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Abstract 

In this study direct laser metal deposition (DLMD) technique is adopted for the additive 

manufacturing (AM) of Inconel 718 Superalloy. To conduct the experiments, a 1 kW fiber laser 

with a coaxial nozzle head is used. The effects of scanning speed (for two values of 2.5 and 5 

mm/s) as well as powder feed rate (for two values of 17.94 and 28.52 g/min) on the process 

were investigated. Characteristics of the 3D printed wall specimens such as the geometrical 

dimensions (width and height), microstructure observations, and the microhardness were 

obtained. In order to study the stability of the 3D manufactured walls, the height stability was 

considered for the investigation. Optical microscopy (OM), field emission electron microscopy 

(FE-SEM), energy dispersive X-ray spectroscopy (EDS), and mapping analysis were 

performed to derive the microstructural features of the additive manufactured samples. The 

Vickers microhardness test is used to evaluate the hardness distributions of additively 

manufactured parts. Catchment concept of the powder in DLMD process is used for explaining 

different trends of the process. Results indicated that, by decreasing the scanning speed, the 

width and height of the deposited layer increase. The average width of the additively 

manufactured samples directly depends on the scanning speed and the powder feed rate. 

Scanning speed has a reverse effect on the height stability; that is, the lower the scanning speed, 

the larger the stability. Microstructural results showed that because of the solidification 

process, the alloying elements will be accumulated in the grain boundaries. The non-uniform 

cooling rate and non-steady solidification rates of molten area in additive manufacturing 

process, the microhardness values of the additively manufactured samples following a 

fluctuated trend.   

Keywords: Additive Manufacturing (AM); Direct Laser Metal Deposition (DLMD); Inconel 

718 Superalloy; Dimensional Stability; Microstructure. 
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1. Introduction 

The processes for additive manufacturing (AM), also referred to as 3D printing, 

have impressive improvements in recent years and companies and institutions 

have made a fairly competition for expanding the useful aspects of this 

technology, such as cost, complex geometries, replacement and maintenance [1-

4]. With the development of specialized facilities in AM, and providing superb 

conditions for the manufacturing the high accuracy and affordable products, it 

has attracted the attention of many scholars and industries [5-7]. The AM process 

is also referred to layer production [8-10]. This method is one of the fastest and 

most reliable manufacturing processes, which is used to create a high quality and 

accuracy new sample [11]. 3D printing has many advantages over traditional 

production methods [12]. The production of complex geometries by traditional 

manufacturing methods is very sophisticated and is not affordable in many cases. 

A wide range of materials are applied for AM approaches such as plastics, metals, 

ceramics, and composites [13-16]. The AM technology is divided into different 

categories based on their approach of printing, equipment or printer devices, 

materials and etc [17-20]. The laser device is one of the most useful equipment 

in the industrial applications that have a significant effect on properties of 

additively manufactured parts [21-24].  

The laser AM method is a modern and evolving process, which is capable of 

many complex components by using a variety of powders, including metals, non-

metallics and composites [25-28]. In AM process by laser, the layers are produced 

by various input parameters [29-30]. Recently, extensive research has been done 

in this field of science. Kong et al. [31] investigated the effect of deposition 

created by laser AM process on non-traditional machining via a high-throughput 

dual-feed system. Wolff et al. [32] evaluated laser AM by twin feeders where 

Inconel 718 was used as powder. The goal of this study was that how the cooling 

rate after AM process can be affected on additively manufactured additively 
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manufactured sample’s structure. An experimental study from the AM process of 

Inconel 718 which was shown the sidewall nonuniformity and deposit bulge was 

performed by Lee et al. [33]. The quality and dimensions accuracy of additively 

manufactured specimens were studied in references [34-38]. The results showed 

that this experiment provided some additively manufactured samples with a 

suitable surface quality. A similiar research about the quality and microhardness 

trend was conducted by Liu et al. [39]. It is worth mentioning that the Inconel 

718 material is one of the most used materials in the manufacturing industry. 

Shang et al. [40] joined two parts of multi-material objects by the laser AM 

process. Due to the joining parts of AM process some parts were joined very well. 

Caiazzo et al. [41] generated some layers by changing nozzle scanning speed and 

laser power in the Directed Metal Deposition (DMD) method. These parameters 

have a critical role in AM process because by controlling these inputs the samples 

were generated very well. Liu et al. [42] investigated Laser Powder Deposition 

(LPD) method by using the AlSi10Mg alloy and Taguchi approach for the 

optimization of AM process. Wang et al. [43] studied microstructure of the 

deposited layer of additively manufactured samples. DLAM method in the laser 

AM process for biomaterials based titanium and molibden (Ti-15Mo) was studied 

by Bhardwaj et al. [44]. With this approach, they printed some samples which are 

usable in human surgery parts. Momenzadeh et al. [45] investigated the 

simulation and analysis of specific implant, which was printed by the laser AM 

process. AISI 304L is a very popular stainless steel in the manufacturing process. 

This material was joined to a Ti- 6Al-4V with the laser AM process by Reichardt 

et al. [46]. The deposition layer from the laser AM process via high power diode 

laser by AISI 316L powder was investigated in Guo et al. [47]. The 

microstructure of additively manufactured parts shown that the stability between 

interfaces of layers was a superb joint together. 

As the above review shows, the relation between direct laser metal deposition 

and microstructure effects after AM of super alloys have been addressed. 
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However, there are still many areas which have not been considered. By 

conducting some research, it is clear that, the behavior of the AM process on the 

microstructure of Inconel 718 is very sophisticated because the cooling rate and 

controlling the input parameters for generating a high-quality structure is very 

complicated. Inconel 718 is one of the much usable superalloys which its 

behavior from the procedures for material processing is very important in industry 

applications. In the present study, the DLMD process is applied for AM of 

Inconel 718 nickel-base super-alloy deposited wall on the AISI 4130 alloy steel 

substrate using a 1kW fiber laser. The effects of powder feed rate and scanning 

speed on geometrical aspects (i.e. height, average of width), microstructural 

observations and microhardness trend of additively manufactured samples in 

different layers are investigated. The results are explained by powder catchment 

ratio concept in DLMD process. Considering the powder catchment ratio concept 

and studying the geometrical stability of the additively manufactured walls, are 

relatively new accompaniments to this field. 

The organisation of the remainder of this paper is as follows. In Section 2, 

experimental study of DLMD process and some parameters are discussed such as 

catchment, stability rate, which are considered as outputs. In Section 3 and 4, 

results from measurements and conclusions are discussed, respectively. 

2. Experimental details 

2.1. Experiment materials, apparatus and configuration 

Commercial Inconel 718 powder was used. The particle size of the powder was 

imaged with a field emission electron microscopy (FE-SEM) (MIRA lll; TE-

SCAN) and is shown in Figure 1. 
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Figure 1 FESEM of Inconel 718 powder. 

As can be seen, the particle size of the powder is in the range of 45 to90 μm. Due 

to previous studies and research the size of powder must be in this range. When 

the size of a particle smaller or larger than 40 to120 μm, the quality of additively 

manufactured additively manufactured samples may be decreased. The chemical 

compositions for the Inconel 718 powder and the AISI 4130 steel are given in 

Table 1. AISI 4130 steel was used as a substrate. Inductively coupled plasma 

spectrometer (ICP) analysis has been applied to obtain powder compounds and 

quantum test for the percentage of compounds in the substrate. The substrate 

structure is ferrite-perlite and raw bar for AISI 4130 steel with a thickness of 7 

mm and a diameter of 65 mm. 
3. Table 1 Chemical composition (Wt. %) of Inconel 718 and AISI 4130 steel 

Ti Ni Nb Mo Mn Fe Cr Co Al Inconel 

718 

Powder 

0.13 54 4.9 3.29 0.163 17.5 19 0.0768 0.248 

C Ni P Si Mn S Cr Cu Mo AISI 

4130 

Substrate 

0.25 0.05 0.016 0.3 0.87 0.03 1.01 0.06 0.25 

 

The laser used for the DLMD was a 1 kW Fiber laser (YFL-1000 model made in 

Iranian National Laser Center) with the minimum spot size of the laser at focal 

position of 0.2 mm, the focal length of 200 mm, the Rayleigh length of 2 mm and 

wave length of 1080 nm which was operated in continuous wave was used. The 

laser sourceembedded within a CNC table that moves in three perpendicular 

directions (x, y, z). The table in each direction is moved by Mach3D software that 

defines a special G-code for each direction of the table. When the table moves 
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based on regulated CNC profram, the powder is deposited by the laser beam, and 

the additively manufactured sample is constructed as shown in Figure 1. The 

powder supply on the AM process is a twin powder feeder system. The powders 

are carried out by gas pressure transfers into the feeder and powder inside the 

vessel. 

 

Figure 2 Schematic diagram showing the DLMD configuration [48]. 

Ar gas was used as a shielding gas as well as the powder carrier gas. In all 

experiments, axial gas pressure was3 l/min, powder carrier gas pressure was1.5 

l/min and 250 W laser power were considered as constant parameters. The focal 

plane position (FPP), the number of deposition layers (5 layers), the dwell time 

of the deposition layers and the continuous laser wave are also considered as fixed 

parameters. In addition, two parameters of this process, the powder feed rate and 

CNC table scanning speed are variable. Table 2 presents the values of process 

input and output parameters. 

2.2 Sample analysis techniques 

After the AM process, the specimens were cut by the wire cut, and their cross-

sections were etched according to ASTM E 407: 07 by Glyceregia 

electrochemistry for the metallographic process [49]. The Ws in Table 2, show 

the width of additively manufactured additively manufactured samples in three 

areas, top, middle, and bottom of additively manufactured additively 

manufactured samples, respectively. 
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Table 2 Input and output parameters of laser AM process 

Outputs  Inputs 

No. 
h (µm) W3 (µm) W2 (µm) W1 (µm) 

 Powder 

rate 

(gr/min) 

Scanning 

speed 

(mm/s) 

3105 350 1280 108  28.52 5 #1 

1912 594 1005 862  17.94 5 #2 

2767 474 1253 792  17.94 2.5 #3 

4890 836 1479 945  28.52 2.5 #4 

Figure 3 and Figure 4 show, respectively, the additively manufactured 

samples and their geometrical dimensions which are made by the DLMD method. 

In Figure 3, some parts of additively manufactured additively manufactured are 

divided for understanding the concept of the height of samples. Also, in Figure 4, 

the concept of width in their zones for four samples are illustrated. 

 

Figure 3. Additively manufactured samples and cross-section of a printed part (thickness of the 

substrate is 7 mm) 

 

Figure 4. The macro size images of additively manufactured samples 
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Measurements of geometric dimensions of the specimens in four parts of 

deposition sections (beginning (W1), middle (W2), end of the deposition layer 

(W3), and the height (h)) are determined by the ImageJ software based on FE-

SEM images (see Figure 4). The stability is a modern approach, and it is a suitable 

criterion for the height quality of deposited layers. The length of the deposited 

layer is divided into three sections. The maximum and minimum heights are 

measured, and the differences of the heights are calculated. The maximum 

difference is defined as stability value. A lower stability rate can be more suitable 

for this process because the lower amount of stability means that the differences 

between minimum and maximum heights are less, as is evedient from Figure 3. 

The equations related to the calaution of stability value are shown in followings:  ∆ℎ1= 𝐻𝑚𝑎𝑥1  - 𝐻𝑚𝑖𝑛1 (1) ∆ℎ2 = 𝐻𝑚𝑎𝑥2  - 𝐻𝑚𝑖𝑛2 (2) ∆ℎ3 = 𝐻𝑚𝑎𝑥3  - 𝐻𝑚𝑖𝑛3 (3) 

ΔH = Max {∆ℎ1 , ∆ℎ2, ∆ℎ3} (4) 

The microstructure images in this study were captured by using and optical 

microscope (Device model: RADICAL model RMM- 2) and FE-SEM. ImageJ 

software was used to analyse the geometric dimensions of the specimens. The 

Vickers microhardnes for samples were evaluated via BUEHLER models. The 

specimens were tested with a loading rate of 100 g for 30 seconds on the 

microhardness test. Powders feed focus point, spray bandwidth, and powder flow 

feed rate measurements were examined to characterize the powder feed 

conditions. To determine the powder focus point, the axial gas feed rate, powder 

carrier gas feed, and powder feeder rotation speed must be adjusted. This is vital 

because the powder particles fed from the four outlet channels converge at one 

particular point. The parameters of scanning speed, distance of laser head to the 

substrate and the rotation speed of powder feeder were changed to evaluate the 

effect of parameters. The spray bandwidth is measured by three times along the 
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path. The mass feed rate is defined as the feed rate of the powder passing through 

the powder outlet channels of the twin powder feeder. Powder mass feed rate, gas 

pressure, and disk powder velocity were varied to measure the mass feed rate. 

The lens of the fiber laser device has a ±4 mm displacement, which is related to 

sample position. The focal point position is at the highest point on -4 mode. Also, 

at the zero points the focal point is on the substrate [15]. 

2.3 Catchment 

The concept of catchment in AM has an applied aspect because it shows the 

absorption of powder components. According to equation (5), catchment is 

dependent on the powder feed rate and laser scanning speed. It is expected that 

the catchment factor increases by increasing the powder feed rate, but the powder 

feed rate has a turning point. It means that the powder feed rate increases to a 

certain extent, but suddenly it makes a situation for absorbing more powder, and 

in this stage, the amount of catchment declines [50]. 

Catchment = 
𝑃𝑜𝑤𝑑𝑒𝑟 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 (𝑔𝑟)𝑆𝑐𝑎𝑛𝑛𝑖𝑛𝑔 𝑠𝑝𝑒𝑒𝑑 (𝑚𝑚)  (5) 

Generally, the samples’ geometry and height are dependent on three input 

factors; namely, powder feed rate; laser scanning speed; and laser power. The 

melt pools can absorb more powder by increasing the powder feed rate; however, 

the height of samples sometimes does not change by increasing the powder feed 

rate because the laser power is low and the situation for absorbing more powder 

is not provided in the melted pond. In the specific circumstances, the melt pool, 

which is created by laser irradiation, can receive and absorb more powder by 

increasing the powder feed rate. When the powder feed rate and the scanning 

speed are regulated on a constant amount, generated energy can attend to absorb 

a limited amount. This phenomenon means that, when the powder feed rate is in 

the highest rate, it cannot add any more powder to the melt pool. In addition, the 

uncompleted melting of powder affects samples’ height because the input energy 
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is low. Also, Cong et al. [51] showed that when the powder feed rate changed 

from 0.1 gr/min to 0.4 gr/min, the melt pool caught more powder and finally the 

height of samples increased. However, the samples’ height may still remain 

constant until the powder feed rate goes to a proper rate. This is because the laser 

power and scanning speed are regulated on the constant amount and the rate of 

powder which is absorbed by energy absorption has been limited. The focus on 

issues of final surface is one of the most critical limitations in the DMD process. 

The difference between the roughness and waviness as two specific factors in 

modifications of surface is proposed. Gharbi et al. [52] conducteded a research 

which showed that tiny additively manufactured layer and bier melt pool 

improved the quality of surface. Also, it was observed that by increasing the 

interaction between the powder feed and laser beam, more powder would be 

absorbed that is one of the most beneficial effects for the final surface. When the 

amount of catchment is at a high rate, the interaction between powder and laser 

beam increases, and finally, it makes a surface with improved quality. 

 

3. Results and Discussion 

3.1.  Effect of catchment parameters on the wall height 

According to Equation (5) the catchment parameter consists of the powder feed 

rate and scanning speed. The scanning speed is an affecting parameter on the 

additively manufactured wall geometry. In this research, two different scanning 

speeds of 2.5 and 5 mm/sec were considered. The maximum wall height at the 

lowest scanning speed (2.5 mm/sec) was observed as 4890 μm. In low scanning 

speed, the powder particles have more time for deposition. On the other hand, in 

the high scanning speed, the powder particles have lower absorbed energy, and 

the additively manufactured wall height will decrease. According to Table 2, the 

minimum additively manufactured wall height at the highest scanning speed (5 

mm/s) was obtained as 1912 μm. Generally, a reduction in scanning speed causes 
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an increase in powder deposition and also wall height. In this study, two powder 

feed rates of 17.94 and 28.52 g/min were used. The maximum additively 

manufactured wall height was observed at the maximum powder feed rate (28.52 

g/min). When the powder feed rate increases, much more powder particles 

interact with the laser beam. The laser beam energy melted and deposited the 

powder particles on the substrate. The minimum additively manufactured wall 

height was observed at the minimum powder feed rate (17.94 g/min). Figure 5 

shows the effects of powder feed rate and scanning speed on the additively 

manufactured wall height. It is clear that by decreasing the scanning speed when 

the power rate is considered as a constant parameter, the height of the samples 

increased. This phenomenon completely depended on the time for the additive 

process which more powder melted and the hight increased. 

 

Figure 5. The effect of powder feed rate and scanning speed on wall height. 

3.2. Effect of catchment parameter on the wall width 

The maximum additively manufactured wall width is 1086 μm, which was 

observed at minimum scanning speed of 2.5 mm/min. It was found out that the 

lower the scanning speed the higher would be the wall width of additively 

manufactured samples. At a low scanning speed, the powder particles that are 

interacted and melted by laser beam would have more time to wider deposition, 

causing an increase in the wall width. The minimum wall width was 820 μm that 

was observed at minimum scanning speed of 2.5 mm/min. With increasing in the 
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powder feed rate, much more powder particles feed coming out from nuzzles and 

it caused that, more powder interacted with the laser beam and melted. Therefore, 

the wall width increased. The maximum wall width of additively manufactured 

samples was observed at powder feed rate of 28.52 g/min. 

3.3. Elemental and microstructural characterization 

The ϒ phase is the base phase in Inconel 718 superalloy called ϒ Matrix. In this 

superalloy, some of other phases such as ϒ ′, ϒ ′′ , δ , Metallic Carbides (MC) 

and Laves phases are also generated. The ϒ ′  and ϒ ′′  phases are the main 

reinforcement phases and those are coherent with ϒ phase. The ϒ ′  phase 

composition is Ni3 (Al-Nb-Ti) and the ϒ ′′ phase composition is Ni3Nb [53]. The 

Laves phases are not desirable in terms of mechanical properties, but the heat 

treatment can dissolve Laves phases into the matrix. According to Figure 6, the 

ϒ phase is dispersed uniformly in all over the sample microstructure and it is the 

gray phase. Also, from Figure 6, it is found out that the most part of the additively 

manufactured sample microstructure is the ϒ phase. The white areas in Figure 6-

a are the Laves phases that are in irregular shapes and dispersed non-uniformly. 

The Laves phases are precipitated into the grains and in the grain boundaries. The 

dark-gray areas in Figure 6-b & c are the ϒ ′phase.  

 

Figure 6. Inconle 718 addetived structure a) ϒ phase b) ϒ ′ phase c) Laves phases 

The EDS analysis provides quantitative and qualitative analyses from a wide 

range of materials. The microanalysis from different zones of additively 
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manufactured samples and substrate was done to achive the point chemical 

compositions and quantitative and qualitative analyses of phases. The different 

selected zones from sample #3 were illustrated in Figure 7. 

 

Figure 7. The EDS analysis in 5 layers (L1-L5) of addetived sample #3 

Tables 4 and 5 present the chemical compositions of additively manufactured 

sample 3 based on atomic and weight percentages in spot A and B, respectively. 

 

 

 

 

Table 4. Chemical composition (Wt. %) of sample #3 in spot A 
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[norm. at%] [norm. 

wt%] Element 

0.38 0.16 Aluminium 

2.12 0.91 Silicium 
0.32 0.33 Titanium 

20.24 16.53 Chromium 

17.22 14.8 Iron 

48.50 51.75 Nickel 

3.47 4.92 Niobium 

2.53 3.3 Molybdenum 

5.22 7.3 Aurum 

100 100 Sum 

 

Table 5. Chemical composition (Wt. %) of sample #3 in spot B 

[norm. at%] [norm. wt%] Element 

25.21 6.67 Carbon 

0.58 0.36 Silicium 
0.69 0.79 Chromium 

71.46 87.84 Iron 
2.06 4.34 Molybdenum 
100 100 Sum 

The Map analysis provides the frequent distribution of elements in an image. 

In any area where the color intensity is higher, it indicates that the percentage of 

the element in that area is higher. Figure 8 shows the Map analysis of sample 

number 4. The elements distribution in the Inconel 718 additively manufactured 

samples were illustrated in different colors. According to ICP analysis, the most 

parts of the elemental composition of Inconel 718 powder included the Ni, Cr, 

Fe, Nb, and Mo elements. The main elements of powder particles were Ni, Cr, 

and Fe by the weight percentages of 54%, 19% and 17.5%, respectively. The Map 

images showed the uniform distribution of Ni, Co, Cr, and Ti elements all over 

the sample. The brighter spots in the Map images indicate the more intensity of 

elements distribution. The Al, Nb, Mo, and Si elements are distributed non-

uniformly and accumulated in grains boundaries. The Laves phases will be 

precipitated in the grain boundaries. The atomic percentage of Nb and Mo 

elements are higher in the Laves phases than the other phases, thus the Nb and 

Mo elements were accumulated in grains boundaries. During the DLMD process, 

the powders melted. The elements are uniformly distributed in the molten 
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materials, but during the solidification process, the alloying elements will be 

accumulated in the grain boundaries. In the Inconel 718 alloy, both the Nb and 

Mo elements are susceptible to separation due to the small redistribution 

coefficient (<1), which causes a non-uniformity distribution of the alloy 

composition in the solid-liquid interface. 

 

Figure 8. Map analysis of sample number 4. 

The grain morphology of Inconel 718 is diverse in different regions. 

Columnar dendrites, cellular dendrites, cells, and equiaxial dendrites with Laves 

phases are observed in the interdendritic areas. Generally, the grain growth was 

epitaxial, but in some areas, the dendritic growth was observed. The dendrites 

were grown along of the deposition layer direction. The Microstructure of Inconel 

718 is columnar dendrites growing epitaxially along the deposition direction. 

Figure 9 shows the FE-SEM images for samples number 1 to 4. The columnar 

growth was observed, and in some areas, the grains were more extensive and 

more stretched. 
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Figure 9. FE-SEM of samples number 1 to 4. 

The orientation of grains changed in the areas near to the substrate. The 

substrate acts as a heat source for the first layers of deposited wall, and large 

columnar dendrites were grown. When laser energy melted the new layer, it 

simultaneously affected an earlier layer and caused grain growth in previous 

layer. The grain growth would occur due to increase in temperature and reheating 

the layer. Figure 10 showed the growth in grain size in the overlap zone of two 

layers. 
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Figure 10. The common boundary between the deposit layers. 

The heat input of the laser beam from the upper layer is affected by the 

interfaces of layers, and the grains are grown. Figure 11 shows the microstructure 

of samples number 1 and 4. The laser power was 250 W. Thus, the heat input 

changed due to the alteration of scanning speeds. When adding melted upper layer 

to the hardened layer or lower layer, the solidified layer was affected by heat input 

caused from the upper layer. Therefore, grains of lower layers were grown. A 

high laser power leads to a deeper melt pool, whereas a low scanning speed causes 

much more powder particles to be deposited in the melt pool. Therefore, at low 

scanning speed, strong joints between layers are created, and it will avoid 

cracking and separating in the interfaces. 

 

Figure 11. The common boundary layer of samples number 1 and 4. 

In Figure 12, the equiaxed dendritic microstructures at the surface of 

deposition were illustrated. With increasing in the additively manufactured wall 

height, the grains orientation in top section of samples is differed from the parts, 
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which are near to the substrate. The columnar microstructure with equiaxed 

dendrites showed that changes in the microstructure is caused by the changing 

solidification conditions at top of the deposition. In the top sections of samples, 

the columnar grains and equiaxed dendrites were created due to low-temperature 

gradients and high solidification speed [54-56]. 

The top of the workpiece after the deposition of the melted substrate could 

be quenched by air; however, the bottom of the melted substrate is quenched by 

thermal transformation to the lower layer, which is addetived before. 

Furthermore, in the top sections of additively manufactured samples, the molten 

powder particles interacted with the Ar shielding gas. Thus, the solidification 

velocity increased. The convection heat transfer between the last solidified layer 

and shielding gas was occurred in top layers of additively manufactured samples, 

while in the lower layers, the conduction heat transfer between additively 

manufactured layers and previous layers have occurred. 

 

Figure 12. Top section microstructure of the additively manufactured samples for samples #1 to #4 

The additively manufactured samples may have some defects, such as 

porosity, open pores, and shirinkage cavities. The porosity and unmelted powders 

are the usual defects that may happen during the AM process. In Figure 13, it is 

shown that the closed and open pores are the black spots. The porosity of the 
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additively manufactured samples is due to the powder quality and excessive 

pressure of shielding gas flow [57]. The powder particles quality depends on 

powder production methods. The powders produced by PREP and GA methods 

are better powders than the other powder production methods for reducing the 

porosity in the additively manufactured samples. In this research, Inconel 718 

powder particles were gas atomized and made lower porosity in the additively 

manufactured samples. 

 

 

Figure 13. Defects in the microstructure of the addetived samples 

3.4 Microhardness characteristics 

The values of Vickers microhardness of Sample No. 1 and Sample No. 4 from 

top to bottom are illustrated in Figure 14. The microhardness values of the 

additively manufactured samples following a fluctuated trend. Based on the non-

uniform cooling rate and non-steady solidification rates of molten Inconel 718 

during the AM process. It is due to the heat input from upper layers that affected 

the lower layer, and changed the microstructure, grain size as well as 

microhardness. In other words, the heat input from the upper additively 

manufactured layer led to an increase in microhardness of lower additively 
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manufactured layers. It is worth mentioning that the morphology and 

concentration of the Laves phase were found to be the most critical factors in the 

microstructure of Inconel 718 alloy. On the other hand, as mentioned in section 

3.2, the Laves phase is not a hard phase. The Laves phase is the Nb-rich phase in 

the ϒ matrix (see Figure 6 and Figure 8). Accordingly, the precipitation of the 

Laves phase reduced the microhardness of the additively manufactured samples. 

  

Figure 14. Microhardness of samples a) number 1 and b) number 4. 

4. Conclusions 

In this study, the influence of two effective parameters on the direct laser metal 

deposition (DLMD) of additive manufacturing (AM) process for Inconel 718 

superalloy was examined. The results showed that the powder feed rate and 

scanning speed have an effectual impact on the additively manufactured samples 

features. The following conclusions are made:  

1. The height of the samples depends on two main factors, namely, scanning 

speed and powder feed rate. When the scanning speed decreases, the laser’s 

interaction time with the powder particles increases, which leads to a higher 

additively manufactured wall height. 

2. The average width of the deposited layer depends on the scanning speed and 

the powder feed rate. By declining the scanning speed to 2.5 mm/s, the 

deposition from the melted powder having more time for going wider width 

and is developed to 1479 μm on bottom of workpieces. 
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3. Height stability is an important parameter in measuring the quality of the 

additively manufactured samples. A low ΔH value means that the difference 

between the highest and the lowest heights of the sample is lower. The lowest 

ΔH, which has proper stability, is obtained in the less scanning speed. 

4. Change of microhardness in the samples does not follow any specific trend. 

The microstructural changes along with the height of a sample by DLMD. 

The heat input from the upper layers that affected the lower layer and the laser 

heat input acts as a heat treatment. 

5. Various phases with different grain growth morphology in different parts of 

additively manufactured samples are generated which cause fluctuiation in 

microhardness regims.  

6. In DLMD of Inconel 718 superalloy, during the solidification process, the 

alloying elements such as: Nb and Mo, will be accumulated in the grain 

boundaries. The Laves phases are Nb and Mo rich phases, thus the Laves 

phases will be precipitated in the grain boundaries. The Laves phases are not 

desirable in terms of echanical properties. 
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Figures

Figure 1

FESEM of Inconel 718 powder.

Figure 2

Schematic diagram showing the DLMD con�guration [48].



Figure 3

Additively manufactured samples and cross-section of a printed part (thickness of the substrate is 7 mm)



Figure 4

The macro size images of additively manufactured samples

Figure 5

The effect of powder feed rate and scanning speed on wall height.

Figure 6

Inconle 718 addetived structure a) γ phase b) γ' phase c) Laves phases



Figure 7

The EDS analysis in 5 layers (L1-L5) of addetived sample #3



Figure 8

Map analysis of sample number 4.



Figure 9

FE-SEM of samples number 1 to 4.



Figure 10

The common boundary between the deposit layers.

Figure 11

The common boundary layer of samples number 1 and 4.



Figure 12

Top section microstructure of the additively manufactured samples for samples #1 to #4



Figure 13

Defects in the microstructure of the addetived samples

Figure 14

Microhardness of samples a) number 1 and b) number 4.
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