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Abstract: Older adults and patients with chronic disease presenting with muscle weakness or
musculoskeletal disorders may benefit from low-load resistance exercise (LLRE) with blood flow
restriction (BFR). LLRE-BFR has been shown to increase muscle size, strength, and endurance
comparable to traditional resistance exercise but without the use of heavy loads. However, potential
negative effects from LLRE-BFR present as a barrier to participation and limit its wider use. This
study examined the perceptual, affective, and cardiovascular responses to a bout of LLRE-BFR and
compared the responses to LLRE and moderate-load resistance exercise (MLRE). Twenty older adults
(64.3 ± 4.2 years) performed LLRE-BFR, LLRE and MLRE consisting of 4 sets of leg press and knee
extension, in a randomised crossover design. LLRE-BFR was more demanding than LLRE and MLRE
through increased pain (p ≤ 0.024, d = 0.8–1.4) and reduced affect (p ≤ 0.048, d = −0.5–−0.9). Despite
this, LLRE-BFR was enjoyed and promoted a positive affective response (p ≤ 0.035, d = 0.5–0.9)
following exercise comparable to MLRE. This study supports the use of LLRE-BFR for older adults
and encourages future research to examine the safety, acceptability, and efficacy of LLRE-BFR in
patients with chronic disease.

Keywords: strength training; occlusion training; pain; acceptability; tolerability; adherence

1. Introduction

Muscle weakness, presented as low muscle mass and strength, is strongly related
to functional limitations, physical disability and mortality in older adults and patients
with chronic disease [1,2]. Strong evidence has demonstrated that resistance exercise is a
powerful intervention to develop muscle mass and strength which leads to an improvement
in functional capacity, mobility, independence, chronic disease management, psychological
well-being, and quality of life [3–5]. Moderate- to high-loads (≥60% of one repetition
maximum; 1RM) are typically recommended for effective resistance exercise programming
to induce hypertrophy and strength adaptations [6]. However, for some older adults and
patients with chronic disease, such loads may not be safely performed due to underlying
muscle weakness or musculoskeletal and/or cardiovascular disorders [3]. Therefore,
alternative resistance exercise modes that use low loads and deliver comparable muscular
adaptations to traditional resistance exercise are warranted and important.

Accordingly, many studies have advocated low-load resistance exercise (LLRE) with
blood flow restriction (BFR) as an alternative to traditional resistance exercise [7,8]. The
LLRE-BFR technique uses pneumatic cuffs to apply an external pressure around the proxi-
mal region of the exercising limb to partially restrict arterial blood flow and occlude venous
return whilst lifting low loads (20–40% 1RM; 15–30 repetitions per set) [9]. During LLRE-
BFR, the external pressure impairs intramuscular oxygen delivery and venous clearance
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of metabolites which elevates metabolic stress during sustained mechanical tension [10].
This increases the training response of systemic hormone production [11], myofibrillar and
mitochondrial protein synthesis [12,13] and angiogenesis [14]. As a result, muscle size,
strength and muscular endurance are substantially enhanced compared to LLRE without
BFR [15], with incurred muscular improvements similar to that induced by HLRE [7,16].

The advantage of LLRE-BFR to elicit beneficial muscular adaptations through using
low loads thereby imposing minimal mechanical stress on the musculoskeletal system could
prove valuable to many older adults and patients with chronic disease [17–19]. However,
LLRE-BFR has been shown to exacerbate the perceptual, affective, and cardiovascular
response. Previous studies have reported increased ratings of perceived exertion (RPE) and
pain, and reduced affect, task motivation and enjoyment to LLRE-BFR compared to LLRE
without BFR [20,21], indicating a negative perceptual and affective response that could
discourage exercise participation [22,23]. Additionally, LLRE-BFR increases heart rate (HR),
systolic blood pressure (SBP), diastolic blood pressure (DBP), mean arterial pressure (MAP)
and rate-pressure product (RPP) compared to LLRE without BFR [24,25]. This indicates an
increased cardiovascular demand to LLRE-BFR which has prompted caution if prescribing
LLRE-BFR to patients with chronic diseases [26].

These previous findings of potentially negative perceptual, affective, and cardiovas-
cular responses to LLRE-BRE present as a barrier to exercise participation and limit its
wider use by older adults and patients with chronic disease. However, to the best of
our knowledge, no study has reported affective responses, and only two studies have
reported perceptual responses (including pain) to LLRE-BFR specific to older adults [11,27].
Additionally, the extent the perceptual, affective, and cardiovascular responses to LLRE-
BFR differ from traditional resistance exercise is unclear in the literature with studies
reporting either lower, similar, or higher responses to LLRE-BFR compared with HLRE
with inconsistencies in reports likely due to varying exercise protocols and BFR methods
used [11,24,25,28–33]. Clarification is necessary if LLRE-BFR is to be presented as a viable
alternative to traditional resistance exercise.

If the wider application of LLRE-BFR is to be used with older adults and patients with
chronic disease, it is important to first explore the perceptual, affective, and cardiovascular
responses to LLRE-BFR to determine the suitability of the protocol for older adults without
muscle weakness or musculoskeletal and cardiovascular disorders. It is important that the
LLRE-BFR protocol includes two different lower-body resistance exercises to represent an
exercise session that would be used in practice. Additionally, it is essential to determine
how LLRE-BFR compares to traditional moderate-load resistance exercise (MLRE) as this is
the recommended prescription for older adults without resistance exercise experience [6].
Therefore, the aim of this study was to determine the impact of LLRE-BFR on perceptual,
affective, and cardiovascular responses during two different resistance exercises within an
exercise session and compare these responses to LLRE and MLRE in older adults.

2. Materials and Methods
2.1. Subjects

Twenty (10 males and 10 females) apparently healthy (i.e., free from disease)
community-dwelling older adults were recruited to participate in the study from the
local community via a promotion stall (located in Graves Health Centre, Sheffield, UK),
social groups on Facebook and by word of mouth. Participants were required to meet the
following inclusion criteria; (1) aged ≥60 years old; (2) were not engaged in resistance
exercise in the previous six months; (3) did not self-report uncontrolled hypertension
(>150/90 mmHg), musculoskeletal, neurological, or vascular disease/injury; (4) non-
smokers, defined as not used tobacco and related products in the previous 6 months;
and (5) did not meet more than one risk factor for thromboembolism, which includes the
following; obesity (BMI > 30 kg/m2); diagnosed with Crohn’s disease; a past fracture of
hip, pelvis, or femur; major surgery within the last 6 months; varicose veins; a family
or personal history of deep vein thrombosis or pulmonary embolism [34]. Baseline
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participant characteristics are listed in Table 1. The sample size was utilised for the
study to be sufficiently powered (α = 0.05, β = 0.80, medium effect 0.5; G*Power,
version 3.1.9.3, Dusseldorf, Germany). All research procedures were approved by the
Ethics Committee of Sheffield Hallam University (ER10932988) and conformed to the
standards set by the Declaration of Helsinki. Prior to participation in the study, each
participant was informed of the experimental procedures and risks that were associated
with the study before giving written informed consent. Each participant was instructed
not to participate in vigorous exercise 48 h prior to each exercise session. Additionally,
each participant was instructed not to consume food or caffeine 2 h prior to each exercise
session. If any muscle soreness in the legs was present on the day of an exercise session,
then the visit was rescheduled for that participant so as not to influence the perceptual,
affective, or cardiovascular response to exercise.

Table 1. Participants baseline characteristics.

Variable Total (n = 20) Males (n = 10) Females (n = 10)

Age (years) 64.3 ± 4.2 63.6 ± 3.2 64.9 ± 5.2
Stature (cm) 171.3 ± 9.8 179.0 ± 4.9 163.7 ± 6.8

Body mass (kg) 75.1 ± 11.5 81.2 ± 11.5 68.9 ± 7.9
BMI (kg/m2) 25.6 ± 3.7 25.3 ± 3.4 25.9 ± 4.1
Fat mass (%) 24.8 ± 10.6 21.6 ± 8.0 28.0 ± 12.3

Muscle mass (%) 39.1 ± 10.6 44.0 ± 4.6 34.2 ± 12.8
Waist circumference (cm) 83.2 ± 8.7 86.2 ± 9.6 79.9 ± 6.6

Lipid profile
Total 5.4 ± 0.8 5.1 ± 0.5 5.7 ± 1.0
LDL 3.1 ± 0.8 2.8 ± 0.6 3.6 ± 0.9
HDL 1.5 ± 0.4 1.5 ± 0.5 1.6 ± 0.4
TRI 1.5 ± 0.9 1.8 ± 1.0 1.2 ± 0.5

Blood glucose (mmol/L) 5.4 ± 0.8 5.5 ± 0.7 5.3 ± 1.0
SBP (mmHg) 131.8 ± 8.0 129.4 ± 7.7 133.6 ± 7.8
DBP (mmHg) 84.0 ± 8.3 83.5 ± 9.5 84.5 ± 8.0
MAP (mmHg) 99.9 ± 7.7 98.8 ± 8.7 101.2 ± 6.7

PP (mmHg) 47.8 ± 6.2 45.9 ± 4.5 50.0 ± 7.4
ABPI 1.2 ± 0.1 1.2 ± 0.1 1.2 ± 0.1

IPAQ-SF
Physical activity category moderate moderate moderate

Note. BMI, body mass index; LDL, low density lipid profile; HDL, high density lipid profile; TRI, triglycerides;
SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; PP, pulse pressure;
ABPI, ankle brachial pressure index; IPAQ-SF, international physical activity questionnaire-short form; values are
presented as mean ± SD.

2.2. Methods

Participants attended the laboratory for two preliminary visits before the main exercise
sessions. During the first preliminary visit, anthropometric data (stature, body mass,
BMI, fat mass, muscle mass and waist circumference) and resting physiological data
(lipid profile, blood glucose, SBP, DBP, MAP, PP, ankle-brachial pressure index; ABPI,
and arterial occlusion pressure; AOP) were collected. Participants were then familiarised
with exercising on the horizontal leg press machine (Pro 2 Seated Leg Press, Life-fitness,
Chicago, IL, USA) and knee extension machine (SP100, TECA Fitness, Montesilvano,
Italy) to become orientated to the exercise equipment. During the second preliminary
visit, participants completed 1RM testing for both leg press and knee extension using the
repetitions to failure method. This was adopted as it was anticipated participants would
feel uncomfortable performing their true 1RM which may impact on participation and
minimise the risk of injury. Participants were then familiarised with the three experimental
conditions, which consisted of completing the first two sets of each protocol including
experiencing the perceptual, affective, and cardiovascular measures to become orientated
to the exercise protocols, study procedures and measures. Following preliminary visits,
participants attended the laboratory a further three times to complete the experimental
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exercise sessions. A randomised crossover design was used to compare the perceptual,
affective, and cardiovascular responses between (1) low-load resistance exercise with BFR
(LLRE-BFR), (2) low-load resistance exercise (LLRE), and (3) moderate-load resistance
exercise (MLRE). Each visit occurred at the same time of day and was separated by a
minimum of 5 days to remove the effects of the previous visit.

2.2.1. Predicted One Repetition Maximum

1RM for leg press and knee extension was predicted using the repetitions to failure
method based on previously tested protocols to determine the load used for each ex-
perimental condition [35,36]. Following a standardised warm-up of 5 min light cycling,
participants performed 10 repetitions at a load of low effort. The load was progressively
increased until momentary failure occurred within 10 repetitions. Momentary failure
was determined when, despite maximum effort, the participant was unable to complete
a repetition through the full range of motion. 1RM was then predicted using the Brzycki
equation [37]: load ÷ (1.0278 − [0.0278 × number of repetitions]). The Brzycki equation
has shown excellent predictive accuracy of actual 1RM for leg press (0.96 ICC) and knee
extension (0.99 ICC) [38]. The predicted 1RM for leg press and knee extension was
190.0 ± 68.6 kg and 64.0 ± 23.7 kg, respectively.

2.2.2. Determination of Arterial Occlusion Pressure

Arterial occlusion pressure (AOP) was measured to determine individualised re-
strictive cuff pressure for participants during LLRE-BFR. In accordance with established
methods [39], participants laid in a recumbent position in a quiet unlit room for 10 min.
A 13 × 85 cm nylon cuff (SC12, Hokanson, Indianapolis, IN, USA) was applied at the
most proximal portion of the thigh and an 8 MHz vascular Doppler probe (HI-Dop
vascular Doppler, Ana Wiz, Surrey, UK) positioned on the posterior portion of the medial
malleolus on the branches of the tibial artery of the same leg. The cuff was inflated (E20
Rapid cuff inflator and AG101 Cuff Inflator Air Source, Hokanson, Indianapolis, IN,
USA) until interruption of the auditory signal of arterial blood flow suggesting arterial
occlusion and the final pressure was recorded. This was then immediately repeated for
the opposite leg. The mean AOP of both legs was used for the restrictive cuff pressure.
Total AOP was 188.3 ± 24.8 mmHg.

2.2.3. Resistance Exercise Protocols

Exercise sessions began with a standardised warm-up of 5 min light cycling. Participants
then completed programmed protocols for seated 45◦ horizontal leg press then knee extension.
Exercises were performed bilaterally with repetitions executed every 3 s (1.5 s during the
concentric phase and 1.5 s during the eccentric phase) with support from a metronome.
Exercises were separated by a 5 min passive rest period. LLRE-BFR and LLRE protocols
involved 1 set of 30 repetitions followed by 3 sets of 15 repetitions for leg press and 4 sets
of 15 repetitions for knee extension. Both exercises had 30 s rest periods between sets and
were performed at a load of 20% 1RM. During LLRE-BFR, a 13 cm wide nylon pneumatic cuff
(SC12L segmental pressure Cuff, Hokanson, Indianapolis, IN, USA) was placed around the
proximal region of the legs. The cuff was inflated to 50% of AOP 15 s before starting either
exercise. The pressure was maintained during the exercise bout and was deflated after the last
repetition once perceptual and cardiovascular measures were obtained. To note, the cuff was
deflated during the 5 min passive rest period between exercises. The MLRE protocol involved
4 sets of 10 repetitions with 60 s rest periods between sets and was performed at a load of 60%
1RM for both leg press and knee extension.

2.2.4. Perceptual Responses

RPE was measured using the CR-20 Borg scale and pain using the CR-10+ modified
pain scale immediately (within 5 s) following each set of exercise. Both CR-20 and CR-10+

scales have been shown to be valid and reliable in exercise and pain studies [40,41] and
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have been used to quantify RPE and pain in previous LLRE-BFR-related studies [21,32].
Session-RPE was measured using the CR-10 Borg scale 15 min following the completion
of both exercises to indicate the perceived difficulty of the entire exercise session. Muscle
soreness of the lower body was obtained 24 h and 48 h following each exercise session
using the CR-10+ modified pain scale after requesting a rating via text message. To gauge
soreness of the lower body, participants were asked to flex and extend both knees and press
into their quadriceps with their hands before providing their ratings.

2.2.5. Affective Responses

Affect (pleasure/displeasure) was measured using the Feeling Scale [42] immediately
(within 5 s) following each set of exercise. The Feeling Scale is an 11-point scale ranging
from very bad (−5) to very good (+5). The Feeling Scale has demonstrated face, content,
and construct validity [42]. A modified Physical Activity Enjoyment Scale (PACES) [43]
was used to indicate levels of enjoyment of the entire exercise session measured 15 min
following the completion of exercise. The PACES included 5 items (enjoy, like, fun, physical
feeling, and frustration) displaying two contrasting statements about exercise (e.g., “I like
it” and “I dislike it”). Between the two statements, participants rated their agreement with
each statement on a 7-point Likert-type scale. The Physical Activity Affect Scale (PAAS) [44]
was used to assess the affective response to the exercise session and was measured upon
the arrival to the laboratory at rest and following 15 min after the completion of exercise.
The PAAS questionnaire includes 12 feelings which are equally divided into 4 subscales:
positive affect (enthusiastic, energetic, and upbeat), negative affect (miserable, discouraged,
and crummy), tranquillity (calm, relaxed, and peaceful) and fatigue (fatigued, tired, and
worn-out). Participants were asked to rate their current affective state for each item on
a scale; do not feel (0), feel slightly (1), feel moderately (2), feel strongly (3) or feel very
strongly (4). A mean score for each subscale was calculated and used for analysis. The
PAAS is sensitive to affective changes during exercise [45], and has shown convergent and
discriminant validity in both active and sedentary individuals [46]. Three separate visual
analogue scales (VAS) were used to indicate enjoyment, fatigue and perceived effectiveness
of the entire exercise session measured 15 min following the completion of all exercise.
All VAS spanned a single 10 cm horizontal line with a headline statement at the top. To
the extreme left of the line was an answer that indicated no agreement with the headline
statement (e.g., no enjoyment/no fatigue/not at all effective) and to the extreme right the
statement indicated strong agreement (e.g., very enjoyable/very fatiguing/very effective).

2.2.6. Cardiovascular Responses

Blood pressure was assessed using an automatic monitor (HEM-8712, Omron,
Healthcare, Kyoto, Japan) immediately following the last set of each exercise according
to standardised operating procedures. HR was monitored using a traditional chest strap
(TICKR, Wahoo, Atlanta, GA, USA) throughout the exercise session and recorded every
5 s excluding rest periods. These data were used to calculate HRmean, HRpeak, MAP
(calculated as 1/3 (SBP − DBP) + DBP), RPP (calculated as SBP × HR/100) and PP
(calculated as SBP − DBP).

2.2.7. Statistical Analysis

Data are presented as means ± SEM unless indicated otherwise. Prior to analysis, the
Shapiro–Wilk test confirmed that data was normally distributed. Following this, linear
mixed models were performed on all data. RPE, pain, and affect were compared between
conditions (LLRE-BFR, LLRE and MLRE) and time (e.g., between each set within an
exercise), with condition and time set as fixed factors and participants set as a random
factor. Separate analyses were performed for leg press and knee extension. The mean RPE,
pain and affect across sets 1–4 were compared between conditions and exercise (leg press
and knee extension), with condition and exercise set as fixed factors and participants set
as a random factor. Muscle soreness and PAAS were compared between conditions and
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time with condition and time set as fixed factors and participants set as a random factor.
Session-RPE, PACES and VAS were compared between conditions with condition set as
a fixed factor and participants set as a random factor. Where a significant interaction or
main effect was observed Bonferroni post hoc assessment was used to identify where the
differences occurred. Magnitude of differences was determined using Cohen’s d (difference
in the mean divided by the standard deviation of the difference; small effect = 0.20–0.49,
moderate effect = 0.50–0.79, and large effect = ≥0.80). Statistical analysis was conducted
using SPSS (Version 26, Chicago, IL, USA), with statistical significance set at p ≤ 0.05.

3. Results
3.1. Adverse Events

One adverse event occurred outside of the testing environment with a participant who
presented with superficial thrombophlebitis in their right leg 3 weeks after completing
all study commitments. The participant made a full recovery following four weeks of
treatment. In consultation with the research teams’ clinical expert, it was deemed this ad-
verse event was not caused due to the exercise protocols completed in this study primarily
because of the length of time in which the issue presented.

3.2. Total Repetitons Completed

A high level of completion was observed in this study with only two participants
unable to complete all programmed repetitions for LLRE-BFR during sets 3 and 4 of knee
extension due to fatigue.

3.3. RPE, Pain, and Affect

A significant condition by time interaction (p = 0.005) was observed for RPE during
leg press (Figure 1). RPE increased from pre to set 1 (p < 0.001, d = 1.6–2.7) then
remained constant until set 4 for all conditions. RPE was lower for every set during
LLRE compared with MLRE (p < 0.001, d = −1.1), while set 4 was lower during LLRE
compared with LLRE-BFR (p = 0.033, d = −0.8). Similarly, a significant condition by
time interaction (p < 0.001) was observed for RPE during knee extension (Figure 1).
RPE increased from pre to set 1 (p < 0.001, d = 2.0–3.2) then increased across sets 1–4
(p ≤ 0.019, d = 0.8–2.1) for all conditions. RPE was lower for sets 1–3 during LLRE
compared with MLRE (p ≤ 0.008, d = −0.9–−1.2), while sets 2–4 were lower during
LLRE compared with LLRE-BFR (p ≤ 0.002, d = −0.9–−1.0). Differences between LLRE-
BFR and MLRE occurred only at set 1 with RPE lower during LLRE-BFR (p = 0.004,
d = −0.9). For comparisons of mean RPE, significant condition (p < 0.001) and exercise
(p < 0.001) main effects were observed (Figure 2). Post hoc analyses confirmed mean
RPE was lower for LLRE compared to LLRE-BFR and MLRE (p < 0.001, d = −1.1–−1.6)
and mean RPE for knee extension was higher than leg press (p < 0.001, d = 1.4) for
all conditions.

A significant condition by time interaction (p = 0.002) was observed for pain during leg
press (Figure 1). Pain increased from pre to set 1 (p ≤ 0.001, d = 1.0–1.5) for all conditions
then increased from set 1–set 4 for LLRE-BFR (p < 0.001, d = 1.1) but remained unchanged
for LLRE and MLRE. Pain was higher during LLRE-BFR for every set compared with LLRE
(p ≤ 0.024, d = 0.8–1.4) and sets 3–4 compared with MLRE (p ≤ 0.005, d = 0.9–1.0). Likewise,
a significant condition by time interaction (p < 0.001) was observed for pain during knee
extension (Figure 1). Pain increased from pre to set 1 (p ≤ 0.018, d = 0.8–1.2) then increased
across sets 1–4 (p ≤ 0.033, d = 0.8–2.0) for all conditions. Pain was similar between conditions
at pre and sets 1–2. At sets 3–4, pain was higher for LLRE-BFR compared to LLRE and MLRE
(p ≤ 0.001, d = 1.0–1.2). For comparisons of mean pain, significant condition (p < 0.001) and
exercise (p < 0.001) main effects were observed (Figure 2). Post hoc analyses confirmed mean
pain was higher for LLRE-BFR compared to LLRE and MLRE (p < 0.001, d = 1.0–1.4) and mean
pain was higher for knee extension than leg press (p < 0.001, d = 1.7) for all conditions.
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A significant condition main effect (p = 0.031) was observed for affect during leg
press with affect lower during LLRE-BFR compared to LLRE and MLRE (p = 0.048, d = 0.5)
(Figure 1). For knee extension, significant condition (p < 0.001) and time (p < 0.001) main
effects for affect were observed (Figure 1). Affect decreased from set 1–4 (p < 0.001,
d = 1.5) for all conditions. Additionally, affect was lower for LLRE-BFR compared to
LLRE (p < 0.001, d = −1.32) and MLRE (p < 0.001, d = −0.93). For comparisons of mean
affect, significant condition (p = 0.003) and exercise (p < 0.001) main effects were observed
(Figure 2). Post hoc analyses confirmed mean affect was lower for LLRE-BFR compared to
LLRE and MLRE (p ≤ 0.047, d = −0.6–−0.8) and mean affect was lower for knee extension
than leg press (p < 0.001, d = −1.0) for all conditions.

3.4. Session-RPE

A significant condition main effect (p < 0.001) was observed for session-RPE (Figure 3).
The highest rating of session-RPE followed LLRE-BFR compared to LLRE (p < 0.001, d = 1.7)
and MLRE (p = 0.002, d = 0.8) and session-RPE was higher following MLRE compared to
LLRE (p = 0.001, d = 0.9).
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3.5. Cardiovascular Responses

Cardiovascular responses are presented in Table 2. A significant condition main
effect (p = 0.006) for HRmean was observed with higher HRmean during LLRE-BFR
compared to LLRE and MLRE (p ≤ 0.020, d = 0.7). For HRpeak, a significant condition
by exercise interaction (p = 0.011) was observed. Post hoc analysis confirmed HRpeak
was higher for LLRE-BFR compared to LLRE and MLRE (p ≤ 0.031; d = 0.7–0.9) during
knee extension. Additionally, HRpeak was greater during knee extension than leg press
during LLRE-BFR (p = 0.023; d = 0.7). A significant main effect of exercise (p = 0.037)
was observed for SBP with higher SBP during knee extension than leg press (p = 0.037;
d = 0.5) for all conditions. Significant main effects of condition (p = 0.001) and exercise
(p = 0.020) were observed for RPP. RPP was lowest during LLRE compared to LLRE-BFR
and MLRE (p ≤ 0.032; d = −0.6–−0.9) and RPP was higher during knee extension than
leg press (p = 0.020; d = 0.5) for all conditions. A significant main effect of exercise
(p = 0.014) was observed for PP with higher values occurring during knee extension
than leg press for all conditions (p = 0.014; d = 0.6).
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Table 2. Cardiovascular responses to leg press and knee extension.

Leg Press LLRE-BFR LLRE MLRE

HRmean 86 ± 3 84 ± 3 84 ± 3
HRpeak 94 ± 3 93 ± 3 96 ± 3

SBP 145 ± 3 131 ± 4 140 ± 4
DBP 87 ± 2 83 ± 2 85 ± 3
MAP 106 ± 2 99 ± 3 103 ± 3
RPP 132 ± 6 117 ± 4 134 ± 7
PP 58 ± 3 48 ± 2 54 ± 3

Knee Extension
HRmean 88 ± 3 83 ± 2 83 ± 2
HRpeak 101 ± 3 ‡†* 93 ± 3 94 ± 3

SBP 144 ± 5 143 ± 4 146 ± 3
DBP 86 ± 2 * 84 ± 2 * 84 ± 2 *
MAP 106 ± 3 104 ± 2 105 ± 2
RPP 146 ± 6 * 131 ± 5 * 135 ± 5 *
PP 58 ± 4 * 53 ± 3 * 61 ± 3 *

Note. HR, heart rate; SBP, systolic blood press; DBP, diastolic blood pressure; MAP, mean arterial blood pressure;
RPP, rate pressure product; PP, pulse pressure. ‡ Significantly different to LLRE; † significantly different to MLRE;
* significantly different to leg press.

3.6. Physical Activity Enjoyment Scale

A significant condition main effect (p = 0.004) was observed for PACES with the sum
of PACES lower following LLRE-BFR compared to LLRE (p = 0.033, d = −0.6) (Figure 4).
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3.7. Physical Activity Affect Scale

Significant time main effects were observed for PAAS subscales positive affect
(p = 0.006), negative affect (p = 0.035) and tranquillity (p < 0.001) (Table 3). Post hoc
analyses confirmed positive affect increased from pre to post (p = 0.006, d = 0.6), negative
affect decreased from pre to post (p = 0.035, d = −0.5) and tranquillity increased from pre
to post (p < 0.001, d = 0.9) for all conditions.
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Table 3. Physical Activity Affect Scale measured pre and post exercise session.

LLRE-BFR LLRE MLRE
PAAS (0–4) Pre Post Pre Post Pre Post

Positive affect 2.5 ± 0.3 2.9 ± 0.2 a 2.8 ± 0.2 2.9 ± 0.2 a 2.8 ± 0.2 3.0 ± 0.2 a

Negative affect 0.2 ± 0.1 0.1 ± 0.1 a 0.2 ± 0.1 0.1 ± 0.1 a 0.3 ± 0.1 0.1 ± 0.1 a

Fatigue 0.6 ± 0.1 0.8 ± 0.2 0.6 ± 0.1 0.5 ± 0.1 0.6 ± 0.1 0.7 ± 0.1
Tranquillity 2.6 ± 0.2 2.9 ± 0.2a 2.7 ± 0.2 2.8 ± 0.2 a 2.6 ± 0.2 3.1 ± 0.2 a

Note. a Significant difference between pre and post.

3.8. Visual Analogue Scales

Enjoyment and perceived effectiveness were high, and fatigue was mild following all
conditions with no significant condition main effect observed (Figure 5).
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3.9. Muscle Soreness

Participants had no leg muscle soreness at baseline. Muscle soreness at 24 h (LLRE-
BFR = 0.7 ± 0.2 CR-10, LLRE = 0.3 ± 0.1 CR-10 and MLRE 1.0 ± 0.3) and 48 h (LLRE-
BFR = 0.4 ± 0.2 CR-10, LLRE = 0.0 ± 0.0 CR-10 and MLRE 0.4 ± 0.2) was low for all
conditions. Statistically significant condition (p = 0.002) and time (p < 0.001) main effects
were observed for muscle soreness. Muscle soreness tended to increase from pre to 24 h
(p < 0.001, d = 1.4) and 48 h (p = 0.031, d = 0.8) following all conditions. Additionally,
muscle soreness was greater following both LLRE-BFR and MLRE compared to LLRE
(p ≤ 0.049, d = 0.5–0.8).

4. Discussion

This investigation explored the perceptual, affective, and cardiovascular responses
to a bout of LLRE-BFR involving two resistance exercises and compared the responses to
a bout of LLRE and MLRE in older adults. The main findings of the study indicate that
LLRE-BFR was more demanding than LLRE and MLRE, predominately through increased
pain and reduced affect, though was enjoyed and promoted a positive affective response
post exercise comparable to MLRE. Additionally, knee extension increased effort and pain,
and reduced affect compared to leg press for all conditions, which may be worsened by
BFR. Our findings provide new insights into the acceptability of LLRE-BFR and have
practical relevance to practitioners considering implementing LLRE-BFR as an alternative
to traditional resistance exercise.

An increase in pain during LLRE with the addition of BFR is extremely consistent
within the literature indicating the additional stress of BFR [47]. Our findings of “moderate”
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to “strong” pain resulting from LLRE-BFR are comparable to other studies using similar
LLRE-BFR protocols that recruited older [27] and younger [32] adults. Pain resulting from
LLRE-BFR increased following each set of exercise which exceeded MLRE and is likely
comparable to HLRE [32,48]. The increased pain is a result of the BFR stimulus accelerating
the development of peripheral fatigue primarily through the reduction of venous clearance
of fatigue-related metabolites, evidenced by increased phosphocreatine depletion, reduced
muscle pH, augmented blood lactate and impaired muscle contractile function [25,49,50].
Metabolic stress is a key mechanism contributing to the beneficial muscular adaptations
from LLRE-BFR training [10]; therefore, some level of muscular pain should be expected
when performing LLRE-BFR. Though elevated pain is associated with reduced affect and
task motivation during exercise [20] which can deter future LLRE-BFR participation [22].

To manage the pain, practitioners must first consider the restrictive cuff pressure and
the exercise load as these factors have a substantial impact on the pain experienced [21,48].
In the present study a restrictive cuff pressure of 50% AOP and exercise load of 20% 1RM
was used. To the authors’ knowledge, this protocol is the lowest effective restrictive cuff
pressure and exercise load applied to older adults reported in the literature [51]. Higher
restrictive cuff pressures (80% AOP) and exercise loads (40% 1RM) are associated with
“very strong” pain with some individuals reporting near maximal ratings [21,48]. Another
consideration for practitioners should be exercise volume. Given there is a step increase in
pain per exercise set, the initial lower volume in the LLRE-BFR programme may reduce
pain experienced and increase the likelihood of individuals completing all programmed
repetitions. Such a strategy may boost exercise self-efficacy and encourage programme
adherence [52]. Exercise volume can progressively increase through the programme to
the target 30-15-15-15 repetitions as per guidelines [9] as the adaptive response to training
provides a greater tolerance to the stimulus [53].

Enjoyment and affective response are posited as important factors determining
future exercise participation [23] and infer the acceptability of an exercise modality [54].
Individuals who experience enjoyment, improvements in affect, and low fatigue from ex-
ercise report more positive attitudes, exercise self-efficacy and intentions to exercise three
months later [45,55]. It has been previously reported the addition of BFR to LLRE [20]
and to walking [56] reduces the enjoyment response from exercise. Additionally, mood
status assessed via the Brunel Mood Scale and Profile of Mood States was negatively
affected by LLRE-BFR predominately through reduced vigour and increased fatigue
immediately post exercise [20,33]. Furthermore, tranquillity and physical exhaustion
assessed by the Exercise Induced Feelings Inventory has shown to decrease and increase
respectively immediately following LLRE-BFR but return to baseline within 15 min [57].
Our findings of a comparable enjoyment and affective response following LLRE-BFR
and MLRE should encourage practitioners to use LLRE-BFR with older adults as an
alternative to traditional resistance exercise.

The present study demonstrated higher cardiovascular responses with LLRE-BFR
compared to LLRE and MLRE. Previous studies have consistently shown the addition of
BFR to LLRE augments HR and blood pressure responses [58]. This may be contributed by
the reduced blood flow during muscular exertion that augments metabolic accumulation
and pain and influences the pattern of muscle recruitment which increases the exercise
pressor reflex resulting in an enhanced autonomic cardiovascular response [59]. Similar HR
and blood pressure responses to the present study have been previously observed [24,25]. It
is important to note that these blood pressure measures were taken immediately following
the conclusion of the exercise set and blood pressure is likely higher when measured during
muscular contraction [25].

While some studies report the cardiovascular responses to LLRE-BFR exceed HLRE [24,60],
others report comparable or lower responses [25,28]. Cardiovascular responses reported in the
BFR literature are highly variable, likely due to differing measurement techniques, exercise
protocols and populations used between studies. Importantly, the observed increases in HR
and blood pressure are consistently within the normal range expected during exercise [61]
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and to date, no cardiovascular events during LLRE-BFR have been reported in the literature
from research or in the field [62,63]. Given the number of studies using LLRE-BFR in older
adults, LLRE-BFR is likely safe for this group. However, more research examining the safety
and cardiovascular responses to LLRE-BFR in patients with chronic diseases is required prior
to the wider use of the technique for these special populations.

LLRE-BFR methodology is critical to the experience of the technique. Restrictive cuff
pressures [48,64], cuff width [65,66], type of cuff [67] and exercise load [21] have been shown
to substantially effect the perceptual and cardiovascular response. An interesting finding in
the present study was an increase in perceptual and cardiovascular response during knee
extension compared to leg press for all conditions, which may be worsened with BFR. This
disagrees with findings from Scott et al. [24] who reported an increase in RPE, HR, SBP,
DBP, MAP and RPP with leg press than knee extension. Conflicting observations may be
due to the different exercise protocols between studies, with Scott et al., [24] employing a
lower exercise volume of 1 set of 20 repetitions followed by 2 sets of 15 repetitions for both
leg press and knee extension. However, studies which have employed the same exercise
protocols as the present study have observed trends of increased RPE and pain to knee
extension compared to leg press, but this was not statistically analysed [32,67].

The discrepancy in perceptual and cardiovascular response between leg press and
knee extension could be due to physiological changes caused by mechanical differences.
More volume of exercise can be completed with large muscle group exercises (e.g., leg
press) compared with smaller muscle group exercises (e.g., knee extension) at the same
relative intensity [68,69]. This may be due to asynchronous motor unit recruitment during
submaximal exercise which serves to delay fatigue [68]. Thereby, individuals may tolerate
leg press to a greater degree than knee extension at a set exercise load when a high
exercise volume is performed. Why BFR may exaggerate the increase in perceptual and
cardiovascular response to knee extension compared to leg press is unclear. Although
speculative, the dynamic hip extension-flexion action during leg press may facilitate venous
flow with BFR which could limit blood pooling and metabolic accumulation proximal to
the restrictive cuff compared to static hip action during knee extension. Furthermore, the
contribution of hip extensor muscles during leg press may not be significantly affected
by the BFR stimulus and thus less susceptible to the accumulation of metabolic stress
associated with BFR. Lower body resistance exercises leg press and knee extension are
most prescribed with LLRE-BFR [62]. Determining exercise that is perceived favourably is
useful for practitioners using LLRE-BFR in research or in rehabilitation therapy to develop
protocols that encourage exercise adherence.

The study is not without limitations. This study was acute in nature therefore only
inferences can be made about the long-term suitability of LLRE-BFR for older adults. We
recognise that although participants completed the conditions in a randomised order,
we cannot dismiss a repeated-bout effect that could contribute to the altered perceptual
response to resistance exercise. RPE and pain have been shown to subside after repeated
sessions of resistance exercise, suggesting an adaptive effect to psychological markers
(e.g., sense of effort and pain) that facilitates greater tolerance [53,70]. Additionally, our
interpretation of the perceptual and cardiovascular differences between leg press and knee
extension may have been influenced by an order effect as all participants first undertook leg
press then knee extension. To substantiate our findings future studies should randomise
the delivery of exercises performed. We acknowledge that the participants recruited for this
study were all physically active and interested in exercise. Older adults and patients with
chronic disease with muscle weakness or musculoskeletal and/or cardiovascular disorders
may respond to the exercise conditions differently from those included in the present study.

5. Conclusions

Overall, the present study demonstrated an exercise session of LLRE-BFR was more de-
manding than LLRE and MLRE, predominately through increased pain and reduced affect.
Interestingly, knee extension incurred greater perceptual and cardiovascular responses than
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leg press during the exercise sessions, which may be worsened by BFR. Potential negative
effects of pain and affect from LLRE-BFR during exercise did not impact the enjoyment
and affective response post exercise. LLRE-BFR was enjoyed and promoted a positive
affective response comparable to MLRE. These factors are important in predicting future
exercise engagement. Our findings provide new insights into the acceptability of LLRE-BFR
and have practical relevance to practitioners considering implementing LLRE-BFR as an
alternative to traditional resistance exercise. This study supports the use of LLRE-BFR
for older adults and encourages future research to examine the safety, acceptability, and
efficacy of LLRE-BFR in patients with chronic disease.
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