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Abstract: With the development of autonomous vehicles, localization and mapping technologies
have become crucial to equip the vehicle with the appropriate knowledge for its operation. In this
paper, we extend our previous work by prepossessing a localization and mapping architecture for
autonomous vehicles that do not rely on GPS, particularly in environments such as tunnels, under
bridges, urban canyons, and dense tree canopies. The proposed approach is of two parts. Firstly,
a K-means algorithm is employed to extract features from LiDAR scenes to create a local map of
each scan. Then, we concatenate the local maps to create a global map of the environment and
facilitate data association between frames. Secondly, the main localization task is performed by an
adaptive particle filter that works in four steps: (a) generation of particles around an initial state
(provided by the GPS); (b) updating the particle positions by providing the motion (translation and
rotation) of the vehicle using an inertial measurement device; (c) selection of the best candidate
particles by observing at each timestamp the match rate (also called particle weight) of the local map
(with the real-time distances to the objects) and the distances of the particles to the corresponding
chunks of the global map; (d) averaging the selected particles to derive the estimated position, and,
finally, using a resampling method on the particles to ensure the reliability of the position estimation.
The performance of the newly proposed technique is investigated on different sequences of the
Kitti and Pandaset raw data with different environmental setups, weather conditions, and seasonal
changes. The obtained results validate the performance of the proposed approach in terms of speed
and representativeness of the feature extraction for real-time localization in comparison with other
state-of-the-art methods.

Keywords: autonomous driving; feature extraction; mapping; localization; self-driving vehicles; SLAM

1. Introduction

The recent advances in the development of Autonomous Vehicles (AVs) offer great po-
tential for improving road safety. AVs offer a market-ready solution to reduce road-related
crashes and fatalities [1]. Achieving these goals requires an effective autonomous vehicle
localization system that can locate the vehicle in its environment. The combination of
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positioning and orientation techniques for localization and appropriate mapping methods
are required for trajectory planning and safe navigation of AVs [2].

The classical approach for locating AVs is to use a Global Navigation Satellite System
(GNSS). Triangulation of at least three GNSS signals provides information for locating AVs
on the road. However, GNSS reliability is compromised by visibility problems in tunnels,
canyons, under bridges, and dense tree canopies, as well as by multipath reflections and
signal delay [3–5]. A common approach employed during the absence of GNSS signals
is to use the Inertial Navigation Systems (INS), which can provide continuous position
and attitude information based on the vehicle’s acceleration and heading speed provided
by the accelerometer and the gyroscope, respectively [5]. However, the accuracy of the
INS deteriorates exponentially during the double integration of the acceleration measure-
ments to position and of the azimuthal velocity measurements to azimuth [6]. Similar
to the accelerometers of the INS, wheel odometry has been investigated as a solution for
position determination in GNSS-deprived environments [7,8]. By using measurements
from wheel encoders (which measure the wheel speed of the vehicle) and integrating the
linear velocity of the vehicle derived from the wheel speed, it is possible to determine
the position of the vehicle with one less integration step compared to the accelerometer
measurement [8]. However, like the INS, wheel encoder measurements suffer from errors
that are exponentially amplified when integrated into position [8]. To provide a more accu-
rate position and orientation estimation, needed for a safer and more effective navigation
solution in GNSS-deprived environments, several machine learning methods based on
recurrent neural networks [5–13] have been proposed to learn the errors present in the
wheel encoder, accelerometer, and gyroscope measurements. However, Black Box type
of models, as usually encountered in deep learning, can pose several challenges, as they
require large amounts of data to be properly trained in order to provide reliable prediction
results, in addition to their decisions not being transparent to human users. Particle Filters
(PF) have also been shown to be capable of accurately modelling measurement errors in
similar types of applications. PFs have several advantages that can be used for localization.
For example, PFs can handle nonlinear trajectories [14], can track multiple objects varying
in time [15], and can handle occlusion and overlap [15]. Moreover, the PFs approach does
not require prior assumptions, such as a Gaussian distribution of the data, such as the
Kalman filter [16]. In its early days, PF was used in signal processing to estimate states
based on observed variables [17]. Since then, PF has been adapted to solve localization
problems [18–21]. In practice, PF (also called sequential Monte Carlo) uses the Markov
assumption based on a concept that relates the state (in this case, the position) Xt to the
previous state Xt−1. The algorithm begins by generating thousands of particles represent-
ing candidate positions. A weight is assigned to each particle. The higher the weight’s
value, the higher the probability that the particle is in the vehicle’s position. PFs offer the
opportunity to explore the advantages of data from multiple sources.

Nevertheless, the above-described methods are not capable of providing lane-level
accuracy using the information provided only by the INS and/or wheel encoder sensors.
Camera and Light Detection and Ranging (LiDAR) are sensors commonly combined with
the INS to provide lane-level localization. They are widely used in intelligent vehicles to
provide an accurate representation of the vehicle’s environment, i.e., the objects around the
vehicle and the distances between them. A technique called ”registration” [1] can be used
to locate vehicles by aligning LiDAR scans and images from the camera. Typically, this
method tracks the movement between keyframes, producing a transformation matrix that
gives a translation vector T and a rotation matrix R from the first keyframe to the second
keyframe [22]. Thus, the position of the vehicle follows the transformation described below
in Equation (1).

Xt = R ∗ Xt−1 + T (1)

where Xt is the position of the vehicle at time t, and Xt−1 is the position of the vehicle at
time t− 1.
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The Iterative Closest Point (ICP) is one method that applies this registration concept [1,23].
It matches LiDAR scans by minimizing the cost function.

arg min
R,T

{
1
M ∑M

j=1 ‖ aj −
(

Rbj + T
)
‖ 2

}
× (2)

where
{

aj
}

j,
{

bj
}

j are the 3D coordinates points of the two lidar scans A and B, respectively,
and M is the number of points inside A (or B). The idea is to find a matrix of translations
and rotations that accurately represents the similarities between these two scans. Thus, the
vehicle’s motion will also follow the same transformation as shown in Equation (1) [24].
However, due to measurement errors, the ICP algorithm is not able to provide good
accuracy, especially in the long-term matching of nonlinear trajectories [25]. Therefore,
the authors of [26] proposed the Normal Distribution Transform (NDT), which represents
each group of 3D points included in a voxel (a 3D cube) by a probability distribution. The
advantage of this representation is its ability to provide better results despite measurement
errors and difficulties in detecting similarities between scans. However, these ‘registration’
methods are usually computationally time-consuming and do not work well when the
number of feature points matched is not sufficient. [27] which complicates the process of
finding the optimal parameters R and T needed to minimize the cost function in Equation (2).
Developing a highly accurate and real-time efficient registration method is still an active
research area in autonomous driving [27].

In this study, we propose a fuzzy K-means clustering technique to represent the
environment efficiently, which facilitates the process of finding similar parts between the
scan of the local map t and the corresponding parts on the global map. The global map
contains information about the object in the trajectory. After generating these maps (local
and global), an adaptive particle filter is used to localize the vehicle along the trajectory.
The Adaptive Particle Filter (APF) is a particle filtering method supported by a resampling
technique that allows the particles to follow approximately the actual positions of the
trajectory and maintain accuracy. The APF uses the created local and global map to
distinguish the best candidate particles for position calculation.

In this paper, we extend the work conducted in [28] on non-semantic feature map
reduction using K-means, global map generation using GMM, and localization using
particle filters by adding a resampling technique to the particle filter (i.e., employing the
adaptive filter) to obtain a more accurate localization solution. In addition, we further
investigated different parameter settings of the particle filter and the effect of the resampling
extension on the performance of our proposed localization and mapping technique.

2. Related Work

Three approaches to fuse information from different sensors were found to be the
most popular. These include parametric filters, such as extended Kalman filters; non-
parametric filters, such as particle filters; and finally, least squares approaches, such as
beam adaptation and graph-based Simultaneous Localization and Mapping (SLAM). In
general, these methods use measurements from motion sensors to track vehicle motion, i.e.,
translation and rotation between two consecutive keyframes, and explore measurement
sensors, i.e., LiDAR scans or images, as criteria to accurately approximate positions. Map
features represent objects from the vehicle’s environment, or at least part of them, by their
coordinates, which reduce the calculation time of the matching process and provide a clear
representation of the map. There are two types of features: semantic and non-semantic
features. Semantic features such as poles, trees, buildings, and sidewalks are widely used
in feature mapping and vehicle tracking. The authors of [18] detected poles as feature
landmarks by converting point clouds provided by the LiDARs into voxels, and the cells
with an acceptable number of point clouds were connected vertically with a similar voxel.
Each candidate pole has a certain number of connected cells (vertical sense). The landmarks
were also fitted with cylinders to ensure reliability and extract pole parameters. A particle
filter was used to perform the localization process. The method showed good accuracy on
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the Kitti dataset. Better localization accuracy was also achieved by poles and wall detection
by Kummerl et al. [19]. In [20], the particle filter was used to localize the vehicle based on
an algorithm that detects poles based on the intensity of the group of points in a voxel grid
map. The algorithm was found to be able to detect landmarks such as trees, streetlights,
and telegraph poles and determine their boundaries. Moreover, it detects the starting and
ending points of the poles. A probabilistic grid map was implemented in [21] to identify
voxels with high beta probability distribution values. The authors investigated the idea
of isolation (i.e., poles are usually isolated from the surrounding space) and proposed a
mathematical formulation that assigns a score to a pole candidate based on the intensity
values inside and outside the pole. The closer the value is to 1, the more likely it is a pole.
Their approach also used a particle filter to perform the localization task and compared
its performance to other published methods. An accumulative positioning error of 7.67 m
was registered in the University of Michigan North Campus Long-Term vision (NCLT)
dataset [29] over 147.3 km of trajectory. Moreover, 0.096 m of the positioning error was
registered in sequence 0009 of the Kitti dataset [30]. In article [31], the same probability
maps were also used to identify walls and buildings in the vicinity. A Kalman filter was
then applied to locate vehicles using the author’s dataset. In general, the integration of
such semantic feature-based methods is computationally intensive. Moreso, these methods
do not work efficiently in all environments, i.e., the environment must have texture and
contain the desired features. Based on clustering methods, our proposed approach detects
non-semantic features which exist in any environment, even with fewer objects’ textures.

Recent works have used this approach, such as the family of Oriented fast and Rotating
Beams—SLAM (ORB-SLAM) [32–34], which extracted the camera position in each frame
by matching the ORB features between keyframes based on local bundle adjustment,
and the ORB features were used to generate maps of the environment. A tracking step
was proposed to assist the system in re-locating, location awareness, or matching frames.
These feature points are stored in a robust DataBase (DB) architecture called DBoW2 [35].
The ORB-SLAM system was tested on real data and has achieved high accuracy in point
tracking, contour locking, and frame localization. However, weather fluctuations and
insufficient brightness are the main problems with camera-based methods [1]. Hungar
et al. [36] used DAISY [37] descriptors to illustrate 2D reflection maps of aligned point
clouds. The remaining maps were fed an intensity gradient in eight radial directions
with Gaussian smoothing. This method compares the maps with 12 shapes. In other
words, the shapes are considered relevant features. Some recent methods take advantage
of recent advances in deep learning. DeepICP [38] was proposed as an approach for a
new generation of registration methods based on end-to-end learning. DeepICP solves
the problems of ICP registration. BirdNet [39] collects important patterns from a bird’s
eye view, which are 2D images of projected LiDAR measurements. Transfer learning, such
as the VGG16 architecture, is used for this purpose. Fast-Region-based Convolutional
Neural Networks (Fast-RCNN) are also used for object detection. As an extension of this
work, BirdNet+ [40] is proposed, which applies an end-to-end strategy directly to 3D point
clouds instead of using projection pre-processing. Both methods have been tested on the
Kitti object detection benchmark dataset and have shown good results. More information
about the registration can be found in [27]. The authors of [41] proposed a method to
solve localization and mapping based on the use of a clustering-modified particle filter
that selects the best candidate positions using sigma point selection techniques that have
the same concept as the unexposed Kalman filter. These points speed up the localization
process and also improve accuracy to achieve excellent results. This method also uses
non-semantic features to perform the measurement update step in the particle filter. Non-
semantic methods are suitable for creating lightweight feature maps, i.e., feature maps can
be created in less time because most of these methods do not use complicated calculation
formulas. In addition, they can represent any object inside the environment or at least part
of them, which makes them robust against any change in the environment.
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3. Methodology

In this section, we present the proposed methodology for solving the problem of
localization and mapping in GNSS deprived environment. In Figure 1b, a general overview
of the architecture of the proposed approach is shown, where an adaptative particle filter is
employed to correct the error provided by the motion and measurement sensor (IMU and
LiDAR, respectively) and find the best position estimates. Our method used two kinds of
information sources (inputs): LiDAR and IMU.
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Figure 1. Workflow architecture describing our proposed method. (a): Describing the vehicles true
position (in red), IMU’s position (in blue) and objects in the vehicles environment as picked up by
the LiDAR (in blue). (b): The structure of the proposed approach consists of two main steps: data
processing {features extraction (A) + global mapping (B)}, described within the dark blue rectangle,
which is a framework for LiDAR measurements processing and creating local and global maps.
Secondly, localization (C) using adaptive particle filters.

The issue: The IMU unit is responsible for providing information about the vehicle’s
movement (translation and rotation). Based on that, the vehicle’s position is estimated
by dead reckoning (based on initial position information provided by the GNSS) over
defined time intervals. However, the noise present within the IMU’s measurements leads
to an exponential error growth which is cascaded over time during the continuous position
estimation process. This error can be expressed mathematically as:

Err ≈ xt
IMU − xt

GNSS
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where xt
GNSS is the real position to estimate (red dot in Figure 1a) provided by the GNSS,

and xt
IMU is the IMU derived position of the vehicle (green dot in Figure 1a). Where

xt
IMU is the mathematically derived transformation of the double integrated displacement

measurement by the integrated heading rate as described in detail in [6].
The approach to minimise this error: In order to overcome this issue, we proposed

Adaptive Particle filter which is probabilistic method that takes as an input; the IMU’s
information xt

IMU (containing errors) and a second source of information; the LiDAR’s
measurement, which captures objects within the vehicle’s environment and the distances
of these objects from the vehicle in the form of 3D points. Using the information of the
resolved global position of the object L as illustrated in Figure 1a and the distance between
the object L and the vehicle as derived from the LiDAR’s measurement, the IMU’s positional
resolving can be corrected.

Our architecture method consists of two main steps: data processing (the dark blue
rectangle in Figure 1b) and the localization step. Data processing (feature extraction +
mapping) is responsible for extracting relevant features from LiDAR’s measurement and
creating local and global maps. In addition, it ensures the fluidity of the matching search
between the local and global maps. In the localization phase, the estimation of the vehicle
positions is performed using the APF extension. The features extracted, and the IMU
information, will feed the input of the APF. Next, some mathematical operations and
probabilistic concepts will be applied over the received input (as explained in Section 3.2).
Finally, the method provides the estimated positions.

3.1. Features Extraction and Local Maps Creation

The features extraction step, which corresponds to step (A) in Figure 1b, was performed
to treat the massive amount of LiDAR data points in order to speed up the localization
task and create a lightweight feature map. In this stage, each LiDAR scan, as shown in
Figure 2a, is processed as follows. Firstly, we removed the ground plan by excluding points
on the z-axis of the scan less than 0.1 m, as shown in Figure 2b, as the ground plan does
not contain distinguishable features that could help in the matching process and adds to
the computational complexity of the approach. Secondly, we applied a Fuzzy K-means
clustering to the remaining points and extracted central clusters representing our local
feature map, as shown in Figure 2c. In contrast to semantic features, our features are
capable of representing less textured environments, such as poles, trees, roads, and curves,
without knowing which cluster corresponds to semantic shape features, e.g., poles or trees.
We chose to use Fuzzy K-means due to its ability to obtain clusters of different shapes and
sizes and reduce the information of a group of points to a central cluster, which is very
important for fast interaction within the framework. Moreover, in Table 1, we demonstrate
its speed by testing different clustering methods on sequence 0001 from the Kitti data
set [30]. A flowchart of the following process is provided in Figure 3, underpinned by an
illustration in Figure 2.

Table 1. Time consumed (mm:ss) in executing the feature extraction workflow with the specified
clustering methods tested on the sequence 0001 from the Kitti data set [30].

Clustering Method Time Cost

Growing neural gas 01:24
KMeans 01:38

Fuzzy K-means 00:43
Hierarchical clustering 01:07

Gaussian mixture model 00:49
Self-organizing maps 02:06

Agglomerative clustering 01:18
Particle swarm optimized clustering 00:52
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Thirdly, we transform all the scans into the vehicle reference coordinate system [21].

3.2. Localization

The last stage is the localization part (step (C) in Figure 1b), where we explore the
results of the pre-processing steps (features extraction and mapping) to correct the accumu-
lated IMU errors based on an adaptative particle filter described below:

• Particles generation

The filter generates hundreds of particles around an initial state provided by the GNSS
noted by X =

{
XPari

}
i∈[0,N] a set of particles where N is the number of particles (see

Figure 4a). Each particle is represented as a 4× 4 homogeneous coordinate matrix resulting
after uniformly generating the x,y coordinates and θ orientation, which is given by:

Xpari =


cos(θi) −sin(θi) 0 xi
sin(θi) cos(θi) 0 yi

0 0 1 0
0 0 0 1

 (3)
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This particular representation of the homogeneous coordinate matrix since there is no
rotation about the x and y axes when the vehicle moves (i.e., the roll and pitch angle are
neglected), and the value of the z coordinates is neglected because the vehicle is assumed to
be driven on a 2D surface. The main advantage of this representation is the simplification
of the matrix calculation (i.e., multiplication). Each particle represents a possible target
state and is associated with a probability value, called weight ωpari , which is uniformly
initialized. The largest of these values belongs to the particle corresponding to the true
position of the target.

• Motion update

In the second step of the localization stage using IMU and PF, the motion update
moves the particles from scan t − 1 (or timestamp t − 1) to scan t (or timestamp t) by using
the homogeneous coordinate matrix properties, which perform the transformation with
this formulation:

Xt =
{

Xt
pari

}
, Xt

pari
= Gt ∗ Xt−1

pari
(4)

Gt is a 4 × 4 homogeneous matrix of this form:
. . .
. Rt .
. . .
0 0 0

∣∣∣∣∣∣∣∣
.

Tt

.
1

 (5)
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Rt (3 × 3 matrix) and Tt (3 × 1 vector) are the rotation and translation matrices
provided by the IMU sensor at scan t, respectively, as shown in Figure 4b.

• Measurement update

The third stage is the measurement update, which examines the information from
the measurement sensors, especially the LiDAR sensors, since the information from the
camera is sensitive to changes in light and weather conditions. The aim is to determine how
similar the transformed (We calculate the distances of each particle with all the features
gathered in scan t) particle Xt

Pari
provided by the IMU at scan t, is to the real state, i.e., how

much it contributes to the determination of the real state. In order to find that, a weight
(or percentage) ωpari is assigned to each particle and updated at each scan, which gives
the probability of the particle’s contribution along the trajectory, as shown in Equation (8).
According to [21], these weights can be updated by:

wt
Pari

= ∏
p∈[0,t]

P
(

Fp
∣∣∣Xp

Pari
, Mn(p)

)
(6)

where
P
(

Fp
∣∣∣Xp

Pari
, Mn(p)

)
:= N

(
‖ Xp

Pari
Fp −Mn(p) ‖, σ

)
(7)

The product of Xp and Fp gives the distances between the particles and features at
scan p. σ is an isotropic position uncertainty depending on the reference of features. n(p) is
an index of the global features associated with the pth local feature (provided by kd-tree),
which means that Mn(p) is the corresponding of Fp in the global map M. The idea behind
this weight modification is that we can compare the normal curve of distance particle-to-
feature (The transformed particles provided by the IMU at scan t) and what we have on the
real map (global map). The closer the distributions, the higher the value the weights are
(see Figure 4c).

The state estimation at scan t can be calculated by:

post ≈∑N
i=1 wt

Pari
Xt

Pari
(8)

where
∑N

i=1 wt
Pari

= 1 (9)

and N is the number of particles.

• Resampling

To obtain a fast and accurate method, a resampling step was carried out to reduce the
uncertainty of the particles and to adjust their distribution.

By checking the corresponding weights, the particles were ranked from important to
unimportant.

The particles were resampled, focusing on the 10 most important particles, which
enabled the particles to track the real position at each scan and obtain intuitions about the
direction of the positions. We calculated the mean and covariance of the selected particles.
Then, we regenerated the particles based on the multinormal distribution (see Figure 4d).

• Evaluation

Our metric evaluation included six error measurements ∆pos, ∆lat, ∆lon,∧∆ang denot-
ing the mean absolute positional, latitudinal, longitudinal, and heading errors, respectively,
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while RMSEpos and RMSEang represent the corresponding Root Mean Squared Errors of
the position and heading estimation.

∆lat =
∑n

i=1|xi−x′i |
n , ∆lon =

∑n
i=1|yi−y′i|

n

∆pos =
∑n

i=1‖posi−pos′i‖2
n , ∆ang =

∑n
i=1|θi−θ′i |

n

RMSEpos =

√
∑n

i=1‖posi−pos′i‖
2
2

n , RMSEang =

√
∑n

i=1|θi−θ′i |
2

n

(10)

where n is the scan number, posi = [xi, yi] is the predicted state, pos′i =
[
x′i , y′i

]
is the actual

state, xi and x′i are the predicted and actual lateral, yi and y′i is the predicted and actual
longitudinal. θi is the predicted angle, and θ′i is the actual angle.

We used the longitudinal and latitudinal mean absolute error ∆lat and ∆lon, respec-
tively, to examine the causes of error fluctuation according to the x-axis and y-axis, such as
hard braking, vehicle rotation, or vehicle acceleration. We used the mean absolute position
and root mean square positioning error ∆pos, RMSEpos to study the overall localization
error and the effect of the vehicle rotation error ∆ang, RMSEang on that error.

4. Results and Discussion
4.1. Experiments

A computer with an 8th generation i7 processor and 20 GB of RAM was used in our
experiments. We chose the Kitti dataset to test the proposed method on several sequences
characterizing urban, residential, campus, and pedestrian traffic. The advantage of using
this dataset is that it provides measurement information from a variety of sensors, including
LiDAR point clouds, stereo or mono camera images, IMU inertial measurements, and high-
accuracy GNSS data. Kitti also enables the evaluation of proposed approaches in various
environments. We tested our method on a second dataset, the Panda dataset [42], which
contains different driving scenarios, including steep slopes, construction sites, heavy traffic,
and pedestrians, as well as a variety of weather and lighting conditions, such as in the
morning, afternoon, evening and night. The dataset is equipped with various sensors, such
as IMU/GPS information and Lidar, for camera measurements. A 10-core feature extraction
method in the K-means algorithm was used to create a global map (or a ground plan)
based on a high-accuracy navigation system. Two criteria were considered in selecting
the number of clusters: speed and representativeness. Smaller clusters are faster but less
representative, and vice versa. Each local map was matched with a global map, and
the localization process was started using particle filters. The number of particles was
around 100 points. The initialization region was also in the range [−i, i], where i is a
random number within the range [0, 1]. The output of the localization algorithm is a 4 ×
4 information (transformation) matrix containing the matrices of rotation and translation
performed between two consecutive keyframes. The method was tested on the entire class
of Kitti datasets, which contained a total of 987 scans from four sequences. The codes used
in this experiment can be found in [43].

For the purpose of this experiment, the global maps were created priorly using the
LiDAR scans. After creating the local maps and converting them into a reference system.,
we merge them in an order where each time frame corresponds to a single local map,
which creates a global map of the trajectory. Creating a global map (step (B) in Figure 1)
is an essential step before executing any localization method. As mentioned before, it
acts as a guide for the vehicle, i.e., it provides distances to the objects. This kind of map
is a low-content information one, meaning that it represents objects (or part of them) by
providing only their coordinates (see the illustration in Figure 5a). The creation of the
global map with this technique speeds up the process of data association. Data association
is the task of finding a similar part of the local map in the global map by using the kd-tree
searching algorithm. Example of this process can be seen in Figure 5b.
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Let us note:
k ∈

[
0, M f

]
, M = {mk} (11)

where M f is the number of feature points in the global map, mk is the feature point at
position k, and M is the list of features in the global map. Let us also define:

k ∈
[
0, N f

]
, Ft =

{
f t
k
}

(12)

with N f the number of feature points in the LiDAR scan t, f t
k the feature point at position

k in the scan t, and Ft the list of features at scan t. It is important to note that the use of
LiDAR scans in our experiments doesn’t represent map matching in real world scenarios.

4.2. Discussion

• Parameters discussion:

We have investigated the parameters of a configuration of our features extraction
framework in terms of fastness and accuracy in order to find the optimal parameters that
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give the best results. The most important parameter that should be investigated in the
features extraction workflow is the number of clusters in the fuzzy K-means algorithm.

We calculated the silhouette values for different numbers of clusters in different
sequences of the Kitti dataset. We observe in Figure 6 that the average silhouette value for
all sequences is 0.44 with a cluster number of 10, 0.43 with a cluster number of 20, 0.46
with a cluster number of 30, 0.47 with a cluster number of 40, 0.46 with a cluster number of
50, 0.46 with a cluster number of 60, 0.45 with a cluster number of 70, 0.47 with a cluster
number of 80, 0.45 with a cluster number of 90, and 0.44 with a cluster number of 100. We
saw that the silhouette value of all scenarios is in the range of 0.43–0.47, which justifies
the choice of a 10-core clustering center, as it consumes less time and regularly has a good
silhouette value.
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Our feature extraction process, which is illustrated in Figure 2, effectively reduces the
time and cost of calculation, where each scan of size 1.8 MB (on average) was processed
in 0.4 s (on average) and reduced into 790 KB (on average), which demonstrates the
lightweight of our global and local maps. Moreover, the process helps the data association
stage to be fast, facilitating investigations on similarity issues.

• Discussion on Kitti and Pandaset accuracies:

The results in Table 2 show that the method can reliably locate the vehicle in various
sequences and categories, such as weather and seasonal changes. In addition, the method
takes 7 s to locate the vehicle within 5 sequences and 544 frames, which is fast enough to
operate in a real-time scenario; the IMU sensor takes 52 s to record information from 544
frames, and our method quickly processes the incoming data with an execution time of 7 s.
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The manual testing of the Schaeffer et al. [21] method on the sequence 0001 (City category)
of the Kitti dataset showed an absolute position error of 0.06 m and an absolute rotation
error of 0.1

◦
in 19 s. In our case, we obtained 0.07 m for the absolute position error and 0.013

◦

for the rotation error in a run time of 6 s, as presented in Table 2, which demonstrates the
fastness of our method. According to Table 2, we registered 0.25 m of the average positioning
error of all the sequences in only 7 s of execution, which demonstrate the capability of our
method to localize the vehicle with a minimum of 100 particles. The obtained results are
due to the robust resampling technique that followed accurately the trajectory.

Table 2. Kitti localization error obtained in different categories and the time consumption in each
sequence.

Category Seq frames
no

tFeat
(s) tloc (s) ∆pos

(m)
∆lat
(m)

∆lon
(m) ∆ang (◦) RMSEpos (m) RMSEang (◦)

City 0001 108 00:34 00:01 0.07 0.01 0.06 0.012 0.08 0.014
Residence 0035 131 00:43 00:02 0.038 0.019 0.02 0.09 0.053 0.18

Road 0027 188 01:08 00:02 0.15 0.03 0.14 0.01 0.17 0.006
Campus 0034 49 00:16 00:01 0.0009 0.0006 0.0005 0.0014 0.001 0.001
Person 0053 68 00:23 00:01 0.0001 0.0001 0.0001 0.001 0.0007 0.0002

tfeat: the cost of time to calculate the features extraction. tloc: the cost of time to calculate the localization.

In another part, we tested the accuracy of our method against four methods that we
found relevant in our state-of-art survey: Kümmerle et al. [19], Weng et al. [20], Sefati
et al. [18], and Schaefer et al. [31]. All of them have used semantic features to represent
LiDAR scans, such as poles, walls, trees, etc. The comparison of Sefati et al. [18] and
Schaefer et al. [21] approaches with our proposed method was feasible, as they used the
same error metrics, and their implementation was provided in their paper. However, it was
hard to compare our method with Weng et al. [20] and Kümmerle et al. [19] method unless
qualitatively, as it was provided by A. Schaefer et al. in the article [21]. Table 3 shows
that our method can produce competitive results. In fact, our method outperformed all
others in terms of mean absolute angular error and mean square angular error. In addition,
we obtained competitive results for mean absolute positioning error and mean squared
positioning error, which outperformed all compared methods except Sheafer et al. [21],
(with our results 0.09 m and 0.11 m, respectively) and Sheafer et al. [21] (0.11 m and 0.12 m,
respectively, for our method).

These results are justified by the robust data association in the work of Sheafer et al. [21].
However, working with semantic features can affect the localization process, especially
when these features are not present in the environment.

We extensively tested our method on a second dataset, Pandaset, on 5 sequences
containing 80 frames each. Our method recorded an average absolute positioning error of
0.16 m in 5 s runtime, demonstrating the performance of our method when dealing with
different environmental scenarios (see Table 4).

Table 3. Performance comparison of the proposed technique. The results of Weng et al. [20] and
Kümmerle et al. [19] are not straightforwardly similar and are expressed for qualitative analysis only.

Methods ∆pos(m) RMSEpos (m) ∆lat(m) σlat (m) ∆lon(m) σlon (m) ∆ang(◦) σang (◦) RMSEang(◦)

Kümmerle et al. [19] 0.12 — 0.07 — 0.08 — 0.33 — —
Weng et al. [20] — — — 0.082 — 0.164 — 0.329 —
Sefati et al. [18] — 0.24 — — — — — — 0.68

A. Schaefer et al. [21] 0.096 0.111 0.061 0.075 0.060 0.067 0.133 0.188 0.214
Charroud. A et al. [28] 0.12 0.141 0.059 0.09 0.08 0.05 0.043 0.078 0.057

Ours 0.101 0.12 0.064 0.035 0.06 0.087 0.043 0.075 0.075
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Table 4. Accuracy evaluation of our method in the Pandaset dataset.

Seq frames no tFeat (s) tloc (s) ∆pos (m) ∆lat (m) ∆lon (m) RMSEpos (m)

100 80 00:01 00:01 0.18 0.07 0.16 0.21
109 80 00:01 00:01 0.22 0.07 0.20 0.23
117 80 00:03 00:01 0.16 0.06 0.13 0.19
139 80 00:01 00:01 0.22 0.03 0.21 0.29
158 80 00:01 00:01 0.05 0.03 0.03 0.06

We studied in depth the results of sequence 0009. In Figure 7a,b, we mapped the
position and angular error variations in each scan, allowing us to make some relevant
observations. We found that acceleration mainly affects the accuracy of positioning. From
scan 0 to 20, the period in which the vehicle takes off, and from scan 110 to 170, the period
in which the vehicle slows down when taking a turn on the road (Figure 7b). In both
periods, the error varies from 0 m to 0.25 m and back to 0 m, which means that the particles
need time to adapt to the new acceleration of the vehicle.
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The same is observed in the case of drift or hard breaking, like in Figure 7c,d and
Figure 8c,d sequences 0035 and 0027. Therefore, a good positioning model should take into
account the velocity to anticipate the vehicle’s motion. Furthermore, we observe that the
positioning error is systematically 0.1 m from scan 170 to 250 when the vehicle is turning.
However, the angular error recorded high values from 0 to 0.4, indicating the need to
determine the turning intensity. Additionally, the same issue was registered in sequence
0034 in Figure 7 and sequence 0053 in Figure 8.
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measurements, which can provide insights into the use of other machine learning 
techniques, such as object tracking with deep learning (or transfer learning), to ensure 
better matching of data association. Thus, the position of the vehicle could be more 
accurately estimated. 
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Figure 8. Graphical display of the average absolute position and angular error relative to the vehicle
path for each sequence. (a) positional and angular error in seq 0053. (b) vehicle trajectory in seq 0053.
(c) positional and angular error in seq 0027. (d) vehicle trajectory in seq 0027.

As research in the field of localization and mapping shifts from observational studies
to direct applications in real-world scenarios, the need for methods that speed up the
localization process, such as the method we propose in this paper, is increasing. However,
there are some drawbacks to the use of particle filtering algorithms, particularly in setting
the particle number and threshold identification.

5. Conclusions and Future Work

This paper presents a method for autonomous vehicle positioning and mapping
based on non-semantic feature extraction. A fuzzy K-means clustering was used to extract
features from LiDAR scans. The cluster centroids features were used to create local map
features. Furthermore, an adaptive particle filter was used in the localization process,
which included a resampling stage after finishing the measurement updates in order to
increase the reliability of the position estimation and reduce the time and energy cost.
The resampling method selects the closest 10 particles to the real position by checking
their weights (percentage) and regenerating particles around them using a multinormal
distribution.
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The proposed method provides competitive accuracy results in significantly less time
compared to the state-of-the-art methods evaluated on the Kitti database. We obtained
an error of 0.25 m in the mean position error of all sequences in the Kitti dataset in a run
time of 7 s. Furthermore, we obtained 0.15 m in the mean position error of all sequences
in the Pandaset dataset in only 5 s of execution, which demonstrates the potential of our
resampling contribution to speed up the localization process and obtain state-of-the-art
results. The proposed method provides competitive accuracy results in a significantly shorter
time compared to state-of-the-art methods that have been evaluated on the Kitti dataset.

However, the accuracy of the proposed method sometimes deviated due to poor
initialization of particle filters or poor selection of clusters or number of particles. Therefore,
future research will involve finding the optimal initialization of the particle filter and
finding the best parameters configuration. The particle filter suffers from the random
initialization of the particles, which could be modelled by a stochastic differential equation
to control particle generation. On the other hand, the use of other clustering methods
opens up a new approach to the representation of Lidar measurements, which can provide
insights into the use of other machine learning techniques, such as object tracking with
deep learning (or transfer learning), to ensure better matching of data association. Thus,
the position of the vehicle could be more accurately estimated.
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