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A B S T R A C T

Staff dimensioning, defined as determining the required numbers of caregivers with different types of skills, is
a key decision for home healthcare systems. Home healthcare providers often use a combination of permanent
and temporary (casual) caregivers. Determining the required number of temporary caregivers with different
skill sets considering uncertainty and routing cost is the main objective of this study. To this end, we propose a
two-stage stochastic programming model for the staff dimensioning problem for temporary caregivers, taking
into account uncertainties in the required class of service, the required number of visits, and the required
service time for each patient. Staff dimensioning decisions are defined in the first stage, and assignment with
routing are positioned in the second stage of the model. To solve the problem, a two-phase matheuristic
algorithm is developed where an initial solution is generated in the first phase by using an intermediate
mathematical model and solving a series of Traveling Salesman Problems (TSPs), then a fix-and-optimize
strategy is developed in the second phase to improve the obtained solution. The efficiency of the proposed
matheuristic algorithm is examined by various test problems. The results highlight that the proposed model
and solution method can be used by HHC providers to effectively utilize the option of recruitment of temporary
caregivers in their resource planning considering inevitable uncertain parameters.
1. Introduction

Home healthcare (HHC) systems provide medical and paramedi-
cal services by sending caregivers to patients’ homes. Providing care
at home increases patient satisfaction significantly and improves the
quality of the delivered services. Moreover, many countries face ag-
ing populations and increasing healthcare costs to meet their needs.
Therefore, HHC services are growing rapidly worldwide, especially in
developed countries such as France, UK, and USA, to reduce healthcare
costs and to improve the quality of healthcare services (Yuan et al.,
2018).

Staff dimensioning is an important issue in healthcare systems (An-
dersen et al., 2019; Vieira et al., 2018). The facts that patients in
HHC must be visited in specified time windows and the caregivers
require to travel between the patients’ homes further complicate the
staff dimensioning compare to others.

Staff dimensioning is a long-term decision and in HHC systems,
caregivers with different types of skills are needed due to the wide
variety of required care services. Compatibility between patients’ re-
quired services and caregivers’ skills needs to be considered in the HHC.
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In some cases, because of the uncertainty of some parameters such as
travel and service times, etc, the number of available caregivers is not
enough to visit all patients. Therefore, in these cases, a provider of HHC
services can hire temporary caregivers who can be the trained staff from
other departments to be used for HHC services. In this study, two types
of caregivers including permanent and temporary caregivers are con-
sidered. The number of available permanent caregivers is considered a
predefined input parameter in this study. While temporary caregivers
are used to deal with uncertainty, so their hiring are considered a
short or medium term decision. The required number of temporary
caregivers in each week is determined at the beginning of the week.
So, the number of temporary caregivers should be determined in this
study.

Continuity of care, defined as visiting a patient by the same care-
giver, increases both patient and caregiver satisfaction. Continuity of
care has been considered as either a soft or hard constraint in some
previous studies. Furthermore, balancing the number of patients as-
signed to each caregiver can also increase the caregiver’s satisfaction.
These features are considered in the proposed model, to take into
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account patient’s and caregiver’s satisfaction as well as the cost-related
concerns. Moreover, considering the home locations of caregivers as the
start and end points of their corresponding routes is needed, to reflect
the routing cost and time.

As mentioned before, patients in HHC systems may require different
types of services. Patients who require same service can be categorized
into different groups (or classes) according to their required service
level. The required type of service for each patient is known but
her/his class is determined by scheduling an appointment or receiving
a call before starting service to determine the service level required by
patients.1 Therefore, the class of each patient is not known in advance
but can be determined through several scenarios. The required number
of visits for each patient depends on their required services and their
class, so this parameter is also considered to be uncertain. In addition,
the service time is considered as another uncertain parameter that is
realized in various scenarios.

The contributions of this study can be summarized as follows. A
new two-stage stochastic programming model for staff dimensioning is
proposed to deal with uncertainties. In the proposed model, decisions
regarding staff dimensioning, scheduling, assignment, and routing are
considered, simultaneously. A matheuristic algorithm comprising two
phases is proposed to solve the model, efficiently. A near-optimal
solution is extracted in the first phase by using an iterative procedure
hybridized with an intermediate integer programming model and a se-
ries of TSPs. In the second phase, the obtained solutions corresponding
to scheduling, assignment and routing decisions are improved with a
fix-and-optimize procedure.

This paper is organized as follows. Studies related to resource
planning in HHC are briefly reviewed in Section 2. The proposed
mathematical formulation is presented in Section 3, and the developed
matheuristic algorithm is explained in Section 4. Section 5 is devoted
to numerical experiments. Finally, conclusions and perspectives are
provided in the last section.

2. Literature review

Resource planning in HHC comprises districting, staff dimensioning,
assignment, and routing decisions. Most studies in this context are
related to assignment and routing problems (e.g. Cappanera et al.,
2018; Grenouilleau et al., 2019; Decerle et al., 2018; Moussavi et al.,
2019). The studies on scheduling and routing problems in HHC were
reviewed by Fikar and Hirsch (2017) and Cissé et al. (2017). Despite
its importance the resource planning aspect of HHC as received limited
attention (Nikzad et al., 2020). However, integrating decisions related
to resource planning in home healthcare helps HHC services to be more
efficient and less costly. Recent studies related to resource planning in
HHC are summarized in Table 1 and compared with this study.

As shown in Table 1, most studies related to resource planning
in HHC focused on assignment and routing decisions, while resource
planning decisions have been rarely considered simultaneous in the pre-
vious studies. However, comprehensively considering these decisions
may decrease the total cost of HHC systems. Therefore, a mathemat-
ical model is proposed to consider staff dimensioning, scheduling,
assignment, and routing decisions, simultaneously.

Table 1 further highlights that a variety of uncertainties, such
as travel and service times, demand, availability of caregivers, and
required types of skills, have been considered in the studies on resource
planning in HHC. Dealing with uncertainties is a great challenge for
decision makers. Stochastic and robust programming are two well-
known frameworks to consider uncertainty. Stochastic programming is
used when the probability distribution corresponding to an uncertain

1 https://www.medicare.gov/what-medicare-covers/whats-home-health-
are
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parameter is known. Its two main categories are two-stage or multi-
stage programming, and chance constraint programming (Birge and
Louveaux, 2011). Strategic decisions are determined more accurately
by implementing the two-stage stochastic programming framework
because it considers the expected value of the costs corresponding to
recourse actions.

As mentioned in Table 1, stochastic and robust programming have
been widely used for resource planning in HHC. Lanzarone and Matta
(2014), Carello and Lanzarone (2014), and Cappanera et al. (2018) pro-
posed robust optimization for assignment and routing problems in HHC
by considering demand uncertainty. Nguyen et al. (2015) proposed
a robust model for assignment and routing problems by considering
the availability of caregivers as an uncertain parameter. Two-stage
stochastic programming is another approach used to deal with uncer-
tainties when the probability distributions of uncertain parameters can
be obtained from historical data (e.g. Yuan et al., 2015, 2018; Shi
et al., 2018). In this study, a two-stage stochastic model is developed
to consider the uncertainty of classes (or type) of patients, the required
number of visits, and service time. The required number of temporary
caregivers is the first stage decision variable. The scheduling, assign-
ment, and routing decisions are considered as the second stage decision
variables.

Table 1 also shows that matheuristic algorithms have been de-
veloped widely in the studies related to resource planning in HHC.
Grenouilleau et al. (2019) proposed a matheuristic algorithm for rout-
ing and scheduling problems in HHC based on a combination of set-
partitioning model and Large Neighborhood Search (LNS) algorithm,
where the routes which are used in the set-partitioning problem are
generated by the LNS algorithm. Moussavi et al. (2019) developed a
matheuristic algorithm for assignment and routing problems in HHC.
Their algorithm contains three steps in which the number of caregivers
for each day is determined in the first phase and the set of patients
who must be served each day is obtained in the second phase. Finally,
the assignment of patients to caregivers and routing decisions are
determined in the last phase. Allaoua et al. (2013) designed a two-
phase matheuristic algorithm for routing and staff rostering problems.
The feasible routes are generated in the first phase which are used
in the set-partitioning-based model in the second phase to make staff
rostering decisions. Fikar and Hirsch (2015) developed a two-phase
matheuristic algorithm. First, feasible walking routes are determined
by set-partitioning and then an extended biased randomized savings
heuristic and the Tabu search determine the schedule, vehicle routes
and improve walking routes. Nguyen et al. (2015) proposed a hybrid
algorithm based on a mathematical model and genetic algorithm (GA)
for robust assignment routing problems which considers the availability
of caregivers as an uncertain parameter. Also, Cappanera et al. (2018)
proposed a matheuristic algorithm for solving robust assignment and
routing problems in HHC. It can be concluded that most matheuristic
algorithms for solving assignment and routing problems in HHC are
designed by generating a set of feasible routes and then selecting
routes by optimizing a set-partitioning model. In our proposed model, a
routing decision is considered as the second-stage variable that depends
on scenarios. So, by increasing the number of scenarios, the number
of feasible routes will increase, significantly. Therefore, the solution
approaches proposed in previous studies seem to be inefficient to solve
the proposed model. In this study, a two-phase matheuristic algorithm
is developed. An initial solution is generated in the first phase and
the scheduling, assignment, and routing decisions are improved in the
second phase.

Matheuristic algorithms are widely used in the vehicle routing
problems (VRP) related research such as production routing problems
(PRP), inventory routing problems (IRP) and etc. (e.g. Bertazzi et al.,
2019; Miranda et al., 2018; Li et al., 2019; Hernandez et al., 2019; Yu
et al., 2019; Solyalı and Süral, 2017). Recently, matheuristic algorithms
have been developed based on fix-and-optimize procedures. In these

algorithms, the values of some decision variables are dictated and other
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Table 1
Studies related to resource planning in HHC. The abbreviations are: D: Districting, S: Staff dimensioning, A: Assignment, R: Routing, MP: Multi-period, CC: Continuity of care, C:
Compatibility between caregivers’ skills and patients required services, NP: Number of patients assigned to each caregiver, PR: Patients preferences on caregivers assignment, VR:
Visiting regulations, math: Matheuristic algorithm, h: Heuristic algorithm, BP: Branch and price, BC: Branch and cut metah: Meta-heuristic, SR: Skill requirements, CP: Classes of
patients based on their symptoms, RV: Required number of visits, ST: Service time, TT: Travel time, LSA: L-shaped algorithm, ALNS: Adaptive large neighborhood search.

References Types of Decisions Types of uncertainties Uncertain parameters Assumptions Solution method

D S A R Stochastic Robust MP CC C NP PR VR

Grenouilleau et al. (2019) × × × × × × math
Cappanera et al. (2018) × × × Demand × × × math
Yuan et al. (2018) × × TT & ST BP
Decerle et al. (2018) × × metah
Lin et al. (2018) × × × × metah
Shi et al. (2018) × × TT & ST metah
Braekers et al. (2016) × × × metah
Yuan et al. (2015) × × ST & SR BP
Rodriguez et al. (2015) × × × × Demand × math
Yalçındağ et al. (2016) × × × × × math
Bahadori-Chinibelagh et al. (2019) × × h
Zhan et al. (2020) × × × ST math & LSA
Hashemi Doulabi et al. (2020) × × × TT & ST × LSA & BC
Fathollahi-Fard et al. (2020a) × × metah
Fathollahi-Fard et al. (2020b) × × × TT & ST × metah
Cinar et al. (2021) × × math & ALNS
Nikzad et al. (2020) × × × × × ST & TT × × × math
This study × × × × CP & RV & ST × × × × × × math
a
s
{


c
d

a
v
o
b
o

decision variables are optimized to improve their values. Neves-Moreira
et al. (2019) and Li et al. (2019) designed matheuristic algorithms
based on a fix-and-optimize procedure in the PRP. Campelo et al.
(2019) developed a matheuristic algorithm based on this procedure
for a consistent vehicle routing problem. Also, Lindahl et al. (2018)
and Dorneles et al. (2014) developed a matheuristic algorithm for
timetabling problems based on a fix-and-optimize procedure.

As mentioned, staff planning in HHC services is a crucial decision
that significantly affects on the cost of services, as well as patients’
and caregivers’ satisfaction. To the best of the author’s knowledge, Ro-
driguez et al. (2015) and Nikzad et al. (2020) are the only studies
related to staff dimensioning in HHC. Rodriguez et al. (2015) proposed
a two-stage mixed-integer programming model that minimizes the
required number of caregivers in a single period when the demand for
each type of activity is uncertain. Rodriguez et al. (2015) developed
a two-phase algorithm for solving their proposed model in which
the minimum required number of caregivers with different types of
skills is determined under each scenario. Then the optimal number of
caregivers is obtained in the second phase. Rodriguez et al. (2015)
determined the number of caregivers in each profession required to
obtain a certain performance level by considering total demand for
different activities as an uncertain parameter. Routing costs between
sectors and patients in the same sector are not mentioned in their
study, while in our study the required number of caregivers in each
profession is determined based on hiring and routing costs when total
demand is served. Also, the class of a patient’s required services,
the required number of visits, and the service time are assumed to
be as uncertain parameters in our study. The continuity of care and
regulations for visiting patients, two crucial aspects of HHC planning,
were not considered by Rodriguez et al. (2015). These aspects can
significantly affect the required number of caregivers at each level of
skill, so they are considered in this study. Also, patient preferences on
caregivers assignment are considered in this study, which was also not
mentioned in the model proposed by Rodriguez et al. (2015).

Our work is closely related to that of Nikzad et al. (2020), who
proposed a two-stage stochastic programming model for districting
in HHC which considered staff dimensioning, scheduling, and routing
decisions, simultaneously. They considered service and travel times as
uncertain parameters. However, unlike this paper, patient preferences
on caregiver assignment and regulations for visiting patients (according
to medical prescription) were not considered in their study. They
proposed a four-phase matheuristic algorithm. In the first phase, a
3

c

size-reduction approach was used to eliminate the set of the poten-
tial number of districts and visiting sequences. Then a cluster-based
mathematical model was used to generate an initial solution. They used
the Progressive Hedging combined with the Frank–Wolfe algorithm to
solve the cluster-based model. Then the unfeasible solutions obtained
for districting were repaired with a fix-and-optimize procedure. Routing
and assignment decisions were improved in the last phase.

3. Problem description and formulation

The staff dimensioning problem in HHC services is to determine the
required number of caregivers with different types of skills to meet
patients’ demands. Staff dimensioning is a strategic decision and is
determined without revealing uncertain parameters. Because of facing
with uncertainty, sometimes the number of hired caregivers is not
enough to meet all patients’ demands. In these cases, HHC centers can
hire additional caregivers for a short time such as a week, or assign
some trained staff from other departments to provide HHC services,
temporarily to deal with uncertainty. Therefore, in this paper, two types
of caregivers including permanent and temporary are considered and
the required number of temporary caregivers with different types of
skills during the planning horizon (one week) is determined based on
hiring and routing costs as well as some factors which affect patients
and caregivers satisfaction considering several uncertain parameters.

The staff dimensioning problem is defined by a graph G( ,),
where  = {1, 2, … , 𝑁, 𝑁 + 1, 𝑁 + 2, … , 𝑁 + 𝐾} is the set of nodes
nd  = {(𝑖, 𝑗)|𝑖, 𝑗 ∈  , 𝑖 ≠ 𝑗} is the set of arcs. The nodes in
et  = {1, 2, … , 𝑁} denote patients, and the nodes in set  𝑐 =
𝑁 +1, 𝑁 +2, … , 𝑁 +𝐾} denote the locations of the caregivers, where
= {1, 2, … , 𝐾} is the set of caregivers and 𝑃 = {1, 2, … , 𝐾1} and
𝑇 = {𝐾1 + 1, 𝐾1 + 2, … , 𝐾} are sets of permanent and temporary

aregivers, respectively. Also, node 𝑁 + 𝑘 determines the origin and
estination of the route for the 𝑘th caregiver.

HHC centers provide different types of services and they schedule an
ppointment or call before starting service to determine care and ser-
ices required by patients.2 Therefore, patients require different types
f services defined by the set  = { 1, 2, . . . , F}. Different classes can
e considered for patients based on their required care services. The set
f different classes for each type of service is defined by set  = { 1, 2,

2 https://www.medicare.gov/what-medicare-covers/whats-home-health-
are
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Fig. 1. Different categories of patients and available information for each category.
. . . ,A}. The patients available in HHC centers at the beginning of each
week are classified into three categories. The first category consists of
patients whose care is continued from previous weeks, therefore, the
required services and their level (classes of patients) are known. New
patients with scheduled appointments (known classes of patients) are
in the second category. The third category consists of new patients that
the preliminary appointment has not been done, so there is no enough
information about their required level of service at the beginning of the
planning horizon. Known and unknown information about each cate-
gory of patients is illustrated in Fig. 1. As illustrated in this figure, the
class of patients is unknown in advance (before the appointment) for
some of the patients, so they are considered as uncertain parameters.
The required number of visits for each patient depends on the class
of the patient and considered as another uncertain parameter. Service
time 𝑠𝑡𝑖(𝜉) is considered as another uncertain parameter in this study.
The parameters which have been considered in the current research
can be categorized as parameters related to the caregivers, patients,
and features that are described as follows.

• Caregivers. Caregivers with different skills, such as physicians
and nurses, provide services to patients at home. The compatibil-
ity between their skills and patients’ required services is consid-
ered according to their class. Each caregiver 𝑘 ∈  is defined by
hiring cost ℎ𝑘 and his/her skill level which is defined by a binary
parameter 𝑞𝑘𝑓𝑎 that is equal to 1 if the 𝑘th caregiver has proper
skill level to meet the patients that require service type 𝑓 in the
𝑎th class. Also, a maximum working time 𝜙 is considered for the
caregivers.

• Patients. Each patient 𝑖 ∈  is defined by his/her required
service 𝑟𝑖𝑓𝑎(𝜉) that is a binary parameter that is equal to 1 if
the 𝑖th patient who is in the 𝑎th class requires service type 𝑓
under scenario 𝜉. Each patient has a number of required visits
𝜆𝑖(𝜉) that should be scheduled during the planning horizon. A
minimum required duration between two consecutive visits 𝛿𝑓𝑎
is considered for scheduling the visits. 𝑏𝑖 is the latest allowable
service starting time of the 𝑖th patient.

• Features. Some aspects are considered to increase patients’ sat-
isfaction such as continuity of care and considering patients’
preferences for assigning caregivers. Continuity of care is consid-
ered as a soft constraint and cost 𝜃𝑖 should be paid per caregiver
who is assigned to the 𝑖th patient. For each patient 𝑖 ∈  ,
𝛽𝑖𝑘(𝜉) is a binary parameter that denotes the caregiver with the
patient’s highest preference. In addition, 𝛽𝑖𝑘(𝜉) can use for sharing
information for patients with ongoing care in different weeks and
4

as a result, it guarantees continuity of care between different
weeks of serving patients. 𝑜(𝜉) is the maximum allowable num-
ber of inconsistency between patients’ preferences and assigned
caregivers.

The required number of temporary caregivers is determined before
revealing the deterministic values of the uncertain parameters, and
therefore it is considered as the first-stage variable in our proposed two-
stage stochastic programming model. After determining the required
number of caregivers, the scheduling, assignment, and routing deci-
sions are determined under different scenarios. The required number
of visits by each patient is scheduled during the planning horizon (one
week), while  ( = { 1, 2, . . . , d}) is the set of days in a week.

In this paper, the assignment of patients to a caregiver, scheduling,
and routing are considered as the second-stage decision variables. In
addition, it is assumed that caregivers start and end their routes from
their homes. Therefore, selecting temporary caregivers to provide ser-
vices will affect routing costs. After revealing the uncertain parameters,
a group of patients with different required services is assigned to each
selected caregiver for visiting. To ensure a balanced workload for each
caregiver, the maximum number of patients assigned to caregivers
is minimized in the objective function. The problem is illustrated in
Fig. 2. In this figure, there are 3 available permanent and 2 temporary
caregivers with different types of skills, and 15 patients are categorized
into 3 classes. As shown in Fig. 2 one temporary caregiver is required
to visit patients. The illustration in Fig. 2 is for a specific scenario in
a working day. Therefore, as shown in this figure, visits of patients 1,
2, 4, 6, 7, 9, 12, 14, and 15 are scheduled on this particular day under
the specific scenario and other patients are visited on other days of the
week. The assumptions of the proposed model are stated as follows:

• HHC centers schedule a meeting to evaluate the required care and
services by a patient. Based on the obtained information, patients
are partitioned into different classes. Therefore, the classes of
patients are unknown before this meeting and defined as an
uncertain parameter. Also, they need an uncertain number of
visits in their planning horizon, based on their classes. These un-
certain parameters appear in a scenario-based scheme. For more
explanation, the classes of patients, the required number of visits,
and service time for two scenarios by considering 10 patients are
reported in Table 2. In this example, we assume that patients are
partitioned into three classes. As reported in the table, patients 5,
6, 7, 8, and 9 are in the first class under the first scenario and
one visit should be scheduled for them during a week. However,



Computers and Operations Research 152 (2023) 106126E. Nikzad et al.
Fig. 2. A schematic view of the problem consisting of 5 caregivers and 15 patients. The color determines the level of skills and red and yellow are the highest and lowest level
of skills, respectively.
Table 2
The classes of patients, required number of visits, and service time under scenarios.

Patient Scenario 1 Scenario 2

The classes of patients 𝜆𝑖 𝑠𝑡𝑖 The classes of patients 𝜆𝑖 𝑠𝑡𝑖
1 2 2 67 2 2 88
2 3 3 101 1 1 20
3 2 2 31 1 1 21
4 3 3 77 3 3 89
5 1 1 24 1 1 31
6 1 1 22 3 3 88
7 1 1 36 2 2 70
8 1 1 41 2 2 31
9 1 1 18 1 1 18
10 2 2 63 2 2 67

in the second scenario, the classes of the mentioned patients are
1, 3, 2, 2, and 1, respectively. Therefore, one, three, two, two, and
one visits should be scheduled during a week for those patients
under the second scenario. In this example, it is assumed that the
care of patients 1, 4, 5, 9, and 10 are continued from the previous
weeks, therefore, their classes are known in all scenarios.

• Service time for each patient is unknown in advance and its
deterministic value is revealed after visiting the patient. There-
fore, service time for each patient is considered as a stochastic
parameter and appears in a scenario-based scheme. Servicing
times for 10 patients under two scenarios are reported in Table 2.

• Each caregiver can serve a limited number of patients. That
means, the working time of each caregiver is less than or equal
to a predetermined time.

• The time between two consecutive visits to each patient must be
greater than a predefined value.

• The start and end points of each caregiver’s route are his/her
home.

• At most one visit can be scheduled for each patient per day.
5

• Under time is allowed for the caregivers in the proposed model
but over time is not permitted.

The notations are defined consistently with previous papers, such
as that by Nikzad et al. (2020), where possible. Other sets, parameters,
and decision variables of the proposed model are as follows.

Sets:
 𝑘

𝑐 Set of the residential node of the 𝑘th caregiver (The
start and end points of the route corresponding to the
𝑘th caregiver).

𝛯 Set of scenarios, 𝛯 = {1, 2, … , 𝑆}.

Parameters:
𝛼 Balancing factor related to the maximum number of

patients assigned to caregivers.
𝑐𝑖𝑗 Travel cost between the 𝑖th and the 𝑗th (𝑖, 𝑗 ∈ ) nodes.
𝑡𝑡𝑖𝑗 Travel time between the 𝑖th and the 𝑗th (𝑖, 𝑗 ∈ ) nodes.
𝑀𝑚𝑎𝑥 A large number, 𝑀𝑚𝑎𝑥 = 𝑁 +𝐾.
𝑇𝑚𝑎𝑥 A large number, 𝑇𝑚𝑎𝑥 = max𝑖(𝑏𝑖).
𝑝(𝜉) Probability associated with scenario 𝜉 (𝜉 ∈ 𝛯).
Decision variables:
𝑥𝑖𝑗𝑘𝑑 (𝜉) 1 if caregiver k (𝑘 ∈ ) travels along (i, j) (𝑖, 𝑗 ∈ ) in

time period d (𝑑 ∈ ) under scenario 𝜉 (𝜉 ∈ 𝛯), 0
otherwise.

𝑢𝑖𝑘𝑑 (𝜉) 1 if node i (𝑖 ∈ ) is visited in the 𝑘th (𝑘 ∈ ) route
(corresponding to the 𝑘th caregiver) in time period d
(𝑑 ∈ ) under scenario (𝜉 ∈ 𝛯), 0 otherwise.

𝑧𝑖𝑘(𝜉) 1 if patient i (𝑖 ∈  ) is assigned to caregiver k (𝑘 ∈ )
under scenario (𝜉 ∈ 𝛯), 0 otherwise.

𝑦𝑘 1 if caregiver k (𝑘 ∈ ) gets involved to serve the
patients, 0 otherwise.

𝜌𝑖(𝜉) Number of caregivers assigned to the 𝑖th (𝑖 ∈  )

patient under scenario 𝜉 (𝜉 ∈ 𝛯).
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p

𝑘

𝑦

𝑧

𝑡

𝜌

t

min
∑

𝑘∈
ℎ𝑘𝑦𝑘 +

∑

𝜉∈𝛯

∑

𝑘∈

∑

𝑑∈

∑

𝑖∈

∑

𝑗∈
𝑝(𝜉)𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑑 (𝜉) +

∑

𝑖∈

∑

𝜉∈𝛯
𝑝(𝜉)𝜃𝑖𝜌𝑖(𝜉) + 𝛼

∑

𝜉∈𝛯
𝑝(𝜉)𝜈(𝜉) (1)

s.t.: 𝑦𝑘 = 1, ∀𝑘 ∈ 𝑃 (2)
∑

𝑖∈

∑

𝑑∈
𝑢𝑖𝑘𝑑 (𝜉) ≥ 𝑦𝑘, ∀𝑘 ∈ , 𝜉 ∈ 𝛯 (3)

∑

𝑖∈
𝑢𝑖𝑘𝑑 (𝜉) ≤ 𝑀max𝑢𝑗𝑘𝑑 (𝜉), ∀𝑘 ∈ , 𝑑 ∈ , 𝑗 ∈  𝑘

𝑐 , 𝜉 ∈ 𝛯 (4)

∑

𝑘∈

∑

𝑑∈
𝑢𝑖𝑘𝑑 (𝜉)

∑

𝑓∈

∑

𝑎∈
𝑟𝑖𝑓𝑎(𝜉)𝑞𝑘𝑓𝑎 = 𝜆𝑖(𝜉), ∀𝑖 ∈  , 𝜉 ∈ 𝛯 (5)

𝑢𝑖𝑘𝑑 (𝜉) ≤ 𝑦𝑘, ∀𝑖 ∈  , 𝑘 ∈ , 𝑑 ∈ , 𝜉 ∈ 𝛯 (6)
∑

𝑗∈
𝑥𝑖𝑗𝑘𝑑 (𝜉) = 𝑢𝑖𝑘𝑑 (𝜉), ∀𝑖 ∈  , 𝑘 ∈ , 𝑑 ∈ , 𝜉 ∈ 𝛯 (7)

∑

𝑗∈
𝑥𝑖𝑗𝑘𝑑 (𝜉) = 𝑢𝑖𝑘𝑑 (𝜉), ∀𝑖 ∈  𝑘

𝑐 , 𝑘 ∈ , 𝑑 ∈ , 𝜉 ∈ 𝛯 (8)

∑

𝑗∈
𝑥𝑗𝑖𝑘𝑑 (𝜉) = 𝑢𝑖𝑘𝑑 (𝜉), ∀𝑖 ∈  𝑘

𝑐 , 𝑘 ∈ , 𝑑 ∈ , 𝜉 ∈ 𝛯 (9)

∑

𝑖∈ ,𝑖≠𝑗
𝑥𝑖𝑗𝑘𝑑 (𝜉) =

∑

𝑖∈ 𝑖≠𝑗
𝑥𝑗𝑖𝑘𝑑 (𝜉), ∀𝑑 ∈ , 𝑗 ∈  , 𝑘 ∈ , 𝜉 ∈ 𝛯 (10)

∑

𝑗∈𝑗≠𝑖

∑

𝑘∈
𝑥𝑖𝑗𝑘𝑑 (𝜉) ≤ 1, ∀𝑑 ∈ , 𝑖 ∈  , 𝜉 ∈ 𝛯 (11)

∑

𝑖∈
𝑠𝑡𝑖(𝜉)𝑢𝑖𝑘𝑑 (𝜉) ≤ 𝜑, ∀𝑑 ∈ , 𝑘 ∈ , 𝜉 ∈ 𝛯 (12)

𝑡𝑗𝑘𝑑 (𝜉) ≥ 𝑡𝑖𝑘𝑑 (𝜉) + 𝑠𝑡𝑖(𝜉) + 𝑡𝑡𝑖𝑗 − 𝑇𝑚𝑎𝑥
(

1 − 𝑥𝑖𝑗𝑘𝑑 (𝜉)
)

, ∀𝑑 ∈ , 𝑖 ∈  , 𝑗 ∈  , 𝑘 ∈ , 𝜉 ∈ 𝛯 (13)

𝑡𝑖𝑘𝑑 (𝜉) ≤ 𝑏𝑖, ∀𝑑 ∈ , 𝑖 ∈  , 𝑘 ∈ , 𝜉 ∈ 𝛯 (14)

𝑧𝑖𝑘(𝜉) ≥ 𝑢𝑖𝑘𝑑 (𝜉), ∀𝑖 ∈  , 𝑘 ∈ , 𝑑 ∈ , 𝜉 ∈ 𝛯 (15)

𝜌𝑖(𝜉) ≥
∑

𝑘∈
𝑧𝑖𝑘(𝜉), ∀𝑖 ∈  , 𝜉 ∈ 𝛯 (16)

𝜈(𝜉) ≥
∑

𝑖∈
𝑢𝑖𝑘𝑑 (𝜉), ∀𝑘 ∈ , 𝑑 ∈ , 𝜉 ∈ 𝛯 (17)

∑

𝑑′∈{𝑑+1,…,𝑑+𝛿𝑓𝑎}

∑

𝑘∈
𝑢𝑖𝑘𝑑′ (𝜉)𝑟𝑖𝑓𝑎(𝜉) ≤ 1 −

∑

𝑘∈
𝑢𝑖𝑘𝑑 (𝜉)𝑟𝑖𝑓𝑎(𝜉),

∀𝑖 ∈  , 𝑑 ∈ {1, 2,… , 𝐷 − 𝛿𝑓𝑎}, 𝑓 ∈  , 𝑎 ∈ , 𝜉 ∈ 𝛯 (18)
∑

𝑑∈{𝐷−𝛿𝑓𝑎+1,…,𝐷}

∑

𝑘∈
𝑢𝑖𝑘𝑑 (𝜉)𝑟𝑖𝑓𝑎(𝜉) ≤ 1, ∀𝑖 ∈  , 𝑓 ∈  , 𝑎 ∈ , 𝜉 ∈ 𝛯 (19)

Box I.
t
g
m
t
c
a
l
t
t
e
t
p
t
p
c
(
o
C

𝑡𝑖𝑘𝑑 (𝜉) The time that servicing starts at the 𝑖th (𝑖 ∈  ) patient
by the 𝑘th (𝑘 ∈ ) caregiver in time period d (𝑑 ∈ )
under scenario 𝜉 (𝜉 ∈ 𝛯).

𝜈(𝜉) Maximum number of patients visited by caregivers in
different time periods under scenario 𝜉 (𝜉 ∈ 𝛯).

The proposed two-stage stochastic model for staff-dimensioning
roblem is presented here (see the equation in Box I):
∑

∈

∑

𝑖∈
𝑧𝑖𝑘(𝜉)(1 − 𝛽𝑖𝑘(𝜉)) ≤ 𝑜(𝜉), ∀𝜉 ∈ 𝛯 (20)

𝑘, 𝑢𝑖𝑘𝑑 (𝜉), 𝑥𝑖𝑗𝑘𝑑 (𝜉) ∈ {0, 1}, ∀𝑑 ∈ , 𝑖 ∈  , 𝑗 ∈  , 𝑘 ∈ , 𝜉 ∈ 𝛯

(21)

𝑖𝑘(𝜉), ∈ {0, 1}, ∀𝑖 ∈  , 𝑘 ∈ , 𝜉 ∈ 𝛯 (22)

𝑖𝑘𝑑 (𝜉) ≥ 0, ∀𝑑 ∈ , 𝑖 ∈  , 𝑘 ∈ , 𝜉 ∈ 𝛯 (23)

𝑖(𝜉), 𝜈(𝜉) ∈ Z0+, ∀𝑖 ∈  , 𝜉 ∈ 𝛯 (24)

The objective function minimizes the total hiring cost of caregivers,
6

he expected value of transportation and number of caregivers assigned a
o patients, and the maximum number of patients assigned to a care-
iver in a day. The number of caregivers assigned to each patient is
inimized in the third part of the objective function, meaning that

his term tries to assign the same caregiver to a patient and considers
ontinuity of care. Constraint (2) states that all permanent caregivers
re available. Constraint (3) guarantees that if a caregiver is used, at
east one patient must be assigned to him/her. Constraint (4) states
hat the 𝑘th caregiver can visit patients in day 𝑑 under scenario 𝜉 if
his caregiver leaves his/her home to serve patients. Constraint (5)
nsures that compatible caregivers are assigned to each patient and
he required visits for each patient are scheduled during the time
eriod. Constraint (6) states that the 𝑖th patient can be assigned only
o one of the employed caregivers. Constraint (7) assures that each
atient should be served by the corresponding route of the assigned
aregiver in the day 𝑑. Constraints (8) and (9) ensure that the 𝑘th route
corresponding to the 𝑘th caregiver) is started and ended at the location
f the 𝑘th caregiver. Constraint (10) is a flow conservation constraint.
onstraint (11) guarantees that each patient is visited by one caregiver

t most in each day. Constraint (12) guarantees that the working time
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Fig. 3. An overview of the proposed matheuristic algorithm containing two phases for generating initial solutions and their improvement.
of each caregiver is less than the maximum permitted working time.
Constraints (13) and (14) are sub-tour elimination and time-window
constraints, respectively. Constraints (15) and (16) determine the num-
ber of caregivers assigned to each patient. Constraint (17) calculates
the maximum number of patients assigned to a caregiver in per day
under each scenario. Constraints (18) and (19) guarantee a minimum
required duration between two consecutive visits to each patient. Con-
straint (20) guarantees that the number of assigned caregivers without
considering patients’ highest preference is less than a predefined value.
Constraints (21)–(24) determine domains of the decision variables.

4. Two-phase matheuristic algorithm

In this paper, a two-phase matheuristic algorithm is developed
for the staff-dimensioning problem. Archetti and Speranza (2014)
named this type of matheuristic algorithm as improvement heuristic
and showed that MILP model can be used for generating an initial
solution or improving the obtained solution in this type of matheuristic
algorithm. In this paper, the problem is decomposed into several sub-
problems according to the type of decisions to generate an initial
solution. An initial solution is generated with a combination of an
intermediate model (Int-M1) and a series of TSPs solved for each
caregiver per day under each scenario (TSP(𝑘, 𝑑, 𝜉)). In this phase, these
models are solved iteratively to find a good quality initial solution.
In each iteration, the required number of temporary caregivers and
the assignment of patients to permanent and temporary caregivers per
day under each scenario are determined by solving the Int-M1 model
according to an estimation of routing cost. Then a series of TSPs is
solved for each caregiver per day under each scenario to obtain routing
decisions according to the assignment decisions achieved from the
Int-M1 model in the current iteration. The estimated routing cost is
updated based on the obtained routes to use in the Int-M1 model again
in the next iteration. After convergence of the first phase, in the second
phase, the obtained solutions for assignment and routing variables are
improved by using a fix-and-optimize procedure. In each iteration of
this phase, a patient is selected and her/his corresponding routing cost
is improved while assignment and routing decisions for other patients
are fixed. The second phase includes two steps, in the first step, routing
decisions are improved for all patients. In this step, patients are selected
7

for improvement based on a predefined order. In the second step,
the routing decisions are improved for some patients with the highest
potential of improvement. Pseudocode for the matheuristic algorithm is
presented in Algorithm 1 also an overview of the proposed matheuristic
algorithm is shown in Fig. 3.

The additional sets and parameters in the matheuristic algorithm
are as follows.

Sets:
 ∗

𝑘𝑑 (𝜉) Set of patients visited by the 𝑘th (𝑘 ∈ ) caregiver
in time period 𝑑 (𝑑 ∈ ) under scenario 𝜉 (𝜉 ∈ 𝛯).

̃ Set of potential nodes for improvement in the first
step of improvement phase in the proposed
matheuristic algorithm.

𝑟𝑜(𝜉) Set of potential nodes for improvement under
scenario 𝜉 (𝜉 ∈ 𝛯) in the second step of
improvement phase in the proposed matheuristic
algorithm.

Parameters:
𝛤𝑚

𝑖𝑘𝑑 (𝜉) Estimated routing cost if the 𝑖th (𝑖 ∈  ) patient is
visited by the 𝑘th (𝑘 ∈ ) caregiver in day 𝑑
(𝑑 ∈ ) under scenario 𝜉 (𝜉 ∈ 𝛯) in the 𝑚th
iteration.

𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉) The obtained tour for the 𝑘th (𝑘 ∈ ) caregiver at
day 𝑑 (𝑑 ∈ ) under scenario 𝜉 (𝜉 ∈ 𝛯).

𝑐𝑐𝑖𝑗 Cost of inserting node 𝑖 in the 𝑗th position for the
current route. It is used in Algorithm 3 to
calculate the estimated routing cost.

𝑤𝑖𝑗 Cost of changing the position of the 𝑖th patient
from the current position to the 𝑗th position in its
corresponding route. It is used in Algorithm 2 for
making the solution to be feasible.

𝐹𝑚 Objective value of Int-M1 model in the 𝑚th
iteration.

𝑀𝑎𝑥𝑖𝑡𝑒𝑟 Maximum number of iterations that the first phase
of the proposed matheuristic algorithm is done.

𝜀 Maximum allowable difference between the
obtained objective values of Int-M1 model in two
consecutive iterations.
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P
c
U

Input: Parameters of the model, 𝑀𝑎𝑥𝑖𝑡𝑒𝑟, 𝜀
hase 1: Generating an initial solution
ondition ← false, m ← 1, 𝐹 0 ← ∞;
se Eq. (25) to calculate 𝛤𝑚

𝑖𝑘𝑑 (𝜉);
while condition is false do

Optimize the Int-M1 model and determine the values of
decision variables (𝑦̂𝑚𝑘 , 𝑢̂

𝑚
𝑖𝑘𝑑 (𝜉), 𝑧̂

𝑚
𝑖𝑘(𝜉), 𝜌̂

𝑚
𝑖 (𝜉), 𝜈̂

𝑚(𝜉)) and
objective value (𝐹𝑚). Also obtain the sets  ∗

𝑘𝑑 (𝜉) ;
Determine the routing decisions by solving all the TSP(𝑘, 𝑑, 𝜉)
based on the results obtained from optimizing the Int-M1
model;

Check the feasibility of obtained routes and repair the
infeasible routes by Algorithm 2;
if |𝐹𝑚 − 𝐹𝑚−1

| ≤ 𝜀 or 𝑚 = 𝑀𝑎𝑥𝑖𝑡𝑒𝑟 then
condition ← true ;

else
𝑚 = 𝑚 + 1 and use Algorithm 3 to update the 𝛤𝑚

𝑖𝑘𝑑 (𝜉);
end

end
𝑦̃𝑘 ← 𝑦̂𝑚𝑘 , 𝑢̃𝑖𝑘𝑑 (𝜉) ← 𝑢̂𝑚𝑖𝑘𝑑 (𝜉), 𝜌̃𝑖(𝜉) ← 𝜌̂𝑚𝑖 (𝜉), 𝜈̃(𝜉) ← 𝜈̂𝑚(𝜉),
𝑧̃𝑖𝑘(𝜉) ← 𝑧̂𝑚𝑖𝑘(𝜉), ;
Phase 2: Improving the solution
Step 1 of improvement phase
for 𝜉 ∈ 𝛯 do

𝑁̃ ←  , 𝛤 1
𝑖𝑘𝑑 (𝜉) = 𝛤𝑚

𝑖𝑘𝑑 (𝜉), 𝑚 ← 1;
while |𝑁̃| ≠ ∅ do

Select a node (𝑖) from the set ̃ and update the set ̃ by
removing 𝑖 from this set;

Optimize the Int-M2 model and determine the values of
decision variables (𝑢̂𝑚

𝑖𝑘𝑑
(𝜉), 𝑧̂𝑚

𝑖𝑘
(𝜉), 𝜌̂𝑚

𝑖
(𝜉)), 𝜈̂𝑚(𝜉)) and

update the sets  ∗
𝑘𝑑 (𝜉);

𝑢̃𝑖𝑘𝑑 (𝜉) ← 𝑢̂𝑚𝑖𝑘𝑑 (𝜉), 𝑧̃𝑖𝑘(𝜉) ← 𝑧̂𝑚𝑖𝑘(𝜉), 𝜌̃𝑖(𝜉) ← 𝜌̂𝑚𝑖 (𝜉),
𝜈̃(𝜉) ← 𝜈̂𝑚(𝜉);

Optimize the TSP(𝑘, 𝑑, 𝜉) model to determine the optimal
routing decision based on the solution obtained from
Int-M2 and determine 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉);

Check the feasibility of obtained routes and repair the
infeasible routes by Algorithm 2;

𝑚 = 𝑚 + 1;
Use Algorithm 3 to update the value of parameter 𝛤𝑚

𝑖𝑘𝑑 (𝜉);
end

end
Step 2 of improvement phase
for 𝜉 ∈ 𝛯 do

Define the set 𝑁𝑟𝑜(𝜉) which its elements are potentially
improvable, 𝛤 1

𝑖𝑘𝑑 (𝜉) ← 𝛤𝑚
𝑖𝑘𝑑 (𝜉), 𝑚 ← 1;

while |𝑁𝑟𝑜(𝜉)| ≠ ∅ do
Select a node (𝑖) from the set 𝑁𝑟𝑜(𝜉) with largest required
number of visits and in case of existing alternatives, select
among them with smallest value of min

𝑘,𝑑
{𝛤𝑚

𝑖𝑘𝑑 (𝜉)};

Remove 𝑖 from the set 𝑁𝑟𝑜(𝜉);
Optimize the Int-M2 model and determine the values of
decision variables (𝑢̂𝑚

𝑖𝑘𝑑
(𝜉), 𝑧̂𝑚

𝑖𝑘
(𝜉), 𝜌̂𝑚

𝑖
(𝜉), 𝜈̂𝑚(𝜉)) and update

the sets  ∗
𝑘𝑑 (𝜉) ;

𝑢̃𝑖𝑘𝑑 (𝜉) ← 𝑢̂𝑚𝑖𝑘𝑑 (𝜉), 𝑧̃𝑖𝑘(𝜉) ← 𝑧̂𝑚𝑖𝑘(𝜉), 𝜌̃𝑖(𝜉) ← 𝜌̂𝑚𝑖 (𝜉),
𝜈̃(𝜉) ← 𝜈̂𝑚(𝜉);

Optimize the TSP(𝑘, 𝑑, 𝜉) model to determine the optimal
routing decision based on the solution obtained from the
Int-M2 model and determine 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉);

Check the feasibility of obtained routes and repair the
infeasible routes by Algorithm 2;

𝑚 = 𝑚 + 1;
Use Algorithm 3 to update the value of parameter 𝛤𝑚

𝑖𝑘𝑑 (𝜉);
end

end
The objective value (𝐹𝑏𝑒𝑠𝑡) is obtained according to 𝑦̃𝑘 , 𝜌̃𝑖(𝜉), 𝜈̃(𝜉) ,
and 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉);
Result: 𝐹𝑏𝑒𝑠𝑡, 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉)
Algorithm 1: The framework of the proposed matheuristic
algorithm.
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Decision variables:
𝑙𝑖𝑗 1 if the 𝑖th patient is assigned to the 𝑗th position

in the route, 0 otherwise.

4.1. Phase 1: Generating an initial solution

The aim of this phase is to determine good quality initial solutions
for the decision variables. In this phase, an iterative procedure is
proposed by considering an estimation of transportation costs. A brief
overview of this phase is as follows:

• Calculate the estimated routing cost.
• Solve the Int-M1 model to obtain decisions related to staff dimen-

sioning, scheduling, and assigning patients to caregivers accord-
ing to the estimated routing cost.

• Solve a series of TSPs for each caregiver per day under each
scenario (TSP(𝑘, 𝑑, 𝜉)) to determine routing decisions according
to the assignment decisions obtained from Int-M1 model.

• Repair the infeasible routes achieved from TSP(𝑘, 𝑑, 𝜉) by a pro-
posed procedure (refer to Algorithm 2).

As mentioned above, the estimated routing cost (𝛤𝑚
𝑖𝑘𝑑 (𝜉)) should be

calculated first in this phase. The estimated cost in the first iteration of
this phase is calculated by using the following equation.

𝛤 1
𝑖𝑘𝑑 (𝜉) = 2𝑐𝑖(𝑁+𝑘) ∀𝑖 ∈  , 𝑘 ∈ , 𝑑 ∈ , 𝜉 ∈ 𝛯 (25)

In other iterations, the estimated cost is updated based on the ob-
tained routes from the previous iteration. Then the required number of
caregivers, and the assignment of patients to caregivers are determined
by solving the Int-M1 model. This model is used to generate a good
quality initial solutions for all decisions except routing. In each itera-
tion, the required number of temporary caregivers with different types
of skills and the assignment of patients to caregivers are determined
using this model. The proposed Int-M1 model is presented as follows.

(𝐈𝐧𝐭 −𝐌𝟏) min
∑

𝑘∈
ℎ𝑘𝑦𝑘 +

∑

𝜉∈𝛯

∑

𝑘∈

∑

𝑑∈

∑

𝑖∈
𝑝(𝜉)𝛤𝑚

𝑖𝑘𝑑 (𝜉)𝑢𝑖𝑘𝑑 (𝜉)

+ 𝜃𝑖
∑

𝑖∈

∑

𝜉∈𝛯
𝑝(𝜉)𝜌𝑖(𝜉) + 𝛼

∑

𝜉∈𝛯
𝑝(𝜉)𝜈(𝜉) (26)

s.t.: (2), (3), (5), (6), (12), (15), (16)–(20), 𝑎𝑛𝑑
∑

𝑘∈
𝑢𝑖𝑘𝑑 (𝜉) ≤ 1, ∀𝑖 ∈  , 𝑑 ∈ , 𝜉 ∈ 𝛯 (27)

𝑢𝑖𝑘𝑑 (𝜉) ∈ {0, 1}, ∀𝑑 ∈ , 𝑖, 𝑗 ∈  , 𝑘 ∈ , 𝜉 ∈ 𝛯
(28)

𝑧𝑖𝑘(𝜉) ∈ {0, 1}, ∀𝑖 ∈  , 𝑘 ∈ , 𝜉 ∈ 𝛯 (29)

𝜌𝑖(𝜉), 𝜈(𝜉) ∈ Z0+, ∀𝑖 ∈  , 𝜉 ∈ 𝛯 (30)

The objective function minimizes the hiring cost of caregivers, the
expected value of transportation, the number of caregivers assigned to
patients, and the maximum number of patients assigned to a caregiver
in a time-period. Constraint (27) guarantees that each patient is visited
by one caregiver at most in each time period. The values of the decision
variables 𝑦𝑘, 𝑢𝑖𝑘𝑑 (𝜉), 𝜌𝑖𝑘(𝜉) and 𝜈(𝜉) (which are indicated by 𝑦̂𝑘, 𝑢̂𝑖𝑘𝑑 (𝜉),
𝜌̂𝑖𝑘(𝜉) and 𝜈̂(𝜉), respectively) are achieved by optimizing this model.
Also, the set  ∗

𝑘𝑑 (𝜉) is defined as a set of patients assigned to the 𝑘th
caregiver at day 𝑑 under each scenario 𝜉 in the current iteration. This
set is updated in each iteration based on the value of the decision
variable 𝑢𝑖𝑘𝑑 (𝜉), which is obtained by solving the int-M1 model.

To determine routing decisions according to the values obtained
from the Int-M1 model, a series of TSPs are solved. Thus, the route
related to the 𝑘th caregiver in day 𝑑 under different scenarios in
iteration 𝑚 is obtained by solving a series of TSPs (𝑘, 𝑑, 𝜉) for each
caregiver in each day under each scenario, based on the values of
the decision variables 𝑦̂𝑚𝑘 and 𝑢̂𝑚𝑖𝑘𝑑 (𝜉) obtained from the Int-M1 model.
𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉) is the route obtained from TSPs (𝑘, 𝑑, 𝜉). The time-window
constraints are not considered in the TSPs, therefore the tours obtained
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from them can be infeasible. So, the feasibility of the routes obtained
from the TSPs is examined and repaired.

For repairing an infeasible obtained tour, a procedure is proposed
in this paper and its pseudocode is provided in Algorithm 2. In this
procedure, visiting sequence of patients in infeasible routes is changed
to obtain feasible ones. At first inserting cost related to adding of each
patient in different positions of infeasible route is calculated. For this
reason, the 𝑖th patient is selected and removed from 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉), while
he visiting sequence of other patients in the route is not changed.
hen the costs corresponding to inserting the 𝑖th patient in different
ositions on 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉) (𝑤𝑖𝑗 ∀𝑗 ∈ {2,… , |𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉)|−1}) are calculated,
here |𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉)| shows the number of nodes on the mentioned route.

f the route obtained from visiting the 𝑖th patient in the 𝑗th position
f 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉) is feasible, the corresponding cost (𝑤𝑖𝑗) is calculated by
𝑖𝑗 = 𝑐𝑖𝑗− 𝑖 + 𝑐𝑖𝑖𝑗+ − 𝑐𝑖𝑗− 𝑖𝑗+

, where 𝑖𝑗− and 𝑖𝑗+ denote the predecessor
and successor nodes of patient 𝑖 when it is inserted in the 𝑗th position
of 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉), respectively. However, if the achieved route is infeasible,
𝑤𝑖𝑗 is set to be a large number. Then Int-MF model is solved to obtain a
easible visiting sequence with minimum cost for each infeasible route.
he Int-MF model is as follows.

𝐈𝐧𝐭 −𝐌𝐅(𝐤,𝐝, 𝝃)) min
∑

𝑖∈∗
𝑘𝑑 (𝜉)

∑

𝑗∈{2,…,|𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉)|−1}
𝑤𝑖𝑗 𝑙𝑖𝑗 (31)

s.t.:
∑

𝑗∈{2,…,|𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉)|−1}
𝑙𝑖𝑗 = 1, ∀𝑖 ∈  ∗

𝑘𝑑 (𝜉) (32)

∑

𝑖∈∗
𝑘𝑑 (𝜉)

𝑙𝑖𝑗 = 1, ∀𝑗 ∈ {2,… , |𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉)| − 1} (33)

𝑙𝑖𝑗 ∈ {0, 1}, ∀𝑖 ∈  ∗
𝑘𝑑 (𝜉), 𝑗 ∈ {2,… , |𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉)| − 1}

(34)

The objective function (31) minimizes the cost of insertion. Con-
straint (32) guarantees that each patient in 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉) is assigned to one
position. Constraint (33) ensures that each position can be allocated to
exactly one patient. Constraint (34) determines the domain of variables.
𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉) is updated based on the solution obtained from Int-MF and
this procedure is continued until feasible routes are determined. Then,
if the stopping condition of Algorithm 1 is met, the solution obtained
in the last iteration is considered as the initial solution for the whole
algorithm. However, if the stopping condition is not met, then the
estimated routing cost must be updated based on the solution obtained
for routing decisions using the next proposed procedure.

The procedure proposed for updating estimated routing cost is
illustrated in Algorithm 3. In this algorithm, the estimated costs corre-
sponding to caregivers who are not selected to serve patients (𝑦̂𝑘 = 0)
are calculated by Eq. (25). Also, for the selected caregivers (𝑦̂𝑘 = 1),
the estimated cost for days and scenarios when caregivers do not visit
any patient is similarly obtained from Eq. (25). In the case that the 𝑖th
patient is served by the 𝑘th caregiver on day 𝑑 under scenario 𝜉, the
estimated cost is calculated by 𝑐𝑖−𝑖+𝑐𝑖𝑖+ −𝑐𝑖−𝑖+ , where, 𝑖− and 𝑖+ denote
the predecessor and successor nodes of patient 𝑖, respectively.

When a patient is not visited on 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉), the corresponding esti-
mated cost is determined based on the least cost of inserting this patient
into this route. To calculate the least insertion cost, the patient is added
to different positions on a current route, and the corresponding costs
(𝑐𝑐𝑖𝑗) are determined. If time-window constraints are not violated for all
nodes on 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉) after adding the 𝑖th patient to the 𝑗th position of the
route, the insertion cost corresponding to the 𝑗th position is calculated
by 𝑐𝑐𝑖𝑗 = 𝑐𝑖𝑗− 𝑖+𝑐𝑖𝑖𝑗+ −𝑐𝑖𝑗− 𝑖𝑗+

, but if time-window constraints are violated
in the 𝑗th position, 𝑐𝑐𝑖𝑗 is increased to a large number (𝐵𝑖𝑔𝑀). Thus
the solutions obtained for assignment and scheduling in all iterations
except the first iteration are always feasible.

For further clarification, an example is given to explain the proposed
procedure for calculating 𝛤𝑚

𝑖𝑘𝑑 (𝜉) when node 𝑖 is not visited by the
𝑘th caregiver on day 𝑑 under scenario 𝜉. In this example, 5 caregivers
with different types of skills are available and 4 caregivers are selected
9

to serve 15 patients. The first caregiver is not selected to provide
Input: 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉), 𝑁∗
𝑘𝑑 (𝜉), 𝑏𝑖, 𝑠𝑡𝑖, 𝑡𝑡𝑖𝑗

for 𝑘 ∈  do
if 𝑦̂𝑚−1𝑘 = 1 then

for 𝑑 ∈  do
for 𝜉 ∈ 𝛯 do

if 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉) is infeasible then
𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛3 ← 𝑓𝑎𝑙𝑠𝑒;
while 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛3 if false do

for 𝑖 ∈ 𝑁∗
𝑘𝑑 (𝜉) do

Remove the 𝑖𝑡ℎ patient from 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉)
when visiting sequence of other nodes
are constant;
for 𝑗 ∈ {2,… , |𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉)| − 1} do

Insert the 𝑖𝑡ℎ node in the 𝑗𝑡ℎ position
in the 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉);
if the obtained route is feasible then

𝑤𝑖𝑗 = 𝑐𝑖𝑗− 𝑖 + 𝑐𝑖𝑖𝑗+ − 𝑐𝑖𝑗− 𝑖𝑗+
;

else
𝑤𝑖𝑗 = 𝐵𝑖𝑔𝑀 ;

end
end

end
Solve Int-MF model and obtain 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉);
if 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉) is feasible then

𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛3 ← 𝑡𝑟𝑢𝑒;
end

end
end

end
end

end
end
Result: 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉)
Algorithm 2: The framework for making the obtained route from
TSPs to be feasible.

caring services for patients (𝑦̂1 = 0). The obtained tours from the
TSPs based on the solutions calculated for the intermediate model
(Int-M1 or Int-M2) for selected caregivers in the second day under
scenario 1 are reported in Table 3. Based on the solutions obtained
from intermediate models, under the first scenario patients 1, 2, and
15 are assigned to the second caregiver and patients 12 and 9 are
visited by the fourth caregiver on the second day of the week. Their
corresponding routes are 17-15-2-1-17 and 19-12-9-19, respectively.
Under the first scenario, the estimated routing cost corresponding to
patient 12 if he/she is visited by the second caregiver on the second
day of the week in the 𝑚th iteration (𝛤𝑚

12,2,2(1)) is determined based on
insertion costs corresponding to different positions on the route of the
second caregiver (𝑐𝑐𝑖𝑗 , ∀𝑗 ∈ {1, 2,… , |𝑟𝑜𝑢𝑡𝑒2,2(1)|}).

As reported in Table 3, 𝑟𝑜𝑢𝑡𝑒2,2(1) includes three patients, so four
positions can be considered to insert a new node (𝑖) to this route. On
the other hand, the number of potential positions for inserting a new
patient into the route corresponding to the 𝑘th caregiver on day 𝑑 under
scenario 𝜉 is equal to |𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉)|−1. After inserting a new patient into
the 𝑗th potential position and generating a new route, arrival times
are calculated for all nodes in the new route (𝑖′ ∈ 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉) ∪ {𝑖}).
Fig. 4 shows the potential locations and corresponding insertion costs
for inserting patient 12 into the route of the second caregiver, based on
the routes reported in Table 3.

4.2. Phase 2: Improving the obtained solutions

In this phase, a fix-and-optimize procedure is used to improve
assignment and routing decisions. The improvement is achieved in two
steps and the decision to select caregivers is determined based on the
solution obtained from the first phase. In each iteration of this phase,
a patient is selected and the corresponding assignment and routing
decisions are improved when the staff dimensioning and routing deci-
sions for other patients are fixed. In the first step, the routing decisions
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Fig. 4. Calculating the costs corresponding to insert node 12 into different positions (𝑐𝑐𝑖𝑗 ∀𝑗 = 1 ∶ 4) of the route 17 − 15 − 2 − 1 − 17. For example, 𝑐𝑐12,1 shows the cost related
to add node 12 in the first position (between nodes 17 and 15). These positions are defined as the locations between each sequential nodes.
Input: 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉), 𝑁∗
𝑘𝑑 (𝜉), 𝑐𝑖𝑗 , 𝑏𝑖, 𝑠𝑡𝑖, 𝑡𝑡𝑖𝑗

for 𝑘 ∈  do
if 𝑦̂𝑚−1𝑘 = 1 then

for 𝑑 ∈  do
for 𝜉 ∈ 𝛯 do

if 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉) is not empty then
for 𝑖 ∈  do

if 𝑖 ∈ 𝑁∗
𝑘𝑑 then

𝛤𝑚
𝑖𝑘𝑑 (𝜉) = 𝑐𝑖−𝑖 + 𝑐𝑖𝑖+ − 𝑐𝑖−𝑖+ ;

else
for 𝑗 = 1 ∶ |𝑁∗

𝑘𝑑 (𝜉)| + 1 do

Calculate the cost corresponding to
insert the 𝑖𝑡ℎ node into the 𝑗𝑡ℎ (𝑐𝑐𝑖𝑗)
position on 𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉);

Calculate the arrival time at node 𝑖
and other nodes in this route when
it is added in the 𝑗𝑡ℎ position on
𝑟𝑜𝑢𝑡𝑒𝑘𝑑 (𝜉);
if Arrival time for at least one node is
greater than its corresponding
time-window then

𝑐𝑐𝑖𝑗 = 𝐵𝑖𝑔𝑀 ;
else

𝑐𝑐𝑖𝑗 = 𝑐𝑖𝑗− 𝑖 + 𝑐𝑖𝑖𝑗+ − 𝑐𝑖𝑗− 𝑖𝑗+
end

end
𝛤𝑚
𝑖𝑘𝑑 (𝜉) = min

𝑗
{𝑐𝑐𝑖𝑗};

end
end

else
𝛤𝑚
𝑖𝑘𝑑 (𝜉) = 2𝑐𝑖(𝑁+𝑘)

end
end

end
else

for 𝑑 ∈  do
for 𝜉 ∈ 𝛯 do

𝛤𝑚
𝑖𝑘𝑑 (𝜉) = 2𝑐𝑖(𝑁+𝑘)

end
end

end
end
Result: 𝛤𝑚

𝑖𝑘𝑑 (𝜉)
Algorithm 3: The framework for updating parameter 𝛤𝑚

𝑖𝑘𝑑 (𝜉) in
iteration 𝑚.

corresponding to all patients are improved. While, in the second step,
routing decisions are improved for some patients with a higher possible
improvement. The improvement phase of the proposed algorithm has
been adopted from Nikzad et al. (2020), however, there are some
10
Table 3
Allocated routes for selected caregivers in the illustrative example.

Selected caregivers Corresponding routes

2 17-15-2-1-17
3 18-6-18
4 19-12-9-19
5 20-7-14-4-20

differences that are listed here. The improvement phase of this study
contains two steps and the existence of two steps will increase the
chance of more improvement while it was only one step in the above
mentioned study. Moreover, in the first step of the improvement phase
of the algorithm, a method has been proposed to order the patients
to be examined in a fix-and-optimize procedure while there is no such
ordering scheme in the above-mentioned study. The proposed Int-M2
model has been adopted from the Int-M4 model of above mentioned
study with required differences related to the nature of the problem. A
brief overview of the steps in the second phase is described as follows:

• Select a patient for improvement.
• Calculate cost corresponding to insert the selected patient to each

caregiver’s route per day under each scenario (𝛤𝑚
𝑖𝑘𝑑 (𝜉)).

• Solve the Int-M2 model for the selected patient to obtain deci-
sions related to scheduling and assigning the selected patient to
caregivers according to the estimated routing cost.

• Solve a series of TSPs for each caregiver per day under each
scenario (TSP(𝑘, 𝑑, 𝜉)) to determine routing decisions.

• Repair the infeasible routes achieved from TSP(𝑘, 𝑑, 𝜉) by devel-
oping a procedure (refer Algorithm 2).

In each iteration of the first step, a patient (𝑖) is selected for
improvement. Let ̃ be the set of potential patients for improvement
and include all patients in the first iteration of this step. Selection of
the patient for improvement from set ̃ is based on two factors. First,
the patient with the largest required number of visits is selected and,
in case of existing alternatives, a patient with the smallest value of
min𝑘,𝑑{𝛤𝑚

𝑖𝑘𝑑 (𝜉)} is selected. Then the set ̃ is updated by removing 𝑖
from it. The assignment and scheduling decisions for patient 𝑖 are opti-
mized by solving the Int-M2 model when these decisions are fixed for
other patients (𝑗 ∈ ∖{𝑖}). Improving the scheduling and assignment
decisions and as a result, decreasing the routing cost is the aim of the
Int-M2 model. The Int-M2 model is as follows.

(𝐈𝐧𝐭 −𝐌𝟐(𝝃, 𝐢̃)) min
∑

𝑘∈

∑

𝑑∈
𝛤𝑚
𝑖𝑘𝑑 (𝜉)𝑢𝑖𝑘𝑑 (𝜉) + 𝜃𝜌𝑖(𝜉) + 𝛼𝜈(𝜉) (35)

s.t.: (3), (5), (6), (12), (15), (16)–(20), (27) 𝑎𝑛𝑑

𝑦 = 𝑦̃ , ∀𝑘 ∈  (36)
𝑘 𝑘
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𝑢𝑖𝑘𝑑 (𝜉) = 𝑢̃𝑖𝑘𝑑 (𝜉), ∀𝑖 ∈ ∖{𝑖}, 𝑘 ∈ , 𝑑 ∈ 
(37)

𝑧𝑖𝑘(𝜉) = 𝑧̃𝑖𝑘(𝜉), ∀𝑖 ∈ ∖{𝑖}, 𝑘 ∈ , 𝑑 ∈ 
(38)

𝑢𝑖𝑘𝑑 (𝜉), 𝑧𝑖𝑘(𝜉) 𝑦𝑘 ∈ {0, 1}, ∀𝑑 ∈ , 𝑖, 𝑗 ∈  , 𝑘 ∈ 
(39)

𝜌𝑖(𝜉), 𝜈(𝜉) ∈ Z0+, ∀𝑖 ∈  (40)

Constraints (37) and (38) ensure that the assignment decisions are
fixed for all nodes except the one selected in the Int-M2 model. The
values of variables 𝑢𝑖𝑘𝑑 (𝜉), 𝑧𝑖𝑘(𝜉), and 𝜌𝑖(𝜉) for the selected patient are
determined in each iteration. Int-M2 is solved for all patients under
each scenario, therefore, it is optimized 𝑁 × 𝑆 times in the first step.
In this phase, a series of TSPs are solved for each caregiver on each
day under each scenario to achieve routing decisions based on the
obtained assignment solutions from Int-M2. Then the feasibility of
obtained routes is checked and infeasible routes are repaired. If the set
of potential patients for improvement is not empty, 𝛤𝑚

𝑖𝑘𝑑 (𝜉) is updated
based on the routing decisions from Algorithm 3.

Further improvement is explored in the second step for the patients
whose corresponding assignment decisions were altered in the first
step. To obtain the set of mentioned patients (𝑟𝑜(𝜉)), first, 𝑘∗𝑖 (𝜉) and
𝑑∗𝑖 (𝜉) corresponding to minimum values of 𝛤𝑚

𝑖𝑘𝑑 (𝜉) are determined for
each patient under each scenario by (𝑘∗𝑖 (𝜉), 𝑑

∗
𝑖 (𝜉)) = argmin𝑘,𝑑{𝛤𝑚

𝑖𝑘𝑑 (𝜉)}.
Then the set 𝑟𝑜(𝜉) is defined to include the 𝑖th patient if this patient
is not visited by caregiver 𝑘∗𝑖 (𝜉) on day 𝑑∗𝑖 (𝜉) under scenario 𝜉. On the
other hand, the decision variable 𝑢𝑖𝑘∗𝑖 (𝜉),𝑑∗𝑖 (𝜉) is equal to zero for these
patients. Then, as in the previous step, a patient is selected from set
𝑟𝑜(𝜉), and the Int-M2 model is optimized to improve routing and
assignment decisions. Based on the solution obtained from Int-M2,
TSP models are solved to achieve routing decisions. Then infeasible
routes are repaired and is updated based on the routing decisions from
Algorithm 3. In the first step, routing and assignment decisions related
to all patients are improved, whereas in the second step improvement
is explored for some patients as to the possibility of reducing costs by
changing their caregiver assignment. Therefore, the sets of potential
patients for improvement are different in these steps. This step stops
when the set 𝑟𝑜(𝜉) is empty.

5. Computation results

In this section, the efficiency and validity of the algorithm are
investigated through numerical experiments. Instances are generated
based on 5 instances for urban areas by considering 75 nodes reported
by the Austrian Red Cross (Fikar and Hirsch, 2015). The upper bounds
of time windows and the intervals to define the classes of patients are
also taken from these instances. Some parameters used in the proposed
model have no values in the dataset, so the values for parameters
are shown in Table 4. The generated instances can be found in https:
//github.com/bashirimahdi/StaffDimensionning-for-HHC. The compu-
tations are performed on a 3.5 GHz Workstation with 32 GB RAM and
6 cores operating on Windows 10 (64-bit) using Julia software. The
CPLEX 12.7.1 solver is used for solving all intermediate models and
TSPs in the proposed matheuristic algorithm. Also, a limited compu-
tational time (1000 s) is considered for the Int-M1 model in the first
phase of the matheuristic algorithm.

5.1. Scenario selection scheme

Increasing the number of scenarios in the two-stage stochastic pro-
gramming models means that considerably more computational time is
required to solve them. Nevertheless, when the number of possible sce-
narios is large, a sample of scenarios can be selected as representative
instead of using all scenarios. Scenario selection has a significant impact
11

on the accuracy of obtained solutions. Here we develop a scenario s
Table 4
Additional parameters’ values in numerical instances.

Parameters Corresponding values or distribution

𝑁 10, 20, 30, 40, 50, 60, 70
𝐾 5 10, 15
𝑆 10, 20
𝐷 7
𝐹 1
𝐴 3
𝑥𝑥𝑖 Discrete uniform [1, 100]
𝑦𝑦𝑖 Discrete uniform [1, 100]
𝑐𝑖𝑗

√

(𝑥𝑥𝑖 − 𝑥𝑥𝑗 )
2 + (𝑦𝑦𝑖 − 𝑦𝑦𝑗 )

2

𝑡𝑡𝑖𝑗 𝑐𝑖𝑗
𝜆𝑖(𝜉) Discrete uniform [1, 3]
𝑒 uniform[0.5, 1.5]
𝑠𝑡𝑖(𝜉) 𝜆𝑖(𝜉) × 30 × 𝑒
𝜑 300, 480
𝜃𝑖 100
𝛼 40

generation procedure for our problem. In this procedure, the objective
value obtained from the proposed matheuristic algorithm under each
scenario is used to generate a sample of scenarios, which is then
partitioned into 𝑆 clusters with the k-means algorithm (MacQueen,
1967) based on their obtained objective values, where 𝑆 is the size of
samples. For example, scenarios are partitioned into 10 clusters when
a sample with 10 scenarios is required. Then, a scenario is selected
randomly from each cluster.

To investigate the efficiency of the proposed scenario generation
procedure, we use the in-sample index proposed by Kaut and Wallace
(2003). This index indicates how similar the solutions obtained from
different samples of scenarios are. To examine the in-sample stability
of the proposed approach, 10 different samples are selected and the
coefficients of variation (CV) for the objective function values of these
samples are reported in Fig. 5. The stability of the proposed procedure
is examined for the different numbers of patients by considering 10
and 20 scenarios in each sample. As shown in this figure, considering
20 scenarios generated by the proposed scenario generation results in
a small CV value, showing the stability of the model even using a
relatively small number of scenarios (e.g. 20). As shown in the figure,
this ratio is less than 0.1 when 20 scenarios are considered for different
numbers of patients.

5.2. Sensitivity analysis of the proposed model

In this section, the efficiency of the proposed mathematical model is
examined and the effect of different parameters on the obtained values
of decision variables is investigated. First, due to the importance of
workload balancing for caregiver satisfaction, the effects of parameter
𝛼 on the routing cost and average value of the maximum number
of patients assigned to caregivers are analyzed. The results obtained
are shown in Fig. 6. As seen there, the maximum number of patients
assigned to caregivers decreases with larger values of 𝛼, however,
as expected the corresponding routing cost increases, confirming the
validity of the proposed model.

With a fixed number of caregivers, increasing 𝛼 reduces the maxi-
um number of patients allocated to caregivers at the cost of increasing

ravel distance (i.e. travel cost). Fig. 6 shows that although travel costs
ill increase, the maximum number of patients allocated to caregivers
ill decrease, which makes it more reasonable. This analysis confirms

he applicability of the model in different situations for healthcare
ervices, as well as its validity. This finding is linked to that of Porzio
t al. (2020), who considered a home healthcare system serving cancer
atients during the COVID-19 pandemic. They scheduled twice-weekly
isits for patients with moderate symptoms, while patients with severe
ymptoms were visited every day of the week. The classes of patients

https://github.com/bashirimahdi/StaffDimensionning-for-HHC
https://github.com/bashirimahdi/StaffDimensionning-for-HHC
https://github.com/bashirimahdi/StaffDimensionning-for-HHC
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Fig. 5. Analyzing the stability of solutions obtained from the different numbers of scenarios.
Fig. 6. Analyzing the effect of importance parameter related to the maximum number of allocated patients by considering 30 patients, 10 caregivers, and 10 scenarios.
and the required number of visits in this analysis are determined based
on data reported by Porzio et al. (2020), so it can be concluded that the
proposed model can also be used efficiently under pandemic conditions
to consider the importance of decreasing the number of contacts.

5.3. Examining the efficiency of the proposed matheuristic algorithm

The efficiency of the proposed matheuristic algorithm to solve
the staff dimensioning problem in HHC services of different sizes is
investigated in this section. The results obtained from the proposed
matheuristic algorithm are compared with the results given by the
12
CPLEX as well as an approach based on a combination of the Pro-
gressive Hedging and the Frank–Wolfe algorithm (FW-PH) (Boland
et al., 2018) for small-size instances (when 𝑁 × 𝐾 × 𝑆 is less than
or equal to 4000) in Table 5. The optimal value of objective func-
tion (𝑂𝑏𝑗𝐶 ) and the best found objective function values achieved by
matheuristic algorithm (𝑂𝑏𝑗𝑀𝑎𝑡ℎ) are reported in this table. Also, the
lower bound provided by the CPLEX in 10000 s (𝐿𝐵𝐶 ) is reported
in this table. 𝑂𝑏𝑗𝐹𝑊 −𝑃𝐻 reported the objective value obtained by
fixing the first stage decision variables obtained by the FW-PH in the
proposed model. The gap between 𝑂𝑏𝑗𝑀𝑎𝑡ℎ and 𝑂𝑏𝑗𝐶 is calculated by
𝐺𝑎𝑝𝑀𝑎𝑡ℎ−𝐶 = (𝑂𝑏𝑗𝑀𝑎𝑡ℎ − 𝑂𝑏𝑗𝐶 )∕𝑂𝑏𝑗𝐶 × 100% and is reported in column
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T
a

Table 5
Computation results for different numbers of patients, caregivers, and scenarios in five instances. Index Math and C denote the obtained results by our proposed matheuristic and
the CPLEX, respectively.
𝑁 𝐾 𝐾1 𝑆 ins 𝑂𝑏𝑗𝐶 𝐿𝐵𝐶 𝑇 𝑖𝑚𝑒𝐶 (s) 𝑂𝑏𝑗𝑀𝑎𝑡ℎ 𝑇 𝑖𝑚𝑒𝑀𝑎𝑡ℎ (s) 𝑂𝑏𝑗𝐹𝑊 −𝑃𝐻 𝑇 𝑖𝑚𝑒𝐹𝑊 −𝑃𝐻 (s) 𝐺𝑎𝑝𝑀𝑎𝑡ℎ−𝐶 (%)

10 5 2

10

1 8522.92 8314.09 10000 8576.30 46.60 8513.44 3414.18 0.63
2 7163.98 7034.23 10000 7230.64 42.16 7163.78 587.56 0.93
3 7058.23 6910.34 10000 7177.53 42.83 7051.05 1018.79 1.69
4 7115.75 6921.66 10000 7158.60 43.11 7068.48 2993.13 0.60
5 8582.24 8334.16 10000 8622.34 56.91 8532.76 3058.72 0.47

20

1 8697.37 8311.25 10000 8662.14 68.36 8555.15 8652.75 −0.41
2 8646.70 8312.71 10000 8642.80 80.24 8531.73 11580.56 −0.05
3 8696.62 8317.65 10000 8671.87 65.22 8544.33 26880.498 −0.28
4 8594.61 8295.35 10000 8600.09 70.55 8510.46 13653.94 0.06
5 8624.81 8291.76 10000 8582.60 68.58 8498.70 4541.34 −0.49

20 10 5

10

1 17758.77 12223.53 10000 13665.67 80.83 −23.05
2 14766.37 13045.12 10000 13725.73 88.00 −7.05
3 19249.46 12034.43 10000 12547.89 72.64 −34.81
4 18876.33 13072.92 10000 14960.40 149.82 −20.75
5 16189.58 11983.00 10000 12519.55 76.75 −22.67

20

1 16836.47 11711.16 10000 13699.73 160.83 −18.63
2 16256.38 11875.67 10000 12543.25 176.26 −22.84
3 17871.24 12870.89 10000 13691.36 151.20 −23.39
4 18034.27 12859.03 10000 13693.36 173.27 −24.07
5 19309.86 11741.68 10000 13654.87 203.18 −29.29

30 10 5 10

1 24706.35 13856.84 10000 16597.75 788.60 −32.82
2 23080.92 15126.22 10000 16536.02 265.18 −28.36
3 22713.83 13689.62 10000 15467.80 468.07 −31.90
4 22979.55 15898.15 10000 17731.28 355.18 −22.84
5 22851.27 15940.49 10000 17635.56 331.97 −22.82

Average 165.05 −14.49
13 of Table 5. Computational times for CPLEX and the matheuristic
algorithm are also shown in the table.

The results indicate that CPLEX cannot find optimal solutions in any
cases where computational time is limited to 10000 s. Nevertheless,
the proposed matheuristic algorithm can obtain better solutions than
CPLEX in most cases when the average computational time of the
matheuristic algorithm is 165.05 s. Also, the average gap between
𝑂𝑏𝑗𝑀𝑎𝑡ℎ and 𝑂𝑏𝑗𝐶 is −14.49%. It is concluded that the proposed
matheuristic algorithm can achieve better quality solutions in a rea-
sonable time for small-size instances. The FW-PH algorithm obtained
better solutions than CPLEX and matheuristic algorithm by considering
10 patients. However, the FW-PH algorithm is not an efficient solution
method for this problem comparing to the proposed matheuristic. The
reason is that the computational time of the FW-PH is large even
for small-size instances as the proposed model cannot be solved in a
reasonable time for each scenario. especially for instances with more
than 10 patients the computational time of the FW-PH is more than
86400 s (24 h) while the proposed matheuristic algorithm can solve
instances with 85 nodes in a reasonable computational time.

The efficiency of the matheuristic algorithm for medium-size and
large-size instances is illustrated in Tables 6 and 7, respectively. The
effect of the number of scenarios on the efficiency of the proposed
matheuristic algorithm is analyzed for medium-size instances (when
𝑁 × 𝐾 × 𝑆 is less than 12000). The results are presented in Table 6.
The results show that the CPLEX cannot find any feasible solutions
for the model in 10000 s, while the matheuristic algorithm can find
good quality solutions in 1322.57 s on average. Also, the lower bounds
obtained from the CPLEX solver in 10000 s are reported in this table. As
reported in this table, the CPLEX cannot find proper lower bounds for
the instances with 70 patients. Therefore, it can be concluded that the
developed matheuristic algorithm performs properly for medium-size
instances, too.

Results of analyzing the effect of increasing the number of scenarios
on the efficiency of the matheuristic algorithm for large-size instances
(when 𝑁×𝐾×𝑆 is less than or equal to 21000) are reported in Table 7.

he CPLEX cannot find feasible solutions for the model in 10000 s for
ny instance, while the proposed algorithm finds proper solutions for
13
Table 6
Computation results for different numbers of caregivers and scenarios for medium
instances. Index Math and C denote the obtained results by our proposed matheuristic
and the full model.
𝑁 𝐾 𝐾1 𝑆 ins 𝑂𝑏𝑗𝐶 𝐿𝐵𝐶 𝑂𝑏𝑗𝑀𝑎𝑡ℎ 𝑇 𝑖𝑚𝑒𝑀𝑎𝑡ℎ (s)

30 10 5 20

1 – 13045.79 17592.17 1222.06
2 – 15468.92 17730.64 1562.86
3 – 12973.22 16429.62 1731.04
4 – 13105.49 17673.95 1654.67
5 – 12964.39 16511.33 1031.34

40 15 8 10

1 – 17741.70 19205.62 267.62
2 – 17781.33 19218.41 457.61
3 – 17642.83 19145.33 280.01
4 – 17729.57 19144.26 283.82
5 – 17772.57 19165.41 268.03

50 15 8 10

1 – 18874.72 20807.04 705.7
2 – 18819.35 20855.32 814.74
3 – 13200.00 20847.37 789.34
4 – 18796.86 20764.73 575.49
5 – 13200.00 21126.08 1227.86

60 15 8 10

1 – 19911.21 22326.43 1545.49
2 – 13200.00 23224.87 1456.24
3 – 19861.79 22356.46 2060.71
4 – 19837.36 22711.49 992.47
5 – 19911.99 22485.98 1579.19

70 15 8 10

1 – 13200.00 23206.94 2045.89
2 – 13200.00 23488.71 1810.65
3 – 13200.00 24360.28 3018.12
4 – 13200.00 23305.32 2912.33
5 – 13200.00 23354.59 2770.93

Average 1322.57

all cases in 3814.95 s on average. Also, the CPLEX cannot find a lower
bound for the instances with more than 40 patients because of memory
limitation. The results demonstrate the algorithm’s efficiency to find
good quality solutions for large-size instances.

The effect of increasing the number of scenarios on the computa-
tional times of the matheuristic algorithm is examined and the results
are shown in Fig. 7. The mean values (mean) and standard deviations
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Fig. 7. Analyses for the effect of increasing the number of scenarios on the computational time of the proposed matheuristic algorithm.
(std) of the matheuristic algorithm’s computational times with 20
patients, 5 permanent, and 5 temporary caregivers, as well as 7 days
under the different number of scenarios are shown in this figure. As
mentioned previously, increasing the number of scenarios will increase
the computational time of the two-stage stochastic model. In the pro-
posed matheuristic algorithm, the two-stage stochastic model is used in
the first phase of the algorithm and in subsequent phases the problems
are decomposed based on scenarios by fixing the first-stage decision
variables. Also, in the first phase of the proposed algorithm, the number
of variables dependent on the scenarios is reduced by removing the
routing decisions. Therefore, the computational time of the algorithm
is not increased greatly by increasing the number of scenarios.

5.4. Evaluating the efficiency of the proposed matheuristic algorithm under
different benchmarks

The proposed model in this study focused on staff dimensioning,
assignment, scheduling, and routing decisions simultaneously. The
location routing problem with time windows is the most similar classic
problem to the problem studied in this paper. Therefore, we considered
the developed benchmarks for the location routing problem with time
windows by Ponboon et al. (2016) to examine the efficiency of the
proposed matheuristic algorithm. The modified benchmarks are de-
signed based on Ponboon et al. (2016)3 are used in this study. Because
of existing differences between the location routing problem and the
problem of this study, some changes have been done in the proposed
matheuristic algorithm

• Some changes were done in Int-M1 and Int-M2 models. For ex-
ample, in the proposed staff dimensioning problem, it is assumed
that one vehicle (caregiver) is available in each depot (residential
location of caregiver) but in these benchmarks some vehicles are
available in depots which leads to the Int-M1 and Int-M2 models
modification. Also, the constraints about the capacity of depots
and vehicles were considered.

• The proposed procedure to select nodes for improvement in the
first step of the improvement phase in the developed matheuris-
tic algorithm cannot be used for the location routing problem.
Because this procedure is designed based on the required number
of visits by patients but in the location routing problem each node
is visited once. Therefore, a new procedure is designed based on
the amount of saving cost only. So, the node with greater value

3 http://prodhonc.free.fr/Instances/instances_us.htm
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Table 7
Computation results for different numbers of caregivers and scenarios for large
instances. Index Math and C denote the obtained results by our proposed matheuristic
and the full model.
𝑁 𝐾 𝐾1 𝑆 ins 𝑂𝑏𝑗𝐶 𝐿𝐵𝐶 𝑂𝑏𝑗𝑀𝑎𝑡ℎ 𝑇 𝑖𝑚𝑒𝑀𝑎𝑡ℎ (s)

40 15 8 20

1 – 17780.97 19252.93 1896.12
2 – 17689.39 19147.08 2109.08
3 – 17783.91 19181.08 1711.57
4 – 17778.08 19184.63 1611.48
5 – 17831.54 19254.90 1970.35

50 15 8 20

1 – * 20838.15 2851.21
2 – * 21243.83 6250.36
3 – * 22432.40 6043.98
4 – * 23064.79 6140.13
5 – * 20886.54 6182.67

60 15 8 20

1 – * 22278.02 4702.92
2 – * 22370.02 6540.66
3 – * 23202.65 3612.57
4 – * 23521.46 2547.39
5 – * 22271.06 4235.64

70 15 8 20

1 – * 23210.30 2855.49
2 – * 24225.89 4791.01
3 – * 23251.42 4469.98
4 – * 23528.69 3513.34
5 – * 23228.04 2263.03

Average 3814.95

*: not capable of compiling.

of saving cost is selected for improvement in each iteration of this
step.

The obtained results from applying the proposed algorithm for the
LRP benchmarks are reported in Table 8. The reported results show
that the proposed algorithm has a satisfactory performance for LRP
benchmarks.

6. Conclusion

Staff dimensioning is a critical problem in home healthcare systems
and significantly impacts their efficiency. In this paper, staff dimension-
ing, routing, and assignment decisions are considered simultaneously.
Staff dimensioning is usually a long-term decision. Nevertheless, rout-
ing and assignment decisions in HHC are determined each day. There-
fore, two types of caregivers are considered in this study. The decision
about the required number of permanent caregivers is a predefined
input parameter, however the decision about the required number of

http://prodhonc.free.fr/Instances/instances_us.htm
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Table 8
Examining the efficiency of the proposed matheuristic algorithm for LRP benchmarks.

Instance LRP optimal Solution 𝑂𝑏𝑗𝑚𝑎𝑡ℎ 𝐺𝑎𝑝 (%)

coordGaspelle 424.90 429.73 1.14
coordGaspelle2 585.11 586.70 0.27
coordGaspelle3 512.10 519.08 1.30
coordGaspelle4 562.2 562.2 0.00
coordGaspelle5 504.33 518.16 2.74
coordGaspelle6 460.37 481.66 4.62
coordMin27 3062.02 3065.24 0.10

Average 1.45

temporary caregivers is considered as a tactical decision. In this study,
the number of required temporary caregivers is minimized over a one
week period.

Staff dimensioning is done in the planning phase, where there
are several uncertainties, such as the classes of patients, the required
number of visits, and the service times. In addition, considering uncer-
tainty in the planning horizon makes decision-makers more capable of
dealing with uncertainty in a cost-effective manner. In this study, an
integrated two-stage stochastic model was proposed to formulate the
staff dimensioning problem.

This study also considered compatibility between patients’ required
types of care and caregivers’ skills, continuity of care, patient pref-
erences on caregiver assignment, caregiver workload balancing, and
visiting regulations. These factors were taken into account to make
more realistic decisions and to increase patients’ and caregivers’ sat-
isfaction. Although considering uncertainty increases the complexity of
the proposed model, a matheuristic algorithm was developed to find
high quality solutions in a reasonable time. This algorithm consists of
two phases, where a good solution is generated in the first phase by
using an intermediate model and a series of TSP models. The obtained
solution was then improved by using a fix-and-optimize procedure
based on optimizing another intermediate model and a series of TSP
models.

The efficiency of the proposed algorithm was investigated using
extensive numerical studies. The results confirmed efficiency of the
proposed matheuristic algorithm for small, medium, and large-size
instances. For small-size instances, this algorithm found solutions with
an average gap of −14.49% from the best solutions obtained by the
CPLEX (in 10000 s), while the optimal solutions were not found in any
cases of 25 instances by the CPLEX. Also, the CPLEX cannot find any
feasible solutions for medium and large-size instances in 10000 s, while
the matheuristic algorithm can find proper solutions in reasonable
times of 1322.57 and 3814.95 s for medium and large-size instances,
respectively.

The proposed model offers the opportunity for decision-makers to
compromise between travel costs and the number of patients to be
visited by the same caregivers and consider the continuity of care. This
is vital in pandemic situations such as COVID-19 pandemic when it is
preferred that the same caregiver to be allocated to a set of patients to
reduce the risk of spreading the virus as much as possible, even though
it may increase total cost because caregivers might need to travel longer
distances. Investigation of all relevant factors in home healthcare staff
dimensioning with a focus on a home care service case study might be
a valuable direction for the future study.
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