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Parkinson’s disease (PD) is a neurodegenerative disorder that affects millions 

of people worldwide. Its slow and heterogeneous progression over time 

makes timely diagnosis challenging. Wrist-worn digital devices, particularly 

smartwatches, are currently the most popular tools in the PD research feld 

due to their convenience for long-term daily life monitoring. While wrist-worn 

sensing devices have garnered signifcant interest, their value for daily practice 

is still unclear. In this narrative review, we survey demographic, clinical and 

technological information from 39 articles across four public databases. Wrist-

worn technology mainly monitors motor symptoms and sleep disorders of 

patients in daily life. We fnd that accelerometers are the most commonly used 

sensors to measure the movement of people living with PD. There are few studies 

on monitoring the disease progression compared to symptom classifcation. We 

conclude that wrist-worn sensing technology might be useful to assist in the 

management of PD through an automatic assessment based on patient-provided 

daily living information. 

KEYWORDS 

Parkinson’s disease, wrist-worn, sensor, daily life, monitoring, management 

1. Introduction 

Parkinson’s disease (PD) is a rapidly growing neurological disorder that a�ects people 
worldwide, especially those over 65 years old. In the past three decades, the social burden 
of PD has doubled due to the ageing of the global population. If this trend continues, the 
predicted number of patients will exceed 12 million in the next 30 years, which will have a 
signifcant economic impact on our society (Rocca, 2018). There is an urgent need to identify 
new e�ective and a�ordable interventions to reduce the impact of PD on patients and society 
(G 2016 Parkinson’s Disease Collaborators, 2018). 

Clinically, PD patients typically present motor symptoms for the frst clinic visit, such 
as rest tremor, bradykinesia, and rigidity. Healthcare professionals can often diagnose PD 
when patients present these classical motor symptoms at a late stage, according to the 
UK Brain Bank Criteria (Calne et al., 1992). Freezing of gait (FoG), posture instability, 
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or gait disturbances are also motor symptoms in daily life but 
aren’t belonging to the currently diagnosed criteria according to the 
UK brain bank. The Braak stages show that some prodromal non-
motor symptoms (NMS), such as constipation and sleep disorder, 
can occur before Lewy bodies (LB) appear in the substantia nigra of 
the brain stem (Rietdijk et al., 2017). Early detection of prodromal 
parkinsonism is crucial to the e�ectiveness of disease-modifying 
interventions. Moreover, emergency measures are insuÿcient to 
stop the disease deterioration in the late phase. Therefore, it is 
essential to track small changes in disease severity during daily 
life and take e�ective action to slow down the progression of 
PD. A personalized disease management plan is considered to 
be an e�ective approach for addressing the highly heterogeneous 
preferences and practical requirements of individual patients. 

Wearable devices are important tools for personalized PD 
management. In the past decade, wearable devices have developed 
rapidly, thanks to the advances in communication technology and 
the Internet of Things (IoT). Remote monitoring of the patient’s 
daily lives with wearable sensing technology can assist healthcare 
professionals to gain insights into patients’ health conditions and 
empower PD patients to improve treatment e�ectiveness and slow 
disease progression (Dorsey and Eric, 2020). Mobile computing 
devices (e.g., smartwatches) have expanded the use of “on-body” 
applications from clinical settings to daily life based on body sensor 
networks (BSN). 

Wrist-worn digital devices, especially smartwatches, are 
currently the most popular smart consumer wearable tools for 
healthcare diagnosis and self-management due to their convenience 
for long-term monitoring (Chakrabarti et al., 2022). In 2021, a 
methodological review surveyed the electronic health (eHealth) 
technologies for PD detection in daily life from the past two 
decades, while the management of symptoms was not investigated 
(Zhang et al., 2021). In 2022, a fve-decade review outlined 
the progress of digital technology and computational techniques 
applied to PD motor symptom monitoring (Chandrabhatla et al., 
2022). Non-motor manifestations of PD, such as sleep disorders 
and depression, can signifcantly decrease patient quality of life 
(QoL), yet are overlooked in this review. A recent systematic review 

highlights the deployed sensorial and algorithmic aspects of PD 
diagnosis and management (Giannakopoulou et al., 2022). These 
reviews do not consider the e�ect of the controlled environment, 
such as a clinic or laboratory on the clinical use of wearable 
devices in PD patients. Some activities of daily living (ADLs) 
mainly occur at home or home-like setting, and sleep quality is 
diÿcult to measure longitudinally in a clinic or lab. It is therefore 
essential to explore the clinical application of commercial wrist-
worn devices for in-home PD monitoring. Wrist-based sensors 
have advantages such as convenience, wear compliance, and relative 
availability in the commercial market. There is a lack of review 
on the use of smartwatches for health telemonitoring from public 
databases, while a survey shows that most PD-related research 
concerns self-management in a laboratory environment (King and 
Majid, 2018). A recent review investigates whether the smartwatch 
can replace the role of a Parkinson’s disease doctor and concludes 
that the immediate implications for patients and clinicians are 
limited (Bloem et al., 2023). Remote digital monitoring of PD 
can become an important development for disease management 
and care. 

Although the telemonitoring of PD using wrist-worn sensing 
has attracted signifcant interest in the research community, 
its value in daily PD management is still unclear. In this 
narrative review, we investigate the potential role of wrist-
worn devices in PD motor and non-motor symptom monitoring 
in a natural, free-living environment. We evaluate the current 
technological progress as well as discuss the potential challenges 
and important future research directions of wrist-based technology 
in managing PD better. 

2. Materials and methods 

2.1. Reference searching method 

This narrative review aims to summarize the current state-of-
art of using wrist-worn technologies for monitoring motor and 
non-motor signs of PD, the di�erent sensor types used in studies, 

FIGURE 1 

Reference selection and inclusion/exclusion procedure for this review. 
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and the potential for these devices in daily practice for the remote 
management of PD. To gather suÿcient information for this 
review, we search for peer-reviewed journal articles from PubMed, 
IEEE Xplore, Web of Science, and Google Scholar using AI-based 

TABLE 1 Included articles and related information. 

10.3389/fninf.2023.1135300 

software ASReview LAB in October 2022. The search includes 
keywords: (“Parkinson” OR “PD” OR “Parkinson’s disease”) AND 
(“daily” OR “daily life” OR “home” OR “daily living”) AND (“wrist” 
OR “wrist-worn” OR “smartwatch” OR “wristband”). 

References First author Cases and 
controls 

Disease duration in years 
(mean ± standard deviation) 

H Y stage LEDD 
(mg/day) 

Binder et al., 2009 Sabine Binder 10 5.6 ± 4.4 1 0 

Naismith et al., 2010 Sharon L. Naismith 30/14 NA NA NA 

Stavitsky et al., 2010 Stavitsky K. 22 NA NA NA 

Roland et al., 2012 Kaitlyn P. Roland 15/15 NA NA NA 

Bolitho et al., 2013 Samuel J. Bolitho 85/21 5.9 ± 5.2 2.0 ± 0.7 641.9 ± 466.3 

Louter et al., 2014 Maartje Louter 45 9.5 ± 6.4 2.5 1089.4 ± 582.9 

Gunn et al., 2014 David G. Gunn 95/48 5.3 (5.5) 2.0 (0.7) 594.5 (489.4) 

Pulliam et al., 2014 Christopher L. Pulliam 15 3.5–17 NA 75–1930 

Ossig et al., 2016 Christiana Ossig 24 NA NA NA 

Klingelhoefer et al., 2016 Klingelhoefer L. 60 NA NA NA 

Wu et al., 2018 Jade Q. Wu 35 NA NA NA 

Pulliam et al., 2018 Christopher L. Pulliam 13 NA 2.6 (0.6) 1367 (768) 

Rosqvist et al., 2018 Kristina Rosqvist 30 NA 4–5 799 (536–973) 

Porta et al., 2018 Micaela Porta 18 9.9 ± 6.0 1.9 ± 0.4 NA 

Silva de Lima et al., 2018 Ana Lígia Silva de Lima 304 NA NA NA 

Isaacson et al., 2019 Stuart H. Isaacson 19/20 NA NA NA 

Lang et al., 2019 Muriel Lang 30 11 ± 5 3.5 NA 

Pradhan and Valerie, 2019 Sujata Pradhan 30/30 7.8 (5.0) 1.5 NA 

Kim et al., 2019 Dong Wook Kim 46 7.6 (6.8) 2.2 (0.6) NA 

Hssayeni et al., 2019 Murtadha D. Hssayeni 19 9.2 ± 3.8 NA 1282.5 ± 459.8 

van Wamelen et al., 2019 Daniel J. van Wamelen 108 7.5 (5.5) 2.9 (1.0) 950.4 (673.8) 

Shah et al., 2020 Vrutangkumar V. Shah 29/27 NA NA NA 

Abrami et al., 2020 Avner Abrami 25 NA NA NA 

Pfster et al., 2020 Franz M. J. Pfster 30 NA NA NA 

San-Segundo et al., 2020 Rubén San-Segundo 10 NA NA NA 

Knudson et al., 2020 Mei Knudson 34 5.03 (1.40) 2.24 (0.43) NA 

Elzinga et al., 2021 Willem O. Elzinga 12 NA 1–3 NA 

Kyritsis, 2021 Konstantinos Kyritsis 13/7 NA NA NA 

Raykov et al., 2021 Yordan P. Raykov 25/25 NA NA NA 

Tong et al., 2021 Lina Tong 5/5 NA NA NA 

Habets et al., 2021 Jeroen G. V. Habets 20 8.1 (3.5) NA 959 (314) 

Sigcha, 2021 Luis Sigcha 18 NA 2.0 (0.78) NA 

van Wamelen D. et al., 2021 Daniel J. van Wamelen 12 NA NA NA 

Ko et al., 2022 Yi-Feng Ko 27/30 NA 2–4 NA 

Prusynski, 2022 Rachel A. Prusynski 25/27 NA NA NA 

Raschellà et al., 2022 Flavio Raschellà 26/18 7.4 ± 5.9 2.0 ± 0.4 589.7 ± 275.6 

Liu et al., 2022 Sen Liu 20 NA NA NA 

Brand, 2022 Yonatan E. Brand 18/12 5.56 ± 4.05 2.3 ± 0.8 NA 

Burq et al., 2022 Maximilien Burq 388 2.9 (1.4) 2.0 (0.5) NA 

H-Y stage, Hoehn and Yahr stage; LEDD, levodopa equivalent daily dose; NA, not applicable. 
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FIGURE 2 

Published number of the study using the wrist-worn wearable in the monitoring of motor (orange) and non-motor (blue) symptoms of Parkinson’s 
disease. 

2.2. Article inclusion and exclusion 
criteria 

We select the articles based on the following inclusion criteria: 
(1) studies that focus on the use of wrist-based sensing technology 
for monitoring the motor or non-motor signs of PD, and (2) 
studies that are conducted in daily life or at home. Articles are 
excluded if (1) patients under study are not diagnosed with PD 
by a neurologist, (2) the article is not written in English, (3) the 
experiment is set up in the hospital or laboratory, (4) the device 
is unwearable or diÿcult to daily use at home, such as the wrist 
exoskeleton, or (5) there is no sensor in the monitoring device. 

2.3. Information extraction 

We extract four categories of data from selected articles: 
(1) Basic article information, including the authors and year 
of publication. We arrange the sources in chronological order 
to analyse the recent trend of published papers on wrist-based 
technology in PD monitoring. (2) The number of participants 
under study, including the number of PD patients and healthy 
controls, which are included to compare the credibility of di�erent 
research. (3) Demographic information on the study population. 
To analyse the mild, moderate, and late-stage subgroups, we 
extract the disease duration of PD patients. To present the 
trend change in symptoms of PD, we also show the Hoehn 
and Yahr (H-Y) stage of PD patients (Goetz et al., 2004). To 
investigate the e�ect of total daily medication on patients’ daily 
symptoms, we extract the L-dopa equivalent daily dose (LEDD) 
(Julien et al., 2021). (4) Technical information: to di�erentiate 
the technical characteristic of commercial wrist-worn devices in 
references, we extract the outcome measures, location of the 

worn wrist, features, performances of wearable devices, sensor 
types, and clinical applications in the diagnosis and management 
of PD. 

3. Results 

3.1. Article selection and publication year 

We fnd 436 articles by searching the keywords. The articles 
come from a variety of sources: 71 articles from the Web of 
Science, 6 from PubMed, 8 from IEEE Xplore, and 351 from Google 
Scholar. After deleting review and duplicated articles through 
the use of ENDNOTE 20 software, 39 are selected for review 
according to our inclusion and exclusion criteria as can be shown 
in Figure 1. In Figure 2, the publication year is presented. The 
number of publications about commercial wrist-worn wearable 
devices applied in PD evaluation has increased signifcantly in the 
past 4 years, i.e., from 2018 to 2022; there are 29 articles published, 
accounting for 74% of the total studies considered. 

3.2. Demographic and clinical 
characteristics 

Table 1 provides information on the publication year, authors, 
number of participants, and demographics of the included studies. 
These studies use di�erent research protocols with di�erent 
numbers of patients and/or healthy controls. There are 14 case-
control studies and 25 case studies. Most of the studies include a 
small number of patients (less than 100), with the exception of two 
papers with 304 and 388 participants, respectively. The participants 
in most of these studies are in the mild to moderate stages of PD, 
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TABLE 2 Articles about wrist-worn commercial devices for telemonitoring motor signs in PD and related information. 

References Sensor type Features Performance Clinical application Measured 
outcome 

Monitored 
duration 

Wrist Commercial 
name 

Binder et al., 2009 Uniaxial 
accelerometer 

Tremor duration and amplitude Sensitivity Assess tremor occurrence and severity Tremor 6 weeks Non-
dominant 

Actiwatch 

Roland et al., 2012 GPS Step counts, light physical activity 
time, sedentary time 

NA Examine gross mobility, assess PA, categorize 
stages of frailty 

Frailty severity, PA 8 h NA Garmin Forerunner 
405 GPS watch 

Pulliam et al., 2014 Triaxial gyroscope 
and triaxial 
accelerometer 

Acceleration and angular velocity Average clinician 
total mAIMS scores 
and model scores 

Quantify dyskinesia during unconstrained 
activities 

Dyskinesia 10 days bilateral KinetiSense 

Ossig et al., 2016 Triaxial 
accelerometer 

Median BKS and DKS NA Capture motor fuctuations in patients with 
advanced PD 

Motor fuctuations 5 days Dominant Parkinson’s 
KinetiGraphTM 

(PKG) 

Pulliam et al., 2018 Triaxial gyroscope 
and triaxial 
accelerometer 

Movement velocity, frequency Sensitivity and 
specifcity 

Quantify the dose-response of rest tremor, 
bradykinesia, and dyskinesia in individuals 
with PD 

Motor fuctuations 2 h NA Kinesia motion 
sensor units 

Rosqvist et al., 2018 Triaxial 
accelerometer 

Median BKS and DKS NA Continuous assessment of motor function Motor fuctuations 10 days NA Parkinson’s 
KinetiGraphTM 

(PKG) 

Porta et al., 2018 Triaxial 
accelerometer 

Amount/intensity of PA, 
spatiotemporal and kinematic 
parameters of gait 

Intensity Predict possible changes in the gait pattern 
and verify the e�ectiveness of rehabilitative 
treatments and PA programs 

PA and 
Gait 

3 months Non-
dominant 

ActiGraph 

Silva de Lima et al., 2018 Triaxial 
accelerometer 

Gait episode, time and frequency Accuracy Quantify walking quantity Walking 10 h NA NA 

Isaacson et al., 2019 Triaxial gyroscope 
and triaxial 
accelerometer 

Tremor score, fnger tapping speed 
score, DKS 

Eÿcacy and safety Provide feedback to patients on motor 
symptoms and supplement standard care to 
titrate the optimal rotigotine dosage. 

Tremor, slowness, 
dyskinesia, and 
walking 

12 weeks NA Kinesia 360 

Lang et al., 2019 Triaxial gyroscope 
and triaxial 
accelerometer 

Standard deviation, norm, maximum, 
root mean square, kurtosis, and 
skewness 

Sensitivity and 
accuracy 

Autonomous severity estimation of PD states Tremor, dyskinesia, 
bradykinesia 

331.2 ± 192.6 min dominant Schon Klinik 
Munchen 
Schwabing 

Pradhan and Valerie, 2019 Triaxial 
accelerometer 

Step counts and heart rate User experience Quantify the quantity and intensity of PA, 
provide feedback regarding activity levels 

PA level 14 days and 14 
nights 

NA Fitbit Charge HR 
(FBHR) 

Kim et al., 2019 Triaxial 
accelerometer 

Steps per day; activity counts per day; 
percent time spent sedentary, per cent 
time spent in light 

NA Estimate the motor activity PA 1 week non-
dominant 

ActiGraph 

Hssayeni et al., 2019 Triaxial gyroscope 
and triaxial 
accelerometer 

The peak-to-peak, dominant 
frequency 

Specifcity, 
sensitivity and 
accuracy 

Assessment of response to medication Motor fuctuations 6 months Dominant KinetiSense 

Shah et al., 2020 Triaxial 
accelerometer, 
triaxial gyroscope, 
and triaxial 
magnetometer 

The orientation and position 
trajectory of each foot (turn angle, 
swing time variability, etc.) 

True/false positive 
fraction 

Digital biomarkers of daily life mobility in PD Mobility 1 week Optional Opals by APDM 

Abrami et al., 2020 Triaxial 
accelerometer 

Movement syllables NA Estimate changes in the PD state Bradykinesia, tremor 
and PIGD 

36 days Non-
dominant 

GeneActive device 
(Activinsights) 

(Continued) 
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TABLE 2 (Continued) 

References Sensor type Features Performance Clinical application Measured 
outcome 

Monitored 
duration 

Wrist Commercial 
name 

Pfster et al., 2020 Triaxial gyroscope 
and triaxial 
accelerometer 

Statistical features of the motion data Feasibility Detect the motor state Motor fuctuation 
(o�, on, dyskinetic) 

NA NA NA 

Knudson et al., 2020 Triaxial 
accelerometer 

Median BKS and DKS NA Measure motor symptoms, predict activities of 
daily living impairment 

Bradykinesia and 
dyskinesia 

6 days NA Parkinson’s 
KinetiGraphTM 

(PKG) 

San-Segundo et al., 2020 Triaxial 
accelerometer 

The mean, range, or cross-correlation; 
the dominant frequency, energy 
content in a particular band, or signal 
entropy 

AUC and FPR Tremor detection, predict patient self-report 
measures 

Tremor 4 weeks Both Axivity AX3 

Raykov et al., 2021 Triaxial 
accelerometer 

The step time, swing time, stance 
time, and double support time 

Sensitivity and 
specifcity 

Detect gait and predict medication-induced 
fuctuations in PD patients based on 
free-living gait 

Gait At least 1 h Both Physilog 4 

Tong et al., 2021 Triaxial 
accelerometer, 
triaxial gyroscope, 
and triaxial 
magnetometer 

Root mean square value, variance, 
absolute mean, mean power 
frequency, peak power 

Accuracy, sensitivity, 
and specifcity 

Hand tremor detection Tremor NA Gominant NA 

Habets et al., 2021 Triaxial 
accelerometer 

Extreme values, variances, jerkiness, 
number of peaks, and root mean 
squares; spectral power in specifc 
frequency ranges; dominant 
frequencies 

User-friendliness 
and feasibility 

Classify the medication-induced fuctuations 
in bradykinesia 

Bradykinesia 1 h Unilateral Physilog 4 

Sigcha, 2021 Triaxial 
accelerometer 

The amplitude and constancy of 
resting tremor 

NA Provide accurate and relevant information 
about tremor in patients in the early stages of 
the disease 

Tremor NA Dominant LDS V406 CE M4 

van Wamelen D. et al., 2021 Triaxial 
accelerometer 

Median BKS and DKS NA Capture bradykinesia scores of patients with 
de novo PD in a home setting 

Bradykinesia 6 days NA Parkinson’s 
KinetiGraphTM 

(PKG) 

Liu et al., 2022 Triaxial 
accelerometer 

Dominant frequency, power 
dispersion, maxBin, mexBin, Kurt, 
Skew, SampEn 

Accuracy, sensitivity, 
precision, and 
specifcity 

Record the long-term acceleration signals of 
PD patients with di�erent tremor severities 

Rest tremor severity At least 2 h Both NA 

Brand, 2022 Triaxial 
accelerometer 

Rhythm, magnitude, 
regularity/consistency 

Accuracy, precision, 
sensitivity, and 
specifcity 

Quantify daily living gait gGait 10 days Left ActiGraph GT3X + 

Burq et al., 2022 Triaxial gyroscope 
and triaxial 
accelerometer, PPG, 
and skin 
conductance sensors 

NA Sensitivity and 
reliability 

Real-life distribution of disease severity Tremor, 
bradykinesia, and 
gait 

390 days Dominant Verily Study Watch 

NA, not applicable; PA, physical activity; PD, Parkinson’s disease; GPS. Global Positioning System; BKS, bradykinesia score; DKS, dyskinesia score; PIGD, Postural instability and gait disorders; mAIMS, modifed Abnormal Involuntary Movement Scale; AUC, area 
under curve; FPR, false positive rate; PPG, photoplethysmography. 
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TABLE 3 Articles about wrist-worn commercial devices for telemonitoring non-motor signs in PD and related information. 

References Sensor type Features Performance Clinical application Measured 
outcome 

Monitored 
duration 

Wrist Commercial 
name 

Naismith et al., 2010 Uniaxial 
accelerometer 

Rest interval onset and o�set, rest 
eÿciency, wake bouts 

Utility Early identifcation of RSBD and guide early 
intervention 

Sleep 2 weeks Non-
dominant 

Actiwatch 

Stavitsky et al., 2010 Uniaxial 
accelerometer 

Sleep onset latency, sleep eÿciency, 
wake after sleep onset, total sleep 
time, sleep fragmentation 

Utility Measure sleep quality Sleep 7 days and nights Each Actiwatch 

Bolitho et al., 2013 Uniaxial 
accelerometer 

Duration and correlates of excessive 
daytime napping 

NA Objective measure of daytime sleep Sleepiness and 
cognition 

2 weeks Non-
dominant 

Actiwatch 

Louter et al., 2014 Uniaxial 
accelerometer 

Total sleep time, sleep eÿciency, sleep 
latency, no wake bouts, length wake 
bouts, activity score 

Sensitivity, 
specifcity and 
positive predictive 
value 

A diagnostic aid for RSBD in Parkinson’s 
disease 

Sleep 7 nights Non-
dominant 

Actiwatch 

Gunn et al., 2014 Uniaxial 
accelerometer 

Sleep eÿciency, sleep onset/o�set 
(variability) 

NA Assessment of sleep disturbance Sleep and cognition 2 weeks Non-
dominant 

Actiwatch 

Klingelhoefer et al., 2016 Triaxial 
accelerometer 

Parameters for sleep quality and 
quantity 

NA Objective remote marker of disturbed 
nighttime sleep 

Sleep 6 days and nights NA Parkinson’s 
KinetiGraphTM 

(PKG) 

Wu et al., 2018 Uniaxial 
accelerometer 

Total sleep time, sleep onset latency, 
wake after sleep onset, and sleep 
eÿciency 

Utility Rest-activity rhythm as a biomarker for 
circadian 
function in PD 

Cognition 7−10 days Non-
dominant 

Actiwatch 

van Wamelen et al., 2019 Triaxial 
accelerometer 

Mean BKS and DKS NA Measure the non-motor symptoms correlate 
with BKS and DKS 

9 domains of 
non-motor 
symptoms 

6 days Dominant Parkinson’s 
KinetiGraphTM 

(PKG) 

Elzinga et al., 2021 PPG HR and sleep state estimates Repeatability and 
Minimum 
Detectable E�ect 

Detect clenbuterol-induced changes and track 
treatment e�ects 

Sleep 6 days NA NA 

Kyritsis, 2021 Triaxial gyroscope 
and triaxial 
accelerometer 

Bite moments and upwards wrist 
micro-movements 

Sensitivity and 
specifcity 

Classifcation of in-meal eating profles to the 
PD or the healthy populations 

Gastrointestinal 7 days Dominant NA 

Ko et al., 2022 Triaxial 
accelerometer, PPG 

Sleep eÿciency, REM, and sleep cycle Accuracy Detect the abnormal RBD phenomenon Sleep 2 years Right ASUS VivoWatch 
BP 

Prusynski, 2022 Triaxial 
accelerometer 

Nighttime sleep, wakenings after sleep 
onset, number of wakenings, naps, 
step count, and PA intensity 

Intensity Measure the sleep and sedentary behavior in 
mild PD 

Sleep 2 weeks NA Fitbit Charge HR 

Raschellà et al., 2022 Triaxial 
accelerometer 

Individual movement episodes, global 
nocturnal activity 

Accuracy, sensitivity, 
and specifcity 

Automatic RBD diagnoses in home settings Sleep 2 weeks NA GENEActivTM 

NA, not applicable; PPG, photoplethysmography; HR, heart rate; REM, rapid eye movement; RSBD, rapid eye movement sleep behavior disorder; RBD, REM behavior disorder; BKS, bradykinesia score; DKS, dyskinesia score. 
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FIGURE 3 

Pie chart showing the percentage of sensor types in PD signs monitoring devices. 

FIGURE 4 

The technological application of wrist-worn sensors in monitoring PD symptoms. Classifcation (blue): Prediction and detection of symptoms; Trend 
analysis (orange): Progression or change of severity. 

and only one study investigated the motor function of participants 
in the late stage of PD. 

3.3. Motor symptoms monitoring 

Between 2009 and 2017, we only fnd four publications focusing 
on the application of wrist technology for monitoring motor signs 
in PD. Figure 2 shows a strong increase in the use of wrist-based 
technology for monitoring PD motor signs in daily life, starting in 
2018. The number of published papers on this topic increase by 4.5 
times in the past 4 years, from 4 to 22. The majority of the studies 
(67%) focuses on motor symptoms of PD including rest tremor, 
bradykinesia, and gait. 

Table 2 presents 26 studies that investigate the use of wrist-
based wearable sensor devices for monitoring the motor features of 
PD patients over the past decade. These devices are typically worn 

for a mean of 6–7 days. To reduce the e�ect of motor symptoms 
on wearables’ sensitivity and specifcity, the sensor is worn on the 
non-dominant wrist of patients. The motor commonly studied is 
tremor, which accounts for 34.6% (9/26) of all reviewed articles. 

Various research groups have employed di�erent types of 
sensors in their research protocols. The pie chart (Figure 3) 
above shows that the most commonly used sensor type for motor 
signs monitoring is the movement sensor (91%). Interestingly, the 
triaxial accelerometer is the most frequently used movement sensor 
(60%). The gyroscope is another type of motion sensor that is 
frequently used to measure orientation and angular velocity. 

Figure 4 shows that the technical applications of wrist-
worn sensors for monitoring rest tremor in PD include tracking 
tremor severity (n = 4) and detecting tremor signs (n = 3). In 
2021, bradykinesia was frst unobtrusively monitored by a wrist-
worn accelerometer which indicated monitoring bradykinesia in 
non-invasive and non-intrusive ways to track the severity and 
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progression of the symptom (Habets et al., 2021). Dyskinesia 
was frst quantifed in 2014 when the KinetiSense were worn on 
the bilateral wrists of PD patients during uncontrolled activities 
(Pulliam et al., 2014). Australian researchers developed the Personal 
KinetiGraph R (PKG R ) (Global Kinetics Corporation Ltd.) to 
produce the median bradykinesia score (BKS) and dyskinesia score 
(DKS) for objectively estimating the bradykinesia and dyskinesia 
of PD. Table 2 shows that the United Kingdom and Netherlands 
research group uses PKG to early detect bradykinesia in newly 
diagnosed and previously untreated PD patients (van Wamelen D. 
et al., 2021). Swedish and German research groups use it to assess 
the motor fuctuation of advanced PD patients and aim to guide the 
self-management of PD patients (Ossig et al., 2016; Rosqvist et al., 
2018). 

3.4. Non-motor symptoms monitoring 

Table 3 shows 13 articles that have investigated non-motor 
symptoms (NMS) of PD in daily life with wrist-worn technology. 
The non-motor symptom monitors are mainly commercial 
actigraphy, including Actiwatch (n = 6), PKG (n = 2), ASUS 
VivoWatch BP (n = 1), Fitbit Charge HR (n = 1), and GENEActivTM 

(n = 1). The actigraphy typically is worn on the non-dominant 
wrist. The reason is that the non-dominant wrist has fewer 
movements than the dominant one. Clearer data can be obtained 
when there are fewer movement artefacts. Therefore, PD patients 
can expect that the data can be acquired with fewer noises by wrist-
worn on the non-dominant wrist. The duration of monitoring in 
these studies is typically 1 to 2 weeks. However, one study detects 
abnormal sleep phenomena in PD patients with a right wrist-worn 
device (ASUS VivoWatch BP) for 2 years (Ko et al., 2022). 

Most NMS studies (8 out of 13) focus on sleep quality. 
Interestingly, one article classifes gastrointestinal symptoms in PD 
using Inertial Measurement Units (IMUs) (Kyritsis, 2021). Figure 3 
shows that sensor types used to measure NMS include movement 
sensors (n = 12, 86%) and photoplethysmography (n = 2, 14%). The 
uniaxial accelerometer is the most frequently employed movement 
sensor (50%). 

4. Discussion and conclusion 

This review is the frst to provide an overview of the use 
of wrist-worn devices for remote monitoring and managing PD 
patients in their daily living environment. Compared with the 
classifcation of PD symptoms, wrist-worn sensors have been 
less commonly used to daily track the progression of PD. 
In the last decade, researchers have primarily used movement 
sensors, i.e., accelerometers, to daily monitor motor and non-
motor symptoms of PD. 

4.1. Symptoms monitoring 

In-home monitoring using wrist-worn technology has 
primarily focused on classifying and managing motor symptoms 
and sleep disorders of PD patients, leaving many non-motor 

symptoms unaddressed. With the development of digital mobile 
technology, technology-based objective measurements, particularly 
wrist-worn monitors have become popular among patients and 
clinicians in daily monitoring (King and Majid, 2018). Researchers 
have mainly used mobile devices to help PD patients detect, 
monitor, and manage motor symptoms while neglecting non-
motor symptoms which are diÿcult to measure directly by 
wearable sensors every day. This is refected in the fact that 67% of 
the studies reviewed focus on motor signs, compared to only 33% 
that focus on non-motor signs. Non-motor symptoms remain a 
neglected area of research in PD monitoring. 

Previous works on PD motor monitoring mainly focused on 
three cardinal signs: tremor, dyskinesia, and bradykinesia. The wrist 
joint is most frequently a�ected by rigidity. Table 2 shows that 
there is no study on rigidity monitoring with the wrist-based sensor 
in a daily environment. A recent scoping review of wrist rigidity 
evaluation reported that some force and inertial sensors have been 
used to quantitatively assess the rigidity of wrists in PD (Alves et al., 
2022). However, it is challenging to standardize the measurement 
of rigidity with accessible wearables. With the fast development 
of technology and computational techniques, it is likely that new 
analytical models for sensor application in rigidity emerge in the 
future. 

Compared with 26 studies focusing on motor signs, only half 
of them have investigated the non-motor signs in daily life. In 
particular, sleep problems have been the focus of PD research. 
Rapid eye movement sleep behavior disorder is thought to be a 
prodromal symptom of PD and has been targeted for disease-
modifying treatment (Naismith et al., 2010). Actiwatch is most 
frequently used to quantify sleep features, such as sleep eÿciency, 
and sleep onset/o�set (Naismith et al., 2010; Stavitsky et al., 
2010; Bolitho et al., 2013; Gunn et al., 2014; Louter et al., 2014). 
Daniel et al. used PKG to measure the correlation between non-
motor symptoms and bradykinesia and dyskinesia scores in PD 
patients. They suggested that the future of digital technologies 
may enable the reliable measurement of often under-reported and 
under-recognized non-motor signs (van Wamelen et al., 2019; van 
Wamelen D. J. et al., 2021). In addition to motor problems, non-
motor symptoms impact 90% of PD patients. Some subjective non-
motor symptoms, such as fatigue and depression, can signifcantly 
decrease the quality of life of PD patients and are outside the 
focus of Parkinson’s care and research. These non-motor problems 
are highly variable and present throughout the disease’s progress. 
The gap between these unmet needs of non-motor endpoints and 
technology platforms is currently large. New sensor technology and 
computational models, such as deep learning and semi-supervised 
learning may be applied to smart wrist-worn devices to improve the 
management of non-motor symptoms in PD. 

4.2. Wearable healthcare sensor 

Compared to traditional scales, body-worn sensors (BWS) 
record the data of patients’ symptoms in a long-term, real-time, and 
objective manner. Additionally, BWS may reduce the cost of time 
and money for patients seeking professional care. A large amount of 
data collected by BWS may be valuable for monitoring symptoms. 
BWS can be worn on the wrist, waist, or ankle, and provide PD 
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patients and healthcare professionals with relevant information in 
daily-living conditions. Compared to locations of the body, the 
wrist-worn sensor is easy to view and simple to operate in daily life 
by older individuals. 

Di�erent kinds of sensor types have di�erent functions in 
clinical applications of PD monitoring. The accelerometer is the 
most frequently used wrist-worn sensor in monitoring PD motor 
and non-motor signs in the natural living environment. Among 
motion sensors, the triaxial accelerometer most frequently detects 
motor signs of PD, while the uniaxial accelerometer is most 
frequently used for monitoring sleep signs. The possible reason 
is that a single triaxial accelerometer can classify the signals 
of basic daily movements in a PD patient’s activity, while the 
uniaxial accelerometer only classifes postural orientations during 
rest. In addition to movement sensors, photoplethysmography 
(PPG) sensors are also frequently used in monitoring non-motor 
and motor signs (Elzinga et al., 2021; Burq et al., 2022; Ko 
et al., 2022). PPG is a simple and low-cost wearable device for 
monitoring blood fow and blood oxygenation. Wrist PPG signal 
is widely used in heart rate monitors. The role of PPG in PD 
clinical practice still has a lot of potential. However, a single 
sensor is probably insuÿcient to detect all relevant signs of the 
body in PD patients. Accelerometers and other sensors do not 
o�er suÿcient and practical data for the real-time assessment of 
motor signals. Global Positioning System (GPS) sensors do not 
penetrate solid walls and are a�ected by large structures, which 
means that patients cannot use GPS indoors or in the underground 
environment. In the future, researchers should design multimodal 
measurements to monitor di�erent clinical manifestations of 
PD. IMU and other multimodal sensors can help capture more 
clinically meaningful signs in daily monitoring and are expected 
to better monitor PD manifestation than a single-modal sensor. 
For example, Maximilien et al. studied motion sensors connected 
with skin conductance sensors and PPG to capture multimodal 
data of PD for standard virtual motor exams (Burq et al., 2022). 
Meanwhile, it is important to balance the amount of information 
being collected with the number of sensors when developing a 
standard technology measurement platform. Also, it is important 
that these data systems have high standards for patient data security 
and privacy. 

4.3. Value in the daily management 

Wrist-worn sensors might have the potential to help clinicians 
and patients to detect PD symptoms at an early stage through 
increasing the awareness of patients and o�ering clinicians deep 
insight into patients’ daily life situations, predict the motor and 
non-motor signs and subsequently track PD symptom severity 
in daily naturalistic environments. From Figure 4, we fnd that 
classifcation of wrist-based technology is mainly in sleep, gait, and 
tremor of PD, because wrist-worn accelerometers can easily classify 
activity patterns in daily living. Moreover, wrist-worn devices have 
been widely used by the public with the popularity of smartwatches. 
The common usage of the devices can timely o�er healthcare 
professionals opportunities to detect PD symptoms in the high-
risk population at an early stage. Wrist wearables mainly analyse 
the trend of rest tremor and bradykinesia, but have not been used 
very often to track NMS. The lack of proper sensing technology 

may be the cause of the gap which will need to be addressed in 
future studies. In addition, wrist-worn devices might be helpful in 
the daily management of PD patients, but further research must be 
done as the correlations so far with clinical scales are not very high. 

In line with our fndings, a recent in-depth analysis based on 
over 50 articles supported that little focus has been placed on the 
management of PD NMS via wearable sensors, compared to much 
work that has been attributed to PD motor symptom management 
(Mughal et al., 2022). Wrist-worn devices can be used to detect 
prodromal non-motor signs in daily life, such as sleep disorders, 
which can serve as digital biomarkers in the prodromal phase of PD. 
Actigraphy can be used to measure abnormal sleep-related features 
in daily life and guide portable interventions for precision medicine 
in patients with specifc phenotypes. In 2022, a review reported 
that lifestyle intervention is the frst test to prevent PD (Janssen 
Daalen et al., 2022). Digital remote devices can provide exercise 
interventions to prodromal patients in daily life, monitored by 
experts, which may also help early detection of specifc prodromal 
NMS, objectively measure the outcome of disease progression, and 
guide long-term self-management. However, the NMS is a feld 
which is still to be explored. There is no device certifed under the 
United States Food and Drug Administration (FDA) or European 
Medicines Agency (EMA), so articles found so far only explore 
the possibility to use them, and NMS device development and 
validation are still needed to be done in future. 

Furthermore, if the phenotype of patients is better defned, 
diagnosing and managing the complex disease can be more 
accurate. Currently, late-stage patients are often ignored, and 
more advanced sensor technology is needed to address their 
specifc needs. Early diagnosis of PD before clinic visits and the 
use of sensor technology for self-management at home are two 
areas where there is potential for clinical applications of sensor 
technology for PD. 

4.4. Current pitfalls in using wrist-worn 
devices in the clinical PD management 

Considering the convenience of smartwatches in daily practice, 
we propose to use wrist-worn monitoring in health self-
management. However, there are also some limitations that may 
hinder the wrist-worn monitoring technology to be translated 
into PD clinical management in daily life. (1) One of the most 
important pitfalls is the lack of standardization of di�erent 
wrist-based objective measurements. For example, commercial 
wrist-worn devices have di�erent measurement protocols and 
di�erent feature extraction algorithms behind PD symptoms. The 
heterogeneity can hinder the standardization of clinical practice 
guidelines about using wrist-worn devices for PD management. 
In future, the obligation of certifcation by a recognized agency 
of medication, such as the FDA or EMA, can set standard 
technology assessment criteria for di�erent competitors’ devices. 
(2) Another pitfall is about missing medical device certifcates in 
most wrist-worn devices. The certifcation of the devices indicates 
the safe and reliable usage for customers to use it track the 
disease and manage their health. Before the clinical trials of 
wearable devices are completed, the technology cannot be approved 
by the professional authority, which becomes the main barrier 
to pushing forward at-home monitoring. E�ective collaborations 
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between private companies and academic initiatives can further 
advance this feld. (3) The limitation of using wrist-worn movement 
sensors for the complete human body movement analysis is another 
pitfall for clinical PD management. Wrist technology has the 
limitation of motion data being detected only from the arm, 
rather than the whole body in the feld of human movement 
science. Meanwhile, false negative and positives events should 
be considered in detecting some PD symptoms from the wrist 
location. For example, the wrist worn devices misses several 
movements in the rest of the body a part of missing the axial 
symptoms. In addition, the high degrees of freedom in the arm 
adds to the randomness of movements in the arms, provokes 
overestimation of several movements and false positives events 
(Gjoreski et al., 2016; Shcherbina et al., 2017). The current possible 
solution for accurate PD motor symptom monitoring is to use 
multiple sensors placed at di�erent body parts, for example, 
combining a smartwatch with a smartphone, or using non-wearable 
sensor technologies such as wall-mounted devices that can non-
invasively capture the body movement patterns. In many cases, 
the accuracy of the calculated variables is still poor, and the 
measurement accuracy of many wearables is even not validated for 
people with PD. To increase the accuracy of wrist-worn techniques 
in PD motor symptom monitoring, we should further develop the 
ambulatory human movement analysis feld that aims to capture 
the whole body movement using the minimal number of movement 
sensors on the body. According to the current ambulatory human 
movement analysis techniques, we would recommend that PD 
researchers and healthcare professionals use waist- or chest-worn 
sensor to better characterize axial movements, such as, bradykinesia 
and dyskinesia and better model the gait patterns of human subjects 
than only using the wrist-worn sensor. (4) Researchers should also 
consider that PPG and electrodermal activity sensors are strongly 
infuenced by the wearing of wrist-worn devices during non-
motor symptom monitoring. The loose wearing of the devices can 
decrease the quality of signals given the technical mechanism of 
the sensors. However, wearing too tight can a�ect the usability 
of the device and then increase users’ dropout rate in using the 
devices for their PD management. It is essential for healthcare 
professionals to fnd a balance between the correct and comfortable 
usage of the wrist-worn device and provide their patients with some 
practical guidelines. Moreover, the relevant algorithms to extract 
physiological variables from PPG and electrodermal activity are still 
necessary to be validated according to the actual daily life usage of 
the wrist-worn devices for people with PD. 

4.5. Limitation 

There are a couple of limitations to this narrative review 
that should be noted. Firstly, this narrative review does not use 
systematic statistical methods to assess the quality of studies, and 
may make it less reproducible compared to a systematic review. 
Additionally, the review might contain selection and evaluation 
biases. Secondly, the review does not provide a systematic 
discussion about the data analysis techniques employed in the 
studies that are surveyed. The clear description of algorithms 
behind the extracted features enables healthcare professionals and 
patients to make decisions based on transparent information for 

PD disease management. However, we noticed that most clinical 
articles we reviewed did not describe the algorithms clearly. In 
addition, this review focuses on the potential value of investigating 
wrist technology in the management in daily life, and the feature 
extraction algorithm and monitoring performance are out of the 
scope of this review. Therefore, we did not include information 
about feature extraction algorithms and relevant monitoring 
performances in this review. We recommend that it is valuable to 
have a technique-oriented review discussing data analysis methods 
behind the usage of wrist-worn devices in PD management to 
contribute to the accuracy of PD symptom monitoring in daily life. 

4.6. Conclusion 

Wrist-worn monitoring technology with medical device 
certifcation has the potential to improve early intervention and 
personalized care management of PD patients based on daily health 
information exchange. Wrist-worn PPG sensor combined with 
motion sensors could assist to estimate motor symptoms, analyze 
daily activity, and even address some unmet needs for non-motor 
symptoms of PD patients in daily life. However, only a few studies 
have addressed the need of non-motor symptom monitoring 
among PD patients. More emphasis should be placed on non-
motor symptom monitoring using wrist-worn devices in the future. 
In addition, clinical healthcare professionals and patients should 
pay attention to the shortcomings of commercialized wrist-worn 
devices, such as, the lack of reliability, suÿcient quality, and 
clinical validation. More wrist-worn technology assessment and 
clinical validation studies are recommended in future to increase 
the technique trustworthiness and e�ectiveness in the clinical 
management of PD in daily life. 
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