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The prediction of autonomous vehicle
occupants’ pre-crash motion during
emergency braking scenarios

Alexander Diederich , Christophe Bastien and Mike Blundell

Abstract
This research investigates a computational method, which can assist the development of occupants’ passive safety in
future autonomous vehicles, more particularly in the definition of head kinematics in rotated seat arrangement during
emergency braking. To capture these head motions, the methodology utilised an Active Human Model, whose head kine-
matics were validated in a previous work in three-point and lap-belt restraint configuration scenarios. A sled model was
then built where the seat backrest angle (SBA) and the seat orientation, modelled by rotating the acceleration angle
(AA), could be adjusted to represent various ‘living room’ seating conditions. A Design of Experiments study was then
performed by varying AA from 0� to 360� in steps of 22.5� and SBA from 20� to 60� in steps of 8�. The responses were
subsequently converted into a Reduced Order Model (ROM), which was then successfully validated through a compari-
son with the kinematic responses predicted with simulations. In terms of simulation time, it was found that the ROM
was able to calculate the head kinematics in 3 s instead of the 1.5 h taken using Simcenter Madymo, without compromis-
ing predicted responses accuracy. This research has provided a unique method to define head kinematics corridors for
seated occupants in autonomous vehicle interiors, including maximum head excursion, head kinematics as a function of
time and define for the first time (a) the safe ‘‘or’ but not both head envelope within the cabin interior, and (b) capture
the seated scenarios where head proximity to airbag systems could be of concern, following emergency braking.
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Introduction

Road traffic accidents and the subsequent injuries or
fatalities still remain a problem that society hopes to
solve. While recent decades have seen major improve-
ments in vehicle active and passive safety, the situation
still remains serious. Death on the roads is one of the
top 10 causes of premature death and every day in
Europe more than 55 vehicle occupants and other vul-
nerable road users are killed.1,2 Global initiatives, such
as the UN Decade of Safety and European ambitions
for zero road fatalities (Vision Zero) by the middle of
this century, have provided momentum for large scale
research programmes and industry led initiatives to
address the problem.3–5 Volvo, a company historically
associated with vehicle safety, also added to the impetus
by stating their ambition that no one should be killed
or seriously injured in a new Volvo after 2020.6

In existing vehicles, the protection of occupants and
other vulnerable road users is provided through active
and passive safety. Active safety includes systems that

operate to support the driving task by assisting in for
example, braking or steering in order to avoid or mini-
mise the consequences of an accident. In the history of
vehicle safety, these technologies are a more recent
technology evolving over recent decades and providing
some of the building blocks for autonomous vehicles.
Passive safety involves providing protection should an
accident occurs. It includes the provision of crash-
worthy structures, seat belts and airbags. These tech-
nologies have been evolving since the middle of the last
century, but it is here where a significant challenge is
developing for autonomous vehicles, and it is in this
area that the research described here has a focus.
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Given that a large percentage of vehicle accidents
are caused by human error,7 a great deal of hope for
progress in this area is based on the development of
higher levels of automated driving and Advanced
Driver Assistance Systems (ADAS). The ambition to
develop self-driving cars has led to one of the most
challenging and disruptive phases in automotive devel-
opment since the invention of the motor vehicle. As
such, the introduction of automated driving technolo-
gies is progressing incrementally through a series of lev-
els starting from the current situation where a driver
controls a vehicle and culminating in the arrival of
vehicles that are fully autonomous. The Society of
Automotive Engineers (SAE) defines this ultimate out-
come as Level 5 (L5) driving and there is an expecta-
tion that vehicles with this capability may reach the
market as early as 2030.8

A major challenge along the way will be to ensure
that, as the driving task is reduced, vehicle occupants
remain protected in the event of a crash. The utopia of
a road network where crashes never occur, and passive
safety is not required, is an aspiration, but in the mean-
time, a transition is needed where existing vehicle safety
systems evolve alongside automated driving technolo-
gies. One of the major advantages envisaged with a
completely driverless car (L5) is that the driver will be
able to engage in other activities, which may be busi-
ness or leisure related. In order to fully exploit this, the
seats should be able to rotate into new positions. These
relaxed seating positions lead to the concept that vehi-
cle interior can be transformed into a ‘Living Room’’.
Typical examples of how this might be configured is
shown in Figure 1.

The new seating arrangements present a challenge.
Current vehicle design involves physical crash testing
of vehicles using a prescribed set of legislative tests to
ensure that passive safety systems perform as required.
These tests cover a range of established driving scenar-
ios such as frontal crashes, side impacts or vehicle roll-
overs. Although they cannot represent every crash
occurring in the real world, they provide a good repre-
sentation of the types of crash where vehicle occupants,
sitting in established and well-understood forward-fac-
ing positions, will benefit from good levels of crash
protection. This current protection could however be
compromised, if occupants are allowed to exploit the

opportunities provided by a self-driving vehicle and
happen to be in non-conventional positions at the time
of a collision.

Head impact against the vehicle interior has long
been understood to have serious consequences, and
passive safety protection, in the form of seat belts and
airbags, has evolved to deal with this. However, this
protection has developed to an advanced state over
many decades specifically for occupants sitting in a
forward-facing position. Rotating the seats presents
new challenges to protect the occupants from head
impacts with the vehicle interior or even each other.

Current crash test procedures are based on the use
of dummies, or more correctly Anthropometric Test
Devices (ATDs), to measure the potential injuries to an
occupant. However, ATDs are developed for existing
seat arrangements, and are not able to represent occu-
pants’ motion during low-g pre-crash events, as they do
not include the muscle activations that would be pres-
ent in a real occupant. While this is not such a problem
for conventional vehicles, it will be in future when auto-
mated emergency and braking interventions affect the
posture of occupants who may already be in an unex-
pected position. Mature and extensive research into air-
bag technology already exists to protect conventionally
seated occupants who may be Out-of-Position (OOP),
while they engage in a minor task, such as adjusting a
radio or heating control.10 The scope to be Out-of-
Position (OOP) in an autonomous vehicle is vast in
comparison, and current ATDs are not designed to rep-
resent these scenarios.

As with almost all automotive development pro-
cesses, where a physical test is performed, an equivalent
virtual test is also used. The development of computer
models that can effectively represent the pre-crash
motion of vehicle occupants in an autonomous vehicle
taking into account the different postures and muscle
activation of an occupant is the area of research
described in this paper. In order to obtain more realis-
tic representations of occupants, biofidelic Active
Human Body Models (AHMs) have been developed.
These models are intended to provide both predictions
including pre-crash posture change and in-crash injury
risk, predictions that would not be possible using vir-
tual ATDs. Traditional models of ATDs are able to
make use of computationally efficient Multibody

Figure 1. Alternative planned seating in future vehicles according to Östling et al.9
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Systems (MBS) representation. In order to deliver this
level of model detail required for an AHM a different
approach is required. These models make extensive use
of non-linear Finite Element Methods (FEM). These
models are complex and require extensive computa-
tional effort resulting in long computer simulation
times that can restrict opportunities to conduct detailed
parametric studies. This in itself is a problem, as the
requirement to provide occupant crash protection in an
autonomous vehicle, where the occupants may be in a
wide range of seating positions and postures, by nature
demands the use of extensive parametric studies. The
amount of time required to perform simulations with
complex AHMs is too long to support design investiga-
tions for a multitude of scenarios. A more efficient
approach is needed.

The work described in this paper investigates com-
putational methods that can assist the development of
efficient analytical processes for these applications. To
test the methodology, a scenario investigating the occu-
pants’ head kinematics envelope during a pre-crash
phase is selected, whilst considering a range of rotated
and reclined seat arrangements. The simulation envi-
ronment used in this investigation involves creating a
Reduced Order Model (ROM) of the occupants’ kine-
matics using simulations with the Simcenter Madymo
Active Human Model (AHM) in combination with a
Machine Learning (ML) method based on Hexagon
ODYSSEE Lunar software. In a previous study11 the
authors validated the kinematics response of the AHM
using omnidirectional pre-crash manoeuvre data sets
from OM4IS (Occupant Modelling for Integrated
Safety, International Research Project, 2009–2012) and
UMTRI (University of Michigan Transport Research
Institute).12,13 This work proved the capability of the
AHM receiving a CORA (Correlation and Analysis14)
score of 0.84 (good).

In the next section of this paper, a Design of
Experiments (DOE) study using the AHM for rotated
seating arrangements and different seat back angles is
described. This study was carried out for an extreme
braking manoeuvre with vehicle decelerations of the
order 1 g. The resulting occupant kinematics were then
input to the ROM using the Proper Orthogonal
Decomposition (POD) method implemented in Hexagon
ODYSSEE Lunar, in order to extract all possible head
kinematics within the seating design domain chosen by
the occupant. The kinematics responses computed by
the ROM were then validated through a comparison
with the kinematic responses obtained with simulations
using the Simcenter Madymo AHM.

Method

In order to compute the full occupant’s head kinematics
in a rotated seat arrangement, the study has used the
Simcenter Madymo AHM Version 3. Human Body
Models may be based on a non-linear finite element or

a multibody systems approach. Due to the complexities
of modelling a human body, the contacts that can occur
with the vehicle interior and restraint systems, and the
calculation of injury metrics, the computer simulation
time is extensive. The Simcenter Madymo AHM is
based on a multibody systems approach, does offers
computational efficiencies compared with the finite ele-
ment method. The Simcenter Madymo AHM has also
been proven to provide good predictions of occupant
kinematics during a pre-crash scenario and has been
correlated using the CORA rating methodology against
OM4IS test data for occupants wearing a lap belt and
validated against UMTRI test data for occupants wear-
ing a three-point seat belt.11 During this study, the
Simcenter Madymo AHM standard settings were found
to be the most representative for occupants wearing a
three-point seat belt, and as such those settings have
been retained for the work presented here.

For the work presented here, the baseline Simcenter
Madymo seat model has been used. This is representa-
tive of the SISS standard seat model15 that provides a
realistic shape, dimensional and stiffness properties of
the seat cushions. As such the SISS model is widely
used in the automotive sector for concept studies and is
a good choice for investigation.

The seat, shown in 360� relative to the forward driv-
ing direction using the methods outlined in Kitagawa
et al.16 and Jorlöv et al.17 In order to achieve this rota-
tion, and also to recline the seat, the seat belt upper D-
Ring is connected to the seat itself, rather than to the
B-Pillar as would be expected in a conventional vehicle.

In the model, the actual seat is not rotated. The
effect of rotating the seat relative to the forward driving
direction is instead achieved by rotating the direction
of the 1 g pre-brake deceleration pulse. This is shown in
Figures 2 and 3 using the red arrow to represent the
acceleration angle (AA). During the study, simulations
were performed at increments of 22.5� as the accelera-
tion angle was rotated through 360�. Additionally, the
sled is capable to also alter the backseat angle, as illu-
strated in Figure 4, from 20� to 60� in increments of 8�.
Those increments have been chosen in order to balance
computational efforts and the precision of the underta-
ken design exploration.

The deceleration pulse is bi-linear with time ramping
up from 0 to 1 g between 0 and 0.3 s and remaining con-
stant until the simulation completes at 2 s, as can be
observed in Figure 5. This is consistent with the pulse
used in the OM4IS study,12 presented in Reed et al.,13

and can be considered as extreme pre-braking and lane
change respectively.

Predicting the occupant head kinematics can be
approached in two ways, either extracting the maxi-
mum head motion only or extracting the head motion
as a function of time. The former can be achieved by
performing a DOE study and then using standard
response surface methods to visualise and predict the
maximum head excursion. This however is not entirely
useful as, for example, the head relative motion to a
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deploying airbag would not be captured. It is therefore
necessary to use a predictive method that considers the

time domain which would also capture the maximum
head excursion; hence the approach is more versatile
and meaningful. The use of machine learning, in partic-
ular the application of the Proper Orthogonal
Decomposition (POD) method, is very well suited to
address this requirement. This research will use the
software Lunar, which is part of the ODYSSEE suite
from Hexagon18 and is capable to apply the POD
method.

Machine Learning (ML) is a process that uses an
algorithm to analyse data, learn from it and make a
statement or prediction. ML and Computer-Aided
Engineering (CAE) both have the same goal: to predict
the behaviour of a system with the help of data analysis
and mathematical models. ML can be integrated into
the existing CAE process landscape in order to gain
time benefits. The integration of ML into the CAE pro-
cess allows the results from multiple DOE databases to
be captured, processed and ultimately learned from.
Based on the relationships from input and output from
past simulations, so-called Reduced Order Models
(ROM) can then be created.19 ROM models can then
be used to predict new responses in seconds or even in
real-time. ROM belongs to the fusion or dimensional
reduction technique category and can be understood as
a simplification of a complex model. In order to build a
ROM model, ML techniques such as singular value
decomposition, support vector machine or regression
are used. The starting point is always a DOE analysis
that covers the design space as best as possible. The cre-
ation of a ROM model can then be divided into three
steps: Decomposition, Reduction and Reconstruction.
Decomposition can be seen as a reduction tool, which
is used to reduce high dimensional data to the key fea-
tures necessary to analyse, understand and describe the
data. One of the most widely used methods for decom-
posing data is the Proper Orthogonal Decomposition
(POD) method, also applied in Kayvantash et al.19 For
the subsequent interpolation of the prediction data, the
Adaptive Radial Base Function (ARBF) method is
used. Both methods, POD and ARBF, are used as stan-
dard settings in ODYSSEE Lunar and recommended
for time history problems as given by Kayvantash.18

The study described was conducted using the follow-
ing steps with the ultimate purpose to investigate

Figure 2. Rotated seat arrangement, top view red arrow
indicating driving direction and direction of pulse application
(0�–360�).

Figure 3. Isometric view with three-point seat belt.

Figure 4. Seatback angle change capabilities. Left 20�, middle 44� and right 60�.
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whether the AHM’s head kinematics inside the cabin
can be predicted in all possible scenarios:

1. Compute a range of scenario permutations by per-
forming the DOE using a full factorial method.

(a) Acceleration Angle (AA): 0�–360� in steps of
22.5�

(b) Seat Back Angle (SBA): 20�–60� in steps of 8�

2. For each SBA, the AHM was manually positioned
in Simcenter XMADgic (Dedicated XML editor
for Madymo preprocessing), using the joint posi-
tioning menu. A gravity computation was then per-
formed in order to ensure that the AHM is resting
correctly in the seat. The final computed posture
was finally remapped back into each DOE
permutation.

3. All the DOE simulations with the AHM in a stable
posture are then submitted in Simcenter Madymo.

4. A ML model was then created to capture all head
excursions (X and Y) as a function of AA and
SBA, using the Perpendicular Orthogonal Method
(POD) in Hexagon ODYSSEE Lunar.

5. A first level of ML validation accuracy will be per-
formed by keeping the SBA constant and varying
AA, in order to investigate Hexagon ODYSSEE
Lunar capabilities. The CORA value of this ML
prediction was compared to the Madymo X and Y
displacement responses, considering the dispersion
corridors evaluated in previous research.11

6. The final level of kinematics validation, including
AA and SBA was then performed and the same
CORA technique from step 5 was applied.

7. The derived and validated ML model will then be
used to plot the pre-crash kinematics envelope at
the time of the respective maximum displacement
and over time.

Results

Computation of DOE permutations for ML model
generation

DOE permutations are computed and plotted on the
cabin top view (X-Y), as illustrated in Figure 6 for 20�
SBA, as example.

Figure 6 represents the maximum head excursion for
a SBA of 20� for the 16 AAs considered in the time
domain. Each excursion is bound using the potential
special dispersion which was defined in previous
work,2,7 represented by the error bars. The DOE data
has been used to create a ML ROM in Hexagon
ODYSSEE Lunar, which will be tested in the next
section.

Testing the ML model – constant SBA with a
changing AA

In this section, the values of SBA have been taken
directly from the full factorial permutation (20�–60� in
steps of 8�) and the AA values taken randomly between
0� and 360�, as per Table 1 (column 1, 2 and 3). Cases
1–6 are computed using Simcenter Madymo and are
compared to their respective ML predictions, as shown
in Table 1 (column 4 and 5) and plotted in Figures 7
and 8.

From Table 1 it can be observed that the minimum
CORA rating obtained is 0.91 (excellent) for Case 4.
The average CORA score for this test is 0.96, indicating
an excellent correlation between the ML model and the
simulations done using Simcenter Madymo. This eva-
luation is confirmed by the comparison of the head tra-
jectories, illustrated in Figure 7. The Simcenter
Madymo results are drawn in black, and the kinematics
obtained using the ROM in red. From Figure 7 it can
be observed that the trajectories for the validation cases
1–6 match excellent. Cases 1–6, rated excellent, are illu-
strated in Figure 8, where the total kinematics of the
Simcenter Madymo results (dark grey) overlay the
ROM (red) for case 2. Again, an excellent correlation is
observed.

Figure 5. Generic 1 g pre-brake pulse rise to 1 g within 0.3 s.

Figure 6. Top view of the head kinematics generated by the
DOE, for a SBA of 20�.
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Testing the ML model – with a changing SBA and AA

In this section, the values of SBA and AA have been
selected from the initial DOE, as per Table 2 (column
1, 2 and 3). The quality of the kinematic responses are
listed in column 4 and 5, and the kinematics illustrated
in Figures 9 and 10.

From Table 2 it can be observed that the minimum
CORA rating obtained is 0.68 (good) for Case 7.
However, the average CORA score for this test is 0.92,
indicating an excellent correlation between the ML
model and the simulations done using Simcenter
Madymo. Except for case 7, the ratings obtained are

excellent. Thus, case 7 can be characterised as outlier.
This evaluation is confirmed by the comparison of the
head trajectories, illustrated in Figure 9. The Simcenter
Madymo results are drawn in black, and the kinematics
obtained using the ROM in red. From Figure 9 it can
be observed that the trajectories for the validation cases
8–12 validation cases match excellent. For Case 7 it can
be observed that the deviation between the ROM and
the Simcenter Madymo results occurs timewise late and
is with respect to the total displacement small
(;25mm). Exemplary for case 7 shows Figure 10 the
total kinematics overlay between the Simcenter
Madymo results (dark grey) and the ROM (red). A
good correlation is observed.

It has to be noted that in Case 7, the difference
between the actual Madymo response and the ML pre-
diction does not exceed 30mm.

Applying the ML model – kinematics envelop
prediction for 20� SBA

This section applies the derived and validated ML
model to derive the total pre-crash head kinematics
envelope for a 20� SBA scenario. For this purpose, the
ML model has been asked to calculate the kinematics
response for 500 AAs, evenly distributed in the domain
0�2360�.

Figure 11 illustrates the derived kinematics envelop
at the time of maximum displacement for each consid-
ered AA. The black dots indicate the median, while the
grey areas indicate the dispersion corridors evaluated in
previous research,11 replacing the error bars for clarity
reasons. From Figure 12, the kinematics envelop at the
time t=0.4 s can be observed. Until this time, the occu-
pant just moves due to the applied acceleration pulse,
afterwards the occupants’ reflexes cause to stabilise the
head using the muscles. Figure 13, giving the kinematics
envelope at t=1.0 s illustrates this effect, as the envelop
is narrower than at t=0.4 s. Figure 14 illustrates the
end of the simulation at t=2.0 s.

Discussion

Once the ROM is established, occupants’ kinematics
can be computed in seconds and animations under a
minute, which is a significant improvement from a
standard Simcenter Madymo simulation, which takes

Table 1. ML validation test, varying AA and keeping SBA values
as per the DOE.

Case Seat back
angle (SBA)

Acceleration
angle (AA)

CORA ISO/TR 9790

1 20 10 0.99 Excellent
2 28 280 0.98 Excellent
3 36 50 0.97 Excellent
4 45 280 0.91 Excellent
5 52 100 1.00 Excellent
6 60 190 0.93 Excellent

Figure 7. ML prediction of an AHBM’s head motion, for a
varying AA.

Figure 8. Kinematics overlay between ML predictions (red) and Madymo (dark grey) for case 2. Left to Right: 0, 0.5, 1.0 and 1.5 s.
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around 1.5 h on a standard laptop. The ROM gener-
ated by Hexagon ODYSSEE LUNAR received a com-
bined excellent CORA score of 0.94, however one
outlier has been identified (Case 7), where the CORA
rating is 0.68, hence good.20 This outliner relates to a
(nearly) frontal facing position, with the backrest at 25�
standard position. This area of the DOE is where the
largest relative head motions are found, with few DOE
support points in relation to the amount of motion.
This, in addition to the fact that minor numerical

irregularities may have also occurred in the Madymo
simulation, for example, in the contact between the belt
and the upper body or shoulder, can be named as a
possible explanation for the deviation. The ML predic-
tion is ;25mm away from the true CAE solution,
which is showing that such techniques can provided
useful information for fast engineering decisions. It is
suggested to add more DOE points in the frontal accel-
eration area to improve the results’ accuracy further as
a suitable amount of DOE points must be available in
order to obtain good results.

The provided kinematics map of the occupant’s head
as a function of time and as maximum over time allows
to investigate the relationship between the head posi-
tion overlap with an airbag deployment envelope, as
airbags are not designed naturally to work in extreme
out-of-position (OOP) cases. Such a map can also be
useful in order to design the vehicle trim packaging, by
preventing or mitigating the occupant’s head contact
forces. It is unlikely that contacting the head against
pillar trims in evasive manoeuvre will cause any fatal
injuries, however it can be envisaged that concussions
could occur.

It could be foreseen that this study could be also
performed by using lap belted occupants, in which the
head excursion could be more pronounced and cause
head-to-head contacts in simple swerving manoeuvres.

Conclusions

Autonomous vehicle sudden manoeuvres will influence
occupant’s kinematics, which could cause serious con-
cern, as occupants will be in extreme out of position
(OOP), due to the fact that the seat is not simply facing
forward, but rotated and with a potentially near hori-
zontal seat back angle.

This research has shown for the first time that the
occupants’ kinematics, as a function of time, could be
predicted, considering all possible seat configurations
by using a machine learning reduced order model
(ROM) with the Proper Orthogonal Decomposition
(POD) method. The work has demonstrated that, with
using a ROM derived by Hexagon ODYSSEE Lunar,
it is possible to compute the full head kinematics envel-
ope of a seated occupant in a L5 vehicle interior and

Table 2. ML validation test, varying AA and SBA values outside
the DOE.

Case Seat back
angle (SBA)

Acceleration
angle (AA)

CORA ISO/TR 9790

7 25 10 0.68 Good
8 30 280 0.98 Excellent
9 40 50 1.00 Excellent
10 50 280 0.95 Excellent
11 50 100 0.97 Excellent
12 55 190 0.95 Excellent

Figure 9. ML prediction of an AHBM’s head motion, for a
varying AA and SBA (maximum excursion).

Figure 10. Kinematics overlay between ML predictions (red) and Madymo (dark grey) for Case 7. Left to Right: 0.5, 1.0, 1.5 and
2.0 s.

Diederich et al. 7



hence provide new information for the design of future
autonomous vehicles. An excellent correlation between
the ROM and the Simcenter Madymo results has been
demonstrated using 80 evenly distributed DOE design
points. However, care must be taken on the design of
the underlying DOE in order to receive a ROM of high
predictive quality. Predicting occupants’ position in
any rotated seat arrangements can help designing a
safer cabin interior, by preventing head contact to inte-
rior trims, as well as fellow passengers, especially if lap-
belts are worn. This finding is also crucial for under-
standing how the person is positioned should a poten-
tial collision occur. It could be envisaged that thanks to
the speed of ML, that such occupant position

predictions could be part of the main vehicle on-board
safety system, which could then maximise safety.

Limitations and future work

The Simcenter Madymo 50th percentile AHM used in
this study has been correlated to OM4IS tests12 and
validated to UMTRI tests13 in previous work.11

Therefore, as suggested in Diederich et al.,11 the stan-
dard activation parameters have been used for this
study considering a three-point belted occupant. The
Simcenter Madymo seat model utilised here is used in
industry for concept design because of its realistic
dimensions, shape and cushion stiffness.15 The applica-
tion of seats and seatbelt models other than the ones

Figure 11. Kinematics envelope for 20� SBA at maximum
displacement.

Figure 12. Kinematics envelope for 20� SBA at t = 0.4 s.

Figure 13. Kinematics envelope for 20� SBA at t = 1.0 s.

Figure 14. Kinematics envelope for 20� SBA at t = 2.0 s (end of
the simulation).
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used in this study may change the presented kinematics
results, however the methodology proposed is transfer-
able. The applied pre-brake pulse can be considered as
a generic extreme pre-braking or lane change type. The
presented kinematics results will change if a different
pulse is used, for example, a lower pulse than the one
applied may result in less pronounced head excursion.
Further research is needed concerning the in-crash
phase and its injury outcome in automated driving sce-
narios. Consequently, it is proposed to study the appli-
cation of ML for the in-crash injury outcome and for
lap-belted occupants.

Acknowledgements

The author would like to thank Siemens Industry
Software Services B.V. (SISS) for providing the
Simcenter Madymo licence and Hexagon AB for pro-
viding the ODYSSEE Lunar licence.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest
with respect to the research, authorship, and/or publi-
cation of this article.

Funding

The author(s) received no financial support for the
research, authorship, and/or publication of this article.

ORCID iDs

Alexander Diederich https://orcid.org/0000-0001-
7169-7667
Christophe Bastien https://orcid.org/0000-0001-6194-
4548

References

1. Eurostat. Causes of death, EU, 2011 and 2017, https://
ec.europa.eu/eurostat/statistics-explained/images/2/27/Cau
ses_of_death%2C_EU%2C_2011_and_2017_%28standar
dised_death_rate_per_100_000_inhabitants%29.png (2022,
accessed 27 September 2022).

2. European Commission. 2021 road safety statistics: what
is behind the figures?, 2020, https://transport.ec.euro-
pa.eu/2021-road-safety-statistics-what-behind-figures_en
(accessed 27 September 2022).

3. United Nations General Assembly. Resolution general
assembly road safety on 31 August 2020. United
Nations, vol. 11345, September 2020, pp.1–9.

4. European Commission. What we do | Mobility | trans-
port, 2020, https://road-safety.transport.ec.europa.eu/eu-
road-safety-policy/what-we-do_en (accessed 31 January
2023).

5. European Transport Safety Council. New EU transport
commissioner commits to halve road deaths and serious
injuries by 2030, 27 November 2019 https://etsc.eu/new-

eu-transport-commissioner-commits-to-halve-road-deaths-
and-serious-injuries-by-2030/ (accessed 12 July 2020).

6. Volvo Car Corporation. Volvo cars’ safety vision - Aim-
ing for zero, https://group.volvocars.com/company/
safety-vision (2022, accessed 27 September 2022).

7. Leohold J. Highly automated driving: fiction or future.

In: HAVEit Final Event, June 21–22, Hällered, Sweden,

2011, p.13.
8. SAE International. U.S. Department of Transportation’s

New Policy on automated vehicles adopts SAE Interna-

tional’s levels of automation for defining driving automa-

tion in on-road motor vehicles, SAE Int, 2016, p.1.
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17. Jorlöv S, Bohman K and Larsson A. Seating positions

and activities in highly automated cars - a qualitative

study of future automated driving scenarios. In: 2017

International Research Council on the Biomechanics of

Injury (IRCOBI) Conference Proceedings, Antwerp,

Belgium, September 13–15, 2017.
18. Kayvantash K. ODYSSEE users manual. CADLM,

France, 2021.
19. Kayvantash K, Thiam A-T, Ryckelynck D, et al. Model

reduction techniques for LS-DYNA ALE and crash

applications. In: 10th European LS-DYNA conference,

DYNAmore Gesellschaft für FEM Ingenieurdienstleis-

tungen, Stuttgart, Germany, 2015, pp.5–12.
20. ISO Standards. ISO/TR9790 anthropomorphic side

impact dummy - lateral impact response requirements

to assess the biofidelity of the dummy. Geneva: ISO,

1999.

Diederich et al. 9


	A Open Access Coversheet (1) (1) (2)
	09544070231153262

