
rsta.royalsocietypublishing.org

Research

Article submitted to journal

Subject Areas:

Physics, Mathematics, Magnetically

confined fusion plasmas

Keywords:

High-confinement mode, statistical

theory, self-regulation, Langevin

model, Fokker-Planck equation,

time-dependent probability density

function, information geometry

Author for correspondence:

Eun-jin Kim

ejk92122@gmail.com

A stochastic model of
edge-localised modes in
magnetically confined
plasmas
Eun-jin Kim1 and Rainer Hollerbach 2

1Fluid and Complex System Research Centre,

Coventry University, Coventry CV1 2TT, UK;

ejk92122@gmail.com
2Department of Applied Mathematics, University of

Leeds, Leeds LS2 9JT, UK; R.Hollerbach@leeds.ac.uk

Magnetically confined plasmas are far from equilibrium
and pose considerable challenges in statistical analysis.
We discuss a non-perturbative statistical method,
namely a time-dependent density function (PDF)
approach that is potentially useful for analysing
time-varying, large, or non-Gaussian fluctuations and
bursty events associated with instabilities in the
L-H transition and the H-mode. Specifically, we
present a stochastic Langevin model of edge-localised
modes (ELMs) by including stochastic noise terms
in a previous ODE ELM model. We calculate exact
time-dependent PDFs by numerically solving the
Fokker-Planck equation and characterise time-varying
statistical properties of ELMs for different energy
fluxes and noise amplitudes. The stochastic noise
is shown to introduce phase-mixing and plays a
significant role in mitigating extreme bursts of large
ELMs. Furthermore, based on time-dependent PDFs,
we provide a path-dependent information geometric
theory of the ELM dynamics and demonstrate
its utility in capturing self-regulatory relaxation
oscillations, bursts, and a sudden change in the
system.

=

1. Introduction
Magnetically confined plasmas constitute one of the
important examples of complex systems operating far
from equilibrium [1]. Despite the complexity, self-
regulatory behaviour often emerges spontaneously [2–
4] and plays a vital role in plasma confinement. For
instance, when the input power exceeds a critical power
threshold, the transition from a low-confinement mode
(L-mode) to a high-confinement mode (H-mode) can
occur spontaneously, where plasmas organise themselves
into an ‘ordered’, high-confinement state [5–20].
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threshold, the transition from a low-confinement mode (L-mode) to a high-confinement mode (H-
mode) can can occur spontaneously, where plasmas organise themselves into an ‘ordered’, high-
confinement state [5–20]. Reproduced in different fusion devices (tokamaks, stellarators, reversed
field pinch) since the first discovery in 1980s [5], the Low-to-High confinement (L-H) transition
is now believed to be triggered by the spontaneous formation of E×B macro/meso scale
shear flows (mean shear/zonal flows) which significantly reduce the transport via turbulence
suppression by shear flows [21–25]. In particular, zonal flows generated from small-scale
turbulence in turn regulate turbulence by shearing, leading to self-regulatory oscillations (called
dithering) [14–20,26–28].

The H-mode being a baseline scenario for ITER [13,20,26,29], it remains important to improve
our understanding of threshold power scaling, the effects of density, magnetic geometry and
neutrals, triggering mechanisms and causality relations, hysteresis, etc. [13]. For instance, to
elucidate the self-regulation between zonal flows and turbulence, bi-coherence spectral analysis,
phase space portrait, Reynolds stress analysis, etc. are employed. A stochastic model of the L-H
transition [30,31] was recently proposed to provide an alternative, non-perturbative method of
characterising statistical properties and self-regulation (see §1(b) below for details).

The key characteristic of the H-mode is the formation of a shear layer and a steep gradient
of the edge plasma pressure profile. The latter can become unstable for a sufficiently large input
power and cause relaxation-type oscillations – the so-called edge-localised modes (ELMs) [32–36]
– as the pressure gradient hovers around its critical value through self-regulation. The resulting
quasi-periodic oscillations degrade confinement, potentially causing significant damages. This
highlights the importance of ELM mitigation, e.g. by resonant magnetic perturbations or pellet
injection in DIII-D and ASDEX-U tokamaks [35,36]. It is also vital to accurately characterise
the statistical properties of ELM dynamics to elucidate the interaction among different players,
in particular, self-regulatory behaviour or large bursts. The aim of this paper is to propose a
stochastic ELM model and present new methods that will enable us to address these issues. These
involve a time-dependent Probability Density Function (PDF) method and information geometric
theory [37]. As a motivation for our method, we discuss the limitations of perturbative methods
in §1(a) and the essence of our methods in §1(b) below.

(a) Perturbative methods
Near equilibrium, fluctuations are weak and satisfy Gaussian statistics, validating perturbative

methods. For instance, the Reynolds stress, defined by the second moment of the different
components of the fluctuating velocity, quantifies the amount of the energy exchange between the
mean velocity and fluctuating parts. It can quantify energy extracted from small scales to form a
large-scale flow (such as zonal flows), and the ratio of the Reynolds stress to the energy input into
turbulence (normalised Reynolds power [38]) was used as a criterion of the L-H transition.

However, far from equilibrium or for anomalous transport/bursty events, a PDF is no longer
Gaussian. Some examples would be a negatively or positively skewed PDF with an elevated left or
right tail, e.g., associated with rare, but large-amplitude events where the mean value is smaller or
larger than the peak position, respectively. Furthermore, a PDF can have more than one peak such
as a bimodal PDF. For a symmetric bimodal PDF, the mean value occurs at the local minimum
and has nothing to do with the most likely value. To appreciate the significance of this, let us
imagine the case where PDF peaks represent (different) coherent structures for both symmetric
bimodal PDF and unimodal PDF that have the same mean value. Then, for a unimodal case, the
mean value represents a coherent structure, and the energy transfer between fluctuations and the
structure is quantified by the Reynolds stress in the usual way. However, for a bimodal PDF where
its two peaks represent coherent structures (e.g., vortex-pairs), fluctuations should be measured
with respect to these coherent structures (not the deviation from the mean value) for the Reynolds
stress to be physically meaningful. In general, PDFs may be asymmetric, bimodal, or multimodal.
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(b) PDF method and path-dependent statistical diagnostics
To overcome the limitations of perturbative methods noted in §1(a), it is advantageous to deal

with a PDF itself, say for a variable x. Here, x can be density fluctuation, electric potential, zonal
flows, pressure gradient, or magnetic fluctuations. For more than one variable, say x and y, we
will consider a joint PDF p(x, y, t) which depends on time t that is useful for describing large
fluctuations or time-varying statistical properties.

It is important to note that for given PDFs p(x, t0) and p(x, tF ) at time t0 and tF (> t0), there is
an infinite number of different evolution paths that connect these two PDFs. For instance, when
p(x, t0) and p(x, tF ) represent PDFs before and after the L-H transition or ELM burst, we are
interested in how p(x, t0) evolves to p(x, tF ) [39]. Experimentally, the determination of a PDF
would require high-quality statistical samples (over time or space), which would benefit from
improved diagnostics and resolutions. To gain a key insight, it is always useful to investigate
theoretical and computational models to calculate time-dependent PDFs exactly.

Once we have a time-dependent PDF, we can then look at how various statistical diagnostics
change along the trajectory. In this paper, we utilise the information geometry that refers to the
application of differential geometry to probability and statistics [37,40–42]. This is a powerful
tool for elucidating the disparity between different probabilities as well as for linking complexity
and geometry (e.g., see [37,40] and references therein). Our focus will be on the path-dependent
information geometric concept (information length and rate) that quantifies the time evolution of
a system in terms of a dimensionless distance in a statistical space [30,31,37,43–48] or the change
in information. Their key properties are summarised in Section 2.

(c) Aims of this paper and outlook
The aim of this paper is to present a stochastic model of ELMs and the analysis of time-

dependent PDFs and path-dependent information geometry. The remainder of this paper is
organised as follows. We recall our path-dependent information geometric theory in §2 and put
forward our stochastic ELM model in Section 3. Section 4 describes our numerical methods.
Sections 5 and 6 provide results and discussions/conclusion, respectively.

2. Path-dependent information geometric diagnostics
Using time-dependent PDFs, we will investigate the path-dependent information geometry by
quantifying the change in a PDF by a distance along the evolution path. For instance, for a
time-dependent PDF p(x, t), we measure the change in statistical states of x by calculating
the information rate Γ from an infinitesimal symmetric relative entropy between p(x, t) and
p(x, t+ δt) as δt→ 0, and then calculate (dimensionless) information length L(t) by integrating
Γ over time as follows [37,44–49]:

Γ (t)2 =

∫
dx

1

p(x, t)

[
∂p(x, t)

∂t

]2
, L(t) =

∫ t
0
dt1Γ (t1). (2.1)

The unit of Γ−1 in Eq. (2.1) is time, representing a dynamical time unit for information change
or the rate of change in information. The faster the temporal change in a PDF is, the larger the
information rate is. L(t) can be interpreted as the total clock time measured in units of Γ−1, and
equivalently as the total number of statistically different states that x passes through between time
0 and t. By definition, L(t) = 0 at t= 0. In simple terms, L(t) quantifies the cumulative change in
p(x, t) accounting for the uncertainty in measuring x due to a finite width of p(x, t).

To understand what this means, let us consider a Gaussian PDF, which is completely
determined by the two parameters λi = (µ, σ), where µ and σ are the mean value and standard
deviation, respectively, and express Γ as follows:

Γ 2 = gij∂tλ
i∂tλ

j . (2.2)
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Here, gij is the metric tensor defined in the statistical space spanned by the parameters λi as

gij(t) =

∫
dxp(x, t)(∂λi ln p) (∂λj ln p) =

1

σ2

(
1 0

0 2

)
. (2.3)

Note that gij has only non-zero diagonal components, with a factor of the variance σ2 in the
denominator. Consequently, a broad PDF with large σ tends to make Γ (t) and L(t) smaller. For
constant σ, Eq. (2.2) is simplified as

Γ (t) =

∣∣∣∣ 1σ dµdt
∣∣∣∣ . (2.4)

Thus, Γ (t) measures how quickly the mean value normalised by the constant σ changes with time.
If µ> 0 monotonically decreases over time, Eq. (2.4) gives L(t) = µ(t)−µ(t=0)

σ , which is the total
change in the mean value divided by the constant σ. Since σ provides the uncertainty in x, L(t)
signifies the change in the physical distance normalised by its uncertainty. However, even when
µ(t= 0) = µ(t= tF ) = a> 0, L(tF ) does not necessarily vanish. For instance, when min(µ(t)) = 0

at the intermediate time 0< t< tF , L(t) = 2a
σ > 0 despite the same initial and final PDF with zero

total change in µ (µ(tF )− µ(0) = 0) due to L’s path-dependence.
For a joint PDF p(x, y, t) for the two variables x and y, Eq. (2.1) can be extended as

L(t) =
∫ t
0
dt1Γ (t1), Γ (t)2 =

∫
dxdy

1

p(x, y, t)

[
∂p(x, y, t)

∂t

]2
. (2.5)

On the other hand, from the marginal PDFs p(x, t) =
∫
dy p(x, y, t) and p(y, t) =

∫
dx p(x, y, t), we

define

Lx(t) =
∫ t
0
dt1Γx(t1), Ly(t) =

∫ t
0
dt1Γy(t1), (2.6)

Γx(t)
2 =

∫
dx

1

p(x, t)

[
∂p(x, t)

∂t

]2
, Γy(t)

2 =

∫
dy

1

p(y, t)

[
∂p(y, t)

∂t

]2
. (2.7)

Γ andL are invariant under (time-independent) change of variables, and thus can be directly compared
with each other unlike physical variables having different units. This enables us to compare the
time-evolution of Lx and Ly or Γx and Γy of different variables x and y to understand their
correlation [30,31,37,43,47]. For instance, a strong correlation between two interacting species (via
random switching) was captured by the same evolution of L(t) of the two [47]; the self-regulation
between turbulence and zonal flows during dithering in the L-H transition was demonstrated by
the competition and regulation between their Γ ’s [30,31]. Furthermore, the path-dependence is
desirable for measuring hysteresis involved in phase transitions [44] such as the L-H transition
[30,31] since a non-equilibrium time-evolution does not obey time-symmetry (time-irreversibility)
even when an external force is symmetric in time.

3. Model
In this section, we recall the deterministic toy ODE model of ELMs in §3(a) and then provide its
stochastic extension in §3(b).

(a) ODE ELM Model
We consider the deterministic ODE model of ELMs [32] where the electric field resulting from
the radial force balance on ions is mainly driven by the pressure gradient P , with a negligible
contribution from the poloidal velocity. This corresponds to the limit where the diamagnetic
velocity is much larger than the poloidal velocity for the input power Pin far above the critical
power-threshold Pcr (see [32]). The reason for focusing on this limit was to reduce computational
times for high-resolution runs. In this limit, the evolution of the pressure gradient P and magnetic
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fluctuation amplitude EM is given by [32]

dP

dt
= Φ− D̃(P )P − EMP, (3.1)

dEM
dt

= λ(P − 1)EM , (3.2)

D̃ = d0 + d(P − c2P 4)Θ(P̃ − P ). (3.3)

Here, Θ(x) is the Heaviside function with Θ(x) = 1 for x≥ 0 and Θ(x) = 0 for x< 0; P̃ is
the critical pressure gradient P for the complete suppression of turbulence due to the shear;
c≡ P̃−3/2. Φ is the control parameter, proportional to the incoming particle flux and represents
the energy flux to the system under the assumption of a constant temperature. λ and d0� d are
non-negative constants. Eqs. (3.1)-(3.3) are non-dimensionalised such that time t is in the units of
[(cs/ρs)kρs(∆

4
c/ρ

2
sL

2
p)]
−1 where cs =

√
Te/mi is the ion sound speed, ρs = cs/ωci, ωci is the ion

cyclotron frequency, and k and ∆c are the poloidal wave number and radial correlation length of
the turbulence (see [32] for details).1

Due to the lack of a contribution from the poloidal flow to E ×B shear flows, the system
supports a direct transition from the L-mode into the ELM H mode (without an ELM-free H-mode
gap). While different types of solutions exist depending on P̃ and Φ [32], here we focus on the H-

mode state with MHD activity (EM 6= 0) for 1< P̃ ≤
(
5
2

)1/3
, Φ> [d0 +

(
2
5

)4/3
P̃ d]

(
2
5

)1/3
P̃ , and

d0� d to demonstrate how our methods work.
Figure 1 shows the time-evolution of x= P and y=

√
EM in Eqs. (3.1)-(3.3). Since the period

of ELMs decreases with increasing Φ, larger t values are used for smaller Φ. For Φ
d = 0.4, x

and y exhibit giant ELMs with a long period and a short duration of magnetic activity where
y 6= 0.2 These giant ELMs turn into smaller (so-called grassy) ELMs as Φ

d is increased, the period
becoming smaller while the time duration of magnetic activity increases. The latter two become
comparable for Φ

d = 1.2. It is also worth noting that for Φ
d = 0.4, x and y stay mostly around

the unstable L-mode solution (x< 1, y= 0) while making occasional excursions in large bursts.
For larger Φ

d = 0.8 and 1.2, the oscillations occur more symmetrically around x= 1 (ballooning
instability boundary). These features will also be seen in PDFs as discussed later (see the
discussion about Figures 3-4 below).
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Φ / d = 0.8
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1.5

t

x
 ,

 y
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Figure 1. Solutions of Eqs. (3.1-3.3), with initial conditions x (= P ) = 1.2 and y (=
√
EM ) = 0.2, d0 = 10−3, d= 0.1,

P̃ = 1.05, λ= 5, and Φ
d
= 0.4, 0.8, 1.2 as indicated above each panel. Red denotes x= P , blue y=

√
EM .

(b) Stochastic Model
We extend Eqs. (3.1)-(3.2) to a stochastic model by including a Gaussian white-noise ξ in Φ as
Φ→Φ+ ξ, where ξ satisfies

〈ξ(t)ξ(t′)〉= 2Qxδ(t− t′). (3.4)

1Obviously, parameter values depend on the characteristics of plasmas and turbulence. For MAST edge plasmas [50] with
B ∼ 0.5 T, Te ∼ 50 eV, ρs ∼ 0.5 cm, ∆c ∼ 1 cm, and Lp ∼ (1− 10)ρs the time unit is ∼ (1− 30)µsecs. For DIII-D edge
plasmas withB ∼ 2 T, Te ∼ 200 eV, ρs ∼ 0.2 cm, kρs ∼ 0.1,∆c ∼ (5− 10)ρs [51], andLp ∼ 5 cm, the time unit isO(1−
10)µsecs.
2Using that our time unit is ofO(1− 10) µsecs, the ELMs in Figure 1 can be seen to have frequencies of order 1− 100 KHz.
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Here, the angular brackets denote averages;Qx is the amplitude of the stochastic noise ξ; δ(t− t′)
means that the memory time of ξ is shorter than any other characteristic time scales (e.g., ELM
period) in the system. Physically, ξ represents the fluctuating energy flux of unresolved scales that
are not included for the deterministic modeling, e.g., incoherent interaction, the contribution to
the outward energy flux at the edge (e.g. [3,52]), pellet pacing [53], mini-avalanches [31], etc.
Letting x≡ P and y2 ≡EM where y is proportional to magnetic field and including another
Gaussian white-noise η for the equation for y, we recast Eqs. (3.1)-(3.3) as follows:

dx

dt
= Φ− D̃(x)x− xy2 + ξ = f + ξ, (3.5)

dy

dt
=

1

2
λ(x− 1)y + η= g + η, (3.6)

D̃ = d0 + d(x− c2x4)Θ(P̃ − x). (3.7)

η in Eq. (3.6) is chosen to be independent of ξ, so 〈ξ(t)η(t′)〉= 0, and to have the following
property

〈η(t)η(t′)〉= 2Qyδ(t− t′), (3.8)

where Qy is the amplitude of η. As in the case of ξ, η includes both contributions from the
internal (e.g. incoherent unresolved-scale dynamics) and any external perturbation. The absolute
magnitude of Qx and Qy would depend very much on a particular scenario such as turbulence
model and experimental conditions (plasma configurations). Our aim is thus to investigate the
generic effect of stochastic noise on ELM dynamics by varying Qx and Qy .

Due to non-zero ξ and η, x and y no longer evolve deterministically but instead take different
values around what are expected from the deterministic model. For the Langevin model in
Eqs. (3.4)-(3.8), the joint PDF p= p(x, y, t) can be shown to satisfy the Fokker-Planck equation [39]

∂p

∂t
=− ∂

∂x
(f p)− ∂

∂y
(g p) +Qx

∂2p

∂x2
+Qy

∂2p

∂y2
≡−∂xJx − ∂yJy, (3.9)

where

f ≡Φ− D̃(x)x− xy2, g≡ λ

2
(x− 1)y, (3.10)

Jx = fp−Qx∂xp, Jy = gp−Qy∂yp. (3.11)

From the joint PDF p(x, y, t), the marginal PDFs are obtained as p(x, t) =
∫
dy p(x, y, t) and

p(y, t) =
∫
dx p(x, y, t). We note that an alternative approach to the Fokker-Planck method is to

perform multiple stochastic simulations of the Langevin equations. One of the advantages of
the Fokker-Planck method is that a high-quality smooth PDF as well as various information
diagnostics can be obtained provided that a sufficiently large number of grid points are used.
However, the computational cost increases significantly as the number of variables increases.
On the other hand, the alternative method of stochastic simulations requires many multiple
runs for high-quality time-dependent PDFs and also needs to overcome technical challenges in
data binning for constructing PDFs and the accurate calculation of information diagnostics, as
discussed in [54].

4. Numerical methods
We wish to solve the Fokker-Planck equation in Eqs. (3.9)-(3.11) with the boundary conditions
p(x→±∞, y, t) = 0 and p(x, y→±∞, t) = 0. As in [30,31], the ‘spatial’ variables x and y are
discretised via second-order finite differences, with grid spacings as small as 10−3 in both. The
time-stepping is second-order Runge-Kutta, with time steps as small as 2× 10−5.

In principle calculations could be done where±y are different, but we only consider symmetric
solutions here, satisfying p(x, y, t) = p(x,−y, t). Physically, this is because a similar effect on ELM
dynamics is expected from magnetic flelds with y > 0 and y < 0, which obviously give the same
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magnetic fluctuationEM . This mathematically gets translated to the symmetry condition ∂
∂y p= 0

being imposed at y= 0, permitting us to restrict the computational domain y≥ 0 only.
The remaining computational parameters define the size of the ‘box’, that is, xmin, xmax, and

ymax. These need to be adjusted so that the solution is concentrated sufficiently far away from
these boundaries that such a finite box is still a good approximation to the true infinite domain. A
useful check here is to track the total probability integral

∫∫
p(x, y, t) dxdy, which should remain

conserved (and equal to one) according to the Fokker-Planck equation. If the computational box
was chosen to be sufficiently large (and the grid spacing also sufficiently fine), this integral was
always conserved, to within 10−4.

5. Results
We fix the parameters d0 = 10−3, d= 0.1, P̃ = 1.05, and λ= 5. Φd was varied in the range [0.4, 1.2].
The noise level in y was fixed at Qy = 10−5; in x we considered the range Qx = 10−5 − 10−3.
We will here present results for only Qx = 10−5 and 10−4. The initial conditions were always
Gaussian PDFs with 〈x(0)〉= 1.2, 〈y(0)〉= 0.2, σx(0) = σy(0) = 0.04.

(a) Constant Φd = 0.4, 0.8, 1.2
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Figure 2. From left to right, the four columns show the averages 〈x〉 and 〈y〉, and the standard deviations σx and σy , as

labeled above each column. The top row is Φ
d
= 0.4, the middle row Φ

d
= 0.8, and the bottom row Φ

d
= 1.2. Within each

panel red is Qx = 10−5, and blue is Qx = 10−4. The green curves for 〈x〉 and 〈y〉 show the noise-less ODE results

from Figure 1.

Figure 2 shows the most basic diagnostics 〈x〉, 〈y〉, σx and σy , and how they vary with Qx and
Φ. For all Φ values, the collapse of 〈x〉 is followed by the sudden increase in fluctuations σx and
σy in addition to 〈y〉. This is because y is driven by xwhile evolving linearly with respect to y. For
the largest value Φ

d = 1.2, we see that 〈x〉 and 〈y〉 match the original ODE extremely well, with
the only difference being that the ODE settles in to a periodic solution, whereas the stochastic
model exhibits very gradually decaying oscillations until it settles into a stationary PDF after
a sufficiently long time. We will consider the meaning of this decay in a moment, but first we
consider the smaller Φ values. For Φ

d = 0.8 the situation is similar as before, except that now the
oscillations in the stochastic model decay more rapidly.
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For the smallest value Φ
d = 0.4 though, the mean value from the Fokker-Planck equation only

agrees with the original ODE model up to around t≈ 30, which is well before the ODE has its
first ‘burst’. The stochastic model still exhibits (decaying) oscillations in mean values, but not as
extreme as the bursts in the ODE. This discrepancy arises from how small y can become in the
ODE versus the Fokker-Planck model. In the first panel of Figure 1 y reaches values smaller than
10−20 in between the bursts, and it is precisely these extremely small values that make the bursts
so explosive. In contrast, in the Fokker-Planck model, stochastic noise (Qx, Qy 6= 0) prevents 〈y〉
from becoming smaller than ∼ 0.01, which then causes the bursts to be far less explosive. In our
model, due to the coupling of x and y, the increase in stochastic noise in x (largerQx) for the fixed
Qy induces stronger stochastic magnetic field y. Thus, the larger Qy, Qx are, the less explosive
the bursts would be and the more quickly the oscillations would disappear. For instance, for
Qx = 10−4, oscillations disappear more quickly compared with the case of Qx = 10−5 for the
same Qy , reminiscent of ELM suppression for a sufficiently larger resonant stochastic magnetic
perturbation [36,55].

In addition to ELM suppression noted above, it is of interest that our results show the signature
of ELM mitigation in the early evolution stage where the oscillation frequency tends to increase
more for larger Qx. Specifically, in Figure 2, the local maxima of 〈y〉 for Φ/d= 0.4 occur around
t∼ 40, 50, 60 (in blue, red, green) for Qx = 10−4, 10−5, 0, respectively, indicating the initial faster
oscillations for larger Qx. This demonstrates that extreme bursts of giant ELMs can be mitigated
by stochastic noises in fusion devices as they are turned into smaller and higher frequency ELMs,
followed by the ELM suppression. Overall, in all cases of Qx, Φ/d, the larger the stochastic noise
is, the less prominent ELMs become.
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Figure 3. Contours of the Φ
d
= 1.2, Qx = 10−5 PDFs p(x, y, t), at the six times indicated above each panel. The

horizontal and vertical axes correspond to x and y, respectively, but are not labelled to allow more space for the actual

PDFs. Contours are on a logarithmic scale, with the smallest value (in blue) being 0.01, and then doubling for every further

contour level toward the maximum in red.

To understand the meaning of the gradually decaying oscillations in 〈x〉 and 〈y〉 seen in Figure
2, we must examine the shape of the PDFs, and how it evolves in time. Figure 3 shows these
results for Φd = 1.2 — which we recall was the most straightforward case in Figure 2 — at the six
times t= 4, 7.5, 10.5, 12, 14, 23.5. The significance of these particular times is indicated by the
red dots in the 〈x〉 and 〈y〉 panels in the bottom row of Figure 2: t= 4 is when 〈x〉 has its first
minimum, t= 10.5 is the maximum after that, t= 14 is the next minimum, and finally t= 23.5 is
the next minimum again, after one full cycle. Correspondingly also, t= 7.5 is the first minimum
in 〈y〉, and t= 12 is the maximum after that.

And sure enough, if we consider the first five panels in Figure 3, we see the PDF swirling once
around the loop that constitutes the ODE trajectory in the x-y-plane. If we next compare the final
two panels, at t= 14 and 23.5, we see that the PDF is indeed located at exactly the same position,
since t= 23.5 was chosen because it is one further loop around the trajectory. We note though that
the PDF at t= 23.5 is somewhat more spread out around the loop than the PDF at t= 14. That
is, the presence of noise is causing the system to gradually ‘forget’ its particular phase along the
ODE trajectory. The PDF spreading can thus be viewed as a type of phase-mixing. We can then
already guess as to what the final equilibrated PDF will look like; it should be uniformly spread
out along the loop, with all knowledge of any particular phase along the ODE trajectory having
been erased by the presence of noise. At that point of course the averages 〈x〉 and 〈y〉 would
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equilibrate at roughly the centre of the loop. The gradually decaying oscillations in Figure 2 due
to phase-mixing initiates the adjustment to the final equilibrated PDFs.
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Figure 4. As in Figure 3, but now for Φ
d
= 0.4.

Figure 4 shows how the PDF evolves in time for Φ
d = 0.4, again showing particular times

corresponding to maxima/minima of 〈x〉, as seen in the red dots in the top-left panel in Figure
2. Even at times when 〈y〉 is supposedly large, the PDFs are still concentrated toward y= 0 far
more than in Figure 3, making the behaviour less clear, even after focusing on very small y by
showing only a small part of the whole computational box. The behaviour corresponding to
maxima/minima in 〈x〉 is recognisable though. Also, comparing the final two panels, at t= 70

and 137, which again correspond to successive minima in 〈x〉, we can see that the peak position
is again in the same place, and the PDF at the later time is again somewhat more spread out than
at the earlier time, indicative of this gradual spreading-out around the entire loop.
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Figure 5. The first two columns show the equilibrated PDFs p(x, y) for Qx = 10−5 and 10−4, as indicated above the

columns. The contour intervals are as in Figures 3 and 4, so starting at 0.01 in blue and then doubling with every further

contour toward the maxima in red. The third column shows the marginal p(x), and the fourth column the marginal p(y).

For these marginal PDFs red isQx = 10−5 and blue isQx = 10−4. The top row is Φ
d
= 0.4, the middle row is Φ

d
= 0.8,

and the bottom row is Φ
d
= 1.2.

Figure 5 shows the final stationary PDFs after all the oscillations in Figure 2 have decayed away
in the long time t→∞ limit. Interestingly, they form loops around the original ODE trajectories.
That is, the final PDFs ‘know’ that the system must be somewhere close to the ODE trajectories,
but the presence of noise together with the large time limit have erased all knowledge of the phase
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along the trajectory. The comparison between the two Qx values corroborates this: larger Qx
broadens the thickness of the track around the ODE trajectory. In the limit Qx→ 0, this thickness
would collapse to zero, and these PDFs would smoothly tend to the ODE trajectories.

Turning next to the third and fourth columns in Figure 5, these show the marginal PDFs p(x)
and p(y). We note first that they are both bimodal3, for all combinations of Φ and Qx, a local
minimum forming around x= 1 (instability boundary). Next, p(y) peaks at y= 0 for Φd = 0.4 and
0.8, but at y > 0 for Φ

d = 1.2. Both bimodal p(x) and p(y) are more symmetric for larger Φ. One
final point to note here is how the two Qx values yield almost identical results for Φ

d = 0.4 and
0.8, whereas for Φd = 1.2 both p(x) and p(y) drop off more rapidly at the edges forQx = 10−5 than
for Qx = 10−4 (as one might expect).
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Figure 6. As labeled above them, the first two columns show Γx and Γy as functions of time, with red beingQx = 10−5

and blue Qx = 10−4. The third column replots the red (Qx = 10−5) data as a curve in the (Γx, Γy)-plane, with the

diagonal line corresponding to Γx = Γy . The final two columns show the corresponding Lx and Ly . As before in Figure

2, the top row is Φ
d
= 0.4, the middle row Φ

d
= 0.8, and the bottom row Φ

d
= 1.2.

A useful information geometric method to quantify the time-evolution of PDFs in Figures 3-
4 is the information rate Γx, Γy in Eq. (2.7) and information length Lx,Ly in Eq. (2.6), shown
in Figure 6. As before in Figure 2, the top row is Φ

d = 0.4, the middle row Φ
d = 0.8, and the

bottom row Φ
d = 1.2. In the first two columns, Γx and Γy are shown as functions of time for

Qx = 10−5 (in red) and blue Qx = 10−4 (in blue). For all Φ’s, the overall amplitude of Γx and
Γy decrease over time due to the stochastic noises and phase-mixing, discussed above. It is
entertaining to see that Γx and Γy oscillate out of phase and cross each other occasionally,
manifesting the information-geometric self-regulatory oscillations. Alternatively, recalling that
Γx and Γy quantify how quickly the information changes in p(x, t) and p(y, t), respectively, these
oscillations signify the self-regulation of information change.

To see this more clearly, the third column shows the information portrait, where the red
(Qx = 10−5) data are plotted as a red curve in the (Γx, Γy)-plane, together with the diagonal
line Γx = Γy in black. Along the diagonal line Γx = Γy , the time-scales of the information change
3Note that bimodal PDFs here can be due to long-time spent around the inflection points of oscillations and can also result
from sinusoidal signals.
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in x and y match. When Γx >Γy , x dominates y, while for Γx <Γy , y dominates x. Thus, the
oscillations of Γx and Γy around this diagonal line in Figure 6 manifest the competition of the
time scales of the information change in x and y. Interestingly, for Φ

d = 1.2 in the bottom row,
Γx and Γy look quite symmetric around Γx = Γy , suggesting high-correlation and self-regulation.
The information portraits become less symmetric for Φ

d = 0.8, 0.4 due to larger bursts and initial
transients.

The final two columns show the corresponding Lx and Ly for Qx = 10−5 (in red) and blue
Qx = 10−4 (in blue). Lx and Ly increase in time due to non-zero Γx and Γy (see Eq. (2.6)),
respectively, towards their asymptotic values (as t→∞). For all Φ’s, the overall time-evolutions
of Lx and Ly are similar qualitatively. Quantitatively, Ly is larger than Lx for Φ/d= 0.4 due
to a large contribution to Γy from a narrow PDF p(y, t) (small σy) around t∼ 10− 30 (e.g., see
Figure 2). We recall that Γy roughly measures the change in a PDF relative to its width σy (the
uncertainty). As Φ/d increases, y no longer forms such a narrow PDF near y= 0, and x and y are
more strongly correlated exhibiting similar behaviour (with some phase shift), leading to more
similar values Lx and Ly . These results thus suggest that the strong correlation between x and y
through self-regulation can be inferred from the competition between Γx and Γy [30,31] or similar
behaviour of Lx and Ly [47].

(b) Time-dependent Φ: Forward and backward processes
Obtaining a stationary PDF requires a sufficiently long time4 and may not be realised in real
systems when some model parameters change on shorter time scales. It is thus of interest to
investigate the ELM dynamics for time-dependent parameters. As an example, we consider i)
the forward process of a ‘jump-up’ case where the input power Φ jumps discretely every 10 time
units taking the values Φ

d = [0.4, 0.6, 0.8, 1.0, 1.2]; and ii) the backward process of a ’jump-down’
case where Φ jumps down every 10 time units with Φ

d = [1.2, 1.0, 0.8, 0.6, 0.4]. Here, we choose
Φ to be symmetric under time-reversal to explore the possibility of hysteresis where the forward
and backward dynamics are not time reversible.

Results are shown in Figures 7-8, following the same conventions as in Figures 2 and 6,
respectively. The top and bottom rows are for the ‘jump-up’ and ‘jump-down’ cases, respectively.
Again, red and blue are for Qx = 10−5 and Qx = 10−4, respectively.
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Figure 7. As in Figure 2, the four columns show the averages 〈x〉 and 〈y〉, and the standard deviations σx and σy ,

as labeled above each column. The top row is the ‘jump-up’ case Φ
d
= [0.4, 0.6, 0.8, 1.0, 1.2], and the bottom row the

‘jump-down’ case Φ= [1.2, 1.0, 0.8, 0.6, 0.4]. Within each panel red is Qx = 10−5, and blue is Qx = 10−4.

4This would be of O(104) time units for Φd = 0.4 and Qx =Qy = 10−5, corresponding to O(10− 100) msecs. It will be
even longer for smallerQx, Qy .
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In Figure 7, the four columns show 〈x〉, 〈y〉, σx, and σy , as labeled above each column. For the
jump-up and jump-down cases, the oscillation periods of 〈x〉 and 〈y〉, respectively increase and
decrease with time, as expected from smaller periods for larger Φ. Within the total 50 time units,
the total number of oscillations is however larger for the jump-down case than for the jump-
up case. This means that the jump-down case should be run further to a smaller Φ value if we
wanted to recover the (longer) period oscillation similar to that at the beginning of the jump-up
case.5 Furthermore, the overall amplitude of σx and σy is smaller for the jump-down than for
the jump-up, suggesting stronger fluctuations in the jump-up. These are indications of hysteresis,
manifested by the asymmetry between forward and backward processes.
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Figure 8. As in Figure 6, the first two columns show Γx and Γy as functions of time, with red beingQx = 10−5 and blue

Qx = 10−4. The third column replots the red (Qx = 10−5) data as a curve in the (Γx, Γy)-plane, with the diagonal line

corresponding to Γx = Γy . The final two columns show the corresponding Lx and Ly . As in Figure 7, the top row is the

‘jump-up’ case, and the bottom row the ‘jump-down’ case.

Hysteresis is also inferred from Figure 8 with differences between the forward and backward
processes in the overall time-evolution of path-dependent information geometric diagnostics –
the information rates Γx and Γy , and information lengths Lx and Ly . In particular, self-regulatory
oscillations are more clearly manifested for the backward process where Γx and Γy exhibit more
crossings around Γx = Γy , leading to more similar evolution of Lx and Ly . In comparison with
the forward process, the backward process proceeds with smaller values of σx and σy (weaker
fluctuations), as noted above. This then leads to larger values of Lx and Ly for the backward
process compared with the forward process since Lx and Ly are the information geometric
(dimensionless) distance measuring roughly the total change in a PDF relative to the standard
deviation. Finally, it is interesting that Γx suddenly increases (decreases) every ten time units for
the forward (backward) process whenΦ jumps up (down). This demonstrates that the information
rate is sensitive to changes in the system [37,43].

6. Conclusions
We proposed and investigated a stochastic ELM model in the limit where the poloidal flows
are negligible compared to the pressure gradient by using time-dependent PDF and path-
dependent information geometry analysis. We calculated the exact time-dependent PDFs of
pressure gradient and magnetic fluctuation amplitude by numerically solving the Fokker-Planck
equation for different input energy fluxes and stochastic noise amplitudes. Stochastic noises were
shown to introduce phase-mixing by mixing different random trajectories, with a dramatic effect
5This can be viewed as a lower threshold Φ for the backward process.
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on mitigating large ELMs with a slight increase in ELM frequency for a small input power
Φ/d= 0.4 in the initial evolution, reminiscent of the ELM mitigation by magnetic perturbation
or pellet injections [35,36,56], followed by oscillation (ELM) suppression [55].

For larger Φ/d= 0.8, 1.2, stochastic noise mainly reduced the oscillation amplitude without
much effect on oscillation frequency, indicative of ELM suppression. The ELM suppression could
be due to the stabilisation of the pressure profile by stochastic noise (e.g., as stochastic magnetic
field increases transport, reducing the pressure gradient [57]). A more detailed study on the effect
of stochastic noise strength on the frequency and amplitude of ELMs as well as the bifurcation
from ELM mitigation to suppression for a sufficiently large stochastic noise [55] is left for future
work.

From the exact time-dependent PDFs, we calculated the path-dependent information rate and
information length and showed that the self-regulation of the pressure gradient and magnetic
fluctuations are manifested by the competition of their information rates (e.g. as oscillations
about Γx = Γy in the information portrait) while the sudden change to the system is reflected
in an abrupt change in the information rate. Furthermore, for time-dependent energy fluxes, we
compared the results for the forward and backward processes where the energy flux increased
and decreased, respectively, in discrete jumps, highlighting hysteresis not only in usual physical
variables but also in information geometry.

While the results in this paper are limited to the case without poloidal flows, the effects
of stochastic noises as well as self-regulatory information geometry are likely to be similar in
fuller models. Obtaining high-resolution time-dependent PDFs for ELMs including the effect
of poloidal flows requires considerably more expensive computational resources and time and
will be left for future work. Finally, we note that our methods can in principle be applied for
the analysis of data from other turbulence models [46,48] or observational data [58,59] from
experiments by sampling different (temporal and/or spatial) selections of data, for instance, using
moving-time windows.
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