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4 Abstract 

5 In many applied sciences, the main aim is to learn the parameters in the operational 

6 equations which best fit the observed data. A framework for solving such problems is to em-

7 ploy Gaussian process (GP) emulators which are well-known as non-parametric Bayesian 

8 machine learning techniques. GPs are among a class of methods known as kernel machines 

9 which can be used to approximate rather complex problems by tuning their hyperparam-

10 eters. The maximum likelihood estimation (MLE) has widely been used to estimate the 

11 parameters of the operators and kernels. However, the MLE-based and Bayesian infer-

12 ence in the standard form are usually involved in setting up a covariance matrix which 

13 is generally ill-conditioned. As a result, constructing and inverting the covariance matrix 

14 using the standard form will become unstable to learn the parameters in the operational 

15 equations. In this paper, we propose a novel approach to tackle these computational com-

16 plexities and also resolve the ill-conditioning problem by forming the covariance matrix 

17 using alternative bases via the Hilbert-Schmidt SVD (HS-SVD) approach. Applying this 

18 approach yields a novel matrix factorization of the block-structured covariance matrix 

19 which can be implemented stably by isolating the main source of the ill-conditioning. In 

20 contrast to standard matrix decompositions which start with a matrix and produce the 
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21 resulting factors, the HS-SVD is constructed from the Hilbert-Schmidt eigenvalues and 

22 eigenvectors without the need to ever form the potentially ill-conditioned matrix. We also 

23 provide stable MLE and Bayesian inference to adaptively estimate hyperparameters, and 

24 the corresponding operators can then be efficiently predicted at some new points using the 

25 proposed HS-SVD bases. The efficiency and stability of the proposed HS-SVD method 

26 will be compared with the existing methods by several illustrations of the parametric lin-

27 ear equations, such as ordinary and partial differential equations, integro-differential and 

28 fractional order operators. 

29 Keyword: Gaussian processes; Hilbert–Schmidt’s theory; Stable computation; Prob-

30 abilistic machine learning; Uncertainty quantification. 

31 

32 1 Introduction 

33 One of the major fields in applied sciences is to model different phenomena in terms of flexible 

34 operational equations [1, 2]. In other words, the researchers usually attempt to find a coherent 

35 form of flexible operational equations corresponding to the observed data to the effect that 

36 they best describe and govern them [3, 4]. Therefore, the necessity of existence of parametric 

37 operational equations is created, that is, the equations that have parameters and they increase 

38 the flexibility to cover the observed data. These parametric equations come from real-world 

39 mathematical modelling, and their parameters should be determined in terms of the observed 

40 data. Since nonlinear operators can be approximated by linear ones in many cases [5], an 

41 important category of these parametric operational equations is linear operations equation. 

42 Therefore, the major aim is to find their parameter which is known as a linear inverse problem 

43 (IP) [6]. 

44 To illustrate the key ingredients and focal point of this study, let us start by considering 

45 linear operational equations of the form 

Lζxu(x) = f(x), (1) 

46 which models the relationship between u(x) and f(x) functions. Here, f(x) is considered as a 

black-box forcing term, Lζx is a linear operator equipped with parameter ζ and u(x) denotes 

48 the latent solution. Take, for instance, the classical problem of heat conduction in a medium 

49 with unknown conductivity properties, albeit with an unknown thermal diffusivity coefficient 

50 ζ. The main objective for solving the linear parametric problems (1) is to optimally and 
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51 stably find the parameters ζ from the observed data using an implicit method. The linear 

52 operational equations given by (1), have enormous practical benefits which are discussed in 

53 [7, 8]. 

54 Raissi et al. [6] provide an innovative method for resolving such problems by employing 

55 and adopting GPs [9, 10] within a Bayesian framework. Likewise, the Bayesian procedure 

56 adopted here uses the GP as a flexible prior distribution over functions thereby providing ana-

57 lytical tractability. Once combined with the observed data, it will supply a fully probabilistic 

58 approach to approximate the functions. Moreover, GPs are among a class of methods known 

59 as kernel machines (as discussed in [5, 11, 12]) and have close similarities with regularisation 

60 approaches [13, 14]. 

61 GP as a kernel-based non-parametric method relies on an appropriate selection of kernel 

62 k. It is common to select a parametrized family of kernels. These kernels are parametrized by 

63 one or more hyperparameters θ, which then need to be estimated on the basis of the observed 

64 data. Indeed, the selection of the kernel k and the estimation of its hyperparameters have a 

65 profound impact on the performance of the GP through the covariance matrix K which is 

66 constructed based on the selected kernel. 

67 By applying the GP as a kernel-based method which includes the hyperparameters θ, 

68 the Eq. (1) can be considered as a surrogate model where the proposed GP serves as the 

69 probabilistic approximation of the underlying problem. Given the observed data, the aim is 

70 then to learn the hyperparameters θ and parameters ζ using a stable method. The learned 

71 GP using the mentioned method can then be used to probabilistically solve the governing 

72 linear operational equation given in (1) and predict the behaviour of this system in the future. 

73 However, the goal pursued in many other studies addressing the similar inverse problem is 

74 that the model parameters and hyperparameters are learned directly from the observed data 

75 using various optimization techniques including Power Function method, Cross Validation 

76 method, Trial and Error method, and the Contour-Pade algorithm [15, 16, 18]. Raissi et al. [6] 

77 applied commonly done estimating the model parameters and hyperparameters directly from 

78 the data by minimizing the negative log likelihood of the probabilistic model in GP regression 

79 (See [9]), and then they used the usual optimization to fit a GP model to the parametric 

80 operational problem given in Eq. (1). The main advantage of the method proposed in [6] 

81 in comparison with the approaches mentioned above is that the optimal model parameters 

82 and hyperparameters are all learned directly from the data by maximizing the joint marginal 
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83 log-likelihood of the probabilistic model. Therefore, minimizing the negative log likelihood 

84 function estimates the (hyper)parameters that will most likely be used to produce the data 

85 required for the linear operational problem. In constructing the likelihood function, the inverse 

86 of the covariance matrix appeared in the quadratic term is used to learn from the training 

87 data, while the log-determinant of the covariance matrix penalizes the model complexity. 

88 If the covariance matrix is ill-conditioned, computing both the inverse and log-determinant 

89 of the covariance matrix with standard methods (e.g., Cholesky factorization) will probably 

90 be inaccurate. This would restrict us to use the maximum likelihood estimation (MLE) to 

91 evaluate the validity of parameters and hyperparameters estimation and their posterior mean 

92 accuracy. 

93 This paper deals with stabilizing the likelihood computation of Gaussian process regression 

94 for data of linear operational equations and subsequent optimization of (hyper-) parameters. 

95 The main innovation is based on the novel matrix factorization of the block-structured co-

96 variance matrix which is generally unstable and ill-conditioned and needs to be inverted using 

97 Hilbert-Schmidt SVD. These block-structured partitioning of the covariance matrix is imple-

98 mented stably without any major computational burdens by isolating the main source of the 

99 ill-conditioning. 

100 Without such isolating the covariance matrix is ill-conditioned such that the likelihood 

101 computation and subsequent optimization of (hyper-) parameters is inaccurate. Therefore, 

102 the main aim of the present paper is to stabilize ill-conditioning behaviour of the likelihood 

103 computation through factorization of the covariance matrix (main source of instability) using 

104 the Hilbert-Schmidt (HS) SVD as an alternative base. Whereas the standard and basic meth-

105 ods (e.g. Cholesky [6], RBF-QR [19] and weighted SVD [20]) for tackling this issue is still 

106 suffering from the same presented instabilities in the likelihood function. Unlike the previous 

107 methods, to stabilize the likelihood computation every positive definite kernel is represented in 

108 terms of the (positive) eigenvalues and (normalized) eigenfunctions of an associated compact 

109 integral operator without needing to decompose the covariance matrix in the same unstable 

110 way [21]. Finally, using the properties such as orthogonality of eigenfunctions, the rapid de-

111 cay of eigenvalues for highly smooth kernels, and isolation of swiftly decaying eigenvalues (as 

112 the main source of ill-conditioning in the covariance matrix) likelihood computation is imple-

113 mented in stabilized and stable manner. In fact, the principal key for computing likelihood 

114 function is that it is not necessary to directly deal with the kernel in its closed form [16, 22] 
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115 because the composition of the covariance matrix can be obtained by the associate eigenvalues 

116 and eigenfunctions based on the Mercer’s expansion. Furthermore, due to the nature of the 

117 linear operators such as fractional-order operators and the inherent ill-conditioning of kernel-

118 based approximation methods, we have included the fractional derivatives of the associate 

119 eigenfunctions of the kernel instead of the kernel directly [23, 24, 26]. Therefore, the source 

120 of the ill-conditioning in the posterior prediction process is analytically removed using the 

121 HS-SVD method proposed in this paper. 

122 At the end, the efficiency and stability of the proposed HS-SVD method have been com-

123 pared with the existing methods by several illustrations of the parametric linear equations, 

124 such as ordinary and partial differential equations, integro-differential and fractional order 

125 operators. 

126 This paper is organized as follows. In Section 2 the challenges of the GPs as a data-driven 

127 algorithm for learning general parametric linear equations are presented. In Section 3, we 

128 introduce the new stable bases using the HS-SVD method and discuss how this method can 

129 tackle the computational challenges of the likelihood function. We illustrate several numerical 

130 examples in Section 4. Finally, some conclusions are presented in Section 5. 

131 2 Computational challenges in learning linear operators using 

132 GPs 

133 First, we introduce the machine learning of the linear differential operators using GPs and 

134 its challenges in the computation of likelihood function and posterior mean. Without loss 

135 of generality, we assume the observed data was generated by a zero-mean GP, i.e., µ = 0, 

136 although a nonzero mean can also be considered. In the following, the proposed data-driven 

137 algorithm presented by Raissi et al. [6] for learning general parametric linear equations of 

138 the form (1) corresponding to the differential operators is presented. The algorithm starts by 
′ 

139 assuming that u(x) is GP with mean 0 and covariance function kuu(x, x ; θ), i.e., 

′ u(x) ∼ GP(0, kuu(x, x ; θ)), (2) 

140 where θ denotes the hyperparameters of the kernel kuu. The key observation to make is 

141 that any linear transformation of a GP such as differentiation and integration is still a GP. 
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142 Consequently, 

Lζx 
′ u(x) = f(x) ∼ GP(0, kff (x, x ; θ, ζ)), (3) 

143 with the following relationship between the kernels kuu and kff , 

′ kff (x, x ; θ, ζ) = LζxL
ζ 
′ kuux 

′ (x, x ; θ). (4) 

144 Furthermore, the covariance between u(x) and f(x ′ ), and also the one between f(x) and u(x ′ ) 
′ are determined by kuf (x, x ; θ, ζ) = Lζ 

x 
′ ′ 

′ kuu(x, x ; θ), and kfu(x, x ; θ, ζ) = Lζx 
′ kuu(x, x ; θ), 

146 respectively. It goes without saying that the main purpose is to estimate the parameters ζ of 

the operator Lζx and the hyperparameters of the kernels kff , kuf , and kfu. 

148 There are some situations where it is reasonable to assume that the observations are noise-

149 free, for example in computer simulations. Many scientific phenomena are investigated by com-

150 plex computer models or codes. A feature of many computer experiments is that the output 

151 is deterministic i.e., rerunning the code with the same inputs gives identical observations[25]. 

152 Due to the fact that our data in the present paper are taken from computer simulations, it[ ]
yu 

153 is assumed y = , such that yu = u(Xu), yf = f(Xf ). Based on the aforementioned 
yf 

154 properties of the MLE, as pointed out by Raissi et al. in [6], “the hyperparameters θ and 
ζ 

155 more importantly the parameters ζ of the linear operator Lx 

156 the negative log marginal likelihood (NLML) 

can be trained by minimizing 

NLML(ζ, θ) = − log p(y|ζ, θ), (5) 

157 where p(y|ζ, θ) = N (0, K), however (5) can be rewritten as 

1 1 N 
NLML(ζ, θ) = log(|K|) + y TK−1 y + log 2π, (6)

2 2 2 

158 and K is given by [ ]
kuu(Xu, Xu; θ) kuf (Xu, Xf ; θ, ζ)

K = .” (7) 
kfu(Xf , Xu; θ, ζ) kff (Xf , Xf ; θ, ζ) 

159 As pointed out by Raissi et al. in [6], “the marginal likelihood does not simply favor the models 

160 that fit the training data best. In fact, it induces an automatic trade-off between data-fit and 

161 model complexity. The likelihood function includes the K−1 term in a quadratic framework 

162 which targets to fit the training data, while the log-determinant term log |K| penalizes the 
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176 

163 model complexity”. The most computationally intensive part of the training is associated with 

164 inverting dense covariance matrix K, and computing determinant K. This scales cubically 

165 with the number of observed data. This scaling is a well-known limitation of the GP, and 

166 even if K is invertible it may still be numerically ill-conditioned [27]. These challenges make 

167 the results unreliable and reduce the validity of the method. Actually, when K becomes ill-

168 conditioned, it can lead to an ill-conditioned problem and computing with standard methods 

169 (e.g., Cholesky factorization) is probably inaccurate, leaving us unable to use the MLE to 

170 judge the validity of the method. 

171 After training the model and parameter estimation in the previous step, we predict the 

values u(x) and Lζxu(x) = f(x) at a new test point x by writing the posterior distributions (
( 

)
)

f (x) 

2 p(u(x)|y) = N 

p(f(x)|y) = N 

u(x), v (x) , 

2 

u 

f(x), v (8), 

173 such that 

ū(x) = kT 
u (x)K

−1 y, 2 (x, x) − kT 
u (x)K

−1ku 

2 

(x) = kuu (x),vu 

f(x) = kf 
T(x)K−1 

f (x) = kff (x, x) − kf 
T(x)K−1kf (x), (9)y, v 

174 and [ ]
kT kT kT 
u (x) = kT(x) = uu(x, Xu) uf (x, Xf ) , [ ]

kf 
T(x) = kT ) kT , (10)fu(x, Xu ff (x, Xf ) 

175 where for notational convenience the dependence of the kernels on hyperparameters and pa-

rameters is dropped. Apart from ū(x) and f(x), the posterior variances v2 
u(x) and v2 

f (x) can 

177 be used as good indicators of how confident one could be about the estimated parameters ζ 

of the linear operator Lζx and posterior predictions made based on these parameters. How-

179 ever, both of these representations can lead to severe numerical instability. To overcome these 

180 challenges, we address them in Section 3. Since the GP inherits the properties of its kernel, a 

181 brief review of the kernels and their hyperparameters is required. 

182 Since everything hinges upon our selection of the kernel kuu-though this kernel is not 

183 usually known-it is common to consider a parametrized family of kernels. As mentioned be-

184 fore, the selection of these hyperparameters has a significant effect on the performance of the 
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Table 1: Some well-known kernels kuu with their hyperparameters θ = (ε, β, a, b). 

Name Definition( )∑d− 1 ′ Squared Exponential (SE) exp εi(xi − xi)
2 

2 i=1 √ 
Multiquadrics (MQ) 1 + (εr)2 ∑∞ 2Periodic spline 2 cos(2nπ(x − x ′ ))n=1 (4n2π2)β ∑∞ 2 ′ Generalized periodic spline 2 cos(2nπ(x − x ′ )), x, x ∈ [0, 1], β ∈ N n=1 (4n2π2+ε2)β( )′ b(1−b2)−2b(x2+x ′2)+(1+3b2)xxChebyshev 2a(1 − b) ′ (1−b2)2+4b(b(x2+x ′2)−(1+b2)xx ) 

+(1 − a), a ∈ (0, 1], b ∈ (0, 1) 

185 GP. Some common kernel families are included in Table 1 [9]. In Multiquadrics (MQ) kernel 
′ 

186 r =∥ x − x ∥ such that ∥ . ∥ is a norm on Rd and usually the Euclidean norm [15]. The 

187 hyperparameter b in Chebyshev kernel acts like a shape parameter, where b → 1 yields more 

188 peakier kernels with increased locality (and thus reduced interactions between kernels) and 

189 b → 0 yields a flatter kernel with increasingly global behavior which is less concentrated. Also, 

190 the hyperparameter a is not that significant as long as a ∈ (0, 1) as it just shifts and scales the 

191 kernel vertically. However, setting a = 1 eliminates the vertical shift and therefore makes it 

192 markedly more difficult to fit data with a nonzero mean. The existence of the hyperparameter 

193 ε as shape parameter in squared exponential and multiquadrics kernel (or other hyperparam-

194 eters such as β in periodic spline) allows for flexibility to select a kernel supported by the data 

195 without having to explore the endless selection of all positive definite kernels. Unfortunately, 

196 this flexibility is often accompanied by the danger of severe ill-conditioning for small ε be-

197 cause of the increasing linear dependence of the vectors in the covariance matrix. Therefore, 

198 computing the standard form of the covariance matrix is not a good idea [28, 29, 30]. The 

199 ill-conditioning can be corrected using alternative bases and matrix factorization. 

200 3 Overcoming computational challenges using HS-SVD bases 

201 3.1 Stable computation in the posterior prediction 

202 We now develop the HS-SVD method to create an alternative basis, to eliminate the ill-

203 conditioning of the covariance matrix K. In the standard approach, we work with a basis 
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204 generated by the kernel ”shifts” which are known as standard bases. The new basis derived 

205 from the eigenfunction expansion produces a linear system that is devoid of the ill-conditioning 

206 of the standard form of K. The HS-SVD method has two advantages in practical application: 

207 (i) it is not necessary to form the covariance matrix, and (ii) it is not necessary to know the 

208 kernel and its derivatives in closed form [16, 22]. Therefore, we apply it to the covariance 

209 matrix K. We define the truncated Hilbert–Schmidt expansion with M terms (or truncated 

210 Mercer series expansion) of our kernel kuu in (2) as ⎤⎡⎤⎡ 
′ )λ1 φ1(xM 

kuu(x, x ; θ) = λnφn(x)φn(x ′ ) =
[∑ 
φ1(x) . . . φM (x) 

⎢⎢⎣] ⎥⎥⎦, 
λM φM (x ′ ) 

⎢⎢⎣ 
⎥⎥⎦ 

′ .. (11). . . . 
n=1 

211 where the truncated Mercer series provides the best M -term approximation of the kernel in 

212 the mean-square error [16]. 

It should be noted that, (λn, φn) are orthonormal eigenpairs of a Hilbert–Schmidt integral 

operator Tkuu : L2(Ω, ρ) → L2(Ω, ρ) defined as ∫ 
′ ′ (Tkuu f)(x) = kuu(x, x ; θ)f(x ′ )ρ(x ′ )dx , 

Ω 

213 where Ω ⊆ Rd , ρ is a weight function and ∥ kuu ∥L2(Ω×Ω,ρ×ρ)< 0 and also, M is chosen as the 

214 smallest value that satisfies λM < ϵmach λnu+nf and we will always assume that M > nu + nf 

215 such that nu and nf are the number of training points chosen from u(x) and f(x) functions, 

216 respectively. Here ϵmach is machine precision (assumed to be 10−16). Therefore, the quadratic 

217 form (11) can be replaced by 

′ kuu(x, x ; θ) = ϕ(x)TΛϕ(x ′ ), (12) 

where ⎤⎡⎤⎡ 
φ1(x) λ1 ⎢⎢⎣ 

⎥⎥⎦ , Λ = 
⎢⎢⎣ 

. . . 
⎥⎥⎦ 

. . .ϕ(x) = . 

φM (x) λM 

218 The eigen-decomposition (12) provides an accurate approximation of the kernel kuu without 

219 ever forming it. According to (12), the Hilbert–Schmidt eigen-decomposition of the vector 

220 kuu(x, Xu; θ)T = [kuu(x, x1; θ) . . . kuu(x, xnu ; θ)] and also the matrix kuu(Xu, Xu; θ) in (7) 

221 are as 

kuu(x, Xu; θ)
T = ϕ(x)TΛΦT ⇒ kuu(Xu, Xu; θ) = ΦΛΦT , (13) 
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226 

227 

228 

where ⎤⎡⎤⎡ 
ϕ(x1)

T φ1(x1) . . . φM (x1)⎢⎢⎣ 
⎥⎥⎦ = 

⎢⎢⎣ 
⎥⎥⎦ 

. . . 
. .. . . . . . .Φ = . 

ϕ(xnu )
T φ1(xnu ) . . . φM (xnu ) 

222 However, it is not recommended to directly use the decomposition (13) either because all of 

223 the ill-conditioning associated with matrix kuu(Xu, Xu; θ) is still present in the matrix Λ. We 

224 now use mostly standard numerical linear algebra to isolate some of the ill-conditioning and 

225 develop the HS-SVD. The key step in removing the ill-conditioning is to write the component 

matrices that appear in the eigen-decomposition of the matrix kuu 

Λ1

][ (Xu, Xu; θ) in (13) using 

blocks Φ = (Φ1 Φ2) and Λ = where 
Λ2 ⎤⎡⎤⎡ 

φ1(x1) . . . φnu (x1) φnu+1(x1) . . . φM (x1)⎢⎢⎣ 
⎥⎥⎦ , Φ2 = 

⎢⎢⎣ 
⎥⎥⎦ 

. .. . . . . . . 
. .. . . . . . .Φ1 = , 

φ1(xnu ) . . . φnu (xnu ) φnu+1(xnu ) . . . φM (xnu ) 

∈ Rnu×nu ∈ Rnu×(M−nu) ∈ R(M−nu)×(M −nu)and Φ1, Λ1 , Φ2 , Λ2 . Now, we can write the 

eigen-decomposition of the vector kuu(x, Xu; θ)T in (13) as 

kuu | 

(x, Xu; θ)
T = ϕ(x)T

[ ]
} 

Inu 

−TΛ−1Λ2Φ2
TΦ1 1 {z

ψ(x)T 

and also, we can proceed to construct block matrix kuu 

Λ1Φ1 
T T = ψ(x)TΛ1Φ1 , 

] 

(Xu, Xu; θ) as following 

= Φ

[
Inukuu(Xu, Xu; θ) = ΦΛΦT Λ1Φ

T = ΨΛ1Φ
T 

1 1 . (14) 
Λ2Φ

T 
2 Φ

−TΛ−1 
1 1{z

Ψ 

The rate of decay of the Hilbert-Schmidt eigenvalues determines the smoothness of the

}| 

the faster the eigenvalues decay, the smoother the kernel (and vice versa). Morekernel kuu: 

231 specifically, if the eigenvalues decay at an algebraic rate of O−β+1+τ with β ∈ N0 and arbi-

232 trarily small τ > 0, then the kernel will be a finite smooth kernel in Cβ , and if the eigenvalues 

233 decay geometrically, then the kernel will be infinitely smooth, even analytic. Moreover, the 

234 smoothness of the kernel determines the rate of convergence of the kernel-based approximation 
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235 method. In this case the general rule of thumb is: the smoother the kernel, the faster the rate 

236 of convergence of the approximation method (for more information, see [16]). 

The Mercer’s theorem guarantees the uniform convergence of the series (11) provided 

that Tkuu is a positive operator. Also, the Mercer series provides the best approximation 

for the selected kernel in terms of various metrics, in particular, the mean-square error [16]. 

Generally, our kernel kuu is positive definite and thus Tkuu is a positive operator. It would 

be plausible to assume the linear operators Lζ are continuous (bounded) and due to the 

uniform convergence of the series (11), we can proceed to construct an approximation for 
′ Lζ ′ ′ ; θ, ζ) = ′ kuu(x, x ; θ), kfu(x, x ; θ, ζ) = Lζ kx uu 

′ ′ kuf (x, x (x, x ; θ) and kff (x, x ; θ, ζ) = x 

LζxLζx 
′ 

′ kuu(x, x ; θ) using Mercer series and construct block matrices of K as following ⎡ ⎤ 
Inf

kuf (Xu, Xf ; θ, ζ) = Φ ⎣ ⎦ Λ1Φ
T 

′ = ΨLx ′ Λ1Φ
T 

′ ,−TΛ−1 1,Lx 1,Lx 
Λ2Φ

T 
2,Lx ′ Φ ′ 

1,Lx 1 | {z }
Ψ ′ Lx ⎡ ⎤ 

T⎣ ⎦kff (Xf , Xf ; θ, ζ) = ΦLx 
Inf 

Λ1Φ
T 
1,Lx ′ = Ψ ′ Λ1Φ ′ ,LxLx 1,Lx 

Λ2Φ
T 

′ Φ
−T 

′ Λ
−1 
12,Lx 1,Lx | {z }

Ψ ′ LxLx 
237 [ ]

Inu Tkfu(Xf , Xu; θ, ζ) = ΦLx Λ1Φ
T = ΨLx Λ1Φ1 , (15)1 

Λ2Φ
T 
2 Φ

−TΛ−1 
1 1 | {z }

ΨLx 

238 where ⎡ ⎤ 
x 
1 ϕ(x)

T ⎢ ⎥ .⎢ . ⎥ΦLx = .⎣ 

L 

= 
( )
Φ1,Lx Φ2,Lx .⎦ 

ϕ(x)TxLnf 

239 Indeed, to achieve more stability, the QR decomposition is used as ( ) ( ) 
−TΦLx = Φ1,Lx Φ2,Lx = Q R1,Lx R2,Lx ⇒ Φ2,Lx 

TΦ1,Lx = R2 
T 
,Lx QTQR− 

1, 
T 
Lx = R2 

T 
,Lx R− 

1, 
T 
Lx . 

(16) 

240 For example, using the relation above, it can safely be concluded that the correction matrix 
−TΛ−1 

241 [Λ2Φ2,Lx TΦ1,Lx ] is as1 

[Λ2Φ2,Lx 
TΦ1,Lx 

−TΛ−1] = [Λ2R
T 
2,Lx R1 

− 
,L 
T 

x Λ−1].1 1 
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242 Now, using the relations (14–15), the covariance matrix K can be decomposed as follows [ ]
TΨΛ1Φ

T
1 ΨLx ′ Λ1Φ1,Lx ′ 

K = ,
T TΨLx Λ1Φ1 ΨLx ,Lx ′ Λ1Φ ′ 

1,Lx 

243 ⎡ ⎤[ ][ ] 
ΦTΨ Ψ ′ 0 0Lx Λ1 ⎣ 1 ⎦ T = = ΨΛ1Φ1 . (17) 

ΨLx Ψ ′ 0 0 ΦT 
′ Lx ,Lx Λ1 1,Lx | {z } | {z } | {z }

Ψ Λ1 ΦT 
1 

244 To demonstrate the usefulness of the HS-SVD, we write the posterior mean (9) as 

ū(x) = kT(x)K−1 y = ψT(x)b,u u 

f(x) = kf (x)
TK−1 y = ψf 

T(x)b, (18) 

245 where b = Ψ−1y, ψu 
T(x) = [ψ(x)T ψLx ′ (x)

T] and ψf 
T(x) = [ψLx (x)T ψLxLx ′ (x)

T] and also, [ ]
InuψLx (x)T = ϕLx (x)T , ϕLx (x)T = Lxϕ(x)T ,−TΛ−1TΦ1Λ2Φ2 1 ⎡ ⎤ 
Inu 

ψ ′ (x)T = ϕ(x)T ⎣ ⎦ ,Lx 
Λ2Φ

T 
2,Lx ′ Φ ′ −TΛ−1 

1,Lx 1 ⎡ ⎤ 
Inu 

ψ ′ (x)T = ϕLx (x)T ⎣ ⎦ . LxLx −TΛ−1Λ2Φ
T 

′ Φ ′ 
2,Lx 1,Lx 1 

246 Now, the ill-conditioning due to the dangerous Λ1 
−1 term, introduced by applying K−1 , is 

247 removed analytically through the Λ1 term present in ku 
T(x) = ψT(x)Λ1Φ1 

T or kf 
T(x) = u 

248 ψf 
T(x)Λ1Φ

T 
1 . Also, it should be noted that computation of the posterior variances is sub-

249 ject to the same ill-conditioning as any expression involving K−1; this ill-conditioning can be 

250 similarly resolved with 

vu 
2(x0) = kuu(x0, x0) − ku 

T(x0)K
−1ku(x0) = k(x0, x0) − ψu 

T(x0)Ψ
−1ku(x0), 

2 vf (x0) = kff (x0, x0) − kf 
T(x0)K

−1kf (x0) = Lxζ 
0 
Lxζ 

0 
k(x, x) − ψf 

T(x0)Ψ
−1kf (x0). 

(19) 

251 As a result, the main portion of the ill-conditioning can be resolved in the posterior variances 
2 2 

252 vu(x) and vf (x) using (19). 
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253 3.2 Stable likelihood function computation 

254 For the likelihood function defined in (6), when K becomes ill-conditioned (e.g., for small 

255 ε, since the use of “flatter” kernels will lead to more and more similar entries in the system 

256 matrix K, and therefore to potential numerical problems due to the ill-conditioning of K 
TK−1 

257 [16]), computing y y and det K by standard methods (such as Cholesky factorization) 

258 may be inaccurate, leaving us unable to use the MLE to judge the validity of the small ε 

259 for our estimation, despite the fact that (18) would allow us to make posterior predictions 

260 accurately. Using the HS-SVD decomposition of the covariance matrix K in (17), we can 

261 follow a similar strategy as in Subsection 3.1 to the stable computation of log likelihood 

262 function (6). Computing log det K is relatively straightforward using K = ΨΛ1Φ
T 
1 , as 

log |K| = log |Ψ| + log |Λ1| + log |ΦT 
1 |. (20) 

263 It should be noted that Λ1 is diagonal, and therefore the very small eigenvalues can be handled 
TK−1 

264 by taking their logarithms. A similar strategy will allow us to compute y y . Applying 
TK−1 

265 Ψb = y and the Hilbert–Schmidt SVD (17) to y y gives 

TK−1
1 )

−1Ψb = bTΨTΦ−T −1b.y y = (Ψb)T(ΨΛ1Φ
T Λ1 (21)1 

Now, we are in a situation to find the Hilbert–Schmidt decomposition of the negative log 

marginal likelihood in (6) using (20) and (21) as follows 

−TΛ−1NLMLHS(ζ, θ) = 
1 
bTΨTΦ b1 12 

1 N 
+ (log |Ψ| + log |Λ1| + log |Φ1 

T|) + log 2π. (22)
2 2 

The (hyper)parameters θ and ζ can be trained by employing a Quasi-Newton optimizer 

L-BFGS to minimize the negative log marginal likelihood [6]. To set the hyperparameters 

by minimizing the negative log marginal likelihood, we seek the partial derivatives of the 

marginal likelihood with respect to the (hyper)parameters. The partial derivatives of the 

marginal likelihood with respect to the (hyper)parameters can be calculated by the relation 

∂ 
NLML(ζ, θ) = − 

∂ 
log p(y|ζ, θ) = − 

1 
tr
(
(ααT − K−1) 

∂K )
,

∂θj ∂θj 2 ∂θj 

K−1where α = y [9]. Equivalent relation for the partial derivatives of Hilbert–Schmidt 

decomposition of the negative log marginal likelihood in (22) is as 

∂ 1 ( ( )∂(ΨΛ1Φ1 
T))

NLMLHS(ζ, θ) = − tr β bbTβT − Ψ−1 ,
∂θj 2 ∂θj 
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T)−1 
266 where β = (Λ1Φ1 . 

267 In the following, we explain how the HS-SVD alternative bases can reduce the instabilities 

268 in (hyper)parameter estimation and posterior prediction using the GPs. The first step in 

269 creating a stable basis is to study the structure of the system in (13) and asking the question 

270 Why is this system ill-conditioned? 

271 It would seem that because the eigenfunctions φn are orthogonal the matrix Φ in relation 

272 (13) should be relatively well behaved. Therefore, the ill-conditioning appears to instead 

273 originate in the diagonal matrix Λ which contains block matrices Λ1 and Λ2, whose values are 

274 the eigenvalues of K and its 2-norm condition number is as 

λ1
cond(Λ) = . (23)

λM 

275 This condition number is not directly relevant, since the entire Λ matrix is never inverted, but 

276 it serves to give an idea of the delicate nature of the K matrix. 

In fact, the rate of decay of the Hilbert-Schmidt eigenvalues determines the smoothness of 

the kernel kuu. Therefore, in the course of using more smooth kernels, the problem of instability 

will be raised more seriously according to relation the (23). This connection between the ill-

conditioning of the system and the smoothness of the kernel has been studied in [16]. It would 

appear then that the presence of the Λ matrix is the main source of ill-conditioning. The key 

step in removing the ill-conditioning is to write the component matrices that appear in the 

eigen-decomposition of K as (17). Therefore, instead of solving the standard systems (6) and 

(9) which have the potential of yielding inaccurate and unreliable results, we now solve the 

transformed systems (18), (19) and (22), which are more numerically stable. In addition, we 

always make sure to simultaneously apply the matrices Λ1 and Λ2 required in the computation 

of the corrector matrices [Λ2Φ
T 
2 Φ

−TΛ−1] and [Λ2Φ
T 
2,Lx Φ1 

− 
,L 
T 

x Λ−1]. For example, in MATLAB 1 1 1 

Λ−1software, [Λ2Φ
T 
2 Φ

−T ] is computed as follows 1 1 

bsxfun(@rdivide, Λ2, Λ1). ∗ (Φ2/Φ ′ 1). 

277 This minimizes the chances of producing an overflow or underflow error caused, respectively, 

278 by dividing the small eigenvalues at the end of Λ1 or multiplying by the even tinier ones in 

279 Λ2. On the other hand, using the QR decomposition (16) is sometimes preferable to directly 

280 invert ΦT 
1,Lx ′ because it may be a more stable computation than LU factorization, which may 

281 be preferable depending on the scale of the various eigenfunctions [31]. Therefore, the use 
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282 of alternative HS-SVD bases (with or without the optional QR step) allows us to isolate the 

283 ill-conditioning primarily in the Λ1 factor and resolve the corrector matrices safely and recom-

284 mended for the stable computation of optimal parameters and operators posterior predictions, 

285 especially in the kernel flat-limit. 

286 4 Numerical experiments 

287 The main purpose of the numerical results is to point out the efficiency, validity and stability 

288 of the method presented in this paper to estimate (hyper)parameters and operators posterior 

289 prediction in a numerically stable way as presented here. In the following, we present a series 

290 of numerical experiments that demonstrate the effectiveness of our approach. We have imple-

291 mented the process of (hyper)parameters estimation by employing an L-BFGS optimization 

292 method and posterior prediction of various differential and integral linear operators in new 

293 points as well. Using various figures, the numerical stability of calculation of MLE in the HS-

294 SVD method in comparison with the direct method is shown. Also, to show the accuracy and 

295 numerical stability of posterior mean of the HS-SVD method in comparison with the standard 

296 method, the maximum absolute error (absolute error) graphs of the posterior means and the 

297 condition number of the covariance matrices for both methods are presented. The absolute 

298 error between the exact function u(x) and the predicted mean ū(x) is described as below: 

max |u(xi) − ū(xi)|. 
1≤i≤N 

299 It should also be noted that in the following examples, we have ignored the constant term 
N 

300 2 log 2π in the calculation of the likelihood function (6). In fact, in calculating of NLML, 

301 we have used the relations Dmle = NLML(ζ, θ) − N log 2π for standard (direct) computation 2 

302 (labeled in the figures with Direct Likelihood) and HSmle = NLMLHS(ζ, θ) − N log 2π for HS-2 

303 SVD computation (labeled in the figures with HS-SVD Likelihood) as the likelihood criterion. 

304 Note that in all figures and tables to compare ”Direct Likelihood” and ”HS-SVD likelihood” 

305 the NLML (Negative Log Marginal Likelihood) quantity is used such that a higher direct 

306 likelihood means a lower NLML. 

307 Example 1 Consider the one dimensional fractional equation 

RL Lα
x u(x) = −∞Dx

α u(x) − u(x) = f(x), 
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308 where α ∈ R and RL is defined in the Riemann-Liouville sense [32]. As pointed out−∞Dx
α 

309 by Raissi et al. in [6], ”Fractional operators often arise in modeling anomalous diffusion 

310 processes. Their non-local behavior poses serious computational challenges as it involves 

311 costly convolution operations for resolving the underlying non-Markovian dynamics”. It should 
RL [RL 

312 be noted that RL ] and RL φ(x) were obtained using generalized −∞Dx
αkuu, −∞Dy

α 
−∞Dx

αkuu −∞Dx
α 

313 Gauss-Laguerre quadrature method, involving a weight function of the form xαgGL e−x for 

314 αgGL > −1 as ∫ ∞ ∫ ∞ n∑ 
αgGL e −x[e x −αgGL f(x)]dx ≃ xi −αgGL f(x)dx = x x wie xi f(xi). (24) 

0 0 i 

315 We use the Golub-Welsch algorithm to find the nodes, but we compute the weights by evalu-

316 ating the generalized Gauss-Laguerre polynomial at these nodes for higher relative accuracy. 

317 In practice, it is essential for αgGL to match the fractional part of power of the monomial 

318 in the integrand f , as the remainder yields a smooth function (for more information, see 

319 [23]). However, the presented stable machine learning method using the GP overcomes these 

320 computational challenges, and we can seamlessly handle all such linear cases without any 

321 modifications. In this example, we have used a generalized periodic spline kernel on a set of 

322 one-dimensional data in the interval [0, 1]. This kernel has eigenvalues and eigenfunctions { 
((2jπ)2 + ε2)(−β) n = 2j − 1,

λn = 
((2jπ)2 + ε2)(−β) n = 2j, 

323 { √ 
2 sin(2jπx) n = 2j − 1,

φn(x) = √ 
2 cos(2jπx) n = 2j, 

324 for j = 1, 2, . . .. It should also be emphasized that we have used the roots of the squared 

325 exponential kernel eigenfunctions as training points labelled as ”Roots”. We create data 

326 values {xu, yu}, {xf , yf } by sampling the test function 

4iπx 1 ( (2π + i)e 2π − i )−2πix u(x) = e √ + √ 
2 2 2−1 + (2iπ) −1 + (−2iπ) 

√ 
327 and f(x) = 2π cos(2πx)−sin(2πx), for α = 2 which the training points chosen in the interval 

328 [0, 1]. It should be noted that to illustrate the instability and computational challenges of the 

329 direct approach and the efficiency of the HS-SVD approach, various number of Roots data 
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330 points are chosen in the interval [0, 1]. In Table 2, the absolute error, condition number, 

331 the optimal values of α and likelihood criterion are presented for different values of (nu, nf ) 

332 of Roots data points. It should be made clear here that in Table 2, the optimal values of 

333 (hyper)parameters are obtained and then the absolute error for the posterior mean of the 

334 fractional operators in new points using the optimal (hyper)parameters are reported. The 

335 likelihood criterion is evaluated for α spaced uniformly in [.1, 5], ε spaced logarithmically 

336 in [.1, 10] and β = 3 using both the direct approach (labeled Direct Likelihood) based on 

337 Cholesky decomposition and HS-SVD method (labeled HS-SVD Likelihood) in Fig. 1 and 

338 and specifically 2 which provides more accurate and more stable results. A similar pattern 

339 is observed for other values of β. In addition, as the number of data points increases, the 

340 instability of the direct method increases. This issue is not brought to the forefront here 

341 because it seems to be redundant. In fact, we have demonstrated the training process to learn 

342 the optimal α and ε parameters simultaneously using both direct and HS-SVD techniques, in 

343 Figs. 1 and 2. we have also made posterior predictions at Neval=100 evenly spaced points 

344 in the domain to calculate the error value logarithmically for different values of α and ε with 

345 β = 3 to show the validity of the HS-SVD method. Due to the error figures, we have found out 

346 that the HS-SVD method correctly determines a region for an ”optimal” (hyper) parameter 

347 estimate α and ε, while we have noticed instability in the direct approach. It is clear that by 

348 increasing the number of training points, the direct approach in parameters estimation and 

349 operators posterior prediction loses accuracy and suffers a complete breakdown because K−1 

350 is too ill-conditioned. Absolute error between the true fractional order α and the estimated 

351 one (top) and also between the exact function u(x) and the predicted mean ū(x) (middle) in 

352 the logarithmic scale as a function of the total number of training points for u(x) and f(x) 

353 denoted by nu and nf and condition number of covariance matrix K and matrix Ψ (bottom) 

354 using both approaches demonstrated in Fig. 3. As Figs. 1,2 and 3 show, in contradiction 

355 with the notion that increasing the number of data points leads to an increase in the accuracy 

356 of calculations, we see that this does not happen in direct method because of ill-conditioning 

357 covariance matrix K−1 . While in HS-SVD method, by increasing the number of data points, 

358 in addition to maintaining stability, the accuracy of the results also increases. It is apparent 

359 that the stably computed likelihood parametrization criterion, HSmle, identifies a region for 

360 an ”optimal” (hyper)parameters estimate that matches the region of smallest error. According 

361 to the Figs. 1, 2 and 3, we can see the HS-SVD algorithm learns the parameter α and ε to have 
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362 ”optimal” values, while the direct maximum likelihood estimator does not precisely locate it. 

363 That’s because the MLE direct computation loses accuracy and suffers a complete breakdown 

364 because K−1 is too ill-conditioned. Furthermore, that indicates the satisfactory performance 

365 of the method presented in this paper for different trainings. 

Figure 1: Comparison of the Negative Log Marginal likelihood (NLML) criterion and the error 

of the posterior mean computed by the direct method (right) and HS-SVD method (left) for 

β = 3 and different values ε and α. The top row shows the error of the posterior mean based 

on nu = nf = 10 Roots data points using generalized periodic spline kernel displayed. The 

bottom row displays the corresponding likelihood estimates for Example 1. 
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Figure 2: Comparison of the Negative Log Marginal likelihood (NLML) criterion and the error 

of the posterior mean computed by the direct method (right) and HS-SVD method (left) for 

β = 3, nu = nf = 20 and different values ε and α for Example 1. 
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Figure 3: Absolute error between the true fractional order α and the estimated one (top), the 

exact function u(x) and the predicted mean ū(x) in the logarithmic scale as a function of the 

total number of training points for u(x) and f(x) (middle), denoted by nu and nf is shown 

with both methods. Condition number of covariance matrix K defined in (17) and matrix 

Ψ (bottom) with β = 3 in the logarithmic scale is demonstrated using Roots data points for 

Example 1. 
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Table 2: Parameter estimation α and absolute error (error) of fractional operators posterior prediction 

for optimal (hyper)parameters obtained with direct and HS-SVD methods using different number of 

Roots data points for Example 1. 

HS-SVD 

method 

Direct 

method 

(nu, nf ) α HSmle cond(Ψ) error α Dmle cond(K) error 

(5, 5) 

(10, 10) 

(20, 20) 

4.8651 

2.0353 

1.4043 

-166.3783 

-577.3515 

-1.0783e+03 

5.5679e+16 

2.3678e+18 

1.4259e+22 

0.4518 

0.0938 

0.0057 

5.000 

5.0000 

3.8715 

568.6083 

939.1081 

195.8455 

2.7907e+41 

1.4683e+44 

7.2055e+45 

4.7185e-01 

4.7185e-01 

1.1283e+02 

366 Example 2 Consider the one dimensional fractional equation 

Lα 
0 D

.75 u(x) = C u(x) + αu(x) = f(x),x x 

367 where α ∈ R and C 
0 D

α are defined in the Caputo sense [32]. In this example, we have usedx 

368 periodic spline kernel on a set of one-dimensional data. Also, the fractional derivatives of the 

0 D
.75 

0 
C D.75 

0 D
.75 

0 D
.75 

369 kernel and C x kuu, y [C x kuu] and C x φ(x) are approximated based on power series 

370 expansion with Maple software by the command “fracdiff” as “fracdiff(kuu(x, y), α, method = 

371 series, method-options = [about= a]”. The optional parameters for this method to be specified 

372 in method-options, are about= a and order = o. The value of a specifies the point on how 

373 to expand the series and o specifies the accuracy or order of the series. For convenience, the 

374 order o = 20 and the starting point of the interval a = 0 are considered. 

The periodic spline kernel has eigenvalues and eigenfunctions { 
(2jπ)(−2β) n = 2j − 1,

λn = 
(2jπ)(−2β) n = 2j, { √ 

2 sin(2jπx) n = 2j − 1,
φn(x) = √ 

2 cos(2jπx) n = 2j, 

375 for β ∈ N, j = 1, 2, . . .. We simulate data values {xu, yu}, {xf , yf } by sampling the test 

376 function u(x) = sin(2πx) and 

f(x) = 6.9320 
√ 
4 x 1F2(1.0; 0.625, 1.125; −9.86960 x 2) + 2 sin(2πx) 
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377 for α = 2 and nu = nf = 10 Chebyshev data points are chosen in the interval [0, 1] where 

378 1F2 is the generalized hypergeometric function. Likelihood criterion is obtained for the values 

379 of β ∈ {1, 2 . . . , 10} and α spaced logarithmically in [10−4 , 10] using both the direct method 

380 (labelled Direct Likelihood in Fig. 4) based on Cholesky decomposition, and the more elaborate 

381 for relation (22) which provide more stable results (labelled HS-SVD Likelihood). The data is 

382 then used to make posterior predictions at Neval =100 evenly spaced points in the domain, 

383 and the absolute error compared to u(x) displayed in Fig. 5. As Fig. 4 shows, the posterior 

384 mean (top row), as well as the likelihood criterion (bottom row), can be stably and reliably 

385 computed with the help of the HS-SVD (left column)-as compared to the direct approach, 

386 displayed in the right column, and computed using the standard methods such as the Cholesky 

387 decomposition. According to Fig. 4, we can observe that the HS-SVD algorithm correctly 

388 learns the parameter α and β to have ”optimal” values, while the direct MLE is near the 

389 optimal error and it does not exactly locate it. Also, According to Fig. 5, we realize that the 

390 HS-SVD method determines a more precise region for ”optimal” (hyper) parameters α and β. 

391 In addition, in Table 3 the absolute error and likelihood criterion for different values of (nu, nf ) 

392 of Chebyshev data points are presented. In Table 3, the optimal value of the parameter α is 

393 presented, and the absolute error for the posterior mean of the fractional operators in new 

394 data points using the optimal (hyper) parameters are reported. 

22 



Figure 4: Comparison of Negative Log Marginal likelihood (NLML) criterion computed with 

both methods. The top row shows the error of the posterior mean based on Chebyshev data 

points using periodic spline kernel. The bottom row displays the corresponding likelihood 

estimates. 
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Figure 5: Absolute error for Example 2 using periodic spline kernel computed via the HS-SVD 

approach (left) and direct approach (right). 

Table 3: Parameters estimation α and absolute error of fractional operators posterior prediction for 

optimal (hyper) parameters obtained with direct and HS-SVD methods by Chebyshev data points for 

Example 2. 

HS-SVD 

method 

Direct 

method 

(nu, nf ) α HSmle cond(Ψ) error α Dmle cond(K) error 

(5, 5) 

(10, 10) 

(20, 20) 

1.9307 

1.9307 

1.9698 

-46.6439 

-83.5802 

-125.819 

6.1427e+03 

2.6829e+05 

1.9509e+07 

0.0152 

0.0108 

0.0015 

0.7543 

0.0910 

1.2068 

-26.5178 

-71.1816 

-63.9671 

1.8353e+15 

7.8813e+16 

4.0022e+17 

11.4753 

0.5588 

0.3404 

395 Example 3 Consider the following differential equation, 

d2 αx d Lα u(x) = u(x) + u(x) + u(x) = f(x).x dx2 x2 + 1 dx 

Note that the functions u(x) = −2 cos(4πx) + sin(4πx) and 

αx(8π sin(4πx))
f(x) = 32π2 cos(4πx) − 16π2 sin(4πx) + 

x2 + 1 
αx(4π cos(4πx)) − 2 cos(4πx) + sin(4πx) 

x2 + 1 
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satisfy the equation. We create data values {xu, yu}, {xf , yf } by sampling the test function 

u(x) and f(x) with nu = nf = 40 Chebyshev data points are chosen in the interval [−1, 1] and 

α = 6. In this example we have used Chebyshev kernel with eigenvalues and eigenfunctions { 
1 − a n = 0,

λn = 
a(1−b)bn 

b n = 1, 2, . . . √ 
φn(x) = 2 − δn0Tn(x), 

396 where Tn are Chebyshev polynomials of degree n. Likelihood criterion is obtained for values 

397 of a = .5 and b spaced uniformly in [10−4 , .9] using both methods in Fig. 6. The data is 

398 then used to make predictions at Neval =100 evenly spaced points in the domain, and the 

399 absolute errors compared to u(x) are displayed in Figs. 6 and 7. As Fig. 6 shows, the posterior 

400 mean and the likelihood criterion can stably and reliably be computed with the help of the 

401 HS-SVD -as compared to the direct approach, computed with the standard methods. It is 

402 apparent that the stably computed likelihood parametrization criterion identifies a region for 

403 an ”optimal” (hyper) parameters estimate α and b that matches the region of the smallest 

404 error in Figs. 6 and 7. Figure 8 indicates Maximum error between exact function and predicted 
¯ 405 mean ū(x), exact function and predicted mean f(x) in the logarithmic scale as a function of 

406 the total number of training points u(x) and f(x), denoted by nu and nf , with both methods 

407 and also, the condition number of covariance matrix K and matrix Ψ based on Chebyshev 

408 data points. It also reveals that by increasing the number of data points the accuracy of 

409 calculations increases. Needless to say, this does not hold true in the direct method. As far 

410 as the HS-SVD method is concerned, an increase in the number of data points leads to an 

411 increase in the accuracy of the results and also the maintenance of the stability. Of course, 

412 whenever K is not severely ill-conditioned (usually this is true for kernels with a low level of 

413 smoothness such as Matern kernels or compactly supported Wendland kernels) it is easier and 

414 more convenient to work with its Cholesky factorization K = LLT as a fundamental tool in 

415 matrix computations. 

25 



Figure 6: Comparison of Negative Log Marginal likelihood (NLML) criterion computed with 

both methods. The top row shows the error of the posterior mean based on Chebyshev 

data points using Chebyshev kernel. The bottom row displays the corresponding likelihood 

estimates. 
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Figure 7: Absolute error for Example 3 using Chebyshev kernel computed via the HS-SVD 

approach (left) and direct approach (right). 
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Figure 8: Maximum error between exact function u(x) and predicted mean ū(x) (top), exact 
¯function f(x) and predicted mean f(x) (middle) in the logarithmic scale as a function of the 

total number of training points u(x) and f(x), denoted by nu and nf , are demonstrated with 

HS-SVD and direct methods. The condition number of covariance matrix K and matrix Ψ 

(bottom) in the logarithmic scale are demonstrated using Chebyshev data points for Example 

3. 
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416 Example 4 Consider the following integro-differential equation, ∫ xd Lα u(x) = u(x) + 2u(x) + α u(t)dt = f(x).x dx 0 

417 The functions u(x) = sin(2πx) and 

cos(2πx) − 1 
f(x) = 2π cos(2πx) + 2 sin(2πx) − α 

2π 

418 satisfy the equation. We have used the data {xu, yu}, {xf , yf } generated from u(x) and f(x) 

419 with nu = nf = 20 Chebyshev data points chosen in the interval [0, 1] for α = 3. We 

420 have demonstrated the effectiveness of the HS-SVD method using the generalized periodic 

421 spline kernel. Likelihood criterion is evaluated for β = 3 and α and ε uniformly spaced in 

422 [.01, 10]. The data is then used to make predictions at Neval=100 evenly spaced points in the 

423 domain, and the absolute error is displayed in Fig. 9. Also, likelihood criterion is evaluated 

424 for the values of ε logarithmically spaced in [10−2 , 102] in Fig. 10. This data is then used 

425 to make predictions for different values β at Neval=100 evenly spaced points in the domain, 

426 and the absolute errors are displayed in Fig. 10. It is apparent that the HS-SVD method 

427 suffers no ill-conditioning. The maximum likelihood estimator is near the ”optimal” error, 

428 though it does not precisely locate it. It is clear that by increasing the values of β the MLE 

429 direct computation loses accuracy and suffers a complete breakdown because K−1 is too ill-

430 conditioned. Also, the absolute errors between the true parameter α and the estimated one, 
¯ 431 between the exact functions u(x) and f(x) and the predicted means ū(x) and f(x) and also 

432 the condition number of covariance matrix K and matrix Ψ using Chebyshev data points are 

433 demonstrated in Fig. 11. In Table 4, using the optimal (hyper) parameters the absolute error, 

434 the condition number, the optimal values of α and the likelihood criterion are presented for 

435 different values of (nu, nf ). 
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Figure 9: Comparison of Negative Log Marginal likelihood (NLML) criterion computed with 

both methods for Example 4. The top row shows the error of the posterior mean based on 

Chebyshev data points using Chebyshev kernel. The bottom row displays the corresponding 

likelihood estimates. 
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Figure 10: Comparison of the absolute error and MLE estimators of the optimal shape param-

eter ε for Example 4 using generalized periodic spline kernel computed via both approaches 

for different values of β. 
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Figure 11: The absolute error between the true parameter α and the estimated one (A), 

between exact function u(x) and predicted mean ū(x) in the logarithmic scale (B), between 
¯ exact function f(x) and predicted mean f(x) in the logarithmic scale (C) are demonstrated 

with both methods. The condition number of covariance matrix K and matrix Ψ in the 

logarithmic scale is demonstrated using Chebyshev data points for Example 4 (D). 
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Table 4: Parameter estimation α and the absolute error of operator posterior prediction for optimal 

(hyper)parameters obtained with both methods using Chebyshev data points for Example 4. 

HS-SVD 

method 

Direct 

method 

(nu, nf ) α HSmle cond(Ψ) error α Dmle cond(K) error 

(5, 5) 

(10, 10) 

(20, 20) 

2.98 

3.008 

3.0016 

-225.93 

-565.1892 

-309.2043 

1.5863e+05 

2.0447e+11 

5.3467e+16 

0.033 

0.0085 

0.0013 

3.0665 

2.9365 

3.8837 

-32.7392 

-62.1680 

23.6461 

5.6795e+09 

2.4611e+13 

1.5684e+20 

120.0447 

590.8914 

35.3956 

436 Example 5 (Transport Equation) Consider the following differential equation, 

∂u(x, t) ∂u(x, t)Lζ u(x, t) = + ζ = f(x, t).(x,t) ∂t ∂x 

437 The functions u(x, t) = exp(−x) sin(2πt) and 

f(x, t) = 2π exp(−x) cos(2πt) − ζ exp(−x) sin(2πt) 

satisfy the equation. We have used the data {xu = (xu, tu), yu}, {xf = (xf , tf ), yf } generated 

by yu = u(xu, tu) and yf = f(xu, tu) with nu = nf = 32 Halton data points chosen in the 

interval [0, 1]2 for ζ = 1. We have also demonstrated the effectiveness of the HS-SVD method 

using Squared Exponential kernel with eigenvalues and eigenfunctions √ ( )n−1 
α2 ε2λn = n = 1, 2, . . .

α2+δ2+ε2 α2+δ2+ε2 

−δ2x2 
φn(x) = γne Hn−1(αβx), 

where the Hn are Hermite polynomials of degree n, and √ ( ) 1 α2 

β = 1 + ( )2 , γn = , δ2 = (β2 − 1), 
2ε 4 β 
α 2n−1Γ(n) 2 

are constants such that they are defined in terms of the shape parameter ε and the parameter 
α −α2xα in the weight function ρ(x) = √ 
π e 

2 
of the Hilbert-Schmidt integral operator. The 

multivariate case is easily obtained using the tensor product form of Squared Exponential 

kernel, i.e., for d-variate functions we have √ 
α2 ( 

ε2 
j 

α2+δ2+ε2 
jjj

)nj −1 
,= Π2 = Π2λn j=1λnj j=1 

j 

α2+δ2+ε2 
jjj 
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and 
−δ2 2 

j xφn(x) = Π2 (xj ) = Π2 ej=1φnj j=1γnj 
j Hnj −1(αj βj xj ), 

438 where x = (x1, x2) ∈ R2 . For more on tensor product kernels we point the reader to [16, 22]. 

439 Note that this formulation allows us to take different shape parameters εj and integral 

440 weights αj for different space dimensions (i.e., kuu may be an anisotropic kernel), or we can 

441 take them all equal, i.e., αj = α and εj = ε, j = 1, 2 (and then kuu is isotropic or radial) [22]. 

442 In the example, we restrict ourselves to using the same αj and εj in all dimensions. Likelihood 

443 criterion is evaluated by a fixed value of α = 3 and a grid of 625 different values of [ζ, ε] with 

444 each component uniformly spaced in [.01, 10]. The data is then used to make predictions at 

445 Neval=81 evenly spaced points in the domain. The absolute error and likelihood criterion are 

446 displayed in Fig. 12. In Table 5, the absolute error, the condition number, the optimal values 

447 of ζ and the likelihood criterion are presented for different values of (nu, nf ). 

Table 5: Parameter estimation ζ and the absolute error of operator posterior prediction for optimal 

(hyper)parameters obtained with both methods using Halton data points for Example 5. 

HS-SVD 

method 

Direct 

method 

(nu, nf ) ζ HSmle cond(Ψ) error ζ Dmle cond(K) error 

(8, 8) 

(16, 16) 

(32, 32) 

0.7 

0.8577 

1.0771 

-60.2578 

- 130.6324 

-987.4220 

2.3783e+04 

5.6463e+04 

5.3892e+10 

0.0577 

0.0205 

.002524 

10 

3.0665 

7.4296 

0.2091 

-32.7392 

-495.7323 

6.9541e+12 

5.6795e+14 

2.7838e+17 

1.0475 

0.5317 

1.03254 

34 



Figure 12: Comparison of Negative Log Marginal likelihood (NLML) criterion computed for 

α = 1 with both methods for Example 5. The top row shows the error of the posterior mean 

based on Halton data points using Squared Exponential kernel. The bottom row displays the 

corresponding likelihood estimates. 

448 5 Conclusion 

449 In this paper, we made the unified framework to deal with parametric linear operational 

450 equation in (1) which was probabilistically approximated by employing the GPs, and was made 

451 computationally more stable and reliable by developing a novel computational strategy for 

452 more adaptive parameters and hyperparameters learning leading to more accurately predicting 
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453 operators at some unseen operational data points. The standard computational strategies 

454 suggested for solving the above linear inverse problems would usually become severely ill-

455 conditioned to estimate the model parameters and hyperparameters, particularly when the 

456 number of data points increase, and the flat kernels (e.g., the squared exponential kernel 

457 with a small shape parameter, ε) are used. It is evident that by increasing the number of 

458 the observed data, the direct approach to estimating parameters and hyperparameters and 

459 predicting the operators would become less accurate, and it does not then correctly identify 

460 a region for ”optimal” (hyper)parameters that match the region of the smallest error. As 

461 a result, it will suffer a complete breakdown, because K−1 is too ill-conditioned. In this 

462 paper, we proposed an alternative computational approach using the HS-SVD at which the 

463 computation of the likelihood function becomes more stable, and the determination of the 

464 MLEs for optimal posterior predictions is now possible. It is thus apparent that the HS-SVD 

465 method correctly identifies a region for ”optimal” (hyper)parameters that match the region of 

466 the smallest error. The proposed approach was validated by illustrating it in several benchmark 

467 problems and various kernels with different attributes. The numerical illustrations confirm the 

468 stability of the proposed method, particularly when the number of the observed data points 

469 increase, and the flat kernels are used when the standard computational strategies reviewed 

470 above would be unable to handle. The absolute error, condition number, the optimal values 

471 of (hyper)parameters and also likelihood criterion are presented for different number of data 

472 points for both approaches of direct and HS-SVD. We found out that the HS-SVD method 

473 correctly determines a region for an ”optimal” (hyper) parameters estimate, while instability 

474 was witnessed in the direct approach. It was clear that by increasing the number of training 

475 points, the direct approach in parameters estimation and operators posterior prediction loses 

476 accuracy and suffers a complete breakdown because K−1 is too ill-conditioned. Needless 

477 to say, the process of reducing the condition number, by the HS-SVD approach, also varies 

478 from one problem to another, depending on the type and nature of the model, the number 

479 of training points and even the type of the training points (e.g., Chebyshev points, Halton 

480 points, random points and and so forth). Therefore, the ill-conditioning improvement in the 

481 various examples may be different. 

482 Future researchers are highly recommended to investigate the technique introduced in this 

483 paper for the problem of learning nonlinear operational equations as discussed in [5]. The main 

484 problem in nonlinear operational equations is that the stated condition ”linear transformation 
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485 of a GP such as differentiation and integration remains GP” is no longer valid, and a linear 

486 approximation of a nonlinear operator must be used. Furthermore, the results gained from 

487 this study are limited to those special kernels for which a Hilbert-Schmidt SVD is available ( 

488 the collection of positive definite kernels and their known Mercer series are presented in [16]). 

489 Therefore, understanding how a Mercer series with numerically computed eigenvalues and 

490 eigenfunctions affects the quality of these computations can allow this strategy to be applied to 

491 a wider range of kernels (which is currently limited by the availability of the Mercer series [17]). 

492 The work in this paper is limited to low dimension in x, as a tensor product basis is used 

493 in terms of eigenfunctions. This removes an important advantage of kernel methods, which 

494 are formally dimension-independent. Despite this limitation, we still have the advantage over 

495 using regression in a spline basis that we can see the parameters of the operational equations 

496 as kernel hyperparameters and estimate them using a machine learning strategy. At the same 

497 time, in our future studies, we are trying to generalize the proposed method in this paper to 

498 high dimensional problems without being dependent on the tensor product. 
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