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Abstract 

Rainfall extremes are of major and increasing importance in semi-arid countries and their 

variability has strong implications for water resource and climate impacts on the local societies 

and environment. Here, we examine intraseasonal descriptors (ISDs) and wet extremes in austral 

summer rainfall over South Africa (SA). Using daily observations from 

225 rain gauges and ERA5 reanalysis between 1979 and 2015, we propose a novel typology of 

wet extreme events based on their spatial fraction, thus differentiating large- and small-scale 

extremes. Long-term variability of both types of extreme rainfall events is then extensively 

discussed in the context of ISDs. 

The results demonstrate that using 7% of spatial fraction simultaneously exceeding the local 

threshold of the 90th percentile produces remarkable results in characterizing rainfall extremes 

into large- and small-scale extremes. Austral summer total rainfall is found to be primarily 

shaped by large-scale extremes which constitute more than half of the rainfall amount under 

observation, and nearly half in ERA5. Observation (ERA5) shows an average of 8±5 (20±7) days 

per season associated with large-scale extremes, which are comprised in 5±3 (10±3) spells with 

an average persistence of at least 2 days. Overall, we find a strong dependence of total rainfall on 

the number of wet days and wet spells that are associated with large-scale extremes. We also find 

that large- and small-scale extremes are well-organized and spatially coherent in nature yet 

extreme conditions during small-scale events are found sporadic over the region, contrasting 

with large-scale events for which extreme conditions are found over a larger and coherent region. 
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1. Introduction 

Most of South Africa (SA hereafter) experiences a rainy season in austral summer (November to 

February; Pohl et al., 2014; Favre et al., 2016). Located at the interface between the tropics and 

the mid-latitudes of the Southern Hemisphere, while being surrounded by two thermally 

contrasted oceans (Rouault et al., 2003), SA is subject to both the influence of tropical 

convection and temperate dynamics (Washington and Todd, 1999; Hart et al., 2010; Vigaud et 

al., 2012). Together with highly heterogeneous vegetation and topography, these tropical and 

temperate influences form a mosaic of climates in association with contrasted surface 

atmospheric characteristics such as rainfall amount and temperature which strongly vary in time 

and space. Like many semi-arid regions in the tropics, SA depends heavily on the quality of its 

rainy seasons, as irrigation remains rather rare in this region (Crétat et al., 2012; Masupha et al., 

2016). Thus, rainfall variability and forecasting at fine spatial and temporal scales are a matter of 

crucial importance for SA agriculture and economy (Conway et al., 2015). 

In SA, during the austral summer, precipitation events are generally associated with moist 

atmospheric convection, ranging in scale from single-cell storms to organized systems, such as 

Mesoscale Convective Complexes (MCCs; Blamey and Reason, 2013), squall lines (Rouault et 

al., 2002) and tropical storms (Reason and Keibel, 2004; Reason, 2007; Malherbe et al., 2012, 

2014; Fitchett and Grab, 2014). Cut-off lows (COLs) can also lead to extreme rainfall in SA, but 

they are rare during the summer season (Favre et al., 2013). In austral summer, three key regions 

(namely southwest Indian Ocean, tropical western Indian Ocean, and tropical southeast Atlantic 

Ocean) are known to inject moisture flux into the southern African continent (Desbiolles et al., 

2018; Rapolaki et al., 2019, 2020). The dominant rain-bearing systems over the region are 

synoptic-scale cloud bands, known locally as Tropical Temperate Troughs (TTTs; Manhique et 

al., 2011; Hart et al., 2013; Macron et al., 2014; James et al., 2020). TTTs correspond to 

synoptic-scale cloud bands that link tropical instability over the subcontinent with an upper-

tropospheric frontal system embedded in the mid-latitude westerly circulation (Todd and 

Washington, 1999; Todd et al., 2004; Hart et al., 2010) and bring about 30–60% of summer 

rainfall over subtropical SA (Hart et al., 2013; Macron et al., 2014). The remaining 40–70% of 

the summer rainfall amounts are provided by rain-bearing mechanisms linked to tropical 



convection, such as regional thermal low-pressure (Reason et al., 2006) or the Madden-Julian 

Oscillation (MJO; Pohl et al., 2007). Rapolaki et al. (2019) highlighted that, over the Limpopo 

River Basin, 48% of extreme events are associated with TTTs, 28% with tropical low-pressure 

systems, 14% with mesoscale convective systems, and 10% with COLs. 

Intraseasonal descriptors (hereafter ISDs) are defined as wet and dry sequences of days during 

the rainy season (Ratan and Venugopal, 2013; Gitau et al., 2015, 2018). Examining ISDs 

provides various intrinsic characteristics of a rainy season, such as the average number of wet 

and dry days, persistence of spells, intensity of wet spells and total rainfall. Similar studies 

focused on other regions, such as equatorial East Africa (Camberlin et al., 2009; Moron et al., 

2013; Gitau et al., 2015, 2018; Philippon et al., 2015), have already demonstrated their relevance 

and usefulness in climate diagnostics and prediction. However, analyses devoted to ISDs remain 

quite rare in SA. Tennant and Hewitson (2002) found that anomalously wet rainy seasons tend to 

experience a larger number of heavy rainy days (>20 mm.day-1). Cook et al. (2004) highlighted 

that moisture anomalies between wet and dry spells were strongly related to the Kalahari low. 

They also stated that wet years were characterized by longer and more intense wet spells, rather 

than by a greater number of wet spells (Cook et al., 2004). Similarly, previous studies found a 

strong relationship between dry spells and El Niño Southern Oscillation (ENSO), suggesting 

potential predictability of ISDs using this relationship (Usman and Reason, 2004; Reason et al., 

2005; Crétat et al. 2012.). Physically, El Niño conditions could act to shift TTTs eastwards over 

the Mozambique Channel (Nicholson and Kim, 1997; Cook, 2000, 2001; Misra, 2003; 

Nicholson, 2003; Dieppois et al., 2015, 2016, 2019), thereby enhancing the number of dry spells 

over the continent. The relationship between TTTs and ENSO has been confirmed and further 

documented by Fauchereau et al. (2009) and Pohl et al. (2018). During La Niña a low-pressure 

develop over southern Africa, which is related to anomalous upward motion and enhanced 

moisture fluxes into and over the region which results in rainfall surplus while El Niño is linked 

with high-pressure over southern Africa, which is associated with anomalous downward motion 

and reduced moisture fluxes into and over the region which result in rainfall deficit during 

austral summer season (Ratnam et al., 2014; Hoell et al., 2015). 



The severity and frequency of wet and dry extreme events are likely to increase at the global 

scale as a response to anthropogenic emissions of greenhouse gases (Donat et al., 2016). This 

statement is also true for SA rainfall (Mason and Joubert, 1997; Mason et al., 1999; Shongwe et 

al., 2009; Engelbrecht et al., 2013; Pinto et al., 2016). Future scenarios include a combination of 

decreasing numbers of rainy days and increasing intensity of extreme rainy days (Pohl et al., 

2017), which are likely to modify the intrinsic characteristics of intraseasonal spells in the future. 

This study aims to provide fundamental and up-to-date knowledge about the intrinsic 

characteristics of wet and dry ISDs. First, we provide an overall assessment of ISDs, in which 

extremes are embedded using the latest available observation archive and a state-of-the-art 

reanalysis product. This study then proposes a novel typology of extreme rainfall events, based 

on their spatial fraction as a base criterion, disentangling rainfall events into large-scale and 

small-scale extremes. To our knowledge, there is hitherto no study that addresses the spatial 

dimension in the definition of rainfall extremes over the region, despite its importance for 

predictions over other regions (Lu et al., 2017; Oueslati et al., 2017). In this paper, we calculate 

and discuss the intrinsic characteristics of large- and small-scale extremes in the context of ISDs 

over SA. The contribution made should be of interest for a wide range of the scientific 

community working on seasonal forecasts. Such results also have considerable importance for 

stakeholders in the environmental, agricultural, energy, water and economic sectors. A 

companion paper will further assess how these different types of extreme events vary in time, 

and/or are modulated by modes of large-scale variability at different timescales ranging from the 

synoptic scale to decadal variability. 

This paper (Part I), more specifically dedicated to the mean characteristics of rainfall extremes in 

SA, is organized as follows. Section 2 presents datasets and methodology. Section 3 provides an 

assessment of wet and dry ISDs and their summer climatology over SA. Section 4 is dedicated to 

defining criteria to identify extreme rainfall events and to facilitate their categorization into 

large- and small-scale extreme events. Section 5 addresses an assessment of large- and small-

scale rainfall extremes in the definition of ISDs. Section 6 summarizes the results and establishes 

the main conclusions. 



2. Data and Methodology 

2.1. In-situ and reanalysis data 

Observed daily rainfall data from 225 stations (hereafter OBS), spanning 50 years between 1965 

and 2015, in which missing values represent less than 1%, were retrieved from the archives of 

the Water Research Commission of South Africa, which constitutes a dense network of 2625 

stations (http://www.wrc.org.za; Fig. 1a). 

In addition, we used state-of-the-art ERA5 reanalysis to compare and cross-validate our results. 

ERA5 reanalysis (Copernicus Climate Change Service, 2017; Hersbach et al., 2020) is the 5th 

generation reanalysis available from the European Center for Medium-Range Weather Forecasts 

(ECMWF), providing 0.25° × 0.25° resolution of hourly gridded outputs of surface and 

atmospheric fields at the global scale, spanning 1979 to the present. ERA5 has now been 

extended to 1950–1978 but the lack of assimilation of satellite data before 1979 raises the 

question of the homogeneity of the dataset, the detailed evaluation of which is mandatory before 

using it. However, it is not the scope of the present study, hence our choice to consider a 

common period of 36-years (1979–2015). 

To focus on the summer rainfall regions, a seasonality test was then applied on OBS and ERA5 

(Crétat et al., 2012). Using the seasonality test, only the stations and grid-points for which at 

least 50% of annual rainfall occurred during an extended austral summer (October to March) 

were retained. The spatial distribution of the percentage of summer rainfall in OBS and ERA5 is 

presented in Figure 1a-b. Regarding ERA5, all grid-points (AGP) and those nearest to OBS (NN) 

were used in this study. The Comparing the NN and AGP fields of ERA5 is particularly 

important in order to examine whether the network is dense enough to study rainfall extremes. 

The NN and AGP fields of ERA5 have here been named and 

respectively. 

To define new metrics accounting for the typology of rainfall extremes, we focused on the 

austral summer season and we analyzed two distinct baseline periods 

for OBS and for ERA5. By considering extended austral summer 

seasons and the two distinct baseline periods for the computation of 90th percentile values, we 

gained two advantages: i) a longer period for OBS ensures statistical robustness of low-



frequency decadal variability; ii) longer seasons also include rainfall onset (October) and 

cessation (March) months (discussed later in the companion paper). For all remaining objectives, 

we restricted the study to the period dating and to the core of the rainy season 

2.2. Methods 

2.2.1. Definition of intraseasonal descriptors at the regional scale 

A threshold of 1.0 mm.day-1 was used to delineate wet from dry days (Gitau et al., 2013, 2015). 

A unified definition for wet and dry spells was obtained as suggested in several previous studies 

(Ratan and Venugopal, 2013; Gitau et al., 2015, 2018). A wet (dry) spell is defined as a duration 

of “i” wet (dry) days preceded and followed by a dry (wet) day. As summarized in Table 1a-b, 

various ISDs, which are associated with wet and dry spells, are computed for each station and 

grid-point using OBS and ERA5. Multi-year variability of each ISD is then assessed using 

seasonal average computed at the regional scale (cf. Section 3). 

To quantify and compare temporal variability, commonly used statistical metrics were applied to 

each ISD: mean standard deviation (SD), root mean square error (RMSE) and coefficient of 

variation (CV: Asmat and Athar, 2017; Asmat et al., 2018). The Mann Kendall (MK) non-

parametric test was used to perform the trend analysis (Mann, 1945; Kendall, 1957). Pearson’s 

correlations were computed to quantify the dependence of total rainfall on ISDs. 

2.2.2. Assessment of rainfall extremes 

a) Local threshold for rainfall extremes 

We first computed the 90th percentile of daily rainfall amount of each station and grid-point, 

which were retrieved from the aforementioned seasonality test, over the two climatological 

baseline periods as described in Section 2.1. The 90th percentile values were calculated by 

removing all values below 1.0 mm.day-1 for more robust identification of extreme rainfall events. 

The comparisons of the spatial distributions of the 90th percentile, as calculated before and after 

removing non-rainy and drizzle days (i.e. days with less than 1.0 mm), are presented in Figure 

2a-b and Figure 2c-d respectively. This choice made the evaluation less sensitive to measurement 

accuracy and to the tendency of some numerical models to produce an excessive number of 

drizzle events (Frei et al., 2003; Gitau et al., 2015; Maraun, 2016). A similar sensitivity to 



drizzle days was found to be more pronounced in ERA5; thus, not removing drizzle days would 

have led to underestimating the 90th percentiles. The 90th percentile threshold is calculated based 

on a normal distribution, and we note that it did not significantly differ from one calculated 

based on a theoretical extreme value distribution (Gumbel distribution, cf. Fig S1c-d). This 

suggests the statistical robustness of the approach used to calculate the extreme thresholds in this 

study. 

b) Regional threshold for rainfall extremes 

A novel typology of rainfall extremes based on the spatial fraction of rainfall events is then 

proposed. The spatial fraction of an extreme event is defined as the number of stations or grid-

points that simultaneously reach the 90th percentile regardless of their location on the day of the 

event. A similar methodology has been successfully used for the identification of heat waves in 

West Africa (Oueslati et al., 2017). The principal reason for using the spatial fraction as a base 

criterion is to differentiate localized, or small-scale extreme events from large-scale extreme 

events. On one hand, small-scale extreme events are related to isolated convective cells and 

therefore stochastic in nature, rendering them highly unpredictable. On the other hand, large-

scale extreme events are embedded in large-scale modes of climate variability, hence potentially 

more predictable. The spatial fraction of extreme events depends on the density of the network, 

but also on its anisotropy, which is likely to cause some issues in the estimation of the spatial 

extension of the events because the stations are not uniformly distributed in space. In reference to 

this assumption, the spatial fraction of events is here quantified using both the and 

fields. The comparison between and fields makes it 

possible to assess whether or not the network is dense enough to study rainfall extremes. The 

density might not be sufficient if exhibits substantially different properties than in 

Thus, a caution is required to interpret the results related to large- and small-scale 

extremes as: i) the extremes are not characterized here based on environmental consequences but 

from an atmospheric point of view considering the characteristics of rainfall field itself; ii) 

considering the use of administrative boundaries, limitation in observation along with using NN 

and AGP fields of ERA5 yet there is a likelihood that some events that may have major 

environmental consequences, are not necessarily captured; iii) resolution of reanalysis is 



particularly important to capture small-scale extreme events. Section 4.1 addresses a brief 

assessment conducted in defining a robust and relevant threshold of spatial fraction. 

c) Spatial characteristics of rainfall extremes 

Based on the defined threshold of spatial fraction, we first separated all days associated with 

large- and small-scale extreme events (cf. Section 4.1). The average characteristics of both types 

of extremes were then assessed in terms of frequency and intensity for each station and grid 

point. The frequency and intensity were computed based on two criteria: i) average number of 

days exceeding the 1.0 mm threshold during large- and small-scale extreme events; ii) average 

number of days exceeding the 90th percentile threshold during large- and small-scale extreme 

events. For the sake of clarity, in this paper, this analysis is only provided for OBS (cf. Section 

4.2). 

d) Spatial coherence of rainfall extremes 

An analysis addressing the spatial coherence of large- and small-scale extremes is also provided. 

Here, we analyze the density of stations recording rainfall on the days of large- and small-scale 

extremes based on the same method used to address the spatial characteristics of extreme events 

i.e.: i) considering all stations recording rainfall >1.0 mm on the day of the event; ii) considering 

only those stations which exceeded their 90th percentile on the day of the event. The density of 

the stations was assessed using a narrow bin size of 0.5°, corresponding to the stations that are 

located within approximately 55 kilometers over latitudes and 43 kilometers over longitudes (cf. 

Section 4.3). 

2.2.3. Definition of intraseasonal descriptors associated with rainfall extremes 

Large- and small-scale extreme rainy days were first obtained from the typology of rainfall 

extremes (cf. Section 4). Both types of events were then explicitly considered in the context of 

ISDs. By placing these events in the framework of ISDs, we were able to further explore the 

climatology and intrinsic properties of such events on an interannual timescale. Thus, several 

ISDs associated with large- and small-scale rainfall extremes were assessed using OBS and 

ERA5. A brief description of extreme ISDs is presented in Table 2. To quantify and compare 



temporal variability and trends, the same statistical metrics as introduced in Section 2.2.1 are 

used in Section 5. 

3. ISDs at the regional scale 

3.1. Multi-year variability of ISDs 

The average spatial distribution of each ISD is presented in Figure 3. A spatial gradient from 

southwest to northeast clearly prevails in all ISDs, as northeastern regions are much wetter than 

southern regions in all wet ISDs (Fig. 3a). Meanwhile, dry ISDs show larger values over the 

southwestern regions denoting drier conditions (Fig. 3b), in agreement with Crétat et al. (2012). 

When compared with OBS, ERA5 displays nearly realistic responses for all ISDs in terms of 

spatial distribution but shows some biases when spatial average is assessed (cf. Figure S2). 

Notably, ERA5 overestimates the values in all wet ISDs, except for the intensity of wet spells 

(Fig. S2a). Such overestimations of seasonal rainfall in ERA5 could be related to a higher 

number of wet spells with weaker intensity (WS and WSI panels in Fig. 3 and 4). In addition, 

looking at the spatial distribution of biases in ISDs, we note that the intensity of wet spells is 

underestimated throughout the region (WSI panel in Fig. S3b). Meanwhile, the overestimation of 

the number of wet days is more pronounced from the northeast to the southwest (WD panel in 

Fig. S3b). ERA5 also largely underestimates the number of wet spells, especially in regions of 

higher altitude (>1400 m above sea level), such as the Drakensberg region (WS panel in Fig. 

S3b). This suggests that ERA5 struggles to break the continuity of rainy days within a spell, 

which results in fewer but more prolonged spells (WS and WSP panels in Fig. S3b). 

Reanalysis bias over the African continent across three generations of ECMWF reanalysis is 

extensively discussed in Gleixner et al. (2020). This study highlights substantial improvements 

in ERA5 achieved by improved model physics and data assimilation schemes. In this study, we 

still note significant discrepancies between ERA5 and observations in ISDs as discussed above. 

The foremost problem in ERA5 is its ability to produce a realistic response for those regions 

characterized by a complex terrain (Wang et al., 2019), given the fact that such regions tend to 

have a lower number of observations. In SA, the average biases that we find in intraseasonal 

characteristics could also result from similar constraints, since the northeastern part of SA is 

characterized by a complex topography that often enhances the biases present in numerical 

models (Favre et al., 2016; Koseki et al., 2018). 



Figure 4 presents the statistical distribution and multi-year variability of ISDs. Both 

and fields show consistent results in all wet and dry ISDs (see violin plots in Fig. 

4), suggesting that the density of observational archives used for OBS (i.e. 225 stations) is 

sufficient to monitor the spatial and temporal variability of ISDs throughout SA. Regarding wet 

ISDs, OBS and ERA5 display an average of 20±4 and 44±6 days over a season, respectively 

(WD panel in Fig. 4a). These wet days are driven by 13±2 spells for OBS and 17±2 spells for 

ERA5 (WS panel in Fig. 4a). For OBS (ERA5), the austral summer season is composed of 90 

(70) dry days and 12 (16) dry spells (DD and DS panels in Fig. 4b). Although biases exist in 

ERA5, multi-year variability appears realistic with a statistically significant correlation (>0.8) to 

OBS for most of the wet and dry ISDs (Table 3). 

The average number of wet days exceeding the 90th percentiles is 2 and 4 in OBS and ERA5, 

respectively (WDP90 panel in Fig. 4a). As discussed above, ERA5 also overestimates the number 

of wet days, including the number of wet days exceeding the 90th percentiles. The temporal 

patterns of extreme wet days and total rainfall show coherent peaks in both ISDs between 

and (WDP90 and TR panels in Fig. 4a), which clearly indicates that the 

wettest years tend to correspond to the largest seasonal occurrences of extremes. Overall, the CV 

remains higher OBS in most of wet and dry ISDs as compared to ERA5, whereas 

exhibits slightly lower RMSE as compared to (Table 3). No significant trends 

appear in any ISD, except in the intensity of wet spells, which increases in OBS at 

a rate of +3.23 (+2.06) mm.day , based on the Mann Kendall trend test at p=0.05 (Table 3). 

3.2. Contribution of ISDs to total seasonal rainfall 

The relationship between total rainfall and ISDs was assessed using point-wise correlation (Fig. 

5). Overall, all wet ISDs exhibit a positive correlation with total rainfall, but the wet spells show 

a negative correlation over the northeastern regions in ERA5 (WS panels in Fig. 5a). Such 

negative correlations between wet spells and total rainfall over the northeastern regions, where 

the elevation is the highest, may once again highlight the limitation of ERA5 over complex 

terrains (cf. Figure S3). Regarding the relationship between dry ISDs (Thoithi et al., 2020) and 

total rainfall, a significant negative relationship logically prevails (Fig. 5b). 



The correlation of two ISDs, WD and WDP90, with total rainfall is particularly strong, exceeding 

0.8 (significant at p=0.05) in almost all grid-points (WD and WDP90 panels in Fig. 5a). This 

indicates that the anomalously wet seasons primarily correspond to a higher number of wet and 

extreme wet days, thereby confirming the results of Tennant and Hewitson (2002). In addition to 

point-wise correlations, we also estimated the contributions of ISDs to austral summer rainfall at 

the regional scale, using spatially averaged time series (lower right corner of each panel in Fig. 

5). The highest correlations are >0.94 and significant at p=0.05 and are found for WD and 

WDP90, consistently with the point-wise correlations. This highlights the critical importance of 

the two ISDs in shaping the rainfall variability over SA. 

4. Rainfall extremes 

4.1. Typology of extreme rainfall events 

Here, we use the average spatial fraction of extreme rainfall events as a base criterion to 

differentiate large- and small-scale extreme events. Theoretically, large-scale extreme events 

should be embedded in large-scale modes of climate variability, and therefore show greater 

potential predictability. Meanwhile, small-scale extreme events are more likely related to 

isolated or organized convective cells, such as MCCs, which are stochastic in nature, and thus 

less predictable (Blamey and Reason, 2013). Thus, large-scale extreme events must exhibit a 

higher fraction of stations or grid-points simultaneously reaching the extreme threshold as 

compared to small-scale extremes. Moreover, it is also reasonable to speculate that large-scale 

extreme events are less frequent as compared to small-scale extremes in the austral summer 

season. To differentiate the characteristics of these two contrasting types of extremes, we assess 

here their multivariate distributions in terms of duration, spatial fraction, frequency and intensity 

(Fig. 6). 

Defining a robust and relevant threshold for the spatial fraction of events was critically 

important. Given the aforementioned biases in the reanalysis, we rely solely on OBS to develop a 

relevant definition for the typology of extreme rainfall events (upper two panels in Fig. 6). In 

OBS, the higher event intensity (>27 mm.day ) and lower frequency lies above a spatial fraction 

of 7% (Fig. 6). A threshold of 7% for the spatial fraction therefore appears to be a good 

compromise to differentiate large- and small-scale extreme events. In order to assess the 

sensitivity to this threshold, we also considered 5% and 6% thresholds, and quantified the 



differences in the average characteristics of small- and large-scale extremes by assessing them in 

the context of ISDs. We found that, using other thresholds, large-scale extremes resulted in high 

frequency, thus obscuring distinct characteristics as compared to small-scale extremes (results 

not shown). The physical properties and the variability of the extreme rainfall events retrieved 

from the typology are further discussed in the context of ISDs in Section 5. 

4.2. Spatial characteristics of rainfall extremes 

Figure 7a (left panel) displays the average frequency of days exceeding the 1.0 mm threshold 

during large-scale extreme events for each station. Stations located along the preferable location 

of continental TTTs (bringing rainfall over SA: Fauchereau et al., 2009; Macron et al., 2014) 

tend to exhibit the highest frequency, which accounts for days.season (left panel in Fig. 

7a). This suggests that synoptic scale rain-bearing systems could be responsible for large-scale 

extremes. When considering the 90th percentile threshold, an average frequency of 

days.season was shown by all stations during large-scale extreme events (right panel in Fig. 

7a). It is interesting to note that each station exhibits extreme conditions from 1 to 4 times in a 

season. However, for each event, in order to qualify as a large-scale extreme event, at least 7% of 

the stations should attain their 90th percentile threshold on the same day. This suggests that 

during each event, a distinct set of stations responds with extreme conditions which depend 

exclusively on the synoptic features of the rain-bearing system and storm track. When analyzing 

the intensity of large-scale extreme events by considering either the 1.0 mm or 90th percentile 

threshold, we note that the intensity of large-scale events is spatially uniform. This finding thus 

suggests that such extreme events bring sustained extreme conditions over the entire region (Fig. 

7c). 

Different patterns of event frequency emerge when examining small-scale extremes (Fig. 7b). 

Here, a gradient prevails, especially when event frequency is computed by considering 

the 90th percentile threshold (right panel in Fig 7b). In particular, northeastern parts of SA show a 

higher frequency of small-scale extremes. These results are consistent with the findings of 

Blamey and Reason (2013) who demonstrated that the northeastern region of SA is the 

preferable location of MCCs. A gradient is also quite visible for event intensity when 

computed by considering the 1.0 mm threshold (left panel in Fig. 7d). No remarkable differences 



appear over the region when the intensity is computed by considering the 90th percentile 

threshold (right panel in Fig. 7d). This result may be explained by the fact that the 90th percentile 

threshold of each station remains the same for large- and small-scale extremes. 

In summary, a uniform distribution of frequency and intensity, computed either by considering 

the 1.0 mm or the 90th percentile threshold, indicates that large-scale extremes result from 

coherent rain-bearing systems with uniform extreme conditions throughout the spatial extension 

of the events. Meanwhile, during small-scale extreme events the extreme conditions largely 

prevail over the northeastern parts of SA. 

4.3. Spatial coherence of rainfall extremes 

In this section, we assess the spatial coherence of large- and small-scale extremes. This analysis 

is particularly important in the context of large-scale extremes as it indicates whether extreme 

conditions during events are: i) uniformly distributed over the spatial extension of the events, 

suggesting that large-scale extremes are spatially coherent; ii) sporadically located, suggesting 

there could be an aggregation of small-scale events occurring at the same time. 

Figure 8 presents the density of the stations exceeding 1.0 mm.day-1 during the large-scale 

extreme events according to their latitude and longitude. A well-organized, nearly unimodal 

distribution of station density clearly prevails during all large-scale extreme events, fitting well 

with the distribution of the stations in the observational network. This suggests that the latter are 

spatially coherent in nature. Figure 9 duplicates this analysis for the core of the large-scale 

extreme events, where rainfall intensity causes the extreme threshold excess (i.e. only the 

stations exceeding their local 90th percentile of daily rainfall amounts). These stations also 

display organized and spatially coherent patterns, with unimodal distributions clearly prevailing. 

This suggests that during these events, the extreme wet conditions also show strong spatial 

coherence, most events being characterized by one single large-scale core rather than many 

smaller ones. Taken together, the results displayed in Figures 8-9 lead us to discard the 

hypothesis of several smaller and/or scattered events occurring at the same time. They also 

increase our confidence in the method used here to track large-scale rainfall extremes in SA. 



The same analysis was then replicated for small-scale extreme events. As small-scale events are 

higher in number, for the sake of clarity we show the results for the month of January only 

(similar results were obtained for the other months and are not shown). Figure S4 shows the 

collective response of stations recording >1.0 mm.day-1 of rainfall during small-scale extreme 

events. Small-scale extreme events also exhibit an organized extension of rain-bearing systems 

over latitudes and longitudes, but with slightly fewer stations in each bin (Fig. S4). Figure S5 

displays the number of stations exceeded their 90th percentile in each 0.5° bin during the small-

scale extreme events. Interestingly, we notice that extreme conditions occur only sporadically 

and locally over the region during small-scale events (Fig. S5). Over longitudes, the over-

representation of events located between 28°E and 33°E could denote the influence of MCCs 

over eastern SA (Fig. S5b), confirming the results reported by Blamey and Reason (2013). Taken 

together, these results suggest that the spatial extension of the rain-bearing system remains quite 

similar between small-scale and large-scale events, suggesting that they have the same physical 

nature (except for a larger proportion of MCCs in the case of small-scale extremes). However, 

the core regions associated with heavy rainfall dramatically change, showing that the rain-

bearing systems mostly differ in the size of their core, bringing the largest rainfall amounts and 

thereby causing the climatic wet extreme. 

In summary, analyzing the spatial coherence of rainfall extremes provides a remarkable 

advantage in monitoring the collective behavior of all stations during extreme events. The results 

demonstrate that using a 7% threshold of spatial extension as a base criterion to differentiate 

large- and small-scale extremes is robust and leads to separate events that drastically differ in 

terms of spatial coherence. Although both types of extremes can be considered as spatially 

coherent, as rainfall events occur over a large region at the same time, extreme conditions only 

occur sporadically over the region during small-scale events, contrasting with large-scale events 

for which extreme conditions are found over a larger and coherent region. This suggests that the 

nature of corresponding rain-bearing systems is the same, but that their intensity changes, an 

issue that will be further discussed and explored in Part II. 



5. Intraseasonal characteristics of rainfall extremes 

In this section, large- and small-scale extreme rainfall events are examined in the context of 

ISDs. 

5.1. Multi-year variability of large-scale rainfall extremes 

The average characteristics and multi-year variability of ISDs associated with large-scale 

extremes are displayed in Figure 10a. OBS (ERA5) shows an average of 8±5 (20±7) days 

associated with large-scale extremes, which are included in 5±3 (10±3) spells.season-1, with an 

average persistence of 2 days (WDEXT, WSEXT and WSPEXT panels in Fig. 10a). In OBS (ERA5) 

total rainfall of about 167±36 (129±30) mm.season-1 is driven by wet spells associated with 

large-scale extreme events (TREXT panels in Fig. 10a). The multi-year variability of ISDs is well 

captured by and fields, with statistically significant correlations to OBS 

at p<0.05 (Table 4a). Nevertheless, the intensity of wet spells remains highly underestimated by 

and which shows average wet spell intensity of about 25.49 and 25.21 

mm.day-1 respectively (WSIEXT panels in Fig. 10a). In addition, in OBS, larger seasonal rainfall 

variability seems related to the smaller number of wet spells and wet days, as well as more 

intense events, but this is not identified in ERA5. Importantly, the observational network is 

found to be dense enough to study the variability of extreme ISDs associated with large-scale 

rainfall extremes, since there are no major differences in the results obtained with 

and (Fig. 10a). In all ISDs associated with large-scale extreme events, the CV remains 

higher in OBS than in ERA5 (Fig. 10a). Meanwhile, exhibits lower RMSE as 

compared to when computed with respect to OBS (Table 4). No significant trend 

appears in most ISDs, except a significant increase of 2.30 spells.season identified in the 

observed number of wet spells, based on the Mann Kendall trend test at p=0.05 (Table 4a). 

Relationships between seasonal total rainfall and ISDs associated with large-scale extremes are 

presented in Figure 11a. In all datasets, large-scale extreme ISDs exhibit strong positive 

correlations with total rainfall (significant at p<0.05), except for the intensity of wet spells (Fig. 

11a). Overall, we find a strong association between seasonal total rainfall and the number of wet 

days and wet spells associated with large-scale extremes, as identified in OBS. The performance 

of ERA5 is still weaker, especially in the relationship between wet spells and total rainfall. This 



leads to conclusions similar to those presented in Section 3 above, regarding the limitations of 

ERA5 in producing realistic wet spells and intensity. 

5.2. Multi-year variability of small-scale rainfall extremes 

Analysis of ISDs associated with small-scale extremes is presented in Figure 10b. In OBS 

(ERA5), the frequency of days associated with small-scale extremes is 80±9 (48±7 for NN and 

64±7 for AGP), with an average frequency of 19±3 (24±3) spells.season-1 (WDEXT and WSEXT 

panels in Fig. 10b). These spells are, by construction, highly localized in space, with an average 

spatial extension of over the SA domain, but they do exhibit a persistence of 

days on average (WSPEXT and MEEXT panels in Fig. 10b). OBS and ERA5 fields show average 

wet spells intensity of about 41.86 and mm.day-1 (WSIEXT panels in Fig. 10b) which 

is quite like the average wet spell intensities noted for large-scale extremes. The plausible 

explanation of this similar behavior is that both types of extremes are first tracked by using local 

90th percentile threshold which is indeed same for each station or grid-point. These extremes are 

recognized differently in terms of spatial fraction (number of stations or grid-points which 

exceed the 90th percentile threshold simultaneously during a spell; cf. Section 4.1). 

In ERA5 (especially and OBS, a significant trend appears in the intensity of wet 

spells associated with small-scale extreme events indicating a +2.0 mm.day average increase in 

the spell’s intensity (Table 4). Although the contribution of small-scale extremes to total rainfall 

is quite low as compared to that of large-scale extremes, the increasing trend in the intensity of 

such highly localized storms could nonetheless have crucial importance, especially for the 

agricultural sector, among others. Such intensification of rainfall extremes could be a 

consequence of ongoing climate change (Kendon et al., 2017, 2019; Pohl et al., 2017) and could 

be due to the so-called Clausius-Clapeyron scaling, linking air warming trends to rainfall 

intensity increase through hygrometry (Betts and Harshvardhan, 1987; Trenberth et al., 2003; 

Pall et al., 2006; Kharin et al., 2007; O’Gorman and Schneider, 2009; Muller et al., 2011; 

Westra et al., 2014). The relationship between the ISDs associated with small-scale extremes and 

the seasonal total rainfall amount is presented in Figure 11b. Except for the relationship between 

wet days associated with small-scale extremes and total rainfall, we note weak or negative 

relationships between ISDs and total rainfall (Fig. 11b). Table 4 summarizes the relevant 

statistics for small-scale extreme ISDs. 



The role of small-scale extremes in shaping total rainfall variability is moderate in austral 

summer. One plausible explanation for this is that the small-scale extremes are highly localized 

and are embedded in spatially coherent rain-bearing systems, which are mostly associated with 

non-extreme rainfall conditions over the region, as already discussed in Section 4.4. ERA5 fields 

show contrasting behaviors in small-scale extremes, as opposed to the results reported for large-

scale extreme in Section 5.1. In addition, the long-term variability of a few small-scale extreme 

ISDs (i.e. wet spells and wet spell intensity) is not fully realistic in ERA5, as demonstrated by 

weaker and non-significant correlations between both ERA5 fields and OBS (Table 4b). On the 

other hand, weaker yet significant correlations between ERA5 fields and OBS ranging from 

are noted in other small-scale extreme ISDs (Table 4b). This implies that the density 

of the observational network might not be sufficient to detect most of these highly localized 

small-scale events, and/or that higher resolution reanalysis is required to skillfully capture these 

events. 

5.3. Respective contribution of large- and small-scale extremes to seasonal rainfall 
amount 

Figure 12 displays the contribution of large-scale, small-scale and non-extreme rainfall to 

seasonal total rainfall amount. In OBS (ERA5), total rainfall associated with large-scale extremes 

shows an average contribution of about 58% against 11% (6%) for small-scale 

extremes (see, pie plots in Figure 12). This shows how dependent the region is on a small 

number of events that concentrate most of the rainfall. Although ERA5 overestimates austral 

summer rainfall amounts (Section 3.1), it underestimates the contribution of rainfall extremes to 

total amounts. In ERA5, summer rainfall is mainly driven by non-extreme events, as opposed to 

OBS, where more than half of the summer rains seem to be associated with large-scale extreme 

events. The biases in ERA5 may result from an overestimation of the spatial extension of rain-

bearing systems over the region, due to: i) perfectible model physics and/or strong internal 

variability, e.g. to simulate the small-scale atmospheric convection, and/or; ii) a limited amount 

of available radiosonde data to constrain the reanalysis, or an assimilation technique that could 

extend atmospheric instability over too large regions. 

Interestingly, during the and seasons, large-scale extremes do not contribute 

to rainfall amount, as rainfall is mostly driven by non-extreme rainfall in OBS (contributing to 



>90%; Fig. 12). These two seasons are, however, extremely dry, with seasonal rainfall amounts 

lower than normal, as noted in OBS (Fig. 12). Such results are not found in ERA5, 

although a closer examination of these two seasons reveals that: i) total rainfall deficit also exist 

in ERA5 which accounts up to which is quite close to the OBS (see, TR panel in Fig. 

3); ii) ERA5 overestimates total rainfall and spatial fraction, which is why ERA5 could capture 

the few large-scale extreme events during these seasons (see, TREXT and SFEXT panels in Fig. 

10a). In addition, these two seasons correspond to strong El Niño episodes, and it is well-

understood that El Niño episodes can favor dry conditions over SA, and particularly large 

rainfall deficits (see, for instance, Dieppois et al., 2015, 2016, 2019; Pascale et al., 2019). 

On the contrary, in and the contribution of large-scale extremes to total 

rainfall amount exceeds 79%. Results from these wettest seasons tie in well with previous studies 

(Hoell and Cheng, 2018), highlighting a synchronous influence of La Niña, active Angola Low 

and SIOD phasing, bringing together a substantial surplus of rainfall over SA over those specific 

seasons. It is therefore likely that such connections do exist between rainfall extremes and 

different modes of variability. Thus, in the companion paper, we attempt to provide a 

comprehensive assessment of how rainfall extremes respond under low (interannual and decadal) 

and high (intraseasonal and synoptic) frequency modes of climate variability. 

6. Conclusions and discussion 

This study first examines the average characteristics of wet and dry intraseasonal descriptors in 

South Africa during the austral summer season from 1979 to 2015. A focus is then placed on 

extreme daily rainfall events. Using OBS and ERA5 reanalysis, extreme rainfall events are 

grouped into two types, according to their spatial fraction, separating large-scale and small-scale 

extremes. An investigation is then carried out to examine the spatial coherence of such extremes. 

Finally, for the first time in a region-wide study, large- and small-scales of extremes are 

explicitly assessed in the definition of intraseasonal descriptors. 

The observational network of 225 stations provides an adequate spatial resolution to examine 

general rainfall characteristics and large-scale extremes in terms of intraseasonal descriptors. 

This is also true for ERA5, as the reanalysis performs remarkably well in the analysis of large-

scale extremes, when analyzed using its nearest neighbor and all-grid-point fields. Nevertheless, 



compared to OBS, ERA5 shows larger biases in reproducing small-scale extremes, thereby 

confirming that such reanalysis is primarily suited to analysis of large-scale climate processes 

and mechanisms. 

Strong correlations between wet days (including extreme wet days) and total rainfall indicates 

that anomalously wet seasons generally correspond to higher numbers of extreme events. 

Summer SA rainfall is found to be primarily associated with large-scale extremes, which account 

for more than half of the seasonal amount in OBS, and nearly half of it in ERA5. The 

contribution and variability of small-scale extremes are not consistent across datasets and remain 

quite low. Moreover, the density of the observational network and the spatial resolution of 

current global reanalysis might not be sufficient to skillfully capture these events. 

This study is a first step towards a more profound understanding of rainfall extremes in the 

region. The results demonstrate that using a threshold of 7% network density as base criterion 

and as a metric for the spatial fraction produces good quality results in characterizing rainfall 

extremes over the region. The 7% threshold used to differentiate large- vs small scale events is 

found not only relevant for the observational network, but also for ERA5-NN and ERA5-AGP. 

Based on our results, we find that large-scale extremes are well-organized and spatially coherent 

in nature. Meanwhile, small-scale extreme events, which might be related to mesoscale 

convective complexes, are highly localized in space and prevail largely over the northeastern 

parts of SA. 

An added value of this work resides in the first presentation of a detailed mapping of rainfall 

variability over South Africa, including large- and small-scale extreme events, as well as non-

extreme rainfall contribution. Such studies have immediate and considerable implications for 

theoretical and applied climate variability-based studies. These include, but are not limited to, 

societal sectors related to environment and energy, hydrology modeling and water resource 

management, and more specifically to agriculture, especially given the fact that South Africa is 

highly dependent on rain-fed agriculture. 

In the companion paper (Part II) of this study, we attempt to assess the relationships of large- and 

small-scale extremes with low-frequency (interannual- and decadal-scale) and high-frequency 

(intraseasonal- and synoptic-scale) modes of variability. Such a typology of extremes will also be 



completed by considering their duration which is particularly important to differentiate short-

and long-lived large-scale events. The latter may be considered as potentially high-impact 

rainfall events leading to high environmental or societal impacts, a question of major and ever-

increasing importance under climate change. 

Acknowledgements 

This work is part of the I-SITE Bourgogne Franche-Comté Junior Fellowship IMVULA (AAP2-

JF-06). It was also supported by the NRF SARCHI chair on “modeling ocean-atmosphere-land 

interactions” and the Nansen Tutu Centre for Marine studies. Calculations were performed using 

HPC resources from DNUM CCUB (Centre de Calcul de l’Université de Bourgogne). 



References 

Asmat U, Athar H. 2017. Run-based multi-model interannual variability assessment of 
precipitation and temperature over Pakistan using two IPCC AR4-based AOGCMs. Theoretical 
and Applied Climatology, 127(1–2). https://doi.org/10.1007/s00704-015-1616-6. 

Asmat U, Athar H, Nabeel A, Latif M. 2018. An AOGCM based assessment of interseasonal 
variability in Pakistan. Climate Dynamics. Springer Berlin Heidelberg, 50(1–2): 349–373. 
https://doi.org/10.1007/s00382-017-3614-0. 

Betts AK, Harshvardhan. 1987. Thermodynamic constraint on the cloud liquid water feedback in 
climate models. Journal of Geophysical Research: Atmospheres. John Wiley & Sons, Ltd, 
92(D7): 8483–8485. https://doi.org/10.1029/JD092ID07P08483. 

Blamey RC, Reason CJC. 2013. The role of mesoscale convective complexes in southern Africa 
summer rainfall. Journal of Climate, 26(5): 1654–1668. https://doi.org/10.1175/JCLI-D-12-
00239.1. 

Camberlin P, Moron V, Okoola R, Philippon N, Gitau W. 2009. Components of rainy seasons’ 
variability in Equatorial East Africa: Onset, cessation, rainfall frequency and intensity. 
Theoretical and Applied Climatology, 98(3–4): 237–249. https://doi.org/10.1007/s00704-009-
0113-1. 

Conway D, Van Garderen EA, Deryng D, Dorling S, Krueger T, Landman W, Lankford B, 
Lebek K, Osborn T, Ringler C, Thurlow J, Zhu T, Dalin C. 2015. Climate and southern Africa’s 
water-energy-food nexus. Nature Climate Change. Nature Publishing Group, 5(9): 837–846. 
https://doi.org/10.1038/nclimate2735. 

Cook C, Reason CJC, Hewitson BC. 2004. Wet and dry spells within particularly wet and dry 
summers in the South African summer rainfall region. Climate Research, 26(1): 17–31. 
https://doi.org/10.3354/cr026017. 

Cook KH. 2000. The South Indian convergence zone and interannual rainfall variability over 
Southern Africa. Journal of Climate, 13(21): 3789–3804. https://doi.org/10.1175/1520-
0442(2000)013<3789:TSICZA>2.0.CO;2. 

Cook KH. 2001. A southern hemisphere wave response to ENSO with implications for Southern 
Africa precipitation. Journal of the Atmospheric Sciences, 58(15): 2146–2162. 
https://doi.org/10.1175/1520-0469(2001)058<2146:ASHWRT>2.0.CO;2. 

Copernicus Climate Change Service (C3S). 2017. ERA5: Fifth generation of ECMWF 
atmospheric reanalyses of the global climate. Copernicus Climate Change Service Climate Data 
Store (CDS), accessed 2018-05-04. 

Crétat J, Richard Y, Pohl B, Rouault M, Reason C, Fauchereau N. 2012. Recurrent daily rainfall 
patterns over South Africa and associated dynamics during the core of the austral summer. 
International Journal of Climatology, 32(2): 261–273. https://doi.org/10.1002/joc.2266. 

Desbiolles F, Blamey R, Illig S, James R, Barimalala R, Renault L, Reason C. 2018. Upscaling 
impact of wind/sea surface temperature mesoscale interactions on southern Africa austral 



summer climate. International Journal of Climatology, 38(12): 4651–4660. 
https://doi.org/10.1002/joc.5726. 

Dieppois B, Pohl B, Crétat J, Eden J, Sidibe M, New M, Rouault M, Lawler D. 2019. Southern 
African summer-rainfall variability, and its teleconnections, on interannual to interdecadal 
timescales in CMIP5 models. Climate Dynamics. Springer Berlin Heidelberg, 53(5–6): 3505– 
3527. https://doi.org/10.1007/s00382-019-04720-5. 

Dieppois B, Pohl B, Rouault M, New M, Lawler D, Keenlyside N. 2016. Interannual to 
interdecadal variability of winter and summer southern African rainfall, and their 
teleconnections. Journal of Geophysical Research. https://doi.org/10.1002/2015JD024576. 

Dieppois B, Rouault M, New M. 2015. The impact of ENSO on Southern African rainfall in 
CMIP5 ocean atmosphere coupled climate models. Climate Dynamics, 45(9–10): 2425–2442. 
https://doi.org/10.1007/s00382-015-2480-x. 

Donat MG, Lowry AL, Alexander L V., O’Gorman PA, Maher N. 2016. More extreme 
precipitation in the world’s dry and wet regions. Nature Climate Change. 
https://doi.org/10.1038/nclimate2941. 

Engelbrecht CJ, Engelbrecht FA, Dyson LL. 2013. High-resolution model-projected changes in 
mid-tropospheric closed-lows and extreme rainfall events over southern Africa. International 
Journal of Climatology, 33(1): 173–187. https://doi.org/10.1002/joc.3420. 

Fauchereau N, Pohl B, Reason CJC, Rouault M, Richard Y. 2009. Recurrent daily OLR patterns 
in the Southern Africa/Southwest Indian ocean region, implications for South African rainfall 
and teleconnections. Climate Dynamics, 32(4): 575–591. https://doi.org/10.1007/s00382-008-
0426-2. 

Favre A, Hewitson B, Lennard C, Cerezo-Mota R, Tadross M. 2013. Cut-off Lows in the South 
Africa region and their contribution to precipitation. Climate Dynamics, 41(9–10): 2331–2351. 
https://doi.org/10.1007/s00382-012-1579-6. 

Favre A, Philippon N, Pohl B, Kalognomou EA, Lennard C, Hewitson B, Nikulin G, Dosio A, 
Panitz HJ, Cerezo-Mota R. 2016. Spatial distribution of precipitation annual cycles over South 
Africa in 10 CORDEX regional climate model present-day simulations. Climate Dynamics. 
Springer Berlin Heidelberg, 46(5–6): 1799–1818. https://doi.org/10.1007/s00382-015-2677-z. 

Fitchett JM, Grab SW. 2014. A 66-year tropical cyclone record for south-east Africa: Temporal 
trends in a global context. International Journal of Climatology, 34(13): 3604–3615. 
https://doi.org/10.1002/joc.3932. 

Frei C, Christensen JH, Déqué M, Jacob D, Jones RG, Vidale PL. 2003. Daily precipitation 
statistics in regional climate models: Evaluation and intercomparison for the European Alps. 
Journal of Geophysical Research: Atmospheres, 108(3): 1–19. 
https://doi.org/10.1029/2002jd002287. 

Gitau W, Camberlin P, Ogallo L, Bosire E. 2018. Trends of intraseasonal descriptors of wet and 
dry spells over equatorial eastern africa. International Journal of Climatology, 38(3): 1189– 



1200. https://doi.org/10.1002/joc.5234. 

Gitau W, Camberlin P, Ogallo L, Okoola R. 2015. Oceanic and atmospheric linkages with short 
rainfall season intraseasonal statistics over Equatorial Eastern Africa and their predictive 
potential. International Journal of Climatology, 35(9): 2382–2399. 
https://doi.org/10.1002/joc.4131. 

Gitau W, Ogallo L, Camberlin P, Okoola R. 2013. Spatial coherence and potential predictability 
assessment of intraseasonal statistics of wet and dry spells over Equatorial Eastern Africa. 
International Journal of Climatology, 33(12): 2690–2705. https://doi.org/10.1002/joc.3620. 

Gleixner S, Demissie T, Diro GT. 2020. Did ERA5 improve temperature and precipitation 
reanalysis over East Africa? Atmosphere, 11(9): 1–19. https://doi.org/10.3390/atmos11090996. 

Hart NCG, Reason CJC, Fauchereau N. 2010. Tropical-extratropical interactions over southern 
Africa: Three cases of heavy summer season rainfall. Monthly Weather Review, 138(7): 2608– 
2623. https://doi.org/10.1175/2010MWR3070.1. 

Hart NCG, Reason CJC, Fauchereau N. 2013. Cloud bands over southern Africa: Seasonality, 
contribution to rainfall variability and modulation by the MJO. Climate Dynamics, 41(5–6): 
1199–1212. https://doi.org/10.1007/s00382-012-1589-4. 

Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, Muñoz-Sabater J, Nicolas J, Peubey C, 
Radu R, Schepers D, Simmons A, Soci C, Abdalla S, Abellan X, Balsamo G, Bechtold P, Biavati 
G, Bidlot J, Bonavita M, De Chiara G, Dahlgren P, Dee D, Diamantakis M, Dragani R, 
Flemming J, Forbes R, Fuentes M, Geer A, Haimberger L, Healy S, Hogan RJ, Hólm E, 
Janisková M, Keeley S, Laloyaux P, Lopez P, Lupu C, Radnoti G, de Rosnay P, Rozum I, 
Vamborg F, Villaume S, Thépaut JN. 2020. The ERA5 global reanalysis. Quarterly Journal of 
the Royal Meteorological Society, 146(730): 1999–2049. https://doi.org/10.1002/qj.3803. 

Hoell A, Cheng L. 2018. Austral summer Southern Africa precipitation extremes forced by the 
El Niño-Southern oscillation and the subtropical Indian Ocean dipole. Climate Dynamics. 
Springer Berlin Heidelberg, 50(9–10): 3219–3236. https://doi.org/10.1007/s00382-017-3801-z. 

Hoell A, Funk C, Magadzire T, Zinke J, Husak G. 2015. El Niño–Southern Oscillation diversity 
and Southern Africa teleconnections during Austral Summer. Climate Dynamics. Springer Berlin 
Heidelberg, 45(5–6): 1583–1599. https://doi.org/10.1007/s00382-014-2414-z. 

James R, Hart NCG, Munday C, Reason CJC, Washington R. 2020. Coupled climate model 
simulation of tropical–extratropical cloud bands over Southern Africa. Journal of Climate, 
33(19): 8579–8602. https://doi.org/10.1175/JCLI-D-19-0731.1. 

Kendall MG. 1957. Rank Correlation Methods. 4th Edition. Charles Griffin, London. 

Kendon EJ, Ban N, Roberts NM, Fowler HJ, Roberts MJ, Chan SC, Evans JP, Fosser G, 
Wilkinson JM. 2017. Do convection-permitting regional climate models improve projections of 
future precipitation change? Bulletin of the American Meteorological Society, 98(1): 79–93. 
https://doi.org/10.1175/BAMS-D-15-0004.1. 

Kendon EJ, Stratton RA, Tucker S, Marsham JH, Berthou S, Rowell DP, Senior CA. 2019. 



Enhanced future changes in wet and dry extremes over Africa at convection-permitting scale. 
Nature Communications. Springer US, 10(1). https://doi.org/10.1038/s41467-019-09776-9. 

Kharin V V., Zwiers FW, Zhang X, Hegerl GC. 2007. Changes in Temperature and Precipitation 
Extremes in the IPCC Ensemble of Global Coupled Model Simulations. Journal of Climate. 
American Meteorological Society, 20(8): 1419–1444. https://doi.org/10.1175/JCLI4066.1. 

Koseki S, Pohl B, Bhatt BC, Keenlyside N, Njouodo ASN. 2018. Insights into the summer 
diurnal cycle over Eastern South Africa. Monthly Weather Review, 146(12): 4339–4356. 
https://doi.org/10.1175/MWR-D-18-0184.1. 

Lu E, Zhao W, Zou X, Ye D, Zhao C, Zhang Q. 2017. Temporal-spatial monitoring of an 
extreme precipitation event: Determining simultaneously the time period it lasts and the 
geographic region it affects. Journal of Climate, 30(16): 6123–6132. 
https://doi.org/10.1175/JCLI-D-17-0105.1. 

Macron C, Pohl B, Richard Y, Bessafi M. 2014. How do tropical temperate troughs form and 
develop over Southern Africa? Journal of Climate, 27(4): 1633–1647. 
https://doi.org/10.1175/JCLI-D-13-00175.1. 

Malherbe J, Engelbrecht FA, Landman WA, Engelbrecht CJ. 2012. Tropical systems from the 
southwest Indian Ocean making landfall over the Limpopo River Bassouthern Africa: A 
historical perspective. International Journal of Climatology, 32(7): 1018–1032. 
https://doi.org/10.1002/joc.2320. 

Malherbe J, Landman WA, Engelbrecht FA. 2014. The bi-decadal rainfall cycle, Southern 
Annular Mode and tropical cyclones over the Limpopo River Basin, southern Africa. Climate 
Dynamics, 42(11–12): 3121–3138. https://doi.org/10.1007/s00382-013-2027-y. 

Manhique AJ, Reason CJC, Rydberg L, Fauchereau N. 2011. ENSO and Indian Ocean sea 
surface temperatures and their relationships with tropical temperate troughs over Mozambique 
and the Southwest Indian Ocean. International Journal of Climatology, 31(1): 1–13. 
https://doi.org/10.1002/joc.2050. 

Mann H. 1945. Mann Nonparametric test against trend. Econometrica. 

Maraun D. 2016. Bias Correcting Climate Change Simulations - a Critical Review. Current 
Climate Change Reports. Current Climate Change Reports, 2(4): 211–220. 
https://doi.org/10.1007/s40641-016-0050-x. 

Mason SJ, Goddard L, Graham NE, Yulaeva E, Sun L, Arkin PA. 1999. The IRI seasonal 
climate prediction system. WRPMD 1999: Preparing for the 21st Century. 
https://doi.org/10.1061/40430(1999)4. 

Mason SJ, Joubert AM. 1997. Simulated changes in extreme rainfall over southern Africa. 
International Journal of Climatology, 17(3): 291–301. https://doi.org/10.1002/(sici)1097-
0088(19970315)17:3<291::aid-joc120>3.3.co;2-t. 

Masupha TE, Moeletsi ME, Tsubo M. 2016. Dry spells assessment with reference to the maize 
crop in the Luvuvhu River catchment of South Africa. Physics and Chemistry of the Earth. 



https://doi.org/10.1016/j.pce.2015.10.014. 

Misra V. 2003. The influence of Pacific SST variability on the precipitation over southern 
Africa. Journal of Climate, 16(14): 2408–2418. https://doi.org/10.1175/2785.1. 

Moron V, Camberlin P, Robertson AW. 2013. Extracting subseasonal scenarios: An alternative 
method to analyze seasonal predictability of regional-scale tropical rainfall. Journal of Climate, 
26(8): 2580–2600. https://doi.org/10.1175/JCLI-D-12-00357.1. 

Muller CJ, O’Gorman PA, Back LE. 2011. Intensification of Precipitation Extremes with 
Warming in a Cloud-Resolving Model. Journal of Climate. American Meteorological Society, 
24(11): 2784–2800. https://doi.org/10.1175/2011JCLI3876.1. 

Nicholson S. 2003. Comments on “The South Indian convergence zone and interannual rainfall 
variability over southern Africa” and the question of ENSO’s influence on southern Africa. 
Journal of Climate, 16(3): 555–562. https://doi.org/10.1175/1520-
0442(2003)016<0555:COTSIC>2.0.CO;2. 

Nicholson SE, Kim J. 1997. The relationship of the el MNO-southern oscillation to African 
rainfall. International Journal of Climatology, 17(2): 117–135. 
https://doi.org/10.1002/(SICI)1097-0088(199702)17:2<117::AID-JOC84>3.0.CO;2-O. 

O’Gorman PA, Schneider T. 2009. Scaling of Precipitation Extremes over a Wide Range of 
Climates Simulated with an Idealized GCM. Journal of Climate. American Meteorological 
Society, 22(21): 5676–5685. https://doi.org/10.1175/2009JCLI2701.1. 

Oueslati B, Pohl B, Moron V, Rome S, Janicot S. 2017. Characterization of heat waves in the 
Sahel and associated physical mechanisms. Journal of Climate, 30(9): 3095–3115. 
https://doi.org/10.1175/JCLI-D-16-0432.1. 

Pall P, Allen MR, Stone DA. 2006. Testing the Clausius–Clapeyron constraint on changes in 
extreme precipitation under CO2 warming. Climate Dynamics 2006 28:4. Springer, 28(4): 351– 
363. https://doi.org/10.1007/S00382-006-0180-2. 

Pascale S, Pohl B, Kapnick SB, Zhang H. 2019. On the Angola low interannual variability and 
its role in modulating ENSO effects in southern Africa. Journal of Climate, 32(15): 4783–4803. 
https://doi.org/10.1175/JCLI-D-18-0745.1. 

Philippon N, Camberlin P, Moron V, Boyard-Micheau J. 2015. Anomalously wet and dry rainy 
seasons in Equatorial East Africa and associated differences in intra-seasonal characteristics. 
Climate Dynamics. Springer Berlin Heidelberg, 45(7–8): 2101–2121. 
https://doi.org/10.1007/s00382-014-2460-6. 

Pinto I, Lennard C, Tadross M, Hewitson B, Dosio A, Nikulin G, Panitz HJ, Shongwe ME. 2016. 
Evaluation and projections of extreme precipitation over southern Africa from two CORDEX 
models. Climatic Change, 135(3–4): 655–668. https://doi.org/10.1007/s10584-015-1573-1. 

Pohl B, Dieppois B, Crétat J, Lawler D, Rouault M. 2018. From synoptic to interdecadal 
variability in southern African rainfall: Toward a unified view across time scales. Journal of 
Climate, 31(15): 5845–5872. https://doi.org/10.1175/JCLI-D-17-0405.1. 



Pohl B, MacRon C, Monerie PA. 2017. Fewer rainy days and more extreme rainfall by the end 
of the century in Southern Africa. Scientific Reports. Nature Publishing Group, 7(April): 6–12. 
https://doi.org/10.1038/srep46466. 

Pohl B, Richard Y, Fauchereau N. 2007. Influence of the Madden-Julian oscillation on southern 
African summer rainfall. Journal of Climate, 20(16): 4227–4242. 
https://doi.org/10.1175/JCLI4231.1. 

Pohl B, Rouault M, Roy S Sen. 2014. Simulation of the annual and diurnal cycles of rainfall over 
South Africa by a regional climate model. Climate Dynamics, 43(7–8): 2207–2226. 
https://doi.org/10.1007/s00382-013-2046-8. 

Rapolaki RS, Blamey RC, Hermes JC, Reason CJC. 2019. A classification of synoptic weather 
patterns linked to extreme rainfall over the Limpopo River Basin in southern Africa. Climate 
Dynamics. Springer Berlin Heidelberg, 53(3–4): 2265–2279. https://doi.org/10.1007/s00382-
019-04829-7. 

Rapolaki RS, Blamey RC, Hermes JC, Reason CJC. 2020. Moisture sources associated with 
heavy rainfall over the Limpopo River Basin, southern Africa. Climate Dynamics. Springer 
Berlin Heidelberg, 55(5–6): 1473–1487. https://doi.org/10.1007/s00382-020-05336-w. 

Ratan R, Venugopal V. 2013. Wet and dry spell characteristics of global tropical rainfall. Water 
Resources Research, 49(6): 3830–3841. https://doi.org/10.1002/wrcr.20275. 

Ratnam J V., Behera SK, Masumoto Y, Yamagata T. 2014. Remote effects of El Niño and 
Modoki events on the austral summer precipitation of Southern Africa. Journal of Climate, 
27(10): 3802–3815. https://doi.org/10.1175/JCLI-D-13-00431.1. 

Reason CJC. 2007. Tropical cyclone Dera, the unusual 2000/01 tropical cyclone season in the 
South West Indian Ocean and associated rainfall anomalies over Southern Africa. Meteorology 
and Atmospheric Physics, 97(1–4): 181–188. https://doi.org/10.1007/s00703-006-0251-2. 

Reason CJC, Hachigonta S, Phaladi RF. 2005. Interannual variability in rainy season 
characteristics over the Limpopo region of southern Africa. International Journal of 
Climatology, 25(14): 1835–1853. https://doi.org/10.1002/joc.1228. 

Reason CJC, Keibel A. 2004. Tropical Cyclone Eline and its unusual penetration and impacts 
over the Southern Africa mainland. Weather and Forecasting, 19(5): 789–805. 
https://doi.org/10.1175/1520-0434(2004)019<0789:TCEAIU>2.0.CO;2. 

Reason CJC, Landman W, Tennant W. 2006. Seasonal to decadal prediction of southern African 
climate and its links with variability of the Atlantic ocean. Bulletin of the American 
Meteorological Society, 87(7): 941–955. https://doi.org/10.1175/BAMS-87-7-941. 

Rouault M, Florenchie P, Fauchereau N, Reason CJC. 2003. South East tropical Atlantic warm 
events and southern African rainfall. Geophysical Research Letters, 30(5): 1–4. 
https://doi.org/10.1029/2002GL014840. 

Rouault M, White SA, Reason CJC, Lutjeharms JRE, Jobard I. 2002. Ocean-atmosphere 
interaction in the Agulhas Current region and a South African extreme weather event. Weather 



and Forecasting. https://doi.org/10.1175/1520-0434(2002)017<0655:OAIITA>2.0.CO;2. 

Shongwe ME, Van Oldenborgh GJ, Van Den Hurk BJJM, De Boer B, Coelho CAS, Van Aalst 
MK. 2009. Projected changes in mean and extreme precipitation in Africa under global warming. 
Part I: Southern Africa. Journal of Climate, 22(13): 3819–3837. 
https://doi.org/10.1175/2009JCLI2317.1. 

Tennant WJ, Hewitson BC. 2002. Intra-seasonal rainfall characteristics and their importance to 
the seasonal prediction problem. International Journal of Climatology, 22(9): 1033–1048. 
https://doi.org/10.1002/joc.778. 

Thoithi W, Blamey RC, Reason CJC. 2020. Dry spell frequencies , wet day counts and their 
trends across southern Africa during the summer rainy season. , 1–22. 
https://doi.org/10.1029/2020GL091041. 

Todd M, Washington R. 1999. Circulation anomalies associated with tropical-temperate troughs 
in southern Africa and the south west Indian Ocean. Climate Dynamics, 15(12): 937–951. 
https://doi.org/10.1007/s003820050323. 

Todd MC, Washington R, Palmer PI. 2004. Water vapour transport associated with tropical-
temperate trough systems over southern Africa and the southwest Indian Ocean. International 
Journal of Climatology, 24(5): 555–568. https://doi.org/10.1002/joc.1023. 

Trenberth KE, Dai A, Rasmussen RM, Parsons DB. 2003. The Changing Character of 
Precipitation. Bulletin of the American Meteorological Society. American Meteorological 
Society, 84(9): 1205–1218. https://doi.org/10.1175/BAMS-84-9-1205. 

Usman MT, Reason CJC. 2004. Dry spell frequencies and their variability over southern Africa. 
Climate Research, 26(3): 199–211. https://doi.org/10.3354/cr026199. 

Vigaud N, Pohl B, Crétat J. 2012. Tropical-temperate interactions over southern Africa simulated 
by a regional climate model. Climate Dynamics, 39(12): 2895–2916. 
https://doi.org/10.1007/s00382-012-1314-3. 

Wang G, Zhang X, Zhang S. 2019. Performance of three reanalysis precipitation datasets over 
the qinling-daba mountains, eastern fringe of tibetan plateau, China. Advances in Meteorology, 
2019. https://doi.org/10.1155/2019/7698171. 

Washington R, Todd M. 1999. Tropical-temperate links in southern African and Southwest 
Indian Ocean satellite-derived daily rainfall. International Journal of Climatology. 
https://doi.org/10.1002/(SICI)1097-0088(19991130)19:14<1601::AID-JOC407>3.0.CO;2-0. 

Westra S, Fowler HJ, Evans JP, Alexander L V., Berg P, Johnson F, Kendon EJ, Lenderink G, 
Roberts NM. 2014. Future changes to the intensity and frequency of short-duration extreme 
rainfall. Reviews of Geophysics. Blackwell Publishing Ltd, 52(3): 522–555. 
https://doi.org/10.1002/2014RG000464. 



Figure 1. Spatial distribution of the percentage of rainfall during ONDJFM for OBS (a) for ERA5 (b). The un-
qualified stations are indicated by black “×” symbols based on the seasonality test and other quality control 

measures. 
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Figure 2. The 90th percentile threshold of rainfall computed after omitting the values = 0 for OBS (a) and 
for ERA5 (b). The 90th percentile threshold of rainfall after omitting the values <1 for OBS (c) and for ERA5 

(d). 
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Figure 3. The average spatial distribution of ISDs, set of three column panels on the left (right) refers to the 
wet ISDs (dry ISDs) for OBS, and  The statistics are averaged over the period of 

 for the austral summer season NDJF. 
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Figure 4. The average time series (line plots) and overall statistical distribution (violin plots) for wet ISDs (a) 
and for dry ISDs (b). The black line in each time series panel refers to the OBS, the red line is used to 

indicate and the blue line for 



Figure 5. The spatial distribution of point-wise correlation of ISDs with total rainfall. The first set of three 
column panels on the left refers to the wet ISDs (a) and the set of three columns of panels on the right 

refers to the dry ISDs (b). The statistics are averaged over the period of  for NDJF using OBS, 
 and  The temporal correlations are presented in the lower right corner of each panel. 
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Figure 6. The frequency and intensity of extreme rainfall events as a function of average spatial fraction and 
duration. The set of three panels in the left column refers to frequency (a) and the set of three panels in the 

right column refers to intensity (b), distributed row-wise from top to bottom for OBS, and 
 respectively. The vertical red line at 7% spatial fraction separates each panel in two quadrants 

which distinguishes the typology of rainfall extremes. The right (left) quadrant is associated with large-scale 
(small-scale) extreme rainfall events. 
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Figure 7. Average frequency computed over each station during large-scale extremes (a) and small-scale 
extremes (b) by considering the number of days exceeding 1.0 mm during events (left panel) and the 90th 

percentile during events (right panel). Same presentation for intensity in (c) and (d). 
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Figure 8. Spatial extension of large-scale extremes over latitudes (a) and over longitudes (b) computed by 
considering only those stations which exceeded 1.0 mm during large-scale extreme rainfall events with bin 

size = 0.5°. The histogram in each panel shows the frequency of the stations in each bin, whereas the 
black-dashed line in each panel represents the density of the stations provided as reference over latitudes 
and longitudes. Lines in distinct colors represent the density of the stations associated with each day of 

rainfall event in the respective seasons. 
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Figure 9. Spatial extension of large-scale extremes over latitudes (a) and over longitudes (b) computed by 
considering only those stations which exceeded the 90th percentile during large-scale extreme rainfall 
events with bin size = 0.5°. The black-dashed line in each panel represents the density of the stations 
provided as reference over latitudes and longitudes. Lines in distinct colors represent the density of the 
stations associated with each day of rainfall event in the respective seasons. For better visualization of 

density patterns, the y-axis has been reduced, and the histogram removed. 
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Figure 10. The average time series and overall statistical distribution (violin plots) of the ISDs associated 
with large-scale extremes (a) and for ISDs associated with small-scale extremes (b). The black line in each 

panel refers to the OBS, the red line indicates  and the blue line represents 



Figure 11. The scatter plot represents the statistical relationship between seasonal total rainfall and the 
extreme ISDs distributed row-wise from top to bottom for each descriptor. The set of five panels in the left 
column refers to large-scale extremes (a) and the set of five panels in the right column refers to small-scale 
extremes (b). In each panel OBS is indicated by the black symbol “ ”, by the red symbols “ ” and 

 is presented in blue “ ” symbols. 
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Figure 12. The stacked bar plot represents the overall contribution to the total rainfall in a season associated 
with large-scale extremes in red, small-scale extremes in blue and non-extreme contribution in green for 

OBS in the left panel, for  in the middle panel and in the right panel. Three pie plots at 
the bottom of each panel represent the overall distribution of total rainfall based on large-, small-scale and 

non-extreme rainfall variability averaged over the period of 
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Figure. S1: Sample size used to compute 90th percentile (a), 90th percentile threshold computed by 
considering normal distribution (b), theoretical extreme value computed by Gumbel distribution (c) and the 

difference of both methods (d). 
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Figure. S2: The average seasonal bias of ISDs, set of first three rows containing seven panels from top 
refers to the wet ISDs (a) and set of three panels in bottom refers to the dry ISDs (b). OBS minus 

is displayed by a red line and OBS minus  is presented with a blue line. 
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Figure. S3: Altitude of stations in meters (a). The two columns from left are associated with spatial bias in 
the wet ISDs (b). The third column from left is associated with spatial bias in the dry ISDs (c). The stations 

located at >1400 meters are indicated by triangle symbols in each panel. 
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Figure S4: Same as Figure 8 but for small-scale extremes. 
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Figure S5: Same as Figure 9 but for small-scale extremes. 

165x203mm (300 x 300 DPI) 



Table. 1: The description of the wet ISDs (a) and dry ISDs (b). Columns represent the ISD 
name, acronym, description, unit and scale respectively. 

a) Wet ISDs 

ISD Name Acronym Description Unit Scale 

Wet Days WD Average number of wet days in a season Days Seasonal 

Wet Days >90th Average number of days exceeding the 90th percentile 
WDP90 Days Seasonal

Percentile threshold 

Wet Spells WS Average number of wet spells in a season Spells Seasonal 

Wet Spell Persistence WSP Average persistence of wet spells in a season Days Seasonal 

Wet Spell Intensity WSI Average intensity of wet spells in a season mm.day Seasonal + Daily 

Average spatial fraction associated with total rainfall amount 
Spatial Fraction SF Percent (%) Seasonal + Daily 

in a season 

Total Rainfall TR Total rainfall amount in a season mm.season Seasonal + Daily 

b) Dry ISDs 

Dry Spells DS Average number of dry spells in a season Spells Seasonal 

Dry Days DD Average number of dry days in a season Days Seasonal 

Dry Spell Persistence DSP Average persistence of wet spells Days Seasonal 



Table. 2: The description of extreme ISDs. Columns represent the ISD name, acronym, 
description, unit and scale respectively. 

Extreme ISDs 

ISD Name Acronym Description Unit Scale 

Average number of wet days associated with large- and small-
Wet Days WDEXT Days Seasonal

scale extreme events in a season 

Average number of wet spells associated with large- and small-
Wet Spells WSEXT Spells Seasonal

scale extreme events in a season 

Average persistence of wet spells associated with large- and 
Wet Spell Persistence WSPEXT Days Seasonal

small-scale extreme events in a season 

Average intensity of wet spells associated with large- and small-
Wet Spell Intensity WSIEXT mm.day Seasonal + Daily 

scale extreme events in a season 

Average spatial fraction associated with total rainfall amount
Spatial Fraction SFEXT Percent (%) Seasonal + Daily 

driven by large- and small-scale extreme events in a season 

Total rainfall amount associated with large- and small-scale 
Total Rainfall TREXT mm.season Seasonal + Daily 

extreme events in a season 



Table. 3: Average Statistics of ISDs in the austral summer season computed over the period 
using OBS, and Column 1 refers to the acronym of ISD. 

Columns refer to the Mean, SD, CV, RMSE w.r.t OBS, R2, correlation of ISDs w.r.t OBS, 
correlation of ISDs w.r.t total rainfall and trend respectively. 

ISD Mean ± SD CV % RMSE w.r.t OBS R2 CC w.r.t OBS CC w.r.t TR Trend 

OBS 

WD 20.66 3.68 17.83 0.00 0.94* 0.03 
WDP90 2.39 0.86 35.76 0.09 0.98* 1.74 
WS 12.90 1.70 13.14 0.01 0.86* 0.29 
WSP 1.53 0.11 7.05 0.00 0.87* 0.00 
WSI 7.09 0.90 12.76 0.28 0.86* 3.23* 
SF 17.30 3.07 17.75 0.00 0.94* 0.07 
TR 270.12 72.17 26.72 0.04 0.99 
DD 90.40 3.79 4.19 0.00 0.14 0.40 
DS 12.71 1.73 13.61 0.01 0.87* 0.53 
DSP 10.96 3.01 27.46 0.07 1.40 

WD 43.53 6.65 15.28 23.13 0.00 0.93* 0.95* 0.23 
WDP90 4.44 1.48 33.41 2.17 0.04 0.95* 0.97* 1.19 
WS 17.00 1.45 8.55 4.22 0.01 0.80* 0.56* 0.35 
WSP 2.49 0.33 13.40 0.99 0.00 0.90* 0.91* 0.26 
WSI 3.93 0.51 13.04 3.20 0.09 0.88* 0.88* 1.65 
SF 36.51 5.55 15.20 19.43 0.00 0.93* 0.95* 0.16 
TR 311.01 73.15 23.52 45.49 0.01 0.96* 0.64 
DD 73.00 6.03 8.25 18.18 0.00 0.49* 0.07 
DS 16.66 1.50 9.00 4.08 0.01 0.81* 0.56* 0.38 
DSP 5.51 1.37 24.87 5.77 0.03 0.89* 0.86 

WD 44.55 5.98 13.42 24.07 0.00 0.92* 0.95* 0.10 
WDP90 4.52 1.42 31.29 2.23 0.06 0.94* 0.97* 1.19 
WS 17.19 1.14 6.65 4.43 0.01 0.77* 0.49* 0.45 
WSP 2.51 0.32 12.94 1.00 0.00 0.90* 0.91* 0.00 
WSI 3.89 0.45 11.47 3.25 0.11 0.88* 0.88* 2.06* 
SF 37.36 4.98 13.33 20.21 0.00 0.92* 0.95* 0.01 
TR 316.05 66.96 21.19 49.65 0.02 0.97* 0.56 
DD 71.49 5.21 7.29 19.43 0.00 0.55* 0.01 
DS 16.86 1.19 7.06 4.29 0.01 0.79* 0.50* 0.20 
DSP 5.69 1.30 22.85 5.60 0.04 0.92* 1.05 

* Significant at p=0.05 according to Pearson’s correlation and Mann Kendall non-parametric trend test. 



Table. 4: Average statistics of extreme ISDs associated with large-scale extreme events (a) and 
small-scale extreme (b) in the austral summer season computed over the period using 
OBS, and Column 1 refers to the acronym of ISDs. Columns refer 
to the Mean, SD, CV, RMSE w.r.t OBS, R2, correlation of ISDs w.r.t OBS, correlation of ISDs 
w.r.t total rainfall and trend respectively. 

a) Large-scale Extremes 

ISD Mean ± SD CV% RMSE w.r.t OBS R2 CC w.r.t OBS CC w.r.t TR Trend 

OBS 

WDEXT 8.03 5.35 66.66 0.06 0.93* 1.53 

WSEXT 4.88 2.55 52.28 0.08 0.82* 2.30* 

WSPEXT 1.70 0.57 33.21 0.01 0.49* 0.34 

WSIEXT 43.86 5.08 11.58 0.00 0.49* 0.74 

SFEXT 10.61 1.71 16.13 0.00 0.43* 1.02 

TREXT 166.68 36.55 21.93 0.05 1.69 

WDEXT 20.14 7.12 35.37 12.67 0.04 0.86* 0.92* 1.37 

WSEXT 10.47 3.20 30.57 6.50 0.06 0.56* 0.61* 1.28 

WSPEXT 1.95 0.55 28.31 0.74 0.00 0.43* 0.53* 0.00 

WSIEXT 25.49 1.60 6.27 19.19 0.01 0.38* 0.14 0.23 

SFEXT 16.14 2.45 15.19 6.70 0.02 0.51* 0.50* 0.26 

TREXT 136.95 29.96 21.88 42.28 0.05 0.72* 0.94 

WDEXT 20.61 6.93 33.60 13.18 0.05 0.83* 0.90* 1.23 

WSEXT 10.39 3.22 30.97 6.39 0.02 0.59* 0.65* 0.66 

WSPEXT 2.02 0.49 24.37 0.76 0.02 0.43* 0.43* 1.50 

WSIEXT 25.21 1.18 4.69 19.49 0.02 0.36* 0.21 1.10 

SFEXT 15.33 2.30 15.02 5.91 0.03 0.53* 0.53* 0.86 

TREXT 129.50 28.01 21.63 46.65 0.06 0.72* 1.10 

b) Small-scale Extremes 

OBS 

WDEXT 79.33 8.84 66.66 0.11 0.48* 1.75 

WSEXT 19.83 3.21 52.28 0.01 0.20 0.76 

WSPEXT 4.16 1.09 33.21 0.01 0.31 0.16 

WSIEXT 41.86 2.28 11.58 0.08 0.38* 1.81 

SFEXT 1.89 0.29 16.13 0.11 0.82* 1.73 

TREXT 29.57 7.44 21.93 0.16 2.17* 

WDEXT 48.25 7.18 35.37 31.89 0.00 0.62* 0.54* 0.12 

WSEXT 24.42 2.90 30.57 6.29 0.00 0.01 0.29 0.49 

WSPEXT 1.99 0.33 28.31 2.37 0.00 0.55* 0.30 0.20 

WSIEXT 22.14 0.91 6.27 19.87 0.16 0.02 2.00* 

SFEXT 2.37 0.34 15.19 0.58 0.02 0.43* 0.24 0.86 

TREXT 20.02 4.01 21.88 10.87 0.05 0.74* 1.40 

WDEXT 64.28 6.93 33.60 16.65 0.01 0.62* 0.40* 0.59 

WSEXT 24.14 2.95 30.97 5.43 0.00 0.42* 0.14 0.67 

WSPEXT 2.72 0.54 24.37 1.70 0.01 0.59* 0.32 0.99 

WSIEXT 21.49 0.70 4.69 20.48 0.13 0.27 0.04 2.22* 

SFEXT 2.04 0.28 15.02 0.32 0.07 0.51* 0.60* 1.43 

TREXT 17.22 3.55 21.63 13.36 0.10 0.79* 1.89 

* Significant at p=0.05 according to Pearson’s correlation and Mann Kendall non-parametric trend test. 


