(R).
Output: Three real matrices of order 3, T , R, D where T is a shear matrix, R is an

orthogonal matrix, and D is a diagonalizable matrix with two equal
eigenvalues.

1 compute the singular decomposition of M , M = U1S1U
t
2. Denote the singular values

of M by σi ordered from the largest to the smallest, and the left and the right
singular vectors by ui and vi accordingly, i = 1, 2, 3;

2 Ai = σiu
i, i = 1, 2, 3;

3 solve |λ1v1 + λ2v
3| − 1 = |λ1A1 + λ2A3| − σ2 = 0 to find λ1 and λ2;

4 A′3 = λ1A1 + λ2A3;
5 v = A2 × A′3 (cross product);
6 g = v(X − A2)

t where X = (x, y, z);
7 f = f |X=M−1X ;

8 A′1 = argmax
f(u)=0

(
g(u)

)
;

9 A′′1 = A1vt

vvt
v;

10 solve TEA2 − A2 = TEA
′
3 − A′3 = TEA

′
1 − A′′1 = 0 to find TE;

11 compute the singular decomposition of TEM , TEM = U3S2U
t
4;

12 T = T−1E ;
13 R = U3U

t
4;

14 D = U3S2U
t
4;

Algorithm 1: An algorithm to decompose an invertible matrix of order 3 to product
of three matrices, a shear, a rotation and a dilation.

5 Conclusion

In this paper we presented a computational algorithm, Algorithm 1, to compute the TRD
decomposition introduced in [6] for invertible matrices of order 3. The algorithm is implemented
in both Maple and Matlab (see https://doi.org/10.5281/zenodo.7021479).

Note that all steps of algorithm 1 can be done for M ∈ GLn(R) with n > 3 as well, with
one difference. In higher dimension, the ellipsoid has more than 3 semi-axes and instead of a
unique choice of three semi-axes ordered by length, we have

(
n
3

)
choices. Let (Ai1 , Ai2 , Ai3) be

one such choice where 1 ≤ i1 � i2 � i3 ≤ n. Instead of the major, mean, minor semi-axes
of 3d ellipsoid in Algorithm 1, one should use these three semi-axes which of course there is a
3d ellipsoid passing through them on the surface of the main ellipsoid (compare with the case
of ellipse passing through each two semi-axes of a 3d ellipsoid on its surface). Therefore the
TRD decomposition is not unique. The shear matrix, TE, in this case keeps the hyperplane
(linear space of codimension 1) that contains Ai2 , the tilted A′i3 and all other non-chosen n− 3
semi-axes. So the image of EM under this shear map has n − 2 semi-axes the same as the
original one.

One may hope for a possibility of repeating the shearing step of the algorithm several times
to get an ellipsoid with more than two semi-axes of the same length and then doing the polar
decomposition to get the following statement. However, it should be noted that we do not
have a prior control on the relation between the length of A′′i1 and the length of A′i3 and other
Ajs (j 6∈ {i1, i2, i3}). This makes it difficult to judge the possibility of choosing the next three
semi-axes appropriately.

Question: Let M ∈ GLn(R), n ≥ 3, and k ∈ {2, 3, . . . , n− 1}. Is it possible to find k − 1
shear maps T1, ..., Tk−1, an orthogonal matrix R, and a diagonalizable matrix D with k equal
eigenvalues, such that M = T1T2 · · ·Tk−1RD?
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