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Abstract: Breathing monitoring is an efficient way of human health sensing and predicting numerous
diseases. Various contact and non-contact-based methods are discussed in the literature for breath-
ing monitoring. Radio frequency (RF)-based breathing monitoring has recently gained enormous
popularity among non-contact methods. This method eliminates privacy concerns and the need for
users to carry a device. In addition, such methods can reduce stress on healthcare facilities by pro-
viding intelligent digital health technologies. These intelligent digital technologies utilize a machine
learning (ML)-based system for classifying breathing abnormalities. Despite advances in ML-based
systems, the increasing dimensionality of data poses a significant challenge, as unrelated features can
significantly impact the developed system’s performance. Optimal feature scoring may appear to be
a viable solution to this problem, as it has the potential to improve system performance significantly.
Initially, in this study, software-defined radio (SDR) and RF sensing techniques were used to develop
a breathing monitoring system. Minute variations in wireless channel state information (CSI) due to
breathing movement were used to detect breathing abnormalities in breathing patterns. Furthermore,
ML algorithms intelligently classified breathing abnormalities in single and multiple-person scenarios.
The results were validated by referencing a wearable sensor. Finally, optimal feature scoring was used
to improve the developed system’s performance in terms of accuracy, training time, and prediction
speed. The results showed that optimal feature scoring can help achieve maximum accuracy of up to
93.8% and 91.7% for single-person and multi-person scenarios, respectively.

Keywords: CSI; multi-person breathing; SDR; RF sensing

1. Introduction

Human breathing monitoring is essential and has a significant role in various health-
care applications [1]. Breathing monitoring helps in differentiating between normal and
abnormal breathing. In normal breathing, a human takes 12 to 24 breaths per minute (bpm),
while in abnormal breathing, bpm can be above or below this range. If breathing is above
24 bpm, this is called fast breathing, while in slow breathing, it is less than 12 bpm [2]. There
is substantial proof that breathing monitoring is a beneficial vital sign. It predicts potentially
severe adverse events [3] and a timely, clear indication of physiological deterioration [4].
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Furthermore, breathing monitoring is not only an important indicator of cardiac arrest and
intensive care units (ICU) admission but also an independent prognostic indicator for risk
assessment after an acute heart attack [5]. In addition, it is critical in detecting the risk of
dangerous conditions such as sleep apnea [6], respiratory deterioration in post-surgical
patients [7], and sudden infant death syndrome [8]. Likewise, breathing monitoring detects
various pathological conditions, such as diabetic toxicological issues, ketoacidosis, allergic
reactions, pain, shock, and dehydration [9]. Therefore, the technological development of
accurate breathing measurement is essential for real-time deployment in domestic and
clinical settings.

An abundance of literature is present in the area of human breathing monitoring.
Traditional solutions typically require a wearable device that can bring discomfort to
patients and may cause the spread of viruses such as coronavirus (COVID) [10]. Camera
technologies [11] are also considered a practical solution, but they have limitations with
regard to privacy in the case of imaging cameras, and in line-of-sight (LOS) scenarios.
Some acoustic-based solutions [12] can also accomplish high accuracy. Still, they have
a low sensing range and are more sensitive to environmental noise. Various RF-based
solutions are discussed in the literature, including radar, Wi-Fi, and SDR. Radar-based RF
solutions are reasonable but require dedicated, expensive hardware and are not readily
available in home and hospital settings [13]. Wi-Fi-based RF sensing has recently gained
considerable research interest, as Wi-Fi devices are readily available. The CSI retrieved from
commodity Wi-Fi devices can provide helpful knowledge about breathing activities [14].
However, these Wi-Fi-based solutions are not scalable and flexible [15]. Various authors
have also previously studied SDR-based RF solutions for breathing monitoring [16–18].
SDR-based RF sensing is considered the most efficient and effective breathing monitoring
among all RF-based solutions. It provides flexibility, scalability, and portability by offering
user-specific configuration of various parameters, such as operating frequency range and
transmit/received power. Despite the fact that all previous work on SDR-based RF sensing
has been proposed for single-person breathing scenarios, none of the previous approaches
proposed a solution for analyzing real-time breathing monitoring for multi-person scenarios.
From the literature, this is the first research work conducted for multi-person breathing
using SDR-based RF sensing.

In the case of RF-based sensing, two types of information are obtained and widely
used in the time domain. One piece of information is the breathing pattern, which is
essentially a detailed process of inhalation and exhalation over time [19]. The other piece
of information is the breathing rate, which is the frequency or number of breaths taken
over time. This data can be derived from breathing patterns, such as counting the number
of complete breathing cycles. In a single-person scenario, both pieces of information can
be extracted from time-domain CSI amplitude. In a multi-person scenario, however, it is
impossible to extract an individual person’s breathing information from entangled CSI
because received CSI is influenced by independent chest movements of all persons at the
same time. Based on this observation, it is possible to extract breathing information for
multi-person scenarios by transferring time-domain CSI amplitude information into the
frequency domain. The Fourier transformation is used for this purpose, which aids in
extracting individual breathing information in a multi-person scenario.

This experimental study attempted to address multiple research gaps in RF sensing
for breathing monitoring and, in doing so, the significant contributions are:
‚ This study addressed the existing RF-based sensing limitations[11,13,15] by develop-

ing a non-contact SDR-based RF sensing platform for monitoring
breathing abnormalities.

‚ The developed system can adopt multiple wireless standards compared to
Wi-Fi-based RF-sensing.

‚ The performance of classical feature extracting approaches was improved by intro-
ducing the optimal feature scoring methods for building ML models.
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‚ This study is the first to consider multi-person breathing monitoring using RF sensing
by exploiting the SDR technology to offer a portable and adaptable solution.

The rest of the paper is structured as follows. Section 2 presents the related work.
Section 3 discusses design methodology. Section 4 is all about the experimental setup.
Section 5 presents the result and discussion. Section 6 provides the conclusions and
future recommendations.

2. Related Work

This section discusses the work related to human breathing monitoring human using
various RF technologies. These technologies can be classified into three groups:

2.1. Radar-Based RF Sensing

Radar-based RF sensing includes a wide range of literature for breathing monitoring.
Frequency-modulated continuous wave (FMCW) radar is utilized to monitor breathing,
and it works at a wide bandwidth of 1–2 GHz by radiating signals modulated with a
linear frequency [20]. In vital radio [21], FMCW radar detects multi-person breathing by
separating signals based on propagation time. In [22], exploit the feasibility of single- and
multi-person scenario breathing monitoring using automotive FMCW radar (76–81 GHz).
In [23], millimetre-wave 122 GHz radar detects humans and non-humans by detecting
their vital breathing signs. The automatic detection of human breathing separation is
demonstrated using two different radars operating at frequencies (24 and 122 GHz). This
approach identifies humans in complex, cluttered environments [24]. However, this system
does not work when multiple persons are located nearby. “DeepBreath” [25] used the
independent component analysis (ICA) method to measure multiple persons breathing.
However, dedicated hardware is costly and makes it impractical for daily home usage.
Ultra-wideband (UWB) pulse radar, and continuous wave (CW) doppler radar are also
used for breathing monitoring. UWB pulse radar works by transmitting and receiving
short-duration pulses [26]. This reduces interference and multipath by having a large
bandwidth of 1–2 GHz [27]. However, such large bandwidths demand peak signal strength
and accurate pulse width control, resulting in hardware complexity [28]. CW doppler radar
radiates a signal having fixed amplitude and frequency. This radar has a simple design but
is more susceptible to multipath reflections and environmental noise.

2.2. Wi-Fi-Based Breathing Sensing

Wi-Fi-based RF sensing for human breathing is exploited for single-person or multi-
person scenarios. For a single-person scenario, [29] developed a system for sleep monitoring
by obtaining breathing information through Wi-Fi signals. In [30], the author improved
the performance by considering abnormal breathing patterns and sleeping postures. These
systems extracted a sinusoidal pattern from the time domain CSI for a single person’s
breathing scenario. The Fresnel zone theory is introduced by [31] to find the reason behind
the blind spots issue, which occurs in the single-person scenario. “FullBreathe” [32] utilized
phase and amplitude information of CSI to eliminate the blind spots problem. [33] expanded
the range of breathing sensing up to 9 m by gathering information from both antennas of
the Wi-Fi device. In [32,33], the authors also suggested solutions to counter the blind spot
problem in a one-person scenario. However, the proposed system fails for multi-person
scenarios because the theory applied for developing the system lies on the assumption of a
one-person scenario. For multi-person scenarios, various authors contributed and obtained
valuable results. [34] made the first attempt to find the breathing rate of multi-person by
evaluating frequency domain CSI. Wang et al. [35] highlighted that the blind spot issue
significantly lessens the method’s performance presented by [34]. Apart from these systems,
“PhaseBeat” [36] applied the root-MUSIC algorithm [37] to the phase difference of CSI
between multiple antennas to obtain the breathing information for the multi-person case.
Similarly, “TensorBeat” [38] detected multi-person breathing through CSI phase difference.
In comparison, “TR-BREATH” [39] applied a root-MUSIC algorithm to find the breathing
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rates of multiple persons. [40] obtained the breathing information by optimal placement of
Wi-Fi transceivers so that each transceiver pair is only impacted by one person breathing.

2.3. SDR-Based Breathing Sensing

Diverse systems have been proposed in the literature for SDR-based RF monitoring
of single-person breathing. A non-contact SDR-based system is proposed by [16] for
estimating breathing and heart rate due to minute movements of the chest. For this
purpose, directional antennas are exploited, and a vector network analyzer (VNA) is used
for results comparison. The system performance is also evaluated by varying distances
between the human body and antennas. Additionally, a through-wall monitoring scenario
is also considered. In [17], a continuous wave multi-frequency radar system (MFCW)
is deployed using SDR and breathing patterns monitoring is done at target distances.
In [41], channel frequency response (CFR) is exploited to detect minor variations in OFDM
subcarriers caused by various human movements over wireless channels. The developed
platform accurately captured hand waving movement, abnormal coughing, and different
breathing patterns. In [42], a contactless breathing pattern detection system is developed
using universal software radio peripheral (USRP). This platform utilized CSI to record the
tiny movements generated due to breathing activity and detected three breathing patterns,
while in [43], SDR-based system is developed, and system design is validated by first
analyzing the CFR for various simulated channels. Finally, several breathing patterns are
successfully classified using ML algorithms. In [44], SDR-based breathing pattern sensing
detects and classifies six abnormal breathing patterns, while in [18], this work is further
extended by classifying up to eight breathing patterns.

3. Design Methodology

The design methodology exploits the wireless communication system for sensing
purposes by detecting human motion by capturing CSI through the transmission of electro-
magnetic (EM) waves. The RF signal is transmitted and received via multiple paths, thus
regenerating the signal with multi-path superposition. The received signal contains infor-
mation such as characteristics from the physical space environment. The characteristics
include distance, power, the human body’s motion, and environmental influences in signal
propagation. RF sensing precisely adds the environmental factors’ influence on the signal
to clearly understand the characteristics of the environment to realize human body motion.
The extra signal path is added to the human body’s diffraction or reflection whenever a
human is present in the physical space environment. As a result, the influence of human
body motion on the signal propagation contributes to the wireless communication. Figure 1
illustrates the design methodology consisting of four main blocks: wireless signal sensing,
signal preprocessing, breathing monitoring, and breathing classification. The description
of each block is given below:
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3.1.1. Transmitter

Initially, in the transmitter, random data bits are generated and converted into symbols
using quadrature amplitude modulation (QAM). These QAM symbols are then used
to generate parallel streams. Then, reference data symbols are inserted to estimate the
channel at the receiver side. Nulls and DC symbols are also inserted in each frame. The
signal is then converted to time domain using Inverse FFT. The cyclic prefix (CP) is then
appended to each frame. Finally, using an ethernet cable, the data generated by the host
transmitter PC are transferred to the universal software radio peripheral (USRP) kit. The
USRP performs a variety of operations, including digital up-conversion (DUC) and digital-
to-analog conversion (DAC). After this, low pass filtering is applied, and the resulting
signal is mixed with a carrier frequency specified by the user. The signal is then amplified
using a transmitting amplifier before being transmitted via an omnidirectional antenna.

3.1.2. Wireless Channel

A real-time wireless channel was considered to monitor human breathing activities in
this research work. The real-time wireless channel contains a wealth of information about
the environment, and various techniques are used in the literature to extract this valuable
information. However, the focus of this study was on the analysis of wireless CSI using
CFR, which is calculated using Equation (1):

H(k) =
Y(k)
X(k)

(1)

Here H(k) represents CFR, while X(k) and Y(k) represents frequency domain trans-
mitted and received signals, respectively. Since H(k) is a complex value so that we can
extract the amplitude response given in Equation (2):

|H(k)| =
√

HRe2 + HIm2 (2)

Here HRe
2 and HIm

2 represent the real as well as the imaginary part of the CFR.
For a single experimental measurement E, the CFR amplitude information recorded in

time history using multiple OFDM frames can be given by Equation (3).

|H(k)|E =


|H(k)|1,1 |H(k)|1,2 . . . |H(k)|1,F
|H(k)|2,1 |H(k)|2,2 . . . |H(k)|2,F

...
... . . .

...
|H(k)|K,1 |H(k)|K,2 . . . |H(k)|K,F

 (3)

where K represents the total number of OFDM subcarriers, and F represents the total
number of OFDM frames received during the single E.

3.1.3. Receiver

On the receiver side, the signal is initially received via an omnidirectional antenna
before passing through low noise amplifier (LNA) and drive amplifier (DA). Following
that, a baseband complex signal is obtained via the mixing process and a direct conversion
receiver (DCR). After that, low pass filtering (LPF) is used, followed by analog to digital
conversion (ADC), and finally, digital down-conversion (DDC). Finally, the down-converted
signal is routed to the host PC via the ethernet cable. The time and frequency offsets are
included in the received signal when it arrives at the host PC. The time offset tOS results
in the rotation of data symbols and can be modeled as a delay in the channel impulse
response, while frequency offset fOS results in shifting of all subcarriers and can be modeled
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as complex multiplicative distortion e
j2π fOSn

N . The received time-domain signal r(n) after
including both these offsets can be written as Equation (4):

r(n) = c(n)× s(n− tOS)e
j2π fOSn

N + N(n) (4)

where c(n) is channel response and s(n) is the transmitted signal in time domain. In this
research work, the van de Beek algorithm was used to estimate the time offset t̀OS and
frequency offset f̀OS using Equations (5) and (6):

t̀OS = arg max{ |γ(tOS)| − ρΦ(tOS)} (5)

f̀OS = − 1
2π

∠γ
(
t̀OS
)

(6)

The above equation |γ(tOS)| is the correlation between two pairs of L samples of
OFDM frame that are N samples apart and represented in Equation (7). Φ(tOS) is the
energy part, and ρ is the magnitude of the correlation coefficients, and both are represented
by Equations (8) and (9), respectively. γ(tOS) is used to estimate time offset t̀OS and f̀OS.
The magnitude of γ(tOS) is compensated by energy term Φ(tOS) and peaks at time instant,
which provides f̀OS, while its phase at this time instant is proportional to f̀OS.

γ(m) =
m+L−1

∑
n=m

r(n)r∗(n + N) (7)

Φ(m) =
1
2

m+L−1

∑
n=m

|r(n)|2 + |r(n + N)|2 (8)

ρ =
|E{r(k)r∗(k + N)}|√

E{|r(k)|}2 E{|r(k + N)|}2
(9)

After the removal of time and frequency offsets, CP is also removed. Later, FFT is
applied to acquire frequency-domain signal. Subsequently, reference symbols are removed,
followed by nulls and DC. The reference symbols retrieved here are used for channel
estimation. Next, equalized data is obtained based on the estimated channel and fed to
QAM demodulation block, which converts symbols into the bitstream.

3.2. Signal Preprocessing

During signal processing, various steps are taken, and detail of each stage is
given below:

3.2.1. Subcarrier Selection

Initially, for data preprocessing, the subcarrier selection is performed. The purpose
of subcarrier selection is to remove such subcarriers having less sensitivity to breathing
activity. For this purpose, subcarriers’ variance is measured, after which subcarriers having
minor variance below 0.001 are eliminated, as shown in Figure 3a.

3.2.2. Outlier Removal

After subcarrier selection, outliers are removed through wavelet filtering. As shown
in Figure 3b, outlier removal eliminates all outliers but keeps a sharp data transition.
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3.2.3. Smoothening

The moving average filter is applied to eliminate high-frequency noise for data
smoothening. The moving average filter of window size 8 is applied [14], using
Equation (10), and output can be seen in Figure 3c:

y[n] =
1
M

M−1

∑
k=0

x[n− k] (10)

Here y[n], x[n] represent the current output, and input respectively, and M is the size
of the window of the moving average filter.

3.2.4. Normalization

The final step of data preprocessing is normalization, and the purpose is to normal-
ize the data to maximum and minimum values between 1 and −1. First, the data are
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normalized using Equation (11). Figure 3d shows the output of data normalisation for a
single subcarrier.

´y[n] =
y[n]− o f f set

scale
(11)

Here, ´y[n] represents the normalized data, and y[n] represents the input data. The
normalized data is acquired by adjusting scaling and offset values.

3.3. Breathing Monitoring

Following data preprocessing, the next step is breathing monitoring, which extracts
breathing patterns and rates for single and multiple-person scenarios. CSI amplitude in
the time history recorded data can be used to extract breathing patterns. However, in
order to calculate the breathing rate, the CSI amplitude data is converted into the frequency
domain using FFT. As a result, a strong frequency peak in the frequency domain is obtained,
which corresponds to breathing rate. The breathing rate from the frequency peak value is
calculated by using Equation (12) as:

Breathing rate = fmax × s (12)

where fmax represent maximum frequency peak value and s represents the number of
seconds for breathing activity. The number of maximum peaks is proportional to the
number of persons doing the breathing activity. Therefore, one maximum frequency peak
is obtained for the single-person scenario. Similarly, multiple frequency peaks are obtained
for the multiple-person scenarios depending on the number of persons.

3.4. Breathing Classification

The last block in the methodology is breathing classification. This block first performs
optimal feature scoring to obtain optimal features for the ML classification model. Later,
various ML models are applied to classify different breathing patterns for a single-person
and multi-person scenario using these features.

3.4.1. Optimal Feature Scoring

Optimal feature scoring is a two-step process. The first step extracts various features
from preprocessed time-domain CSI amplitude information. Afterward, feature selec-
tion methods are applied to select only relevant features, which helps improve the ML
algorithms’ performance.

(a) Features extraction

Feature extraction is a significant step in the classification of breathing patterns. De-
veloping a classification model having high dimensionality is time-consuming. There-
fore, extracting only the useful features can improve the performance of the classification
model [45]. For this purpose, various statistical features were calculated, and their details
are shown in Table 1. Similar features must be eliminated for optimal feature scoring. In this
research work, boxplots were used to compare the similarity of various features. Boxplots
summarize feature datasets, such as the minimum, maximum, median, first (lower) quartile,
and third (upper) quartile. If the boxplots for multiple features overlap, this indicates that
there is no difference between these data, and these features can be removed. Figure 4
shows that some features are the same and overlapping and thus can be removed using
feature selection methods.

(b) Features Selection
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Table 1. Statistical Features.

Sr. # Statistical Features Detail Equation

1. Mean Data mean y = ∑n
i=1 yi
n

2. Standard deviation Data dispersion relative to mean ySD =

√
1
n

n
∑

i=1
(yi − y)2

3. Peak-to-peak Max. to min. value difference yp−p = ymax − ymin

4. RMS Root mean square yRMS = 2

√
1
n

n
∑

i=1
yi

2

5. Kurtosis Frequency peaks distribution yKur =
1
n ∑n

i=1

(∣∣∣yi
∣∣∣−y

)4

ySD
4

6. Skewness Symmetry in data distribution ySkew =
1
n ∑n

i=1

(∣∣∣yi
∣∣∣−y

)3

ySD
3

7. Shape Factor Square root of variance ySF =
yRMS

1
n ∑n

i=1|yi|
8. Crest Factor Peak height value to RMS value yCF =

maxi |yi |
yRMS

9. Impulse Factor Peak height value to mean value yIF =
maxi |yi |

y

10. Entropy Measure of randomness of data
yEnt =

n
∑

i=−n
hist(yi) ln2(hist(yi))
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Feature selection reduces data dimensionality by selecting only the most relevant and
useful features. The feature selection methods are employed in order to discover features
that improve prediction efficiency [46]. In addition, even using a large number of relevant
features can reduce prediction efficiency. Various feature selection methods are discussed
in the literature, but this study used only two methods to improve ML classification
model performance.

I. Minimum redundancy maximum relevance (MRMR) algorithm
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The MRMR algorithm (Algorithm 1) is used as a filter type method for feature selection.
It measures feature importance based on the characteristics of the features, such as feature
variance and feature relevance to the output. The MRMR algorithm [47] works on the
principle of finding an optimal set of maximally and mutually unique features. The benefit
of such features is that they can effectively represent output variables. This algorithm not
only maximizes the relevance but also minimizes the redundancy of optimal feature set
to the output variable. The algorithm uses pairwise mutual information of features and
the output to measure redundancy and relevance. This algorithm obtains optimal features
set F that maximizes MF , and minimizes NF with respect to output variable y, where MF
and NF are the relevance and redundancy of F respectively. Both MF and NF are defined
through mutual information I in Equations (13) and (14) as:

MF =
1
|F| ∑

x∈F
I(x, y) (13)

NF =
1
|F|2 ∑

x,z∈F
I(x, z) (14)

Here |F| represents total features in F. To find NF, 2|Ω| combinations are considered,
while the whole feature set is denoted by Ω. Alternatively, MRMR algorithm applies a
forward addition scheme for ranking features through employing the mutual information
quotient (MIQ) value as in Equation (15), but this requires O(|Ω|.|S|) computations.

MIQx =
Mx

Nx
(15)

Here Mx is the relevance and Nx is the redundancy of a feature, as shown in Equations
(16) and (17), respectively:

Mx = I(x, y) (16)

Nx =
1
|F| ∑

z∈F
I(x, z) (17)

This MRMR algorithm ranks features in Ω by returning features indices based on
importance. This results in a computation cost of O

(
|Ω|2

)
. The function returns the score

of feature importance using a heuristic algorithm. A feature with a large value score shows
the importance of the feature and vice versa. The feature importance for various features
is shown in Figure 5. It can be seen that out of 10 features, some features have very low
importance and can be removed.

II. Principle component analysis (PCA)
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PCA is a dimensionality reduction technique that aids in feature reduction by trans-
forming data from the original high-dimensional feature space to a new space with reduced
dimensionality [48]. PCA projects large features into subspaces with fewer features while
retaining the essence of the original data. In this study, for example, all features with 95%
variance were kept, while others were removed. This aids in feature selection, saving
storage and computational time, and improving comprehension.

Algorithm 1 MRMR Algorithm—Pseudocode for optimal features selection

1. Choose the feature with the highest relevance, max
x∈Ω Mx and then add that chosen feature to

an empty set F;
2. Find the features with nonzero relevance and zero redundancy in the complement of F, Fc;

• If Fc does not contain a feature with nonzero relevance and zero redundancy, then
move to step 4;

• Otherwise, choose the feature with the highest relevance, max
x∈Fc ,Nx=0 Mx . Then add the

chosen feature into the set F;

3. Repeat step 2 unless the redundancy is not zero for all the features in Fc;
4. Choose the feature that has the largest MIQ value with nonzero relevance and nonzero

redundancy in Fc, and add the selected feature to the set F;
max
x∈Fc M IQx = max

x∈Fc
I(x,y)

1
|F| ∑z∈F I(x,y)

5. Step 4 is repeated unless the relevance of each feature in Fc is zero;
6. Features having zero relevance are included in a random sequence in F.

3.4.2. Breathing Patterns Classification

The next step is breathing pattern classification. In this step, various ML algorithms
are used for breathing pattern classification. Each algorithm is evaluated based on accuracy,
training time, and prediction speed for the scenarios of a single person and multi-person.
First, each algorithm is evaluated without feature selection methods. Then after applying
feature selection methods, all algorithms are re-evaluated.

4. Experimental Setup

The experimental setup for breathing data collection comprises of pair of USRPs and
PCs, as shown in Figure 6. For transmitting and receiving, each USRP is outfitted with
an omnidirectional antenna. The main advantage of an omnidirectional antenna is that it
can detect human breathing in both LOS and non-LOS scenarios. The transmitter PC is
linked to the USRP via an ethernet cable, and the function of each PC on the transmitter
side is to generate OFDM subcarrier data. Simultaneously, preprocess and classify the
raw breathing data on the receiver side. To avoid the blind spot problem, the experimen-
tal setup is installed based on empirical experience. USRP kits are kept parallel to the
participants’ abdomens.

A total of ten male participants are asked to do breathing experiments. Table 2 lists
each participant’s information. For the scenario of a single person, all participants are
asked to perform breathing at normal, slow, and fast rates. For a two-person scenario, both
participants are asked to perform breathing at normal, slow, and fast rates, resulting in
six different cases. For a three-person scenario, all three participants are asked to perform
breathing at normal, slow, and fast rates, resulting in nine different cases. Ten data sets
are collected for each breathing pattern activity, and the duration of each activity is 30 s.
Moreover, extensive experimentation is performed to achieve high accuracy.
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Table 2. Participants detail.

Sr. # Age (Y) Height (In) Weight (Kg) BMI

1. 24 68 70 23.5
2. 26 68 76 25.5
3. 28 70 65 20.6
4. 31 69 52 16.9
5. 31 70 51 16.1
6. 31 68 65 21.8
7. 32 70 83 26.3
8. 33 61 91 37.9
9. 35 62 88 35.5
10. 37 68 84 28.2

5. Results and Discussions

This section is divided further into three subsections. The first subsection displays the
results of several breathing patterns. The results of breathing rate extraction are shown and
discussed in the second subsection. Finally, the results of breathing patterns classification
are shown in the final subsection, in which various ML algorithms are evaluated with and
without feature selection methods.

5.1. Breathing Pattern Extraction

For a single-person scenario, three breathing patterns are detected: normal, slow,
and fast, as shown in Figure 7. In this study, a wearable sensor is used as a reference to
compare the performance of non-contact sensing. There are nine breaths in 30 s, as shown
in Figure 7a, indicating that this is a case of normal breathing. Similarly, in Figure 7b, there
are six breaths in 30 s, confirming this is a case of slow breathing. There are thirteen breaths
in 30 s for fast breathing, as shown in Figure 7c, confirming that this is the fast-breathing
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case. All non-contact sensing results for normal, slow, and fast breathing match wearable
sensor results, validating the proposed non-contact sensing system in this study.

Sensors 2023, 23, x FOR PEER REVIEW 14 of 22 
 

 

multi-person scenario, variation in CSI is obtained due to independent chest movements 
of all persons doing breathing activity simultaneously. 

For the three-person scenario, all three subjects are asked to perform different breath-
ing patterns, including normal, slow, and fast. For the three-person scenario, this results 
in nine different cases of breathing. For illustration purposes, Figure 8b shows the out-
come of a single case in which all subjects are breathing normally. Here again, it is impos-
sible to distinguish each person’s breathing pattern from time-domain CSI amplitude in-
formation. 

Table 2. Participants detail. 

Sr. # Age (Yrs.) Height (In) Weight (Kg) BMI 
1. 24 68 70 23.5 
2. 26 68 76 25.5 
3. 28 70 65 20.6 
4. 31 69 52 16.9 
5. 31 70 51 16.1 
6. 31 68 65 21.8 
7. 32 70 83 26.3 
8. 33 61 91 37.9 
9. 35 62 88 35.5 

10. 37 68 84 28.2 
 

 

(a) 

 

(b) 

 

(c) 

Figure 7. Breathing patterns detection for single person-scenario (non-contact sensor (Red) Vs. 
Wearable sensor (Black): (a) normal breathing; (b) slow breathing; and (c) fast breathing. 

Figure 7. Breathing patterns detection for single person-scenario (non-contact sensor (Red) vs.
Wearable sensor (Black): (a) normal breathing; (b) slow breathing; and (c) fast breathing.

Both subjects in the two-person scenario are asked to perform different breathing
patterns, including normal, slow, and fast. This yields six distinct cases for the two-person
scenario. Figure 8a shows the result for only one case for illustration purposes, in which one
subject is doing normal breathing and the other is doing slow breathing. It is impossible to
distinguish breathing patterns for each person from this Figure 8a because, in the multi-
person scenario, variation in CSI is obtained due to independent chest movements of all
persons doing breathing activity simultaneously.

For the three-person scenario, all three subjects are asked to perform different breathing
patterns, including normal, slow, and fast. For the three-person scenario, this results in
nine different cases of breathing. For illustration purposes, Figure 8b shows the outcome of
a single case in which all subjects are breathing normally. Here again, it is impossible to
distinguish each person’s breathing pattern from time-domain CSI amplitude information.

5.2. Breath Rate Extraction

For breathing rate extraction, frequency domain CSI amplitude information is used.
The breathing rate extraction results for the single and multi-person scenarios are
shown below:

For a single-person scenario, frequency domain CSI amplitude information is obtained
by applying a Fourier transformation, which results in only one frequency peak fmax. Then
by using Equation (12), the breathing rate is calculated by multiplying the fmax value with
60 s. Figure 9a–c shows a single maximum frequency peak for the cases of normal, slow,
and fast breathing rates. Furthermore, it can also be observed from Figure 9a–c that normal
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breathing rate has high fmax value than slow breathing rate but has less fmax value than
fast breathing rate.
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Figure 9. Breathing rate extraction for one person-scenario: (a) normal breathing; (b) slow breathing;
and (c) fast breathing.

For the two-person scenario, six different cases are considered in which both persons
are either doing breathing at the same or at a different rate. For each case, it can be



Sensors 2023, 23, 1251 16 of 21

seen from Figure 10a–f that two frequency peaks fmax are obtained. Then again, using
Equation (12), the individual breathing rate for each person can be calculated.
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For a three-person scenario, only two cases are observed. In the first case, all three
persons are requested to do the breathing at the same rate, i.e., normal, and in the second
case, all three subjects are asked to do breathing at a different rate. It can be observed
from Figure 11a,b that three frequency peaks fmax are obtained, and using Equation (12),
individual breathing rates for all three persons can be calculated.
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5.3. Comparison with Wearable Sensor

To compare the performance of non-contact SDR-based sensing with the wearable
sensor, mean square error (MSE) is calculated for single-person, two-person, and three-
person scenarios. It is observed from Figure 12 that MSE for a single-person scenario is 0.27,
while 0.36 for two person-scenario, and the three-person scenario MSE is increased to 0.42.
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5.4. Breathing Patterns Classification

Different ML algorithms are used to classify various breathing patterns in single and
multi-person scenarios. ML algorithms’ accuracy, prediction speed, and training time are
used to evaluate their performance. The performance of all algorithms is first evaluated
without using feature selection methods, and then various feature selection methods are
used to improve performance.

Table 3 shows the results for a single-person scenario, and all three algorithms show a
significant improvement in terms of accuracy, training time, and prediction speed. Similarly,
feature selection methods for multi-person scenarios result in noticeable performance
improvements in accuracy, training time, and prediction speed, as shown in Table 4. As
shown in Tables 3 and 4, feature selection methods improve accuracy and prediction speed
while decreasing training time because fewer relevant features are available for the training
ML model.

Table 3. Single-person scenario.

ML Algorithms Parameters Without Feature
Selection

Using MRMR
Algorithm Using PCA

Fine Gaussian SVM
Accuracy (%) 92.7 93.2 93.7

Training Time (s) 43.53 40.949 41.04
Prediction Speed (obs/s) ~49,000 ~7400 ~3700

Medium KNN
Accuracy (%) 89.8 92.7 92.3

Training Time (s) 81.461 64.55 62.086
Prediction Speed (obs/s) ~17,000 ~48,000 ~12,000

Wide Neural Network
Accuracy (%) 91.7 93.8 93.6

Training Time (s) 392.32 324.43 329.13
Prediction Speed (obs/s) ~99,000 ~260,000 ~82,000

5.5. Comparison with Previous Approaches

This SDR-based research work is compared in terms of mean absolute error (MAE)
with previous approaches for multiple-person scenarios in this section, as shown in
Figure 13 [31] used CSI amplitude to calculate breathing rate and obtained MAE of
2.04 bpm. In contrast [33] measured the phase difference of CSI rather than the amplitude
and attained an MAE of 1.33 bpm. Similarly [38] used CSI phase difference to obtain an
MAE of 1.19 bpm. [36] used calibrated CSI to obtain an MAE of 0.71. Furthermore [49] uses
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multiple antennas to exploit CSI amplitude variation, and breathing rate is measured with
an MAE of 0.42 bpm. In this study, MAE was calculated to be 0.42 bpm, comparable to [49],
but the results were obtained using only a single pair of antennas.

Table 4. Multi-persons scenario.

ML Algorithms Parameters Without Feature
Selection

Using MRMR
Algorithm Using PCA

Fine Gaussian SVM
Accuracy (%) 92.7 93.2 93.7

Training Time (s) 43.53 40.949 41.04
Prediction Speed (obs/s) ~49,000 ~7400 ~3700

Medium KNN
Accuracy (%) 89.8 92.7 92.3

Training Time (s) 81.461 64.55 62.086
Prediction Speed (obs/s) ~17,000 ~48,000 ~12,000

Wide Neural Network
Accuracy (%) 91.7 93.8 93.6

Training Time (s) 392.32 324.43 329.13
Prediction Speed (obs/s) ~99,000 ~260,000 ~82,000
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6. Conclusions and Future Recommendations

This study presented the first SDR-based RF sensing system capable of detecting
various breathing pattern abnormalities in multiple scenarios, even when they are close.
In contrast to previous SDR work, the system can detect and classify various breathing
patterns for single-person scenarios only. However, this research work was extended
for multiple-person scenarios. Extensive testing confirmed that this system is reliable.
However, system performance was further enhanced by applying optimal feature scoring
a maximum accuracy of 93.8% and 91.7% for single-person and multi-person scenarios,
respectively. Nevertheless, there are some limitations to this study. First, experiments
were carried out in a static and controlled laboratory setting. The second limitation is that
actual patients were not used in the research. The third limitation is that the experiments
were limited to three persons. As a result, future recommendations would be to include
breathing monitoring for more than three subjects in a dynamic environment. In future,
this research work can be extended to identify the person having breathing abnormality
in a multi-person scenario for timely medical interventions. Furthermore, data for actual
patients will be collected to develop a realistic model.
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