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Abstract
Older adults exhibit a reduced number and function of CD34 + circulating progenitor cells (CPC), a known risk factor for cardio-
vascular disease. Exercise promotes the mobilisation of CPCs from bone marrow, so whether ageing per se or physical inactivity in 
older age reduces CPCs is unknown. Thus, this study examined the effect of age on resting and exercise-induced changes in CPCs 
in aerobically trained adults and the effect of 8 weeks of sprint interval training (SIT) on resting and exercise-induced CPCs in 
older adults. Twelve young (22–34 years) and nine older (63–70 years) adults participated in the study. Blood was sampled pre and 
immediately post a graded exercise test to exhaustion in both groups. Older participants repeated the process after 8 weeks of SIT 
(3 × 20 s ‘all-out’ sprints, 2 × a week). Total CPCs  (CD34+) and endothelial progenitor cells (EPCs:  CD34+KDR+) were determined 
by flow cytometry. Older adults exhibited lower basal total  CD34+ CPCs (828 ± 314 vs. 1186 ± 272 cells·mL−1, p = 0.0149) and 
 CD34+KDR+ EPCs (177 ± 128 vs. 335 ± 92 cells·mL−1, p = 0.007) than younger adults. The maximal exercise test increased CPCs 
in young  (CD34+: p = 0.004;  CD34+KDR+: p = 0.017) and older adults  (CD34+: p < 0.001;  CD34+KDR+: p = 0.008), without dif-
ference between groups (p = 0.211). SIT did not alter resting or exercise-induced changes in CPCs in the older cohort (p > 0.232). 
This study suggests age per se does not impair exercise-induced CPC counts, but does lower resting CPC counts.
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Introduction

Advancing age is associated with an increased risk of onset 
and progression of cardiovascular disease (CVD) [29], 
often attributed to comorbidities such as hypertension [44, 
56], diabetes and hyperlipidemia [56]. Advancing age is 
also associated with a reduced endothelial function [3] and 
vascular reparative capacity, indicated by reduced circulat-
ing progenitor cell (CPC) count and function [15, 55, 61]. 
These CPCs, defined as  CD34+ progenitors, offer regenera-
tive benefits to the vascular endothelium by taking part in 
endothelial repair by paracrine means [27]. Studies have 
demonstrated that individuals with a lower resting number 
of these cells are at a greater risk of cardiovascular and all-
cause mortality [40, 42], therefore, increasing CPC number 
and function may be of clinical significance.

Exercise acutely mobilises CPCs into the peripheral 
blood compartment in the recovery period post-exercise 
[52, 63] and is intensity- and duration-dependent [28]. This 
is thought to be due to mobilisation from bone marrow, pro-
moting CPC migration from the bone marrow niche, and 
into circulation, where these cells exert their vaso-repara-
tive function. Interestingly, the extent to which CPCs are 
increased in response to an exercise stressor is associated 
with future cardiovascular (CV) risk in CVD patients [37], 
with a blunted response associated with an increased risk of 
adverse events. Previous work has also demonstrated older 
adults display attenuated CPC response to submaximal exer-
cise compared to younger individuals [45],therefore, inter-
ventions may be required to promote not only the resting 
number of CPCs but also the exercise responsiveness, which 
may be related to bone marrow resident number, and capil-
larity of the bone marrow to allow for more CPCs to enter 
the circulation.

Sprint interval training (SIT) is a novel, time-efficient 
mode of exercise which is known to promote markers of 
cardiometabolic health, such as aerobic capacity [8, 24, 65, 
leanness [14, 38], and lowered fasting blood glucose [1]. 
One study has shown that SIT in young, healthy women was 
effective at increasing  CD34+ CPC resting number but not 
function [12]. Therefore, SIT may be an effective interven-
tion for promoting changes in CPC counts in older adults 
who demonstrate lower resting numbers, which may subse-
quently improve vascular repair capacity and reduce future 
CVD risk. However, one difficulty in discerning the effect 
of age specifically on CPCs (or any physiological parameter) 
is the age-associated reduction in physical activity [36, 54, 
58]. As such, it is important to differentiate the effect of 
age, rather than age, in addition to years of reduced physi-
cal activity on physiological parameters, and in this case 
CPCs. In this context, we believe it is important to match 

participants for fitness or physical activity to truly examine 
the effect of age on CPCs.

The present investigation aimed to examine the effect 
of age on resting and exercise-induced changes in CPCs in 
aerobically trained young and older individuals. A second-
ary aim was to examine the effect of novel SIT stimuli in 
the older group on CPCs (both basal and exercise-induced 
changes). It was hypothesised a priori that older adults 
would display a lower number of resting CPCs, an attenu-
ated CPC rise in response to a maximal exercise stressor, 
and that an 8-week SIT protocol would recover resting and 
exercise-induced changes in CPCs to that similar of the 
younger cohort.

Materials and methods

Participants

Two cohorts were recruited for this study, younger 
(n = 12, 28 ± 5  years of age, body mass index [BMI]: 
24.5 ± 2.2 kg·m2) and older (n = 9, 67 ± 3 years of age, 
BMI: 22.5 ± 2.0 kg·m2) adults, who regularly participated 
in a weekly minimum of 150 min∙wk−1 of moderate or 
high-intensity exercise for at least 6 months prior to par-
ticipating in the study and continued habitual physical 
activity for the duration of the study. The older females in 
the study were post-menopausal. Participants were free of 
exercise-contraindicating disease (metabolic, cardiovascular 
and renal) or injury as determined by a Physical Activity 
Readiness Questionnaire (PAR-Q) and American College 
of Sports Medicine (ACSM) pre-exercise participation 
screening, without any requests for medical clearance sub-
mitted within the cohort [43]. This study was carried out in 
accordance with the Declaration of Helsinki and approved 
by the University of Cumbria Research Ethics Committee. 
Written informed consent was obtained from all participants 
prior to study commencement, and subjects were excluded if 
they presented with atrial fibrillation. Descriptive statistics 
for participants are shown in Table 1 and further described 
in the results section. Participants attended all sessions 
with exercise-suitable clothing and footwear. The younger 
cohort attended a single test session, whilst the older cohort 
attended two separate testing sessions,before (pre) and five 
days after the final training session of the 8-week SIT inter-
vention (post) (Fig. 1). Participants were fasted overnight 
before all testing sessions, breaking their fast only after the 
testing session. As this study was a secondary analysis (pri-
mary outcome: muscle power), no a priori power calculation 
was performed specifically for CPCs.
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Table 1  Participant characteristics with t-test alpha values for baseline comparisons between young and older participants and pre- to post-sprint 
interval training comparisons

Values shown are mean ± SD
BMI, body mass index; V̇  O2max, maximum oxygen uptake

Young Older pre-SIT Older post-SIT Young vs older 
pre-SIT

Older pre-SIT 
vs post-SIT

Age (years) 28 ± 5 67 ± 3
Sex (% female) 8% 22%
Height (cm) 179 ± 7 174 ± 11
Body mass (kg) 78.5 ± 7.6 68.3 ± 10.4 67.9 ± 9.1 p = 0.008 p = 0.082
BMI (kg·m2) 24.4 ± 2.2 22.5 ± 2.0 22.4 ± 1.7 p = 0.052 p = 0.107
Systolic blood pressure (mmHg) 123 ± 7 125 ± 13 125 ± 16 p = 0.299 p = 0.465
Diastolic blood pressure (mmHg) 72 ± 7 73 ± 6 72 ± 6 p = 0.286 p = 0.085
Mean arterial pressure (mmHg) 89 ± 6 91 ± 7 89 ± 7 p = 0.246 p = 0.299
V̇   O2max (ml·kg·min−1) 51.6 ± 12.6 37.4 ± 7.6 39.5 ± 8.7 p = 0.003 p = 0.113

Fig. 1  Schematic representa-
tion of the methodological flow. 
PPO = peak power output. V̇ 
 O2max = maximal oxygen uptake
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Blood draws and analysis

Participants arrived at the exercise physiology laboratory 
between 08.00 and 11.00 h, following an overnight fast 
and having abstained from strenuous physical activity for a 
minimum of 48 h. Participants were reminded to maintain 
standardised conditions prior to each assessment point which 
included arriving in a hydrated state and having abstained 
from caffeine and alcohol consumption for 24 h. Following 
20-min supine rest, blood was sampled from the antecubital 
vein using the standard venepuncture method into sterile 
TransFix® K3EDTA vacutainer tubes (TransFix, Cytomark 
Ltd, UK). These tubes contained Tranfix® solution which 
preserved cell antigens on mononuclear cell subsets for 
delayed flow cytometric analysis. The use of this preserving 
solution for progenitor cell analysis has been validated for 
flow cytometric analysis of samples for up to 7 days post-
collection [20]. Blood samples were collected at the same 
time of day for each participant to control for biological vari-
ation and minimise within-participant variation [13]. Resting 
blood draws were completed prior to any exercise testing.

Anthropometry

Height was measured to the nearest 0.1 cm and mass to the 
nearest 0.01 kg using a Seca 286 measuring station (Bir-
mingham, UK), from which body mass index (BMI) was 
derived by dividing mass by the square of height (kg·m2).

Peak power output

Peak power output (PPO) was established using the 6-s Her-
bert test [16] on an air-braked cycle ergometer (Wattbike 
Ltd., Nottingham, UK), which consisted of a maximal 6-s 
sprint from a standing start.

Maximal oxygen uptake ( V̇  O2max) 

At least five min after PPO determination, V̇   O2max was 
determined using a Cortex II Metalyser 3B-R2 (Cortex, Bio-
physik, Leipzig, Germany). Expiratory airflow was achieved 
using a volume transducer (Triple V® turbine, digital) con-
nected to an oxygen  (O2) analyser. Expired gases were ana-
lysed for  O2 with electrochemical cells and for carbon diox-
ide  (CO2) output with an infrared analyser. The metalyser 
was calibrated according to the manufacturer’s guidelines 
prior to each test. After a 60-min warm-up period, the  O2 
and  CO2 sensors were calibrated against environmental air 
in addition to reference gas of known composition (5%  CO2, 
15%  O2 and 80%  N2) with volume calibrated by five inspira-
tory and expiratory strokes using 3-L pump. Prior to the 
determination of V̇   O2max, a chest strap heart rate monitor 
was attached to participants’ chests, with heart rate measured 

continuously throughout the test (Polar F1, Polar, Finland). 
The cycle ergometer (Wattbike Pro, Wattbike, UK) was 
adjusted to the manufacturer’s guidance. The saddle height 
was adjusted relative to the crank position, and the foot was 
secured to a pedal with straps with the participants’ knee 
at almost full extension (~ 170°). Participants mounted the 
cycle ergometer, and a rubber face mask was fitted (Hans 
Rudolph Inc, USA), which was attached to the Cortex II 
Metalyser 3B-R2. V̇   O2 and V̇   CO2 were recorded continu-
ously throughout the test.

Prior to the graded exercise test to exhaustion, partici-
pants completed a 3-min warm-up at an intensity equiva-
lent to ~ 10% of PPO. Subsequently, participants cycled 
at the increasing intensity with 25 W∙min−1 increments 
until they reached volitional exhaustion, with a rating of 
perceived exertion (RPE; 0–10 scale) [8] recorded in the 
last 10 s of each stage. Immediately following volitional 
exhaustion, participants had their index finger cleaned using 
a disinfectant wipe, and then a lancet lacerated a fingertip 
to obtain a blood sample for to measure blood lactate con-
centration [BLa] (Lactate Pro 2, Arkray, Japan). V̇   O2max 
was confirmed when participants achieved a minimum of 
any four of the following criteria: V̇   O2 plateau, RER ≥ 1.10, 
peak heart rate within 10 beats of age-predicted maximum, 
[BLa] ≥ 8 mmol·L−1, and final RPE of ≥ 9.

Flow cytometry

Flow cytometric analyses were performed on Tranfix® 
(Cytomark Ltd, UK) within 7 days post-blood sample col-
lection. Briefly, 100 µL of whole blood was incubated with 
fluorescent antibodies against known cell surface antigens 
for determining CPCs. These included anti-CD34 BV650, 
anti-CD45 BV786 and anti-KDR PE (BD Biosciences, 
USA). 7-AAD (BD Biosciences, USA) staining was also 
performed to remove non-viable cells from analysis. After 
45-min incubation, erythrocyte lysis was performed using 
lysis buffer (BD FACS™ Lysing Solution, BD Biosciences, 
USA). Quantification of CPC counts was then performed 
on a 12-colour flow cytometer (BD FACS Celesta, BD Bio-
sciences, USA). 500,000  CD45+ events were collected for 
each sample to ensure sufficient data for rare cell popula-
tions. After gating for  CD45+ events, non-viable  7AAD+ 
events were excluded, with subsequent gating for  CD34+ 
events and lastly for  KDR+ events. Appropriate negative 
tubes were used to determine positive and negative events 
for each targeted antibody. Percentage events were col-
lected as % mononuclear events, in addition to the calcula-
tion of cells·mL−1 using dual platform analysis. To do so, 
lymphocytes were enumerated using differential haematol-
ogy analysis (XS1000i, Sysmex, UK) and % of lymphocyte 
events were used with lymphocyte number to determine 
CPCs as cells·mL−1. Analyses of flow cytometric data 
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were performed using BD FACSDiva™ software (BD Bio-
sciences, USA). Gating parameters can be found in Sup-
plementary Fig. 1.

For pre- to post-exercise comparisons, changes in blood 
volume due to hemoconcentration were accounted for using 
measured haematocrit and haemoglobin obtained from auto-
mated haematology analysis using equations by Dill and 
Costill [7].

Exercise training

In the present study, the older adults underwent an 8-week 
SIT intervention involving 3 × 20 s ‘all-out’ sprints twice 
per week. The two SIT sessions per week were ≥ 72 h apart, 
as our pilot work suggested older adults would be suitably 
recovered from SIT in this timeframe [62]. Participants 
avoided strenuous physical activity 24 h prior to SIT ses-
sions whilst maintaining habitual physical activity according 
to self-reporting. Participants warmed up for a period of 
3 min at a self-paced intensity by performing static running. 
Participants then performed three 20-s static sprints at an 
‘all-out’ intensity, interspersed by 3-min self-paced recov-
ery phases. Following the final sprint, a 3-min self-paced 
cool down was performed (Fig. 2). During all sprints, par-
ticipants were instructed to raise their feet to approximately 
knee height, with loud verbal encouragement throughout 
each sprint. No dietary guidance or monitoring was provided 
during the training, except for the fasted testing sessions.

Statistical analysis

All data were assessed for normal distribution using the 
Kolmogorov–Smirnov test for normality. All data were 
normally distributed. To assess the differences in resting 
and exercise-induced changes in  CD34+ and  CD34+KDR+ 
CPCs between young and older adults, 2 × 2 mixed facto-
rial analyses of variance (ANOVA) were performed with 

Tukey’s multiple comparisons post-hoc tests performed 
where necessary. Resting CPC counts were compared as 
both % MNCs and as cell·mL−1, whereas exercise-induced 
changes (pre- to post-exercise) were compared for the main 
effects of exercise, age and intervention were compared 
as cells ⋅  mL−1. The delta (Δ) change in cells·mL−1 was 
compared between young and older adults by means of an 
independent t-test. To compare the effect of the SIT inter-
vention in older adults, a mixed effects model was performed 
to compare resting and exercise-induced CPCs between pre- 
and post-SIT and between these data with the young cohort. 
Data were analysed using GraphPad Prism (GraphPad Prism 
9.1.0, GraphPad Software Inc, USA). Data are presented as 
mean ± SD (95% confidence intervals [CI]) without subjec-
tive terminology, and alpha levels are reported as exact P 
values, without dichotomous interpretation of ‘significant’ 
or ‘non-significant’ as advised by the American Statistical 
Association [21]. Effect sizes are reported using Cohen’s d 
(difference in means ÷ pooled standard deviation [SD]) and 
interpreted using guidelines for gerontology [5], which are 
d ≥ 0.15 = small, d ≥ 0.40 = moderate, and d ≥ 0.75 = large.

Results

Influence of age on resting and exercise‑induced 
changes in CPC counts

Older and younger adults circulating the number of  CD34+ 
CPCs as a percentage of MNCs were 0.0159 ± 0.0073% 
[0.0103–0.0216% 95% CI] and 0.0233 ± 0.0060% 
[0.0195–0.0271% 95% CI], respectively (old vs young; 
p = 0.026, d = 1.10). Older and younger adults circulating 
the number of  CD34+ CPCs were 828 ± 314 [587–1070 
95% CI] cells·mL−1 and 1186 ± 272 [1012–1359 95% CI] 
cells·mL−1, respectively (old vs young; p = 0.015 d = 1.22). 
Older and younger adults circulating  CD34+KDR+ 

Fig. 2  Schematic representation 
of the sprint interval session. 
Participants performed this 
session twice weekly for eight 
weeks
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EPCs as a percentage of MNCs were 0.0034 ± 0.026% 
[0.0014–0.0054% 95% CI] and 0.067 ± 0.023% 
[0.0052–0.0082% 95% CI] of MNCs, respectively (old 
vs young; p = 0.008, d = 2.59). Older and younger adults’ 
number of circulating  CD34+KDR+ EPCs were 177 ± 128 
[79–275 95% CI] cells·mL−1 and 335 ± 92 [227–394 
95% CI] cells·mL−1 respectively (old vs young; p = 0.007 
d = 1.42; Fig. 3).

The number of  CD34+ progenitor cells in older adults 
before and after the graded exercise test to exhaustion were 
828 ± 314 [587–1070 95% CI] cells·mL−1 and 1582 ± 381 
[1290–1878 95% CI] cells·mL−1, respectively (pre- to post-
exercise; p < 0.001, d = 2.16). The number of  CD34+ pro-
genitor cells in the young adults before and after the graded 
exercise test to exhaustion were 1186 ± 272 [1012–1359 
95% CI] cells·mL−1 and 2134 ± 1049 [1467–2800 95% CI] 
cells·mL−1, respectively (pre- to post-exercise; p = 0.004, 
d = 1.23).  CD34+KDR+ EPCs in the older adults before and 

after the graded exercise test to exhaustion were 177 ± 128 
[79–275 95% CI] cells·mL−1 and 280 ± 176 [145–416 95% 
CI] cells·mL−1, respectively (pre- to post-exercise; p = 0.008, 
d = 0.67).  CD34+KDR+ EPCs in the young adults before and 
after the graded exercise test to exhaustion were 225 ± 92 
[277–394 95% CI] cells·mL−1 and 717 ± 493 [403–1030 
95% CI] cells·mL−1. respectively (pre- to post-exercise; 
p = 0.017, d = 1.39). The older cohort’s ∆CD34+ from pre- 
to post-graded exercise test to exhaustion was 754 ± 430 
[424–1084 95% CI] cells·mL−1, whilst the young cohort’s 
∆CD34+ from pre- to post-graded exercise test to exhaustion 
was 948 ± 907 [372–1524 95% CI] cells·mL−1 (old vs young; 
p = 0.775, d = 0.27). The older cohort’s ∆CD34+KDR+ 
CPCs from pre- to post-graded exercise test to exhaustion 
was 103 ± 157 [− 18–224 95% CI] cells·mL−1, whilst the 
young cohort’s ∆  CD34+KDR+ CPCs from pre- to post-
graded exercise test to exhaustion was 299 ± 365 [66–531 
95% CI] cells·mL−1 (old vs young; p = 0.212, d = 0.70).

Fig. 3  CD34+ and  CD34+KDR+ CPC resting and exercise-induced 
changes in CPC counts in young (n = 12) and older (n = 9) trained 
adults. A, B and E, F display differences between young and older 
adults in  CD34+ (A: % MNC, B: cells·mL−1),  CD34+KDR+ (E: % 
MNC, F: cells·mL−1). C, D and G, H display changes in CPCs from 

pre- to post-exercise between young and older adults (C:  CD34+ 
changes from pre- to post-exercise; D: Δ change in  CD34+ CPCs; 
G:  CD34+KDR+ changes from pre- to post-exercise, H: Δ change in 
 CD34+KDR.+ CPCs). *p < 0.05, **p < 0.005
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Effect of 8 weeks of sprint interval training 
on resting and exercise‑induced CPC changes 
in trained older adults

In terms of basal concentrations in the older group,  CD34+ 
CPC as a percentage of MNCs was 0.0159 ± 0.0073% MNC 
[0.0103–0.0216% 95% CI] and 0.0148 ± 0.0055% MNC 
[0.0106–0.0190% 95% CI] pre- and post-training, respec-
tively (p = 0.694, d = 0.17).  CD34+ CPC in cells·mL−1 was 
828 ± 314 [587–1070 cells·mL−1 95% CI] and 765 ± 299 
cells·mL−1 [535–995 cells·mL−1 95% CI] at pre- and post-
training, respectively (p = 0.602, d = 0.20).  CD34+KDR+ 
CPC as a percentage of MNCs pre- and post-training 
was 0.0034 ± 0.0026% MNC [0.0014–0.0054% 95% CI] 
and 0.0030 ± 0.0008% MNC [0.0024–0.0036% 95% CI] 
(p = 0.568, d = 0.21). In cells·mL−1, this equated to 177 ± 128 
[79–275 cells·mL−1 95% CI] and 153 ± 38 cells·mL−1 

[123–182 cells·mL−1 95% CI] pre- and post-training, respec-
tively (p = 0.545, d = 0.25).

In terms of graded exercise test to exhaustion-induced 
changes in  CD34+ or  CD34+KDR+ CPCs following SIT, 
the ANOVA resulted in an exercise (i.e., pre- to post-graded 
exercise test to exhaustion) × phase (i.e., pre and post) inter-
action of p = 0.233 for  CD34+ CPCs and p = 0.921 for 
 CD34+KDR+ CPCs. The graded exercise test to exhaustion 
post-SIT resulted in  CD34+ CPCs of 765 ± 299 [535–995 
95% CI] cells·mL−1 and 1266 ± 337 [1006–1525 95% 
CI] cells·mL−1 (pre- to post-exercise; p < 0.001, d = 1.57) 
and  CD34+KDR+ CPCs of 153 ± 38 [123–182 95% CI] 
cells·mL−1 and 249 ± 121 [156–342 95% CI] cells·mL−1 
(pre- to post-exercise; p = 0.035, d = 1.07), and the mean 
response was not different to that of pre-intervention; how-
ever, there was a smaller spread of data, suggesting a more 
uniform response (Fig. 4).

Fig. 4  CD34+ and  CD34+KDR+ CPC resting and exercise-induced 
changes in CPC counts in older (n = 9) trained adults before and after 
8-week SIT intervention. A, B and E, F display differences between 
pre- and post-intervention in  CD34+ (A: % MNC, B: cells·mL−1), 
 CD34+KDR+ (E: % MNC, F: cells·mL−1). C, D and G, H display 

exercise-induced changes in CPCs from pre- to post-SIT interven-
tion (C:  CD34+ changes from pre- to post-exercise; D: Δ change in 
 CD34+ CPCs; G:  CD34+KDR+ changes from pre- to post-exercise; 
H: Δ change in  CD34+KDR.+ CPCs). *p < 0.05, **p < 0.005
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Discussion

The main findings of this study are that aerobically trained 
older adults display a reduced resting number of CPCs com-
pared to younger trained adults but have a preserved ability 
to mobilise these cells in response to a graded exercise test to 
exhaustion. Moreover, 8 weeks of SIT did not increase basal 
CPC counts in already well-trained older adults.

Previous work has shown that advancing age is associated 
with lower CPC counts [45, 53] which is apparently unaf-
fected by cardiorespiratory fitness [45]. These cells play an 
important role in vascular repair via promoting endothelial 
proliferation by paracrine means [22] or by differentiating 
into mature endothelial cells at the site of repair [61]. Stud-
ies report that such CPCs are associated with the endothelial 
function [4, 19] and as such promote endothelial integrity 
and health. The loss of such cells with ageing, therefore, 
results in reduced endothelial repair and loss of endothelial 
function, which is itself linked heavily with future cardiovas-
cular risk [11]. The mechanism for such reduction in CPCs 
with advancing age in humans is unknown but purported to 
be due to increases in oxidative stress, resulting in impair-
ments in CPC number and/or function [32], and increased 
CPC susceptibility to apoptotic stimuli [26]. There is no 
evidence for changes in bone marrow resident progenitor 
cell count with ageing [41], but a stressor-induced CPC 
mobilisation from bone marrow may be impaired, with evi-
dence from burn wound model of CPC mobilisation [64] 
and exercise-induced mobilisation both displaying impaired 
mobilisation in older populations [45]. However, the pre-
sent investigation observed a preserved exercise mobilisa-
tion of CPCs in older adults. There are several key differ-
ences which are likely to explain divergent findings. Firstly, 
participants in this study were a very physically active, 
trained group of older adults, evidenced by their V̇   O2max 
of 37.4 ml·kg·min−1. Previous work by Ross and colleagues 
45 which demonstrated impaired mobilisation following 
exercise in older adults included participants who were not 
highly physically active, and therefore, the observed reduc-
tion in exercise-induced CPC mobilisation may not be a 
result of age per se, but a result of inactive ageing. Thus, 
high levels of physical activity throughout the lifespan may 
be required to preserve this process. In addition to divergent 
participant characteristics, the exercise stimuli in the work of 
Ross et al. [45] study was a submaximal cycling protocol at 
70% V̇   O2max, whereas the stressor in the present investiga-
tion was a maximal graded exercise test to exhaustion, and 
CPC mobilisation is intensity dependent [28].

Exercise training has shown promise to promote CPC 
number and function in both healthy [39, 57] and dis-
eased states [2, 6, 9, 46, 47, 50]. However, some studies 
report no changes in CPC counts after a short-term training 

programme [30, 59], likely due to high intra- and inter-
group variation associated with quantifying rare cells by 
flow cytometry. In the present study, we aimed to inves-
tigate whether a short-term novel, time-efficient SIT pro-
gramme could improve the age-related reduction in resting 
CPC count, and therefore, the trained older adults underwent 
an 8-week SIT intervention (3 × 20 s ‘all-out’ sprints, 2 × a 
week). Although SIT has not been well-researched in older 
adults, HIIT in older adults has been observed to improve 
cardiorespiratory fitness [25, 51], muscle power [17, 18, 
48], and is facilitative in improving body composition [18]. 
Whilst SIT in younger demographics has been observed to 
improve both aerobic [49, 60] and anaerobic [24], [31] fit-
ness with a considerable variety of approaches pertaining 
to interval duration, repetition and training frequency being 
evidenced as efficacious, whilst remaining easy to adminis-
ter, i.e. no power or heart monitors required. We observed 
no change in either resting or exercise-induced changes in 
CPCs in response to the SIT intervention. We propose that 
the highly trained status of the older adults was responsible 
for this, in that the ceiling effect was likely evident in this 
well-trained group. As such, whether SIT would be benefi-
cial in a sedentary older adult group warrants investigation.

Limitations

There are several limitations of the current study, which we 
accept. Firstly, the addition of a sedentary older group and a 
sedentary younger group to assess the influence of sedentary 
ageing vs active ageing vs sedentary youth vs active youth 
more comprehensively would have been beneficial. This 
would permit us to determine whether the effect of SIT was 
greater in a physically inactive group, as our older trained 
group had a CPCs mobilisation capability similar to a young, 
trained group, contrary to our previous work [45]. How-
ever, additional recruitment would require greater resource 
commitment which was outside the scope of the present 
investigation. Secondly, whole-body metabolism is largely 
dependent on skeletal muscle mass, as increased skeletal 
muscle mass increases metabolic load during rest and exer-
cise, if all other factors are equal. Moreover, as muscle mass 
ageing and gender have meaningful effects on the physi-
ological stimulus that can be achieved by exercise, mostly 
attributable to differences in muscle mass between old vs 
young and male vs female participants [23]. It is likely that 
older female participants in this study were less muscular 
than their younger male counterparts, resulting in a relative 
dampening of the relationship between exercise intensity 
and metabolic stress [35]. Admittedly, this increased risk of 
bias in the study results and, consequently, any conclusions 
derived. Thirdly, we did not assess CPC paracrine function, 
which improves post-training [27], and therefore, this may 
be an avenue for future research. Finally, and importantly, 



473Pflügers Archiv - European Journal of Physiology (2023) 475:465–475 

1 3

this study was not powered to detect changes in CPCs and 
was a secondary analysis of an investigation with the pri-
mary outcome as muscle power. We believe this justifies 
our statistical approach of avoidance of dichotomous ‘sig-
nificance’ or otherwise labelling based on an alpha level 
inappropriate for this dataset. An a posteriori power cal-
culation testing for differences between the young and old 
group at baseline using CD34 + CPCs (in cells·mL−1) as 
the outcome variable, an alpha of 0.05, a one-sided test, 
and a sample size of nine resulted in the statistical power 
of 0.83. Similarly, when using the same information and 
determining sample size, the required n was 10 per group. 
However, to detect an SIT-induced change in graded exer-
cise test ∆CD34 + (in cells·mL−1), a sample size of n = 36 
would have been required to detect a change at the p = 0.05 
level, with a statistical power of 0.80 and a one-sided test. 
Thus, a larger confirmatory study is required to corroborate 
observations made here.

Conclusions

Physically trained older adults to display reduced CPC 
counts but preserved exercise-induced mobilisation of 
these cells, which could offer vasoprotection. However, an 
8-week SIT intervention was unsuccessful at improving rest-
ing CPCs and exercise-induced mobilisation of these cells.
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