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Energy-Efficient Task Offloading Under E2E
Latency Constraints

Mohsen Tajallifar, Sina Ebrahimi, Mohammad Reza Javan, Nader Mokari, and Luca Chiaraviglio,

Abstract—In this paper, we propose a novel resource man-
agement scheme that jointly allocates the transmit power and
computational resources in a centralized radio access network
architecture. The network comprises a set of computing nodes to
which the requested tasks of different users are offloaded. The
optimization problem minimizes the energy consumption of task
offloading while takes the end-to-end-latency, i.e., the transmis-
sion, execution, and propagation latencies of each task, into ac-
count. We aim to allocate the transmit power and computational
resources such that the maximum acceptable latency of each
task is satisfied. Since the optimization problem is non-convex,
we divide it into two sub-problems, one for transmit power
allocation and another for task placement and computational
resource allocation. Transmit power is allocated via the convex-
concave procedure. In addition, a heuristic algorithm is proposed
to jointly manage computational resources and task placement.
We also propose a feasibility analysis that finds a feasible subset
of tasks. Furthermore, a disjoint method that separately allocates
the transmit power and the computational resources is proposed
as the baseline of comparison. A lower bound on the optimal
solution of the optimization problem is also derived based on
exhaustive search over task placement decisions and utilizing
Karush–Kuhn–Tucker conditions. Simulation results show that
the joint method outperforms the disjoint method in terms of
acceptance ratio. Simulations also show that the optimality gap
of the joint method is less than 5%.

Index Terms—Mobile edge computing, task offloading, re-
source allocation, end-to-end latency, task placement.

I. INTRODUCTION
A. Background

IN order to fulfill the requirements of 5G mobile networks,
key enabling technologies such as network function vir-

tualization (NFV) and multi-access/mobile edge computing
(MEC) are introduced. With NFV, the network functions (NFs)
that traditionally used dedicated hardware are implemented
in applications running on top of commodity servers [1]. On
the other hand, MEC aims to support low-latency mobile
services by bringing the remote servers closer to the mobile
users [2], [3]. Moreover, MEC enables the offloading of the
computational burden of users’ tasks to reduce the impact
of the limited battery power of user equipment (UE). Note
that when executing servers are NFV-enabled, they are able
to process various types of tasks. As a result, there is no
restriction on offloading a task to a predetermined server.

A typical task offloading example is shown in Fig. 1(a).
In task offloading, the non-processed data of a task is sent
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(a) A typical task offloading example. (b) System model.

Fig. 1: A typical task offloading example and system model.

from UE to an executing server that offloads the computational
burden of the task execution on the executing server. As
Fig. 1(a) shows, the user transmits the non-processed data
of the task over the wireless link to its serving base station,
which results in transmit latency T tx. Then, the received data
is transmitted to an executing server. Executing servers are
placed at the base station and distant nodes in the transport
network. The data transmission through the transport network
adds the propagation latency T prop to the offloading process.
Finally, the received data is processed at the executing server
with execution latency T exe and then is sent back to the user
over the downlink. Therefore, the end-to-end (E2E) latency of
task offloading is equal to the summation of T tx, T prop, and
T exe in both uplink and downlink.

B. Related Works

We classify the related works on task offloading into four
categories and discuss their applicability in practical scenarios.

1) Task offloading to multiple executing servers: In task
offloading, a UE decides to whether offload a task to a single
executing server or to select an executing server out of multiple
servers. Offloading a task to one server in a set of executing
servers in a multi-tier heterogeneous network is considered in
[4], [5]. Moreover, the authors in [6]–[8] propose to offload
a user’s task to one of executing servers at base stations in a
multi-cell network. Note that in the aforementioned works, the
executing servers are located at the edge of the radio access
network and the computational resources in the non-radio part
of the network are not considered. In contrast, it is possible to
offload a task to any server in the network in [9], i.e., servers
in radio access and non-radio parts of the network. However,
radio resources are not allocated in [9]. Note that, ignoring
computational resources in the non-radio part of the network
or ignoring radio resource allocation results in an inefficient
task offloading.
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2) Task placement and computational resource allocation:
Task offloading is comprised of two steps: i) task placement
to select an executing server, and ii) computational resource
allocation that allocates the resources of the executing server
to each task. In this context, various works only focus on task
placement with given computational resources for each task
[4]–[6], [9]–[12], while others include resource allocation as
well [7], [13]–[22]. Note that the servers in non-radio part
of the network are not involved in these works. As a result,
computationally intensive tasks with moderate sensitivity to
latency may occupy the capacity of executing servers in radio
part of the network while high capacity servers in non-radio
part of the network are underutilized.

3) Joint Radio and Computational Resource Allocation:
Extensive research is made on joint radio and computational
resource allocation [7], [11], [13]–[28]. In these works, radio
resources including transmit power and/or bandwidth as well
as computational resources are allocated to each task. Energy-
efficient resource allocation is performed in [11], [13], [14],
[18], [20], [22], [25], [27], [28], and a weighted combination of
consumed energy and latency is optimized in [7], [15]–[17],
[21], [23], [26]. Moreover, the impact of radio link quality
without radio resource allocation is taken into account by
[5], [6], [8], [10], [29], [30]. In these works, the latency of
data transmission over radio links is taken into account, which
impacts the optimal task placement. Note that although joint
optimization of radio and computational resources increases
the degrees of freedom in task offloading, the available compu-
tational resources in the radio access network are very limited,
which limit the acceptance ratio of the network.

4) Feasibility Analysis: When task offloading is subjected
to a maximum acceptable latency, sufficient resources are
required in various parts of the network. In case of insufficient
resources, a feasibility analysis is needed to determine a
feasible subset of requested tasks. One approach to face
infeasibility is making some simplifying assumptions, e.g.,
assuming sufficient available resources for task offloading [9],
[23] or offloading a task when it is beneficial, i.e., when
offloading results in less energy consumption or latency [10].
In practice, however, the resources are limited and tasks are
subjected to execution deadlines. As a result, a feasibility
analysis is inevitable. The feasibility analysis is performed
by introducing a binary optimization variable, which is one
when the task is accepted or zero when the task is rejected
[4], [7], [12], [13], [16], [20]–[22], [28]. Note that finding
optimal binary variables results in combinatorial optimization
problems that are challenging and of high complexity.

C. Motivation

The performance of a task offloading method is mainly
measured by its latency and energy consumption. In practice,
E2E latency comes from radio links, transport network links,
and execution at the servers; and the energy consumption
is impacted by consumed transmit power and computational
resources.

Optimizing the performance of task offloading necessitates
a joint optimization of all available resources in the network.
However, existing works optimize a subset of resources and

focus only on one part of the whole network. Moreover, the
impact of E2E latency is not considered in the literature. As
a result, existing methods may not perform well in practice.

In this paper, we propose a task offloading method that
optimizes the energy consumption in terms of transmit power
and computational resources under E2E latency constraints.
Throughout the paper, the task offloading is referred to the
process of transmit power allocation over radio links, task
placement, i.e., selecting an executing server and its path,
and computational resource allocation. The proposed method
jointly allocates required transmit power to tasks, places each
task in a proper NFV-enabled node, and allocates sufficient
computational resources to the tasks. With this joint method,
high latency of radio links caused by weak radio channels is
compensated by a proper task placement and computational re-
source allocation. In contrast, high execution latency caused by
limited computational resources is compensated by consuming
more transmit power in radio links. As a result, more tasks are
served, compared to a disjoint method wherein transmit power
allocation is independent of task placement and computational
resource allocation.

NFV enables a general-purpose server to execute various
tasks without needing a specialized server for each task.
Therefore, various tasks are dynamically offloaded to general-
purpose executing servers in a network of NFV-enabled nodes
instead of offloading each task to a respective specialized
server. As a result, a task placement method is needed to
determine an executing server and its route for each task.
In spite of conventional routing methods that choose a route
to a predetermined server, our task placement method jointly
determines an executing server, the associated route to the
executing server, and the required computational resources in
the executing server.

We assume a deadline for offloading each task, i.e., sending
the task from UE to the executing server and sending it
back to UE performed under a maximum acceptable latency
constraint. As a result, the sum of latencies in radio link,
transport network links, and execution at the executing server
is less than the maximum acceptable latency. The feasibility of
this E2E offloading method depends on the available resources
and location of executing servers in the network. For example,
when the available transmit power is low, the radio link latency
is large, which may violate E2E latency. In contrast, when the
available computational resources at the executing server are
low, the execution latency is large, which may also violate the
E2E latency constraint. Therefore, our task offloading method
includes a feasibility analysis that finds a set of feasible tasks.

The infeasibility of task offloading depends on the value of
maximum acceptable latencies, i.e., lower values of maximum
acceptable latencies result in a larger number of infeasible
tasks and higher values result in a smaller number of infeasible
tasks. Inspired by this fact and in contrast to the existing
works, we add a non-negative variable to each maximum
acceptable latency. Non-negative variables are zero for feasible
tasks and are positive for infeasible tasks. Therefore, the
set of feasible tasks is obtained by solving an optimization
problem that minimizes the sum of non-negative variables,
i.e., maximizes the number of feasible tasks.
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Joint task offloading results in a non-convex problem due to
coupling optimization variables. Moreover, the task placement
is performed by obtaining binary variables, which makes the
optimization problem further complicated. To deal with the
optimization problem, we decouple transmit power allocation
from task placement and computational resource allocation.
Transmit power allocation is performed via the well-known
convex-concave procedure (CCP) and a heuristic algorithm
is proposed for task placement and computational resource
allocation. CCP and the heuristic algorithm are alternatively
applied until convergence. Note that both CCP and the heuris-
tic algorithm preserve the monotonicity of convergence.

We also develop two baseline methods to evaluate the
efficiency of our joint task offloading method. The first is a dis-
joint method in which transmit power allocation is performed
independent of task placement. In doing so, the maximum
acceptable E2E latency of each task is divided into a radio
latency constraint and a non-radio latency constraint. We allo-
cate transmit power under the radio latency constraint. Then,
the task placement and computational resource allocation are
performed under the non-radio latency constraint.

The second baseline method achieves a lower bound on
the optimal solution of the joint task offloading optimization
problem. The lower bound is achieved by relaxing some
constraints in the optimization problem, which comes from
leveraging practical assumptions such as orthogonality of wire-
less channels in large-scale antenna array systems. The optimal
solution is then found by an exhaustive search over all feasible
task placement candidates, finding the optimal computational
resource allocation for each placement candidate, and choosing
the placement candidate that results in the lowest objective
value.

D. Contributions

In this paper, we develop an energy-efficient task offloading
method that offloads the computational burden of a task from
a UE to one of executing servers in a network of NFV-
enabled nodes. In doing so, a task is offloaded by sending
non-processed data of the task from the UE to a radio remote
head (RRH) over a radio link, sending the data from the RRH
toward the executing server through a transport network, and
sending the processed data back from the executing server to
UE. We assume that each task is offloaded under a respective
deadline, i.e., the E2E latency of task offloading is less than
the maximum acceptable latency of the task.

The main contributions and achievements of this paper are
as follows:

• We develop a joint task offloading method in a practical
scenario, i.e., the proposed method allocates the transmit
power, finds an executing server and the route to it,
and allocates the computational resources in an energy-
efficient manner. Moreover, the proposed method takes
the E2E latency of task offloading into account. By the
proposed method, the impact of weak radio links is
compensated by placing the tasks in servers closer to UEs
and consuming more computational resources. In con-
trast, limited computational resources are compensated by

allocating more transmit power, resulting in an efficient
and adaptive task offloading method.

• We propose a novel method for task placement and com-
putational resource allocation. While the conventional
routing methods find a route to a predetermined node,
our proposed method jointly finds the executing server,
its associated route, and the required computational re-
sources in an energy-efficient manner.

• We find a lower bound on the objective function of the
optimization problem in the feasibility analysis, i.e., an
upper bound on the acceptance ratio of the proposed
method. The lower bound is obtained by relaxing some
of constraints in the optimization problem, performing an
exhaustive search over all feasible task placement can-
didates, and finding the optimal computational resource
allocation by utilizing Karush-Kuhn-Tucker conditions.

• Simulation results show that the proposed joint method
outperforms its disjoint counterpart in terms of accep-
tance ratio. Moreover, the lower bound on the optimal
solution is almost tight because the joint method attains
the lower bound in practical scenarios. Specifically, the
optimality gap of the joint method is less than 5%.

E. Organization

The rest of the paper is organized as follows. Section
II introduces the system model. Section III describes the
optimization problem formulation. In Section IV, we propose
joint task offloading while disjoint task offloading and lower
bound on optimal task offloading are proposed in Sections
V and VI, respectively. Simulation results are presented in
Section VII and the paper is concluded in Section VIII.

F. Notation

The notation used in this paper are given as follows. The
vectors are denoted by bold lowercase symbols. Operators ‖ ·
‖ and | · | are vector norm and absolute value of a scalar,
respectively. (a)T is transpose of a and [a]+ = max(a, 0).
A\{a} discards the element a from the set A. Finally, a ∼
CN (0,Σ) is a complex Gaussian vector with zero mean and
covariance matrix Σ.

II. SYSTEM MODEL

The structure of the radio access network, channel model,
and signaling scheme as well as NFV-enabled network, com-
putational resources, and capacity of network links are de-
scribed in this section.
A. Radio Access Network (RAN)

We consider a centralized RAN architecture with a baseband
unit (BBU) pool, which serves a set of U RRHs, each equipped
with M antennas. The set of all users is denoted by K. Each
user is equipped with a single antenna and the total number
of users is K = |K|. The considered model is shown in Fig.
1(b). It is assumed that each RRH is connected to the BBU
pool through a fronthaul link.

We assume that each user requests a single task. Task k is
represented by a triplet < Lk, Dk, Tk >, where Lk is the load
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of task k (i.e., the required CPU cycles), Dk is the data size
of task k (in terms of bits), and Tk is the maximum acceptable
latency of task k.

Each UE transmits the non-processed data of its task to
its serving RRH through a wireless link. We assume that
each UE is served by a single RRH. The set of users served
by RRH u is Ku = {k ∈ K|Jku = 1} where Jku is an
indicator which equals 1 if UE k is connected to RRH u
(0 otherwise). In this paper, we assume that the UE-RRH
assignment is given and fixed. Focusing on the wireless link,
we assume a narrow-band block fading channel model [22].
The channel vector between UE k and RRH u is denoted by
hu,k, where hu,k =

√
Qu,kh̃u,k in which Qu,k represents the

path loss between RRH u and UE k and small-scale fading
is modeled as h̃u,k ∼ CN (0, IM ). Similar to [17], [18], we
assume that the channel state information (CSI) is constant
over the offloading time. As we show through simulations,
this assumption is non-restrictive in practical scenarios in sub-
6 GHz bands. UE k transmits a symbol xk ∼ CN (0, 1)
with transmit power ρk toward its serving RRH. The transmit
power of UE k is constrained to a maximum value, i.e.,
ρk ≤ Pmax

k ∀k. The received signal vector at RRH u is:

yu =
∑
k∈K

hu,k
√
ρkxk, ∀u. (1)

We employ the maximum ratio combining (MRC) at RRHs
because of its simplicity. Nevertheless, MRC is asymptotically
optimal in massive MIMO systems [31]. Therefore, the com-
bined signal is:

zu = FH
uyu, ∀u, (2)

where Fu = [fk],∀k ∈ Ku and fk =
hu,k

‖hu,k‖ . The estimated
signal of UE k is:

zk =fH
k hu,k

√
ρkxk +

∑
j∈K\{k}

fH
k hu,j

√
ρkxk + fH

k nu,∀k ∈ Ku,

where nu ∼ CN (0, σ2
nIM ) is the received noise vector at RRH

u. Thus, the signal to interference plus noise ratio (SINR) of
UE k is:

SINRk =
‖hu,k‖2ρk∑

j∈K\{k}
|hH

u,khu,j |2
‖hu,k‖2 ρj + σ2

n

, ∀k ∈ Ku. (3)

Hence, the achievable data rate by UE k is Rk = W log2(1 +
SINRk)1 bits per second (bps), where W is the radio access
network bandwidth. The radio transmission latency of task k
in the uplink is T tx

k = Dk

Rk

2. The sum of data rates of UEs
served by RRH u is less than the capacity of its fronthaul
link, i.e.,

∑
k∈Ku

Rk ≤ Bf,u,∀u. In this paper, similar to
[10], [30], and [11], we assume that the processed data size of
task k is small. Moreover, since the power budget of RRHs is
generally large, the radio transmission latency in the downlink
is assumed negligible.

1For wide-band channel model, the data rate of UE k is the sum rate over
all sub-carriers allocated to UE k.

2No buffering is assumed in the transport network routing. Therefore,
transmission time of tasks’ data over the transport network links is not taken
into account.

B. NFV-enabled Network

The NFV-enabled network includes a graph G = (N , E),
where N and E are the set of nodes and edges (or links),
respectively. A typical node in N is denoted by n while the
BBU pool is indicated by n̄ (which is also a node in N ). The
link between two nodes m and m′ is denoted by (m,m′). Each
NFV-enabled node is comprised of an executing server and a
routing device. The processing capacity (i.e., the maximum
CPU cycles per second that are carried out) of the executing
server in NFV-enabled node n is indicated by Υn. Moreover,
the capacity of link (m,m′) is indicated by B(m,m′) in terms
of bps.

In this paper, we assume the full offloading scheme, i.e.,
the task of each user is completely executed in an executing
server in the NFV-enabled network. Therefore, there is a need
for placing each task to a proper executing server. Note that
our method is extensible to the partial offloading scheme, i.e.,
a fraction of each task is executed locally at UEs and the
remained part is executed at remote servers. The extension
is relatively straightforward and not included due to space
limitations. A task placement decision consists of selecting
an NFV-enabled node n and its associated path from n̄ to n .
We denote the bth path between nodes n̄ and n as pbn where
b ∈ Bn = {1 · · ·Bn} and Bn is the total number of paths
between nodes n̄ and n. Note that a path between n̄ and n
may comprise some intermediate nodes, which only forward
the tasks’ data via their routing devices and do not deliver the
data to their executing servers. We define decision variable
ξkpbn

, which equals 1 when task k is offloaded to node n and
sent over path pbn (0 otherwise). Each task is offloaded to one
and only one node and path when we have:∑

n∈N

∑
b∈Bn

ξkpbn = 1, ∀k. (4)

Indicator I(m,m′)

pbn
determines whether a link contributes to a

path. The indicator is equal to 1 when link (m,m′) contributes
to path pbn (0 otherwise). Moreover, the set of all links that
contribute to path pbn is Epbn =

{
(m,m′) ∈ E|I(m,m′)

pbn
= 1
}

.
The amount of computational resources allocated to task k is
denoted by υk (in terms of CPU cycles per second). Note that
the execution of each tasks is performed at only one node.
To ensure that the allocated computational resources do not
violate the processing capacity of that node, we should have:∑

k∈K

∑
b∈Bn

υkξ
k
pbn
≤ Υn, ∀n. (5)

Since the data of task k is sent over the network with rate
Rk, the aggregated rates of all tasks that pass a link should
not exceed its capacity, which is guaranteed by the following
constraint:∑
k∈K

∑
n∈N

∑
b∈Bn

I
(m,m′)

pbn
ξkpbnRk ≤ B(m,m′), ∀(m,m′) ∈ E .

(6)
The execution latency of task k is T exe

k = Lk

υk
. The pro-

cessed data of task k is sent toward the BBU pool (i.e.,
node n̄). In this paper, we assume the path of uplink and
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downlink are the same. Therefore, the overall propagation
latency of task k over the path pbn is twice the propagation
latency of path pbn. Thus, the propagation latency of task k
is T prop

k = 2
∑
n∈N

∑
b∈Bn

∑
(m,m′)∈E

pbn

ξkpbn
δ(m,m′), where

δ(m,m′) is the propagation latency of link (m,m′). Table I
summarizes the notation used in the paper.

TABLE I: Main Notation.

Notation Definition
U,M,K Number of RRHs, antennas and users
K,N , E Set of all users, nodes and links
Pmax

k Power budget of UE k

Lk, Dk, Tk
Load, data size and maximum
acceptable latency of task k

Υn Processing capacity of node n
B(m,m′),

δ(m,m′)

Capacity and propagation latency
of link (m,m′)

pbn bth path between nodes n̄ and n
Bn Set of paths between nodes n̄ and n
E
pbn

Set of all links that contribute in path pbn

I
(m,m′)
pbn

Indicator determining whether link (m,m′)

contributes in path pbn
Rk Data rate of task k
T tx
k Radio transmission latency of task k
W Radio access network bandwidth
Ku Set of users served by RRH u

hu,k Channel vector between user k and RRH u

ξk
pbn

Decision variable for assignment of node n
and its associated path pbn to task k

Bf,u Capacity of fronthaul link for RRH u

Λn
Computational energy efficiency coefficient

of the node n
υk Computational resources allocated to task k
ρk Allocated transmit power to UE k
αk Non-negative variable of task k

Jk
u

Indicator determining whether UE k
is assigned to RRH u

T exe
k Execution latency of task k

Tprop
k Propagation latency of task k

III. PROBLEM FORMULATION

In this section, we formulate the optimization prob-
lem of joint task offloading. Each task is offloaded
under its E2E latency constraint and in an energy-
efficient manner. The objective function is E(ξ,υ,ρ) =∑
k∈K ρk + η

∑
n∈N

∑
k∈K

∑
b∈Bn

Λnξ
k
pbn
υk

3, where ξ =

[ξ1
p11
, · · · , ξK

p
BN
N

]T,υ = [υ1, · · · , υK ]T, and ρ = [ρ1, · · · , ρK ]T

are the vectors of all ξkpbn , υk, and ρk, respectively; Λn denotes
the computational energy efficiency coefficient of node n
[19], and η is a weight. Note that the first term in E is the
transmit power consumption and the second term is the power
consumption of executing servers. Therefore, the joint task
offloading optimization problem is:

min
ξ,υ,ρ

E(ξ,υ,ρ)

s.t. C1: T exe
k + T prop

k + T tx
k ≤ Tk, ∀k,

C2: (5)
C3: (6)
C4:

∑
k∈Ku

Rk ≤ Bf,u, ∀u,
C5: ρk ≤ Pmax

k , ∀k,
C6:

∑
n∈N

∑
b∈Bn

ξkpbn
= 1, ∀k,

(7)

under variables: ξ ∈ {0, 1},υ ≥ 0,ρ ≥ 0. Constraint C1 guar-
antees that the maximum acceptable latency of task offloading
is respected. Constraints C2 and C3 make sure that all tasks

are offloaded without violation in processing capacity of nodes
and capacity of links, respectively. Constraint C4 ensures the
capacity of fronthaul links. Constraint C5 guarantees the power
budget of UEs while constraint C6 makes sure that each task
is offloaded to only one node and path.

IV. JOINT TASK OFFLOADING (JTO)
In this section, we solve optimization problem (7). This

problem is non-convex due to integer variable ξ and coupling
variables in C1-C4. Therefore, we solve (7) by decoupling
transmit power allocation from task placement and compu-
tational resource allocation. In doing so, transmit power is
allocated given task placement and allocated computational re-
sources. Then, we perform task placement and computational
resource allocation having allocated transmit powers. The
proposed approach needs a feasible initialization. However,
it is likely for constraint C1 to make (7) infeasible. Thus, we
need to propose a feasibility analysis to find a feasible subset
of tasks.
A. Feasibility Analysis

The feasible set of (7) is extended by adding a non-
negative variable αk to the maximum acceptable latency
of task k. Thus, the feasibility problem is constructed by
replacing the objective function of (7) with the sum of non-
negative variables, i.e.,

∑K
k=1 αk [32]. The constraints which

cause infeasibility are found by solving the feasibility problem
and determining the constraints with positive values of non-
negative variables. The feasibility problem is:

min
ξ,υ,ρ,α

∑
k∈K αk

s.t. C1-a: T exe
k + T prop

k + T tx
k ≤ Tk + αk, ∀k ∈ K

C2-C6,
(8)

under variables: ξ ∈ {0, 1},υ ≥ 0,ρ ≥ 0,α ≥ 0. Note that
non-negative variables are added only to C1 because when C1
is eliminated, the optimization problem (7) is always feasible.
Thus, we seek for the tasks whose maximum acceptable
latencies are violated and eliminate them one by one until
a subset of feasible tasks remains. The solution to (8) not
only provides the infeasible constraints but also determines
the level of infeasibility, i.e., constraints with larger values
of non-negative variables need more resources to become
feasible. Therefore, we first eliminate the tasks with larger
values of non-negative variables. Besides, when (7) is feasible,
the solution to (8) results in αk = 0, ∀k. Therefore, after
eliminating the tasks with positive values of non-negative
variables, the solution to (8) provides a feasible initialization
for the optimization algorithm that solves (7).

Without loss of equivalence, we add the summation of
inequalities in C1-a as a new constraint C7. Therefore, op-
timization problem (8) is restated as:

min
ξ,υ,ρ,α

∑
k∈K αk

s.t. C1-a: T exe
k + T prop

k + T tx
k ≤ Tk + αk, ∀k

C2-C6,
C7:

∑
k∈K (T exe

k + T prop
k + T tx

k − Tk) ≤
∑
k∈K αk.

(9)
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This optimization problem is equivalent with:

min
ξ,υ,ρ,α

∑
k∈K (T exe

k + T prop
k + T tx

k )

s.t. C1-a, and C2-C6,
(10)

in which the term
∑
k∈K Tk is removed from the objective

because it is constant. We solve (10) by decoupling transmit
power allocation from task placement and coumputational
resource allocation. In other words, we solve (10) under
variables υ, ξ,α, having ρ fixed and vice versa. To perform
task placement and computational resource allocation, we need
an initial ρ = ρ0 that satisfies C3 and C4, which are satisfied
with a small value of Rk, i.e., small values of ρk. Next, we
solve the following optimization problem:

min
α,υ,ξ

∑
k∈K (T exe

k + T prop
k )

s.t. C1-a, C2,C3, and C6
(11)

by a heuristic method. As in Algorithm 1, we find vari-
ables ξ and υ that minimize the objective of (11). Then,
we set the non-negative variables for a feasible C1. In
doing so, for task k, we calculate the amount of unused
computational resources at all nodes, formally expressed as
Υ̃k
n = Υn −

∑
j∈K\{k}

∑
b∈Bn

υjξ
j
pbn

. Morevoer, the avail-
able capacity of link (m,m′) is B̃k(m,m′) = B(m,m′) −∑
j∈K\{k}

∑
n∈N

∑
b∈Bn

I
(m,m′)

pbn
ξj
pbn
Rj . A task is placed in

node n only when there is a feasible path between n̄ and
n, i.e., a path with sufficient capacity in all of its links.
The set of all such nodes is Nk. For each n ∈ Nk, we
calculate T exe

k + T prop
k when υk = Υ̃k

n. Next, we find the
node and feasible path that give the smallest T exe

k + T prop
k ,

denoted by n? and b?, respectively. Note that from C1,
the sufficient computational resources allocated to task k is
υtemp = Lk

Tk−T tx
k −T

prop
k

. When Υ̃k
n? ≥ υtemp, C1 is satisfied by

setting υk = υtemp and αk = 0. Otherwise, we set υk = Υ̃k
n?

and αk = T tx
k + T exe

k + T prop
k − Tk. Next, the available

computational resources of nodes and available capacity of
links are updated and this process is repeated for all of tasks.
Note that we begin with tasks that require lower resources,
i.e., tasks with lower values of Tk.

After solving (11), we allocate the transmit power by
solving:

min
ρ

∑K
k=1 T

tx
k

s.t. C1-a, and C3-C5.
(12)

Note that in the heuristic method, we have T tx
k + T exe

k +
T prop
k = Tk+αk. As a result, any feasible solution to (12) does

not increase T tx
k because (12) is infeasible for larger values

of T tx
k . Hence, replacing (12) with its feasibility problem

counterpart does not impact the decreasing monotonicity of
the objective function in (10). The feasibility problem of (12)
is:

find ρ

s.t. C1-a, and C3-C5.
(13)

In solving (13), we note that the constraints C1-a, C3 and
C4 are non-convex. Therefore, we need to find a convexified

Algorithm 1: Heuristic Algorithm for Solving (11).
Input: ρ

1 sort α: T[1] ≤ T[2] ≤ · · ·T[|K|]
2 for k = [1] : [|K|] do

% Find a feasible node according to capacity of paths
terminated at that node

3 Nk = {n ∈ N|∃b : Rk ≤ B̃k(m,m′)∀(m,m′) ∈ Epbn}
4 Υ̃k

n = Υn −
∑
j∈K\{k}

∑
b∈Bn υjξ

j

pbn
, ∀n

%Find the best node and its associated path
5 (n?, b?) = arg min

n∈Nk,b∈Bn
T exe(Υ̃k

n) + T prop(pbn)

6 set ξk
pb

?

n?
= 1 and ξkpbn = 0,∀(n, b) 6= (n?, b?)

% Update computational resource allocation and
non-negative variables

7 υtemp = Lk

Tk−T tx
k
−Tprop

k

8 if Υ̃k
n? ≥ υtemp then

9 set υ?k = υtemp and α?k = 0

10 else
11 υ?k = Υ̃k

n? and α?k = T tx
k + T exe

k + T prop
k (pb

?

n?)− Tk

Output: α?, ξ?,υ?

version of (13).We use CCP [33] to convexify (13). In doing
so, we reformulate C1-a as:

Rk ≥
Dk

Tk + αk − T prop,i
k − T exe,i

k

. (14)

where T exe,i
k and T prop,i

k are the execution latency and propa-
gation latency of task k obtained from the heuristic method in
ith iteration, respectively. In order to convexify (14), we need
a concave approximation of Rk with respect to ρ. The rate
Rk is:

Rk = W log2

( ∑
j∈K

|hH
u,khu,j |2

|hu,j |2 ρj + σ2
n∑

j∈K\{k}
|hH

u,khu,j |2
|hu,j |2 ρj + σ2

n

)
, k ∈ Ku,

(15)
which is equivalent to:

Rk = W log2

( U∑
u=1

∑
j∈Ku

|hH
u,khu,j |2

|hu,j |2
ρj + σ2

n

)
︸ ︷︷ ︸

hk(ρ)

−

W log2

( U∑
u=1

∑
j∈Ku\{k}

|hH
u,khu,j |2

|hu,j |2
ρj + σ2

n

)
︸ ︷︷ ︸

gk(ρ)

. (16)

Both hk(ρ) and gk(ρ) are concave functions of ρ. Thus, we
need to find a linear approximation of gk(ρ), which is ĝk(ρ) =
gk(ρ0) +∇gk(ρ0)T(ρ− ρ0), where:

[∇gk(ρ)]i =


W
∑U

u=1 I
i
u

|hH
u,khu,i|

2

|hu,i|2

ln(2)

(∑U
u=1

∑
j∈Ku\{k}

|hH
u,k

hu,j |2

|hu,j |2
ρj+σ2

n

) , i ∈ K\{k},
0, i = k.

(17)
Next, we focus on the convex approximation of C3 and C4.
To this aim, we find a convex approximation of Rk, which
is found by linear approximation of hk(ρ). Thus, we have
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ĥk(ρ) = hk(ρ0) +∇hk(ρ0)T(ρ− ρ0), where:

[∇hk(ρ)]i =
W
∑U
u=1 I

i
u
|hH

u,khu,i|2

|hu,i|2

ln(2)
(∑U

u=1

∑
j∈Ku

|hH
u,khu,j |2
|hu,j |2 ρj + σ2

n

) , i ∈ K,
(18)

Finally, the convexified version of (12) is:

find ρ

s.t. C1-b hk(ρ)− ĝk(ρ) ≥ Dk

Tk+αk−Tprop,i
k −T exe,i

k

,∀k ∈ K

C3-a:
∑
k∈K

∑
n∈N

∑
b∈Bn

I
(m,m′)

pbn
ξkpbn
×(

ĥk(ρ)− gk(ρ)
)
≤ B(m,m′), ∀(m,m′) ∈ E

C4-a:
∑
k∈Ku

(
ĥk(ρ)− gk(ρ)

)
≤ Bf,u,∀u

C5: ρk ≤ Pmax
k ,∀k ∈ K,

(19)
under variable: ρ ≥ 0. Note that, based on CCP, any feasible
solution of (19) is also feasible in (13) [33]. The feasibility
problem (8) is solved by alternatively solving (11) and (19).
Then, we reject the task that makes (7) infeasible. According to
Algorithm 2, we find the value of the maximum non-negative
variable. If the value is positive, its associated task is rejected,
the set of served tasks is updated, and (8) is solved for updated
set of tasks. This procedure continues until all non-negative
variables are zero. The output of Algorithm 2 is feasible subset
of tasks K? as well as the solution of (8), i.e., the values
of ξini,ρini, and υini, which are utilized as initialization for
solving (7).

Algorithm 2: JTO Feasibility Analysis for Solving (8).
Initialize: K = {1, · · · ,K}, ξ = 0, ρ0 : very small

1 repeat
2 i = 0
3 repeat

% Allocate transmit power, computational resources,
and place the tasks

4 Solve (11) via Algorithm 1 and return υi+1, ξi+1,
and αi+1

5 Solve (19) and return ρi+1

6 i = i+ 1
7 until

∑
k∈K α

i
k −

∑
k∈K α

i+1
k ≤ ε or i ≥ Imax

% Discard the infeasible task
8 k? = arg max

k∈K
αk

9 if αk? > 0 then
10 K = K\{k?}
11 until

∑
k∈K αk = 0

Output: ξini = ξi+1,ρini = ρi+1,υini = υi+1, and
K? = K

B. Optimization

Given the feasible solution ξini,ρini,υini, and the set of
accepted tasks K?, we seek for the solution of (7). Sim-
ilar to Algorithm 2, we decouple power allocation from
task placement and coumputational resource allocation. The
optimization problemof task placement and coumputational
resource allocation is:

min
υ,ξ

∑
n∈N

∑
k∈K

∑
b∈Bn

Λnξ
k
pbn
υk

3

s.t. C1-C3, and C6,
(20)

which is non-convex. Note that the objective of (20) is an
increasing function of υk and allocating lower computational
resources to task k decreases the power consumption. But,
allocating lower computational resources increases execution
latency and violates the E2E latency constraint. As a result,
we need to find nodes with smaller propagation latency to
compensate for increased execution latency. Solving (20) ne-
cessitates determining an executing server, a path ending to the
executing server, and computational resource allocation. This
is in contrast to conventional routing methods in which either
the destination is known in advance or computational resource
allocation is not involved. Therefore, we need to devise a
heuristic algorithm to solve (20). In doing so, we find a subset
of nodes with smaller propagation latency than the current ex-
ecuting server and with sufficient capacity of links terminating
at that nodes. This set of nodes is N ′k = {n′ ∈ N|∃b′ : Rk ≤
B̃k(m,m′)∀(m,m

′) ∈ Epb′
n′

and T prop
k (pb

′

n′) ≤ T prop
k (pbn)},

where we assume task k is previously placed through path
pbn. For each node in N ′k, we calculate the minimum com-
putational resources that satisfy the E2E latency constraint,
i.e., υtemp = Lk

Tk−T tx
k −T

prop
k (pb

′
n′ )

. When Υ̃k
n′ ≥ υtemp and

Λn′υ3
temp ≤ Λnυ

3
k, we ensure that task placement through

pb
′

n′ and computational resource allocation υtemp are feasible
and result in lower power consumption. Therefore, we set
υk = υtemp. Otherwise, we reinstate υk for task k. Algorithm
3 begins with the tasks with larger power consumption, i.e.,
Λnk

υ3
k, where nk denotes the executing server of task k. This

procedure is repeated for all accepted tasks.

Algorithm 3: Heuristic Algorithm for Solving (20).
Input: ξini,ρini,υini

1 sort: Λ[1]υ
3
[1] ≤ Λ[2]υ

3
[2] ≤ · · ·Λ[K]υ

3
[K]

2 for k = [1] : [|K|] do
% Find a feasible node according to capacity of paths

terminated at that node
3 N ′k = {n′ ∈ N|∃b′ : Rk ≤ B̃k(m,m′), ∀(m,m′) ∈

E
pb

′
n′

and T prop
k (pb

′

n′) ≤ T prop
k (pbn)}

4 for n′ ∈ N ′k do
5 υtemp = Lk

Tk−T tx
k
−Tprop

k
(pb

′
n′ )

6 Υ̃k
n′ = Υn′ −

∑
j∈K\{k}

∑
b∈Bn′

υjξ
j

pb
n′

7 if υtemp ≥ Υ̃k
n′ and Λn′υ3

temp ≤ Λn?υ3
k then

8 set υ?k = υtemp

9 set ξk?
pb

′
n′

= 1 and ξk?pbn = 0, ∀(n, b) 6= (n′, b′)

10 break

Output: ξ?,υ?

The sub-problem of transmit power allocation, after con-
vexification, is:

min
ρ

∑
k∈K ρk

s.t. C1-c: hk(ρ)− ĝk(ρ) ≥ Dk

Tk−Tprop,i
k −T exe,i

k

,∀k ∈ K

C3-a, C4-a, and C5.
(21)

Based on CCP in Algorithm 4 and starting from ρ0 = ρini,
an iterative solution of (21) provides a sub-optimal transmit
power allocation. Finally, optimization problem (7) is solved
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Algorithm 4: Power Allocation in JTO.
Input: ρ0 = ρini, i = 0, ε = 10−3, Iρmax = 102

1 repeat
% Allocate power to users

2 Solve (21) and return ρi+1

3 i = i+ 1
4 until

∑
k∈K ρ

i
k −

∑
k∈K ρ

i+1
k ≤ ε or i ≥ Iρmax

Output: ρ? = ρi+1

via Algorithm 5, which alternatively solves optimization prob-
lem (11) via Algorithm 3 and optimization problem (21) via
Algorithm 4.

From the implementation point of view, BBU is responsible
for gathering the required information, performing resource
allocation, and sending the decisions to the associated entities.
Specifically, in JTO, BBU needs to acquire CSI of UEs and
the available computational resources in the NFV-enabled
nodes. CSI of each UE is estimated at its serving RRH
and is forwarded through fronthaul links with negligible la-
tency. In addition, each NFV-enabled node sends the available
computational resources to the BBU through the transport
network. After performing JTO, BBU transmits the value of
allocated powers to RRHs. Next, BBU forwards the received
data of tasks as well as the obtained computational resources
to associated NFV-enabled nodes based on task placement
variables. In the downlink, the processed data of tasks are
sent to BBU, which in turn transmits UEs processed data to
their serving RRH.

Algorithm 5: JTO Optimization Algorithm for Solving
(7).

Input: ξ0 = ξini,ρ0 = ρini,υ0 = υini,K?, i = 0
1 repeat

% Place the tasks and allocate the computational
resources

2 Solve (20) via Algorithm 3 and return υi+1 and ξi+1

% Allocate the transmit power
3 Solve (21) via CCP in Algorithm 4 and return ρi+1

4 i = i+ 1
5 until E(ξi,υi,ρi)− E(ξi+1,υi+1,ρi+1) ≤ ε or i ≥ Imax

Output: ξ?,ρ?,υ?

C. Convergence analysis

In this subsection, we prove the convergence of Algorithms
2 and 5.

Theorem 1. Algorithm 2 is convergent.

Proof. We show that the objective value of (8), i.e.,
∑
k∈K αk,

is non-increasing in each step of Algorithm 2 and since the
objective value is lower bounded by zero, Algorithm 2 is con-
vergent. In ith iteration of Algorithm 2, Algorithm 1 sets αi+1

k

either equal to 0 when E2E latency of task k is guaranteed
or equal to T tx

k + T exe
k + T prop

k − Tk when E2E latency is
larger than its maximum acceptable value. Therefore, we have
αi+1
k = [T exe

k +T prop
k +T tx

k −Tk]+. Hence, we need to show
that

∑
k∈K(T tx

k + T exe
k + T prop

k ) does not increase after ith

iteration. Algorithm 1 affloads task k so that T exe
k + T prop

k

in the objective of (11) is minimized (line 5 in Algorithm

1). As a result, Algorithm 1 does not increase the objective
value of (11), i.e.,

∑
k∈K(T prop

k (ξi+1) + T exe
k (υi+1)) ≤∑

k∈K(T prop
k (ξi)+T exe

k (υi)). Moreover, as discussed in sub-
section IV-A, Algorithm 1 makes C1-a active, i.e., T tx

k (ρi) =
Tk + αi+1

k − T exe
k (υi+1) − T prop

k (ξi+1), and therefore, any
feasible solution to (13) does not increase the objective
vlaue of (12), i.e.,

∑
k∈K T

tx
k (ρi+1) ≤

∑
k∈K T

tx
k (ρi), which

gives
∑
k∈K(T exe

k (υi+1) + T prop
k (ξi+1) + T tx

k (ρi+1)) ≤∑
k∈K(T exe

k (υi)+T prop
k (ξi)+T tx

k (ρi)). As a result, we have∑
k∈K α

i+1
k ≤

∑
k∈K α

i
k, that is, Algorithm 2 is convergent.

Note that Algorithm 2 may eliminate the task with maxi-
mum non-negative variable. This elimination is equivalent to
removing the constraints of (8) associated with the eliminated
task. Note that, eliminating a task increases the available
capacity of links in transport network and available compu-
tational resources in NFV-enabled nodes. As a result, a search
space of Algorithm 1 increases, which may result in lower
propagation and execution latencies. Moreover, eliminating a
task extends the feasible set of (13). Therefore, data rate of
users may increase, which in turn may decrease

∑
k∈K T

tx
k .

As a result, eliminating the task with maximum non-negative
variable does not increase the objective of (8).

Theorem 2. Algorithm 5 is convergent.

Proof. Algorithm 5 solves (7) by alternating minimization of
(20) and (21). Therefore, we need to show that Algorithm
3 (which solves (20)) and Algorithm 4 (which solves (21))
do not increase the objective value of (7). According to
line 7 of Algorithm 3, computational resource allocation and
task placement do not increase the objective value of (20).
In addition, based on [33], convergence of Algorithm 4 is
guaranteed and CCP does not increase the objective of (21).
As a result, the objective value of (7) is non-increasing in
each iteration, and since Ψ(ξ,υ,ρ) is lower bounded by zero,
Algorithm 5 is convergent.

D. Summary of JTO
Herein we summarize JTO. We obtain a set of feasible

tasks by solving (8). In doing so, we decouple the power
allocation from task placement and computational resource
allocation, which are performed by solving (13) and Algorithm
(1), respectively. Then, we solve (7) for feasible tasks via
Algorithm 5, which includes the alternating minimization of
(20) and (21) via Algorithm 3 and Algorithm 4, respectively.
Computational complexity (CC) analysis of JTO is provided
in [34] (not included here due to space limitations). Our
analysis indicates that JTO is of polynomial complexity,
the same complexity order of state-of-the-art task offloading
schemes. The polynomial complexity may prevent a real-time
implementation of JTO, especially in large-scale networks.
However, JTO can provide a supervised deep learning model
with the required labeled data. In doing so, JTO maps a large
number of network states to their respective offloading policies
in an off-line manner. Then, a deep neural network (DNN) is
trained based on the offloading policies provided by JTO. It is
shown that CC of feed-forward propagation in DNNs is much
lower than optimization-based approaches [35]. Hence, DNNs
can find offloading policies in real-time.
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V. DISJOINT TASK OFFLOADING (DTO)

In DTO, transmit power allocation is independent of task
placement and computational resource allocation. The transmit
power is allocated under a radio latency constraint, i.e., T tx

k ≤
TRAN
k . Then, the task placement and computational resource

allocation are performed so that T prop
k + T exe

k ≤ Tk − TRAN
k .

The convexified sub-problem of the transmit power allocation
is:

min
ρ

∑
k∈K ρk

s.t. C1-d: hk(ρ)− ĝk(ρ) ≥ Dk

TRAN
k

, ∀k ∈ K
C4-a, and C5.

(22)

According to discussion on discussion on (7), a feasibility
analysis is needed for (22). Similar to JTO, the feasibility
problem of (22) is:

find ρ

s.t. C1-e: hk(ρ)− ĝk(ρ) ≥ Dk

TRAN
k +αk

, ∀k ∈ K
C4-a, and C5,

(23)
which is solved via CVX. Next, the non-negative variables are
updated as αk = [T tx

k −TRAN
k ]+ and the task with maximum

non-negative variable is eliminated. This procedure is repeated
until a feasible subset of tasks for transmit power allocation
is obtained. After this step, (22) is solved with the feasible
subset of tasks. The transmit power allocation phase of DTO
is provided in Algorithm 6.

Algorithm 6: DTO Transmit Power Allocation.
Input: K = {1, · · · ,K},α0 : very large, ρ0 : very small,

TRAN
k = (0, Tk)

1 repeat
2 i = 0
3 repeat

% Allocate the transmit power to users
4 Solve (23) via CVX and set ρi+1 = ρ?

% Update the non-negative variables
5 αi+1

k = [T tx
k − TRAN

k ]+, ∀k ∈ K
6 i = i+ 1
7 until

∑
k∈K α

i
k −

∑
k∈K α

i+1
k ≤ ε or i ≥ Imax

8 k? = arg maxk∈K αk
% Discard the infeasible task

9 if αk? > 0 then
10 K = K\{k?}
11 until

∑
k∈K αk = 0

% Minimize the transmit power
12 Solve (22) via CCP in Algorithm 4 and return ρ?

Output: ρ?,KRAN = K

Having obtained transmit power ρ, task placement and com-
putational resource allocation are performed, whose associated
sub-problem is:

min
ξ,υ

∑
n∈N

∑
k∈K

∑
b∈Bn

Λnξ
k
pbn
υk

3

s.t. C1-f: T prop
k + T exe

k ≤ Tk − TRAN
k , ∀k ∈ K,

C2, C3, and C6.
(24)

A feasibility analysis is also needed for solving (24). Similar
to the transmit power allocation, we introduce a set of non-
negative variables. The resulting sub-problem is similar to (11)
by replacing C1-a with C1-f, which is solved by algorithm
1. After obtaining a set of feasible tasks, (24) is solved via
Algorithm 3. The feasibility analysis and optimization of DTO
is provided in Algorithm 7. CC of DTO is also analyzed in
[34]. Our analysis shows that CC of DTO is less than CC of
JTO, however, both are in the same complexity order.

Algorithm 7: DTO Computational Resource Alloca-
tion and Task Placement.

Input: KRAN, ξ = 0
1 repeat
2 i = 0
3 repeat

% Allocate transmit power, computational resources,
and place the tasks

4 Solve (24) via Algorithm 1 given υi, ξi, and αi and
return υi+1, ξi+1, and αi+1

5 i = i+ 1
6 until

∑
k∈K α

i
k −

∑
k∈K α

i+1
k ≤ ε or i ≥ Imax

% Find the task with maximum non-negative variable
7 k? = arg maxk∈K αk
8 if αk? > 0 then

% Discard the infeasible task
9 K = K\{k?}

10 until
∑
k∈K αk = 0

11 i = 0
12 repeat

% Allocate computational resources and place the tasks
13 Given υi and ξi, solve (24) via Algorithm 3 and return

υi+1 and ξi+1

14 until Ψ(ξi,υi,ρ?)−Ψ(ξi+1,υi+1,ρ?) ≤ ε or i ≥ Imax

Output: ξ?,υ?

VI. LOWER BOUND ON OPTIMAL SOLUTION (LTO)

Since the optimization problem (8) is non-convex, without
loss of the optimality, we make some assumptions to resolve
the non-convexity of (8). First, we note that it is very likely
for the fiber-optic links to have sufficient capacity for carrying
the traffic of UEs, which is the case for frontahul links and
any wired link in the transport network. As a result, we relax
the constraints C3 and C4 from (8). Note that the relaxation of
C3 and C4 extends the feasible set of (8), resulting in a lower
bound on the optimal solution to (8). In addition, with a large
number of antenna elements at RRHs, the channel vectors
between different RRHs and a specific user are approximately
orthogonal, i.e., |hH

u,khu,j | ≈ 0 for all j 6= k [31]. Therefore,
the interference in wireless channels is negligible and (15)
becomes:

Rk = W log2

(
1 +
|hu,k|2

σ2
n

ρk

)
, k ∈ Ku. (25)

The elimination of the interference increases Rk with the same
amount of power allocated to each UE, which again results in
a lower bound on the optimal solution to (8). Based on the fact

that min
α,ξ,υ,ρ

∑
k∈K αk = min

α,ξ,υ

(
min
ρ

∑
k∈K αk

)
, the optimal



10

power allocation is the solution to:

min
ρ

∑
k∈K αk

s.t. C1: T exe
k + T prop

k + T tx
k ≤ Tk + αk, ∀k,

C5: ρk ≤ Pmax
k , ∀k.

(26)

The data rate in (25) removes the cross-coupling impact of
the allocated power to different users. Hence, without loss
of optimality, (26) is solved for each ρk independently. The
associated power allocation problem is:

min
ρk

T tx
k

s.t. C1: T exe
k + T prop

k + T tx
k ≤ Tk + αk, ∀k,

C5: ρk ≤ Pmax
k , ∀k,

(27)

in which αk in the objective is replaced with T tx
k . Note that

minimizing T tx
k is equivalent to maximizing Rk

Dk
. Since Rk

in (25) is increasing with ρk, the optimal solution of (27)
is ρ?k = Pmax

k . Note that feasibility of C1 is ensured by
optimizing other variables.

Next, we deal with the binary optimization variable ξ.
We propose an exhaustive search over all possible values
of ξ to avoid any performance loss due to non-convexity
of (8), stemmed from binary ξ. The number of all possible
combinations of task placement decisions equals |B||K| where
|B| =

∑
n |Bn|. Thus, we solve (8) for α and υ for each

task placement decision and select the decision that results in
lowest

∑
k αk as the optimal decision. Note that the exhaustive

search may impose an excessive computational complexity.
However, LTO is developed as a baseline for performance
evaluation and it is not supposed to work in real-time.

The optimization problem for solving α and υ is:

min
υ,α

∑
k∈K αk

s.t. C1-a: Lk

υk
≤ T̃k + αk, ∀k ∈ K

C2:
∑
k∈Kn

υk ≤ Υn, ∀n,
(28)

where T̃k = Tk − T prop
k − T tx

k and Kn is the set of tasks to
be executed at executing server n. Problem (28) is convex in
both α and υ. As a result, the KKT conditions determine the
optimal solution. To derive the KKT conditions, we first write
the Lagrangian function as follows:

L =
∑
k∈K

(
αk + γk(

Lk
υk
− T̃k − αk)− ηkαk − µkυk

)
+

∑
n∈N

λn

(∑
k∈Kn

υk −Υn

)
. (29)

By derivating the Lagrangian function with respect to αk and
υk we have:

∂L
∂αk

= 1− γk − ηk = 0, ∀k ∈ K, (30)

and
∂L
∂υk

= −γk
Lk
υ2
k

− µk + λn = 0, ∀k ∈ Kn. (31)

In addition, the complementary slackness conditions are:

γk(
Lk
υk
− T̃k − αk) = 0, ∀k ∈ K, (32)

λn

(∑
k∈Kn

υk −Υn

)
= 0, ∀n ∈ N , (33)

ηkαk = 0, ∀k ∈ K, (34)
µkυk = 0, ∀k ∈ K. (35)

Constraint C1-a implies υk > 0. Hence, from (35) we have
µk = 0 and condition (31) results in:

υk =

√
Lk
λn
, ∀k ∈ Kn, (36)

which implies λn > 0. Thus, (33) gives:∑
k∈Kn

υk = Υn, ∀n ∈ N . (37)

On the other hand, when (7) is infeasible, we get αk > 0.
Thus, (34) leads to ηk = 0 and condition (30) results in γk =
1. As a result, from (32) we get:

αk =
Lk
υk
− T̃k, ∀k ∈ K. (38)

Having αk ≥ 0 and (36), the optimal non-negative variable is:

αk = [
√
Lkλn − T̃k]+, ∀k ∈ Kn, (39)

wherein λn is found such that:∑
k∈Kn

Lk

T̃k + αk
= Υn, ∀n ∈ N . (40)

Then, the optimal values of αk and υk are found as in (39)
and (36), respectively. Having the optimal solution of (28) for
all possible ξ, the optimal solution of (8) is the solution with
lowest objective of (28).

VII. SIMULATION RESULTS

In this section, we evaluate the performance of JTO 3. The
setup of the simulation is presented in Table II. We assume
that U = 4 RRHs are placed with inter-site distance of 100 m
and all users are served in an area of 100 m radius with a given
user-RRH assignment. The nodes in the transport network are
divided into three tiers based on their distance from UEs: the
local tier, the regional tier, and the national tier. Although
the number of serving nodes is very large, there are some
distant nodes in each tier that impose a large propagation
latency. Hence, we only incorporate the nodes with reasonable
propagation latency in the transport network [7]. Network
graph G consists of N = 6 nodes: n̄ at the local tier with
zero propagation latency, three nodes at the regional tier with
relatively low propagation latency, and two distant nodes at
the national tier. For simplicity of comparison, we assume that
all nodes have the same computational capacity and all tasks
are of the same size, load, and maximum acceptable latency,
i.e., Dk = D, Lk = L, and Tk = T , ∀k. Moreover, we

3The simulation files are available online at IEEE DataPort with DOI:
10.21227/w5tv-yz53.
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TABLE II: Simulation Setup.

Parameter Value Parameter Value Parameter Value
Lk 106 CPU Cycles δ(m,m′) 10 ms M 32 Antennas
Dk 0.1 Mbits Λn 10−28 [19] Path Loss 128.1 + 37.6 logQ [22]
Υn 109 CPU Cycles per Second [6] U 4 Pmax

k 0.5 Watt
Bf,u 0.6 Gbps Noise power −150 dBm/Hz [22] η 1
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Fig. 2: Performance comparison of JTO and ASM

assume equal propagation latency and capacity for the network
links. Note that the relatively low value of link capacity (0.4
Gbps) is the amount of capacity solely reserved for task
offloading. Finally, the simulations are performed on a 3.30
GHz Core i5 CPU and 16 GB RAM. Fig. 2 (a) reports the
performance of the feasibility analysis in JTO, showing the
acceptance ratio versus T . The acceptance ratio is defined
as the ratio of accepted services by the feasibility analysis
over the total number of the requested tasks. Note that the
acceptance ratio increases by increasing T . This is due to the
fact that the tasks with higher T need less transmit power and
computational resources to be served. Moreover, for higher T ,
a larger number of nodes are available for task offloading. In
addition, we solve (8) by the alternate search method (ASM),
in which (8) is alternatively solved for each variable. Note that
the sub-problem of υ is solved by CVX and the sub-problem
of ξ is solved by MOSEK (details are not provided due to
space limitation). The effectiveness of JTO against ASM is
also shown in Fig. 2 (a). Note that for latencies smaller than
75 ms, JTO outperforms ASM. Moreover, the performance of
both methods is identical for low values of T . This is due to
the fact that the set of accessible NFV-enabled nodes for low
values of T is restricted to n̄ and therefore, JTO is not able to
offload the tasks to more distant NFV-enabled nodes because
their propagation latencies violate the E2E latency constraints.

The acceptance ratio of JTO for different number of tasks is
shown in Fig. 2 (b). Since the amount of available resources is
limited, the acceptance ratio is decreasing with the increase in
the total number of tasks. Again, the superiority of JTO over
ASM is observed.

The convergence of Algorithm 2 is shown in Fig. 2 (c). As
expected, the sum of non-negative variables is decreasing in
each iteration. Furthermore, Algorithm 2 converges faster than
ASM, which stems from higher acceptance ratio of JTO.

The acceptance ratio of JTO is compared with DTO in Fig.
3 (a). The acceptance ratio of JTO and DTO is depicted for

T = 30 ms. For DTO, we obtain the acceptance ratio for
different values of TRAN ∈ (0, T ). Moreover, the acceptance
ratio of the feasibility analysis in the transmit power allocation
phase of DTO, i.e., Algorithm 6, is depicted. The acceptance
ratio of DTO is increasing for small values of TRAN, that is,
the small values of TRAN impose high rates on users, which
is impossible due to either insufficient bandwidth or limited
fronthaul capacity. On the other hand, for larger values of
TRAN, the acceptance ratio of Algorithm 6 is 1 but the task
placement and computational resource allocation restricts the
number of accepted tasks. Furthermore, JTO outperforms DTO
in different values of TRAN.

The consumed power of DTO for different values of TRAN

is shown in Fig. 3 (b). The network serves K = 30 tasks
with maximum acceptable latency of T = 50 ms. For a fair
comparison, we only consider ranges of TRAN that result
in an acceptance ratio equal to one. For small values of
TRAN, the transmit power dominates the power consumption
of executing servers because UEs need to consume higher
levels of power to comply with latency constraints in the
radio part of the network. Besides, the transmit power is
smaller for larger TRAN. As a result, the consumed power
of DTO is decreasing when TRAN is small. In contrast, when
TRAN is large, the power consumption of executing servers
dominates the transmit power because the executing servers
need to consume higher levels of power to comply with latency
constraints in the non-radio part of the network. Besides,
the power consumption of the executing servers is smaller
for larger T − TRAN. As a result, the consumed power of
DTO is increasing when TRAN is large. In addition, larger
values of L result in the minimum consumed power at lower
values of TRAN because the executing servers consume higher
power levels for larger L. As a result, the consumed power
of executing servers is balanced with the transmit power of
UEs at lower values of TRAN. The value of TRAN that
minimizes the consumed power of DTO is not known in
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Fig. 3: Performance comparison of JTO, DTO, and LTO.

advance. In contrast, JTO finds the proper values of T tx, T exe,
and T prop for each task to minimize the power consumption.
The consumed power levels of JTO for three values of L
shown in Fig. 3 (b) are 0.36, 0.16, and 0.12 Watts, respectively.
The consumed power levels indicate that JTO outperforms
DTO, even when the optimal values of TRAN are selected.

Fig. 3 (c) shows the acceptance ratio of LTO and JTO
for different values of maximum acceptable latency T . Due
to the high computational complexity of exhaustive search
in LTO, we consider a simple network graph comprised of
two nodes connected with a single link. Moreover, the total
number of tasks |K| is 20. The acceptance ratio of both JTO
and LTO is lower for larger computational loads. Meanwhile,
the acceptance ratio of JTO is almost the same as LTO for
different values of T and L.

Fig. 4 (a) shows the average radio transmission latency, i.e.,
1
K

∑
k∈K T

tx
k , and the average execution latency of tasks, i.e.,

1
K

∑
k∈K T

exe
k for different values of D given T = 20 ms. The

average radio transmission latency increases by increasing D
and subsequently the average execution latency is decreased
to maintain the maximum acceptable latency. Therefore, it is
inferred that JTO efficiently manages the transmit power and
the computational resources. Similarly, according to Fig. 4 (b),
the average execution latency increases by increasing L and
subsequently this increase is compensated with lower radio
transmission latency.

In Fig. 5, we assume there are three classes of tasks (each
including 10 tasks) with three different maximum acceptable
latencies, i.e., T (1) = 10 ms, T (2) = 50 ms, and T (3) = 100
ms. The classes (1), (2), and (3) are considered as the sets
of tasks with low, medium, and high latency requirements, re-
spectively. Moreover, we assume there are three nodes (shown
by rectangles): a local node (i.e., n̄) with zero propagation
latency, a regional node with 20 ms propagation latency, and a
national node with 40 ms propagation latency. The propagation
latencies are the summation of uplink and downlink propaga-
tion latencies. Fig. 5 shows the task placement for different
values of the processing capacity of nodes C = Υn,∀n. When
C = 1, none of the nodes is able to serve the tasks in class
(1) due to their high resource utilization. However, the tasks
in class (2) are mainly served at the local node and class
(3) tasks are placed at regional and national nodes. When
C = 10, some of the tasks in class (1) are placed at the
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Fig. 4: Average radio transmission and execution latencies in JTO.

local node. Moreover, some tasks in class (2) and (3) are
served at the local node as well. Furthermore, the national
node does not serve any task because JTO places the tasks
at the nearest nodes in order to reduce the transmit power.
When C = 20, more tasks in class (1) are served at the
local node and the acceptance ratio reaches 1. Finally, when
C = 50, almost all of the tasks are placed at the local node to
reduce the transmit power consumption. Table III shows the
acceptance ratio of each class for different values C. Note that
the acceptance ratio of all classes is increased by increasing
C. Moreover, the acceptance ratio of class (1) is lower than
that of classes (2) and (3). The reason is twofold, one is due
to high resource utilization by tasks of this class and another
is due to limited number of available nodes for tasks with low
latency requirement (only node n̄ in this example).

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we considered an energy-efficient task offload-
ing problem under E2E latency constraints. We investigated
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Fig. 5: Placement of the different classes of tasks at three different
tiers of nodes for K = 30.

TABLE III: Acceptance ratio of JTO for different task classes vs.
processing capacity of nodes.

Υn × 109 T (1) = 10 T (2) = 50 T (3) = 100
C = 1 0 0.5 0.9
C = 10 0.5 0.9 1
C = 20 1 1 1

the impact of joint radio transmission, propagation of tasks
through the transport network, and execution of tasks on the
experienced latency of tasks. Due to the non-convexity of
the optimization problem, we decoupled the transmit power
allocation from task placement and computational resource
allocation. The transmit power allocation was solved by CCP
to convexify the sub-problem. The task placement and com-
putational resource allocation were solved via our proposed
heuristic method, which minimizes the sum of propagation
and execution latencies. Furthermore, to ensure the feasibility
of the optimization problem, we proposed a feasibility analysis
that eliminates the tasks causing infeasibility. Simulation re-
sults showed the superiority of JTO over both DTO and ASM.
The performance of DTO depended on the part of latency
required to be met in the radio access network, i.e., TRAN.
However, JTO showed higher acceptance ratios for different
values of TRAN. As future work, we plan to incorporate
task scheduling into JTO. Moreover, the investigation of an
innovative solution that divides the required computational
load of each task among several nodes will be an interesting
future research activity.
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