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Abstract 

Strain gauge type pressure sensors are widely used in different branches of industry to measure 
pressure from very low to very high (1400 Mpa) values. This article investigates a strain gauge 
type pressure sensor that uses silicon oil within its housing to transmit working pressure from 
the external environment to a sensing plate. An important failure mode arises from loss/leakage 
of the silicon oil, whereby a portion of the internal volume is replaced by gas, usually air. 
Coupled nonlinear governing equations have been derived and solved in both static and 
dynamical states to describe the behavior of the external membrane, the interface oil including 
pockets of gas, and the sensing plate. Nonlinear behavior arises from the plate and membrane 
midplane stretching, and of course the behavior of the gas. The resulting model describes how 
oil loss affects the sensor performance and changes the sensor output and pressure measurable 
range. 
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1 Introduction  

Accurate measurement of pressure plays a key role in many applications such as automotive, 
industrial, aerospace, biomedical, etc. Accordingly, pressure sensors play a pivotal role in such 
systems [1]–[4]. Manometers, bourdon tubes, and diaphragms were among the first generation 
of pressure sensing technology, based on converting pressure into the mechanical movement 
of an indicator [5]. 

The subsequent development of pressure measurement technology led to the creation of 
electro-mechanical pressure transducers in which the input pressure is directly converted into 
an electrical signal [5]–[8]. It is useful to draw the widely-used distinction between the primary 
sensing element, the transducer, which generates an initial signal (usually electrical) directly 
from the property being measured (here pressure), and the transmitter, which includes the 
additional elements (process interface, housing, signal conditioning, analog-to-digital 
conversion, processing software, linearization, external communication) to implement the 
complete measurement task. The term ‘sensor’ can generally be interpreted to mean either the 
transducer or the transmitter; in this paper, only the transduction of pressure to an initial 
electrical signal is considered, and so the terms sensor and transducer are used interchangeably. 

Today, the most commonly used pressure transducers are piezo or tenso-resistive (or strain 
gauge) [5], [6], [9], [10], capacitive [2], [11]–[13], and piezoelectric [14], [15]. Each of these 
pressure transducer types operates on simple physical properties and have their special own 



capabilities. Capacitive pressure sensors are based on detecting a change in capacitance due to 
proportionally applied pressure. In piezoelectric transducers, the piezoelectric effect is a 
property of certain materials whereby an electrical charge is generated when mechanical stress 
is applied; this effect is a reversible process [5], [6], [9], [11]. Piezoresistive transducers have 
several advantages over other pressure sensing technologies, such as high sensitivity, low cost, 
small size, and an easy fabrication process, so that they are the most widely used in pressure 
measurement applications [6]. They and their corresponding transmitters may be further 
classified in various ways, including the material used for piezo-resistors [16], [17], the 
material used to build diaphragms [16], [18], [19], the wafer type [20], the method of 
micromachining the diaphragm [18] as well as the type of pressure to be measured (absolute, 
gauge, differential). A useful literature review of design principles and considerations for 
piezoresistive pressure transducers and transmitters is provided by Kumar et.al. [6].  

In piezoresistivity, the transducer resistance changes due to strain caused by mechanical 
loading. This characteristic is used in many measuring devices including pressure sensors, 
accelerometers, inertial sensors, strain gauges, and cantilever force sensors [21]. A 
piezoresistive pressure transducer typically consists of a diaphragm or a plate that is deflected 
proportionally to the applied pressure. In some piezoresistive transducers, the pressure applied 
by the industrial process to the external diaphragm is transferred to a stiffer plate via an 
interface fluid such as silicon oil. This design typically restricts the maximum deflection of the 
diaphragm in order to prevent mechanical degradation. Figure 1 shows a schematic view of 
this type of pressure sensor. The plate (lower diaphragm) includes strain gauges to measure the 
deformation by converting it to an electrical output signal. The fluid in the cavity between the 
two diaphragms (the interface volume) is by design incompressible. Any compressibility of the 
fluid will result in an incomplete transfer of pressure to the lower plate as energy is expended 
in compressing the fluid. This in turn leads to errors in the resulting pressure measurement. 

An important failure mode for pressure sensors of this type can occur when the transducer is 
not completely full of the incompressible fluid. This may arise due to incomplete filling during 
the fabrication process, or as a result of a leakage arising from mechanical damage. This 
condition may result in disruption of the measurement performance of the pressure sensor. The 
authors have not been able to discover previous work examining this condition. This paper 
shows an analytical and numerical approach for modeling oil insufficiency in a strain gauge 
type pressure sensor in both static and dynamic cases, respectively. The air between the two 
diaphragms is modeled as an ideal gas. Also, the initial deflections of the membrane and 
sensing is investigated to determine the determine the change in the pressure range measured 
by this sensor. The nonlinear governing equations to the system are obtained and solved, and 
the influence of an air layer on the sensor’s performance is studied in the following sections. 



         
Fig.1: Cross-sectional view of the investigated pressure sensor. 

2 Modeling 

A schematic view of a strain gauge pressure sensor is shown in Fig. (1). The sensor comprises 
three main components, the upper diaphragm or isolator membrane, the lower diaphragm or 
plate, on which the strain gauge sensors are installed, and the interface fluid which transfers 
the applied pressure from the membrane to the plate. In an ideal case, the interface volume 
between two plates is filled with an incompressible fluid such as silicon oil. However, in some 
cases, this interface volume is filled with a mixture of oil and gas (in this study the air and gas 
are equivalent), which causes the behavior of the interface liquid to be compressible and affects 
the performance of the transducer. In this study, it is considered that the air bubbles in the oil 
are combined and form a thin layer of air inside the pressure sensor. Also, should be mentioned 
that the content investigated here may generalize to any other gas that obeys the ideal gas law. 
This paper deals with the static and dynamic investigation of the sensor under a pressure 
applied to the membrane. Given the uniform pressure distribution on the membrane as well as 
on the plate, it can be assumed that the deformation of the membrane and plate is only a 
function of their radial characteristics, therefore, the problem can be modeled as axisymmetric.  



 

Fig.2: A schematic view of the pressure sensor under an applied pressure 𝑃𝑖𝑛 on 
the membrane. 

 

Figure (2) introduces the main variables of the model, from which the following equations can 
be derived in the general dynamic form [10], [22], [23]: 
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where ∇2 and ∇4= ∆2 are Laplacian and bi-Laplacian operator respectively and, for 
axisymmetric conditions, can be expressed as follows: 
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Here 𝑤 and 𝜓 are the transverse displacement of the membrane and the plate, respectively. 𝑟 

and 𝜉 denote the radial position of the membrane and plate respectively. 𝑃 𝐺𝑎𝑠 is the absolute 

pressure of the gas, 𝑉𝐺𝑎𝑠 is the gas volume, 𝑇𝐺𝑎𝑠, is the gas temperature, 𝑛 is the number of 

moles of air and 𝑅̅, is the universal gas constant. 𝐷𝑚 =
𝐸𝑚ℎ𝑚

3

12(1−𝜐𝑚
2 )

, and  𝐷𝑝 =
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 are the 

flexural rigidity of the membrane and plate respectively, where 𝐸, ℎ and 𝜈 represent Young’s 
modulus, the diaphragm thickness, and Poisson’s ratio. 𝑅𝑚 and 𝑅𝑝 are the membrane and plate 

radiuses, respectively. 𝐶𝑚 and 𝐶𝑝 are equivalent damping on the membrane and sensing plate, 

respectively. The second terms of the left-hand side of equations (1) and (2) represent the 
midplane stretching. Midplane stretching is negligible for small deflections of the membrane 
and plate, however, it can be significant for large deflections. Equation (3) is the time-varying 



ideal gas state equation that relates the gas pressure to its volume and temperature. The 
boundary conditions for governing equations (1) and (2) arise from the fact that the plate and 
membrane must both be fixed or clamped at the edges so that the deflection and slope are zero 
at the boundary. So, mathematically, boundary and initial conditions are expressed as follows: 
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(5) 

Besides, the solution for 𝑤(𝑟, 𝑡) and 𝜓(𝜉, 𝑡) should be finite at all points in the solution domain. 
Here we investigate the air layer in the interface volume, but the analysis can be applied for 
any gas that follows the ideal gas law. In the absence of any input gauge pressure applied to 

the membrane, the volume of air is denoted by 𝑉𝐺𝑎𝑠
(0)

, while for an input absolute pressure 𝑃𝑖𝑛 

(𝑃𝑖𝑛(𝑡) = 𝑃𝑔𝑎𝑢𝑔𝑒(𝑡) + 𝑃𝑎𝑡𝑚) the volume of air changes to 𝑉.  The volume changes of the gas 

are also dependent upon the deflection values of the plate and membrane so that in an 
isothermal condition the relationship can be expressed as follows:  
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where 𝑔𝐺𝑎𝑠, is the equivalent thickness of the gas film. ∆𝑉𝑚(𝑡) and ∆𝑉𝑝(𝑡) are the variations 

of the interface volume related to the membrane and plate deflections, respectively. Putting 
equation (7) into equation (3) the ideal gas state equation takes the following form: 
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(8) 

Substituting 𝑃 𝐺𝑎𝑠 from equation (8) into equations (2) and (3) the differential equations of the 
membrane and plate static deflections in term of applied pressure can be written as: 
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As can be seen, equations (9) and (10) are nonlinear and coupled equations. Solving these 
equations for a given input pressure provides the sensing plate deformation as a mechanical 

output signal. It is worth mentioning that 𝑔𝐺𝑎𝑠
(0)

 used here is an equivalent thickness of the air 

layer, because in practice the air may be distributed at multiple sites within the interface 
volume.  

3 Numerical Analysis 

Given the nonlinearity in the governing equations introduced by the gas pressure and mid-plane 
stretching terms, the development of an analytical solution is not practical, and therefore we 
must use a numerical method for solving the governing equations of the system. A well-defined 
linear equation has a unique solution whereas a nonlinear one can have more than one solution.  
However, some of the solutions of a nonlinear system could be imaginary or physically 
impossible and some of them could be physically possible but unstable. 

Accordingly, the accuracy and reliability of the solution depends strongly on the selection of a 
suitable numerical method. One of the most widely applied numerical methods for solving 
nonlinear systems is by linearizing the nonlinear terms about a known point of the system, but 
this method can introduce significant errors, especially when the system has large variation 
around the selected point. Here the numerical analysis is divided into two main subsection 1) 
static and dynamic analysis. 

3.1 Static Analysis 

In the static analysis the time dependent terms in equations (9) and (10) are eliminated. To 
overcome the difficulties non-linearity of the equations the linearization strategy is used. Here, 
in order to reduce the errors introduced by linearization, a step-by-step linearization method 
(SSLM) is used. Details are discussed in [24]. Note that we retain the assumption that the 
temperature is constant. To assist in simplifying the form of the equations, the following 
definitions are introduced: 
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Assuming a known condition at step 𝑘 for an input pressure, 𝑝̅𝑖𝑛
𝑘 , parameter values can be 

calculated for step 𝑘 + 1 as following: 

𝑤𝑘+1 = 𝑤𝑘 + 𝛿𝑤 = 𝑤𝑘 + 𝜙(𝑟),   𝜓𝑘+1 = 𝜓𝑘 + 𝛿𝜓 = 𝜓𝑘 + 𝛾(𝜉) (12) 

when the pressure is increased as follows: 
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Considering the above relationships and definitions, differential equations (9) and (10) at step 

𝑘 + 1 can be rewritten as follows: 
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where the axial stretching forces are calculated as follows:  
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Noting that 𝐿 and 𝑇 are linear operators they can be expanded as follows: 

𝐿(𝑤𝑘+1) = 𝐿((𝑤𝑘) + 𝜙(𝑟)) = 𝐿(𝑤𝑘) + 𝐿(𝜙(𝑟)) ,𝑇(𝑤𝑘+1)   

= 𝑇(𝑤𝑘) + 𝑇(𝜙(𝑟)) 

𝐿(𝜓𝑘+1) = 𝐿(𝜓𝑘) + 𝐿(𝛾(𝜉))   ,    𝑇(𝜓𝑘+1) = 𝑇(𝜓𝑘) + 𝑇(𝛾(𝜉)) 

 
(17) 

 

for the nonlinear term on the right-hand side in step 𝑘 + 1 we have:  
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that can be simplified as follows: 
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𝛿(∆𝑉𝑚) and 𝛿(∆𝑉𝑝) can be found based on the calculus of variations theory as follows: 
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(22) 

For linearization of the nonlinear term (𝑁𝑇𝑘+1), Taylor's expansion about step 𝑘 is used as 
follows:  
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𝑘+1 − Δ𝑉𝑚

𝑘)

(𝑉𝐺𝑎𝑠
(0)

− (Δ𝑉𝑚
𝑘 − Δ𝑉𝑝

𝑘))
2

−
𝑛𝑅̅𝑇𝐺𝑎𝑠(Δ𝑉𝑝

𝑘+1 − Δ𝑉𝑝
𝑘)

(𝑉𝐺𝑎𝑠
(0)

− (Δ𝑉𝑚
𝑘 − Δ𝑉𝑝

𝑘))
2 + ⋯𝑁𝑇𝑘+1

≅ 𝑁𝑇𝑘 +
𝑛𝑅̅𝑇𝐺𝑎𝑠𝛿(Δ𝑉𝑚)

(𝑉𝐺𝑎𝑠
(0)

− (Δ𝑉𝑚
𝑘 − Δ𝑉𝑝

𝑘))
2 −

𝑛𝑅̅𝑇𝐺𝑎𝑠𝛿(Δ𝑉𝑝)

(𝑉𝐺𝑎𝑠
(0)

− (Δ𝑉𝑚
𝑘 − Δ𝑉𝑝

𝑘))
2 

 
(23) 

 
 
 
 
 

(24) 

Similarly, the nonlinear term on the left-hand side of Eq. (16) representing the stretching term 
can be linearized as follows: 

𝑁𝑎𝑚
𝑘+1𝑇(𝑤𝑘+1)=𝑁𝑎𝑚

𝑘 𝑇(𝑤𝑘) + 𝑁𝑎𝑚
𝑘 𝑇(𝜙(𝑟)) + 𝛿𝑁𝑎𝑚𝑇(𝑤𝑘)+𝛿𝑁𝑎𝑚𝑇(𝜙(𝑟)) (25) 

 
𝑁𝑎𝑝

𝑘+1𝑇(𝜓𝑘+1)=𝑁𝑎𝑝
𝑘 𝑇(𝜓𝑘) + 𝑁𝑎𝑝

𝑘 𝑇(𝛾(𝜉)) + 𝛿𝑁𝑎𝑝𝑇(𝜓𝑘)+𝛿𝑁𝑎𝑝𝑇(𝛾(𝜉)) (26) 

For a small change ∆𝑝̅𝑖𝑛 in the applied pressure, 𝛿𝑁 is sufficiently small that the nonlinear 
terms can be neglected, so that the left-hand-side too can be considered linear. 

One more applying the calculus of variations theory, changes in the axial stretching forces are 
given by: 

𝛿𝑁𝑎𝑚 =
𝐸𝑚ℎ𝑚

1 − 𝜐𝑚
2
∫ (

𝜕𝑤

𝜕𝑟
)|

𝑤=𝑤𝑘
(
𝜕𝜙

𝜕𝑟
) 𝑑𝑟

𝑅𝑚

0

 

𝛿𝑁𝑎𝑝 =
𝐸𝑝ℎ𝑝

1 − 𝜐𝑝
2
∫ (

𝜕𝜓

𝜕𝑟
)|

𝜓=𝜓𝑘
(
𝜕𝛾

𝜕𝜉
)𝑑𝜉

𝑅𝑝

0

 

 
(27) 
 

 
 

(28) 

Using a first-order truncation of equation (24) and applying equations (21), (22), (25), (26), 
(27), and (28) the following system of linear equations is obtained:   

𝐷𝑚𝐿(𝜙(𝑟))− (𝑁𝑎𝑚
𝑘 𝑇(𝜙(𝑟) +  𝛿𝑁𝑎𝑚𝑇(𝑤𝑘))

= −𝐻(𝑘) ∫ 𝜙(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

+ 𝐻(𝑘) ∫ 𝛾(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

+ 𝑑𝑃 𝑖𝑛 

𝐷𝑝𝐿(𝛾(𝜉))− (𝑁𝑎𝑝
𝑘 𝑇 (𝛾(𝜉) +  𝛿𝑁𝑎𝑝𝑇(𝜓𝑘)) = 𝐻(𝑘) ∫ 𝜙(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

− 𝐻(𝑘) ∫ 𝛾(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

 

 
 

(29) 
 
 

(30) 

where 𝐻𝑘 is defined as the following form: 

𝐻𝑘 =
2𝜋𝑛𝑅̅𝑇𝐺𝑎𝑠

(𝑉𝐺𝑎𝑠
(0)

− (Δ𝑉𝑚
𝑘 − Δ𝑉𝑝

𝑘))
2 

 
(31) 

There are several methods available to solve the system of boundary value differential 
equations (29) and (30) such as finite difference and weighted residual methods. In the present 
paper, the Galerkin weighted residual method is used. In Hilbert Space (Infinite Dimensional 



Functions Space) a solution of the bounded differential equations (29) and (30) satisfying the 
given boundary conditions can be expressed in the form of infinite series in terms of space 
basis functions 

𝜙(𝑟) = ∑𝛼𝑚𝑖𝜇𝑖(𝑟)   ,    𝛾(𝜉) = ∑𝛼𝑝𝑖Ω𝑖(𝜉)

∞

𝑖=1

∞

𝑖=1

 
 
(32) 

where 𝜇𝑖(𝑟) and Ω𝑗(𝜉) are the basis functions or mode shapes of the membrane and the sensing 

plate respectively which satisfy the given boundary conditions. According to the Galerkin 
weighted residual method, the order of the function space can be reduced to a finite number, 
and the solution can be expressed in the following form:   

𝜙(𝑟) = ∑𝑎𝑚𝑖𝜇𝑖(𝑟)   ,    𝛾(𝜉) = ∑𝑎𝑝𝑗Ω𝑗(𝜉)

𝑀

𝑗=1

𝑁

𝑖=1

 
 

(33) 

Substituting relationships (33) into the system of equations (29) and (30), a linear set of 
equations is formed as follows: 

∑𝐷𝑚𝐿(𝑎𝑚𝑖𝜇𝑖(𝑟))− 𝑁𝑎𝑚
𝑘

𝑁

𝑖=1

∑𝑇(𝑎𝑚𝑖𝜇𝑖(𝑟))

𝑁

𝑖=1

−
𝐸𝑚ℎ𝑚

1 − 𝜐𝑚
2
𝑇(𝑤𝑘) ∑𝑎𝑚𝑖

𝑁

𝑖=1

∫ (
𝜕𝑤

𝜕𝑟
)|

𝑤=𝑤𝑘
(
𝜕𝜇

𝜕𝑟
)𝑑𝑟

𝑅𝑚

0

= −∑ 𝐻𝑘 ∫ 𝑎𝑚𝑖𝜇𝑖(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

𝑁

𝑖=1

+ ∑𝐻𝑘 ∫ 𝑎𝑝𝑗Ω𝑗(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

+

𝑀

𝑗=1

∆𝑃 𝑖𝑛 + 𝜀1 

∑𝐷𝑝𝐿(𝑎𝑝𝑗Ω𝑗(𝜉)) − 𝑁𝑎𝑝
𝑘

𝑀

𝑗=1

∑𝑇(𝑎𝑝𝑗Ω𝑗(𝜉))

𝑀

𝑗=1

−
𝐸𝑝ℎ𝑝

1 − 𝜐𝑝
2
𝑇(𝜓𝑘) ∑𝑎𝑝𝑗

𝑀

𝑗=1

∫ (
𝜕𝜓

𝜕𝜉
)|

𝑤=𝑤𝑘

(
𝜕Ω

𝜕𝜉
) 𝑑𝜉

𝑅𝑝

0

= −∑  𝐻𝑘 ∫ 𝑎𝑚𝑖𝜇𝑖(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

𝑁

𝑖=1

+ ∑𝐻𝑘 ∫ 𝑎𝑝𝑗Ω𝑗(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

𝑀

𝑗=1

+ 𝜀2 

 
 

 
 
 
 
 

(34) 
 
 
 
 
 

 
 
 
 
 
(35) 

 

here 𝜀1 and 𝜀2, are the errors or residues caused by the reduction in dimension of the function 
space or Hilbert space. Based on the Galerkin weighted residual method these errors are 

removed using the following steps. Equation (34) is multiplied into 𝜇𝑗𝑗(𝑟) and then is 

integrated over 0 to 𝑅𝑚. Similarly, equation (35) is multiplied into Ω𝑖𝑖(𝜉), and then is integrated 

over 0 to 𝑅𝑝. Finally, a set of algebraic equations is generated as follows: 



∑∫ 𝐷𝑚𝜇𝑗𝑗(𝑟)𝐿(𝑎𝑚𝑖𝜇𝑖(𝑟))𝑑𝑟

𝑅𝑚

0

−

𝑁

𝑖=1

∑∫ 𝑁𝑎𝑚
𝑘 𝜇𝑗𝑗(𝑟)𝑇(𝑎𝑚𝑖𝜇𝑖(𝑟))

𝑅𝑚

0

𝑁

𝑖=1

𝑑𝑟

− ∑∫ 𝑎𝑚𝑖 (
𝐸𝑚ℎ𝑚

1 − 𝜐𝑚
2
𝑇(𝑤𝑘) ∫ (

𝜕𝑤

𝜕𝑟
)|

𝑤=𝑤𝑘
(
𝜕𝜇

𝜕𝑟
) 𝑑𝑟

𝑅𝑚

0

)

𝑅𝑚

0

𝑁

𝑖=1

𝑑𝑟

= −∑∫ 𝜇𝑗𝑗(𝑟)(𝐻𝑘 ∫ 𝑎𝑚𝑖𝜇𝑖(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

)𝑑𝑟

𝑅𝑚

0

 

𝑁

𝑖=1

+ ∑∫ 𝜇𝑗𝑗(𝑟)(𝐻𝑘 ∫ 𝑎𝑝𝑗Ω𝑗(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

)𝑑𝑟

𝑅𝑚

0

+ ∫ 𝜇𝑗𝑗(𝑟)∆𝑃 𝑖𝑛𝑑𝑟

𝑅𝑚

0

𝑀

𝑗=1

 

∑∫ 𝐷𝑝Ω𝑖𝑖(𝜉)𝐿(𝑎𝑝𝑗Ω𝑗(𝜉))

𝑅𝑝

0

𝑑𝜉 −

𝑀

𝑗=1

∑∫ 𝑁𝑎𝑝
𝑘 Ω𝑖𝑖(𝜉)

𝑅𝑝

0

𝑇(𝑎𝑝𝑗Ω𝑗(𝜉))𝑑𝜉

𝑀

𝑗=1

− ∑∫ Ω𝑖𝑖(𝜉)𝑎𝑝𝑗

𝐸𝑝ℎ𝑝

1 − 𝜐𝑝
2
𝑇(𝜓𝑘) (∫ (

𝜕𝜓

𝜕𝜉
)|

𝑤=𝑤𝑘

(
𝜕Ω

𝜕𝜉
)𝑑𝜉

𝑅𝑝

0

)𝑑𝜉

𝑅𝑝

0

𝑀

𝑗=1

= −∑ ∫ Ω𝑖𝑖(𝜉)(𝐻𝑘 ∫ 𝑎𝑚𝑖𝜇𝑖(𝑟)𝑟𝑑𝑟

𝑅𝑚

0

)

𝑅𝑝

0

𝑁

𝑖=1

𝑑𝜉

+ ∑∫ Ω𝑖𝑖(𝜉)(𝐻𝑘 ∫ 𝑎𝑝𝑗Ω𝑗(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

)

𝑅𝑝

0

𝑀

𝑗=1

𝑑𝜉 

 
 

 
 
 
 
 
 

(36) 
 

 
 
 
 
 
 
 
 
 
 
 
 

(37) 

equations (36) and (37) define a system of linear algebraic equations with 𝑀 + 𝑁 unknowns 

and 𝑀 + 𝑁 equations. Solving this set of equations for each step of applying pressure gives the 
mechanical output of the pressure sensor.  

3.1.2 Pressureless State-Related Deflections (Initial Deflections) 

Consider figure (1) suppose no pressure is applied yet, two separate states are imaginable for 
the situation of the pressure sensor in terms of the deflections of the movable parts (membrane 
and sensing plate). 1) One, the state that the membrane and the sensing plate have no 

deflections, in other words, the interface volume, 𝑉𝐼𝑛𝑡, (the total volume of the interface space 
before filling) completely occupied by silicone oil and the air (e.g., 85 % oil with 15 % air). 2) 
And one the state that the membrane and sensing plate have a little deflection which is related 
to incomplete filling of the sensor (e.g., 75 % oil with 15 % air), here the incomplete filling is 
in terms of the filling the total interface volume. In the present paper, these deflections are 
called the initial deflections (Note that this naming should not be confused with the dynamic 
viewpoint, our mean of initial deflections is only related to deflections in the pressureless state). 
In the case of the existence of the initial deflections for the membrane and plate, the solution 
procedure is the same as the implemented method, recently. The only difference is related to 
the initial state (equilibrium state) of the pressure sensor should be determined. At the initial 

state the volume of air, 𝑉𝐺𝑎𝑠
𝐸𝑞 , (the volume of air when there is no applied gauge pressure), is 

calculated as follows: 



      𝑉𝐺𝑎𝑠
𝐸𝑞 = 𝑉𝐼𝑛𝑡 − 𝑉𝑂𝑖𝑙

𝐸𝑞 − ∆𝑉𝐼𝑛𝑖 = 𝑉𝐼𝑛𝑡 − 𝑉𝑂𝑖𝑙
𝐸𝑞 − 2𝜋 [∫ 𝑤𝐼𝑛𝑖(𝑟)𝑟𝑑𝑟 −∫ 𝜓𝐼𝑛𝑖(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

𝑅𝑚

0

] 

 

(38) 

where 𝑉𝑂𝑖𝑙
𝐸𝑞 and ∆𝑉𝐼𝑛𝑖 are denote the volume of the silicone oil and the change of the total 

interface volume due to the initial deflections of the membrane and sensing plate. Because of 

the incompressibility of the silicone oil the value of 𝑉𝑂𝑖𝑙
𝐸𝑞 is remained constant while the values 

of gas volumes depend on the applied pressure and the model parameters. Now suppose that in 
the presence of the initial deflections, the pressure applies on the membrane, so in this state the 
volume of the air is given by: 

    𝑉𝐺𝑎𝑠 = 𝑉𝐺𝑎𝑠
𝐸𝑞 − ∆𝑉 = 𝑉𝐺𝑎𝑠

𝐸𝑞 − 2𝜋 [∫ 𝑤(𝑟)𝑟𝑑𝑟 −∫ 𝜓(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

𝑅𝑚

0

] 

 
(39) 

where 𝑉𝐺𝑎𝑠
𝐸𝑞  is given by equation (40). Also, the deflections can be written as:   

𝑤(𝑟) = 𝑤𝑝
𝐺(𝑟) + 𝑤𝐼𝑛𝑖(𝑟)   and   𝜓(𝜉) = 𝜓𝑝

𝐺(𝜉) + 𝜓𝐼𝑛𝑖(𝜉) (40) 

where 𝑤𝑝
𝐺(𝑟) and 𝜓𝑝

𝐺(𝜉) are the membrane and plate deflections caused by the applied gauge 

pressure, respectively. As we discussed, the principle of the SSL method is based on 
linearization around a known situation of the system. So, for applying the SSL method to 
linearization and then using the Galerkin method we need to a known point of the system. Here 
the equilibrium point is used. The equilibrium point is the state of the pressure sensor where 
the applied gauge pressure is zero. For the equilibrium state the following system of equations 
should be solved:  

𝐷𝑚∇
4𝑤𝐼𝑛𝑖 −

𝐸𝑚ℎ𝑚

1 − 𝜐𝑚
2
(

1

2
∫ (

𝜕𝑤𝐼𝑛𝑖

𝜕𝑟
)
2

𝑅𝑚

0

𝑑𝑟)∇2𝑤𝐼𝑛𝑖 = −𝑃 𝐺𝑎𝑠
𝐸𝑞 + 𝑃 𝑎𝑡𝑚 

 
(41) 

𝐷𝑝∇
4𝜓𝐼𝑛𝑖 −

𝐸𝑝ℎ𝑝

1 − 𝜐𝑝
2
(

1

2
∫ (

𝜕𝜓𝐼𝑛𝑖

𝜕𝜉
)
2

𝑅𝑝

0

𝑑𝜉)∇2𝜓𝐼𝑛𝑖 = 𝑃 𝐺𝑎𝑠
𝐸𝑞 − 𝑃 𝑎𝑡𝑚 

 
(42) 

𝑃 𝐺𝑎𝑠
𝐸𝑞 𝑉𝐺𝑎𝑠

𝐸𝑞 = 𝑛𝑅̅𝑇𝐺𝑎𝑠 (43) 

𝑉𝐺𝑎𝑠
𝐸𝑞 = 𝑉𝐼𝑛𝑡 − 𝑉𝑂𝑖𝑙

𝐸𝑞 − 2𝜋 [∫ 𝑤𝐼𝑛𝑖(𝑟)𝑟𝑑𝑟 −∫ 𝜓𝐼𝑛𝑖(𝜉)𝜉𝑑𝜉

𝑅𝑝

0

𝑅𝑚

0

] 

 

(44) 

where they form 4 equation with 5 unknown parameters (𝑤𝐼𝑛𝑖, 𝜓𝐼𝑛𝑖, 𝑃 𝐺𝑎𝑠
𝐸𝑞 , 𝑉𝐺𝑎𝑠

𝐸𝑞  and 𝑛). Hence, 

the problem of determining the equilibrium state needs one input. The input for this problem 

can be considered the volume of the air at the equilibrium state (𝑉𝐺𝑎𝑠
𝐸𝑞 ). The value of 𝑉𝐺𝑎𝑠

𝐸𝑞  can 

be approximated by weighing the pressure sensor assembly via a very sensitive scale. Note that 
since usually the plate is much stiffer than the membrane, can guess the dominant initial 
deflection is associates with the membrane. 

3.1.3 Determination of the equilibrium state for a given 𝑉𝐺𝑎𝑠
𝐸𝑞 = 𝑉𝐺𝑎𝑠

∗  and 𝑉𝑂𝑖𝑙
𝐸𝑞 = 𝑉𝑂𝑖𝑙

∗  



At first, note that, since the initial deflections are relatively small (especially for the sensing 
plate), the stretching terms can be ignored. So, we can write: 

(
𝜕𝑤𝐼𝑛𝑖

𝜕𝑟
)
2

≅ 0, (
𝜕𝜓𝐼𝑛𝑖

𝜕𝜉
)
2

≅ 0 
 

(45) 

By this assumption that the values of the volume of the air and silicone oil at the equilibrium 
point are known we can guess the solution form as the following function summations: 

𝑤𝐼𝑛𝑖
∗ (𝑟) = ∑𝑎𝑖

𝑚

𝑀

𝑖=1

𝑓𝑖(𝑟), 𝜓𝐼𝑛𝑖
∗ (𝜉) = ∑𝑎𝑘

𝑝

𝑁

𝑘=1

𝑔𝑘(𝜉) 
 

(46) 

where the functions 𝑓𝑖(𝑟) and 𝑔𝑘(𝜉) are the shape functions of the deflection of the membrane 
and sensing plate, respectively. Now, by substituting the relationships (46) into differential 
equations (41), (42), and (44) we can reduce the system to an algebraic system for the unknown 
coefficients. After substituting, equations (41) and (42) are multiplied into their corresponding 

shape functions. Integrating over their interval and replacing the parameter 𝑃 𝐺𝑎𝑠
𝐸𝑞  from equation 

(43) into equations (41) and (42) we get the following system of algebraic equations: 

∑𝐴𝑖𝑗

𝑀

𝑖=1

𝑎𝑖
𝑚 + 𝑞𝑗

𝑚𝑃 𝐺𝑎𝑠
𝐸𝑞 = 𝑞𝑗

𝑚𝑃 𝑎𝑡𝑚,    𝑗 = 1,2, … , 𝑀 
 

(47) 
∑𝐵𝑘𝑙

𝑁

𝑘=1

𝑎𝑘
𝑝 − 𝑞𝑙

𝑝𝑃 𝐺𝑎𝑠
𝐸𝑞 = −𝑞𝑙

𝑝𝑃 𝑎𝑡𝑚,    𝑙 = 1,2, … , 𝑁 

∑𝐹𝑖

𝑀

𝑖=1

𝑎𝑖
𝑚 −∑𝐺𝑘

𝑁

𝑘=1

𝑎𝑘
𝑝 =

𝑉𝐼𝑛𝑡 − (𝑉𝐺𝑎𝑠
∗ + 𝑉𝑂𝑖𝑙

∗ )

2𝜋
 

 

where:  

𝐴𝑖𝑗 = 𝐷𝑚 ∫ 𝑓𝑗(𝑟)

𝑅𝑚

0

𝛻4𝑓𝑖(𝑟)𝑑𝑟, 𝑞𝑗
𝑚 = ∫ 𝑓𝑗(𝑟)

𝑅𝑚

0

𝑑𝑟, 𝐹𝑖 = ∫ 𝑟𝑓𝑖(𝑟)

𝑅𝑚

0

𝑑𝑟 
 

(48) 

𝐵𝑘𝑙 = 𝐷𝑝 ∫ 𝑔𝑙(𝜉)

𝑅𝑝

0

𝛻4𝑔𝑘(𝜉)𝑑𝜉, 𝑞𝑙
𝑝 = ∫ 𝑔𝑙(𝜉)𝑑𝜉,

𝑅𝑝

0

 𝐺𝑘 = ∫ 𝜉𝑔𝑘(𝜉)𝑑𝜉

𝑅𝑝

0

 

𝑗 = 1,2, … , 𝑀   and   𝑙 = 1,2, … , 𝑁 

The system (50) is a set of algebraic equations with (𝑀 + 𝑁 + 1) equations and (𝑀 + 𝑁 + 1) 

unknown variables (𝑎𝑖
𝑚s, 𝑎𝑘

𝑝s and 𝑃 𝐺𝑎𝑠
𝐸𝑞 ). The third equation from the system (51) is the volume-

based coupling equation. 

3.2 Dynamic Analysis 

In the following section, dynamic analysis of the pressure sensor is investigated. For this 
purpose, equations (9) and (10) should be solved simultaneously. To reduce the system of the 
non-linear partial differential equations into a lumped model the solution of the system is 
considered by the following expansions: 



𝑤(𝑟, 𝑡) = ∑𝑊𝑖(𝑡)

𝑀

𝑖=1

𝑅𝑖(𝑟),       𝜓(𝜉, 𝑡) = ∑𝜂𝑙(𝑡)Ψ𝑙(𝜉)

𝑁

𝑙=1

 (49) 

where 𝑅𝑖(𝑟) and Ψ𝑙(𝜉) are the 𝑖th and 𝑙th mode shapes of the membrane and sensing plate, 
respectively. Substitution of (49) into equations (9) and (10) and neglecting the stretching terms 
the following equations will obtain: 

𝜌𝑚ℎ𝑚 ∑𝑊̈𝑖

𝑀

𝑖=1

𝑅𝑖 + 𝐶𝑚 ∑𝑊𝚤
̇

𝑀

𝑖=1

𝑅𝑖 + 𝐷𝑚 ∑𝑊𝑖

𝑀

𝑖=1

∇4𝑅𝑖

= −
𝑛𝑅̅𝑇𝑔𝑎𝑠

𝜋𝑅𝑚
2 𝑔𝑎𝑖𝑟 − 2𝜋 (∫ ∑ 𝑊𝑖

𝑀
𝑖=1 𝑅𝑖𝑟𝑑𝑟 − ∫ ∑ 𝜂𝑙Ψ𝑙

𝑁
𝑙=1 𝜉𝑑𝜉

𝑅𝑝

0

𝑅𝑚

0
)
+ 𝑃 𝑖𝑛

+ 𝜀1 

 
 
 
 
 
 

(50) 

𝜌𝑝ℎ𝑝 ∑𝜂̈𝑙Ψ𝑙

𝑁

𝑙=1

+ 𝐶𝑝 ∑𝜂̇𝑙Ψ𝑙

𝑁

𝑙=1

+ 𝐷𝑝 ∑𝜂𝑙∇
4Ψ𝑙

𝑁

𝑙=1

=
𝑛𝑅̅𝑇𝑔𝑎𝑠

𝜋𝑅𝑚
2 𝑔𝑎𝑖𝑟 − 2𝜋 (∫ ∑ 𝑊𝑖

𝑀
𝑖=1 𝑅𝑖𝑟𝑑𝑟 − ∫ ∑ 𝜂𝑙Ψ𝑙

𝑁
𝑙=1 𝜉𝑑𝜉

𝑅𝑝

0

𝑅𝑚

0
)
− 𝑃 𝑎𝑡𝑚

+ 𝜀2 

 
 
 
 
 
 

(51) 

as before, via Galerkin projection, by multiplying both sides of the equations into their 
corresponding mode shape then integrating the lumped equations of the model will obtain as 
follows: 

∑𝑀𝑖𝑗
𝑤𝑊̈𝑖

𝑀

𝑖=1

+ ∑𝐶𝑖𝑗
𝑤𝑊̇𝑖

𝑁

𝑙=1

+ ∑𝐾𝑖𝑗
𝑤𝑊𝑖

𝑀

𝑖=1

= −∫
𝑛𝑅̅𝑇𝑔𝑎𝑠𝑅𝑖(𝑟)𝑑𝑟

𝜋𝑅𝑚
2 𝑔𝑎𝑖𝑟 − 2𝜋 (∫ ∑ 𝑊𝑖

𝑀
𝑖=1 𝑅𝑖𝑟𝑑𝑟 − ∫ ∑ 𝜂𝑙Ψ𝑙

𝑁
𝑙=1 𝜉𝑑𝜉

𝑅𝑝

0

𝑅𝑚

0
)

𝑅𝑚

0

+ 𝑃̅𝑗
𝑤𝑃 𝑖𝑛,       𝑗 = 1,2, … , 𝑀 

 
 
 
 
 
 

(52) 

∑𝑀𝑙𝑘
𝜓
𝜂̈𝑙(𝑡)

𝑁

𝑙=1

+ ∑𝐶𝑙𝑘
𝜓
𝜂̇𝑙

𝑁

𝑙=1

+ ∑𝐾𝑙𝑘
𝜓
𝜂𝑙(𝑡)

𝑁

𝑙=1

= ∫
𝑛𝑅̅𝑇𝑔𝑎𝑠𝑑𝑟Ψ𝑙(𝜉)

𝜋𝑅𝑚
2 𝑔𝑎𝑖𝑟 − 2𝜋 (∫ ∑ 𝑊𝑖

𝑀
𝑖=1 𝑅𝑖𝑟𝑑𝑟 − ∫ ∑ 𝜂𝑙Ψ𝑙

𝑁
𝑙=1 𝜉𝑑𝜉

𝑅𝑝

0

𝑅𝑚

0
)

𝑅𝑝

0

− 𝑃̅𝑘
𝜓
𝑃 𝑎𝑡𝑚,       𝑘 = 1,2, … , 𝑁 

 
 
 
 
 
 

(53) 

where: 

𝑀𝑖𝑗
𝑤 = 𝜌𝑚ℎ𝑚 ∫ 𝑅𝑗(𝑟)

𝑅𝑚

0

𝑅𝑖(𝑟)𝑑𝑟,       𝑀𝑙𝑘
𝜓

= 𝜌𝑝ℎ𝑝 ∫ Ψ𝑘(𝜉)

𝑅𝑝

0

Ψ𝑙(𝜉)𝑑𝜉 (54) 



𝐶𝑖𝑗
𝑤 = 𝐶𝑚 ∫ 𝑅𝑗(𝑟)

𝑅𝑚

0

𝑅𝑖(𝑟)𝑑𝑟,       𝐶𝑙𝑘
𝜓

= 𝐶𝑝 ∫ Ψ𝑘(𝜉)

𝑅𝑝

0

Ψ𝑙(𝜉)𝑑𝜉 

𝐾𝑖𝑗
𝑤 = 𝐷𝑚 ∫ 𝑅𝑗(𝑟)

𝑅𝑚

0

𝛻4𝑅𝑖(𝑟)𝑑𝑟,       𝐾𝑙𝑘
𝜓

= 𝐷𝑝 ∫ Ψ𝑘(𝜉)

𝑅𝑝

0

𝛻4Ψ𝑙(𝜉)𝑑𝜉 

𝑃̅𝑗
𝑤 = ∫ 𝑅𝑗(𝑟)

𝑅𝑚

0

𝑑𝑟,      𝑃̅𝑘
𝜓

= ∫ Ψ𝑘(𝜉)

𝑅𝑝

0

𝑑𝜉 

 
𝑖, 𝑗 = 1,2, … , 𝑀,      𝑙, 𝑘 = 1,2, … , 𝑁 

Based on the geometry of the pressure sensor, an equivalent mechanical lumped model of the 
pressure sensor is shown in figure (3). 

 

 
 

Fig.3: The equivalent mechanical model of the pressure sensor 

where 𝐾𝑚, 𝐾𝑝, 𝐾𝑎𝑖𝑟 and 𝐾𝑜𝑖𝑙, are the mechanical stiffness of the membrane, sensing plate, air 

film, and interface oil respectively. The total stiffness of the system can be calculated as: 

𝐾𝑡𝑜𝑡 = 𝐾𝑚 + (
1

𝐾𝑎𝑖𝑟
+

1

𝐾𝑜𝑖𝑙
+

1

𝐾𝑝
)

−1

 
 
(55) 

As mentioned, the interface oil is considered to be an incompressible fluid, so that its spring 
stiffness is infinite and consequently equation (11) can be simplified to: 

𝐾𝑡𝑜𝑡 = 𝐾𝑚 +
𝐾𝑎𝑖𝑟𝐾𝑝

𝐾𝑎𝑖𝑟 + 𝐾𝑝
 

 
(56) 

Introducing a mechanical equivalent model for the pressure sensor helps to understand how the 
different components of the pressure sensor respond to the applied input pressure.  



4 Numerical Results and Discussion    

In this section numerical results are presented based on the previous modeling and solution for 
the pressure sensor shown in figure (1). Table (1) provides the parameter values used in our 
example. The main purpose of the present paper is to investigate the influence of trapped air 
on strain gauge pressure sensors. Accordingly, the sensor output and sensitivity have been 
determined alongside other key parameters under different conditions and against several 
effective variables. Note that hare sensor output denotes the maximum deflection of the lower 
plate that in the static analysis it occurs at the center of the plate (displacement of the middle 
point of the lower plate). Also, the initial deflections are not considered unless mentioned in 
the text. 

Table 1: Characteristics and properties used in numerical analysis.  

                                              Geometry parameters 

Membrane radius 𝑅𝑚 
 

Middle hole radius 𝑅ℎ 0.56 𝑚𝑚 
Plate radius 𝑅𝑝  

Thickness of the membrane ℎ𝑚 0.038 𝑚𝑚  
Thickness of the plate ℎ𝑝 0.3 𝑚𝑚 

Height of upper cylinder  ℎ𝑢0 0.1 𝑚𝑚 
Height of middle cylinder (hole between upper 
and lower cylinders) 

ℎℎ 32 𝑚𝑚 

Height of lower cylinder ℎ𝑙0 0.3 𝑚𝑚 
Thickness of air film when no pressure is applied 𝑔𝑎𝑖𝑟  

                                              Material properties 

Young’s modulus of membrane 𝐸𝑚 205 𝐺𝑝𝑎 
Young’s modulus of plate 𝐸𝑝 205 𝐺𝑝𝑎 

Poisson’s ratio of membrane 𝜐𝑚 0.3 
Poisson’s ratio of plate 𝜐𝑝 0.3 

Universal gas constant 𝑅̅ 8.314 
𝐽
𝑚𝑜𝑙. 𝐾⁄  

The overall pattern of behavior predicted by simulation studies based on this model is as 
follows. As the level of air entrainment increases, the membrane (input) movement in response 
to increasing pressure becomes increasingly non-linear, showing greater movement for the 
same input pressure. As there are constraints on the maximum displacement, the membrane 
movement eventually saturates at its maximum value. This input saturation corresponds to a 
lower input pressure where there is greater air entrainment. The plate (output) movement 
remains largely linear with respect to input pressure, but increasing membrane sensitivity to air 
entrainment saturates its output at a lower level. 

Consider first the finding that, with air entrainment, the sensor output still responds linearly 
with the input pressure. This outcome may be explained by the fact that the plate is very much 
stiffer than the air and the membrane so that the total stiffness of the system and thereby the 

sensor output is a function of the air and membrane stiffness (𝐾𝑡𝑜𝑡 = 𝑓(𝐾𝑚, 𝐾𝑎𝑖𝑟)). 
Accordingly, the sensing plate only experiences a net pressure, which is the result of the 
interaction between the membrane and air. It can be seen, however, from figure (4a) that the 
range of sensor output (i.e., before output saturation occurs) is decreased as the air film 



thickness increases (i.e. the percent of the air in the pressure sensor). A possible explanation 

for this is that the equivalent stiffness of the enclosed air 𝐾𝑎𝑖𝑟 is reduced by increasing the air 
volume. In figure (4b), a similar graph shows the variation of the sensor output with input 
pressure for various membrane radius, whereby the sensor output rises with increasing 
membrane radius. Figure (5) shows however that the displacement of the membrane is, with 
air entrainment, a mildly nonlinear function of input pressure. Increasing air content leads to a 
decrease in the maximum measurable pressure. Note that the criterion for maximum sensor 
output is the maximum possible deflection of membrane before fracture or damage in the 
pressure sensor. This point should be considered during fabrication. This criterion also has been 
employed for specifying the maximum measurable value by the pressure sensor.  

  

  
(a) (b) 

Fig.4: Variations of the sensor output versus input pressure for a) different percentages of 
fill-Oil b) different membrane radius. The straight line indicates no change in sensor output 

for higher pressures corresponding to each mode 

  
(a) (b) 



(c) (d) 
Fig.5: Non-dimensional displacement of the membrane and sensing plate as a function of the 

input pressure for a) nonfaulty pressure sensor b) with 95 percentages fill-oil c) with 90 
percentages fill-oil d) with 85 percentages fill-oil. 

Where the stiffness of the plate is not much more than that of the membrane and air, some 
nonlinearity is observed in the sensor output and which requires a few correction factors to 
accurate calibrate and linearize the output signal. With the low stiffness of the sensing plate, 
the range of measurable pressure by the sensor is severely restricted, so it is better for the plate 
to be stiffer than the membrane and air. 

As stated previously, the maximum measurable pressure in such sensors is restricted by the 
maximum deflection of the membrane. For the geometry of the pressure sensor shown in Figure 

2, the maximum deflection of the membrane is ℎ𝑢0. Of course, the value of the ℎ𝑢0 is 
determined by the elasticity limitation of the membrane. Once the maximum deflection of the 
membrane is reached, the pressure sensor saturates at its maximum obtainable output. The 
relationship between maximum measurable pressure (MMP), and percent of fill-oil and 
membrane radius, are shown in figures (6) and (7) respectively. These results are based on the 
parameter values given in Table 1. 

 
Fig.6: Variations of the maximum measurable pressure as a function of the value of the 

percent of filler-oil for various membrane radius 



 
Fig.7: Variations of the maximum measurable pressure as a function of the membrane radius 

for different oil percentages  

As can be seen in figures (6) and (7), the MMP rises with increasing the percentage of the filler 
Oil (decreasing the equivalent air film thickness), as well as increases with increasing the 
membrane radius. Another important conclusion from figures (6) and (7) is that beyond a 
certain value of the air percent, the MMP is not a function of the membrane radius. 

One of the most important parameters in determining the accuracy and the effectiveness of the 

pressure sensors is sensitivity, and it is introduced as 𝑆 = ∆𝑋 ∆𝑃⁄  where 𝑆, is sensitivity, 𝑃 is 

the input pressure and 𝑋 denotes the output signal [25]. This definition gives a good indication 
of the impact of the effective parameters on the sensitivity of the pressure sensor and assists 
designers in choosing optimum geometrical and material parameters. Based on the definition 
(39) the variations of the sensitivity relative to the membrane radius and air film thickness have 
been computed and the results are summarized in figures (8) and (9).  

 
Fig.8: The sensitivity of the pressure sensor versus percent of filler oil under different states 

of the membrane radius 



As shown in figure (8) the sensitivity is increased by increasing the filler oil. So, preventing air 
or gas entrainment can maintain the functionality of the pressure sensor. Figure (9) shows the 
variations of the sensitivity of the pressure sensor as a function of the membrane radius. 
Increasing the radius of the membrane gives increased sensitivity. 

       

     
Fig.9: Relationship between the sensitivity and the membrane radius at different air film. 

Finally, the effects of the (steady) operating temperature are derived. According to the 
simulated results shown in figure (10), the variation of the temperature has low effect on the 
functionality of the pressure sensor.   

  
(a) (b) 

Fig 10: The variations of the a) sensitivity and b) maximum measurable pressure relative to 
the operating temperature at different air film thicknesses. The above graphs are extracted by 

assuming the 𝑅𝑚 = 8 𝑚𝑚.  

So far, in the result sections was supposed the movable parts of the pressure sensor have no 
initial deflections due to incomplete filling of interface volume. In continuation, the effects of 
the initial deflections on the sensor performance will be investigated. The membrane deflection 
and the sensor output as a function of input gauge pressure are shown in figure (11). According 
to figure (11), can be concluded that the MMP for the pressure sensor movable components is 
reduced respect to the state that the sensor has no initial deflection. Table (2) compares the 
amount of change of the MMP and sensitivity for different state of filling of the pressure sensor  



 

  

(a) (b) 
Fig.11: The deflection versus input pressure for a) the membrane and b) the sensing plate in 

three cases of filling of the sensor. 

Table 2: The maximum pressure measured by the sensor for different states of filling. 

Filling state 80% Oil + 20% Air 80% Oil + 15% Air 80% Oil + 10% Air 80% Oil + 5% Air 

MMP (Pa) 2.743×105 1.994×105 1.163×105 0.204×105 

Sensitivity 
(mm/Mpa) 

0.0411 0.0409 0.0404 0.0348 

 

Dynamic analysis of the sensor is carried out to investigate the general response of the sensor 
to a step external pressure. The damping coefficients have been applied to model energy 
dissipation factors such as external air on the sensing plate or the viscous damping of the 
pressure line for example when the pressure sensor has installed on a pipe. As figure (12-a) 
shows the oil insufficiency can significantly influence the membrane deflection, whereas, the 
sensor output or plate deflection does not change much in the steady-state response, this result 
completely agrees with the static analysis earlier. Therefore, the MMP by the sensor is 
restricted due to the allowable deflection of the membrane.   

  
(a) (b) 

Fig.12: The time history of the system for a) the membrane and b) the sensing plate in three 

cases of filling of the sensor (𝑃𝑖𝑛 = 0.24 𝑀𝑝𝑎, 𝑅𝑚 = 9.5 𝑚𝑚, 𝑅𝑝 = 6 𝑚𝑚). 

 

5 Conclusion  



In the current article insufficiency of the interface oil on the static and dynamic performance 
of a strain gauge type pressure sensor was studied. The governing deflection equations of the 
membrane and the sensing plate of the sensor were derived based on Kirchhoff's thin plate 
theory considering mid-plane stretching. The air trapped in the space between the two plates 
was modeled as a polytropic gas and the oil is considered as an incompressible fluid. In the 
static analysis, the coupled nonlinear differential equations were solved using a step-by-step 
linearization method and the obtained linearized equations at each step were discretized based 
on a Galerkin reduced-order model. For the dynamic model also after reducing the equations 
into an equivalent lumped model, the numerical integration method based on the 4th-order 
Runge-Kutta method was used. Solving the governing equations, the initial deflections of the 
membrane and the sensing plate in the static form when there is no applied external pressure 
for different oil value insufficiencies were calculated.  Also, the deflection of the membrane, 
the sensing plate as senor output, and maximum measurable pressure (MMP) for different 
values of the interface oil and the trapped air were determined and was compared with the 
nonfaulty sensor. It was shown that with increasing the trapped air the measurable pressure 
decreases, however as the stiffness of the membrane in comparison to the stiffness of the 
sensing plate is too low the sensor output remains without changes. Besides the effect of initial 
deflection on the sensor performance was examined and it was shown that it does not affect 
sensor output and it also as same as oil insufficiency only decreases maximum measurable 
pressure. The dynamical response of the sensor verified the results of the static analysis in 
terms of the behavior of the system in the steady-state response. The effect of some geometrical 
parameters such as the membrane radius on the sensor performance was studied and shown 
that increasing its value increases sensor sensitivity but decreases the measurable range of the 
pressure. The obtained results can be useful for the sensor and instrumentation community in 
designing strain gauge type pressure sensors. 
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