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Abstract: Pervious concrete has been reported as a viable solution to reduce stormwater run-off,
the heat-island effect, road noise, and pavement flooding. Previous researchers have focused on
analysing the structural properties and functionality of pervious concrete. However, relatively few
studies have been conducted into the addition of supplementary cementitious materials (SCMs),
such as calcined clay, in pervious concrete and its effect on long-term durability. This paper has
studied the effect of calcined clay pozzolan as a partial substitute for Portland cement in pervious
concrete, together with the influence of coarse aggregate size. A water–binder ratio of 0.4 and
aggregate–binder ratio of 4.0, as well as a superplasticiser content of 0.95%, were maintained for
all mixes. Two sizes of coarse aggregates were used for this study: 9.5 mm and 20 mm. CEM-I
cement was partly substituted with calcined clay in dosages of 0 to 30% in replacement intervals of
5%. The mechanical tests conducted included the split tensile test, compressive strength test, and
flexural strength test. Durability measurements such as the rapid chloride permeability test (RCPT),
thermal conductivity and sulphate resistance tests were also carried out. The mechanical properties
of the pervious concrete followed a similar trend. The results showed that at 20% replacement
with calcined clay, the compressive strength increased by 12.7% and 16% for 9.5 mm and 20 mm
aggregates, respectively. The flexural strength improved by 13.5% and 11.5%, whereas the splitting
tensile strength increased by 35.4% and 35.7%, respectively, as compared to the reference concrete.
Beyond 20% replacement, the tested strengths declined. The optimum calcined clay replacement was
found to be 20% by weight. Generally, pervious concrete prepared with 9.5 mm obtained improved
mechanical and durability properties, as compared to those of 20 mm aggregates.

Keywords: calcined clay; pervious concrete; durability; aggregate size; thermal conductivity;
flexural strength

1. Introduction

The use of pervious concrete is one of the solutions that have been proposed to
curb some of the challenges associated with urban growth such as the heat island effect
and flooding. Pervious concrete is a specially designed kind of concrete with significant
porosity to enable water and other liquids to freely drain from the surface of slabs [1].
One major characteristic of pervious concrete is the presence of numerous interconnecting
voids created due to little or no sand in its design and production, contrary to normal
concrete [2]. This property allows pervious concrete to provide a range of environmental
advantages, including lowering runoff, raising groundwater levels, minimising the impact
of urban heat islands, wastewater treatment, skid resistance improvement, and traffic noise
absorption [3,4]. The distinctive porous structure and low mechanical property of pervious
concrete allow it to be used for construction application in areas such as basketball courts,
tennis courts, open car parking areas, pedestrian walkways, and pavements.

Supplementary cementitious materials (SCMs), over the years, have been introduced
into pervious concrete systems to influence their properties and performance. SCMs such
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as flay ash, calcined clay, metakaolin, silica fume, and ground granulated blast furnace
slag (GGBS), apart from the environmental and energy saving benefits [5], are known to
improve workability, reduce porosity, control bleeding, prevent segregation, increase long-
term strength, and generally improve the durability of concrete [6–9]. During pozzolanic
reactions, silicates in SCMs react with Ca(OH)2 emanating from the hydration of cement to
produce further cementitious compounds in the form of calcium silicate hydrates (C-S-H),
needed for strength development [10].

A few researchers have investigated the effect of SCMs on the properties of pervious
concrete and have reported varying results based on additional parameters such as mix
design, methodology, and materials. Adil et al. [11] studied the properties of pervious
concrete containing silica fume and reported an improved rheological, mechanical, and
durability behaviour with as low as 5.5% silica fume replacement. Additionally, samples
containing silica fume were found to demonstrate superior bonding characteristics with
the binder paste than the reference samples. The optimum metakaolin was found to be
15%, based on the results obtained for strength determination. Researching the role of
metakaolin in pervious concrete systems, Singh and Murugan [12] observed an increase in
density, reduction in porosity, and increase in flexural as well as compressive strength, as the
metakaolin content increased in the mix. Saboo et al. [13] experimented on the use of two
different SCMs (fly ash and metakaolin) in pervious concrete. Portland cement was replaced
by 5%, 10%, 15%, and 20% with fly ash and was also replaced with 2% metakaolin. The
results indicated that the incorporation of 2% metakaolin caused a significant improvement
in density, whereas porosity was reduced. A similar trend was observed in samples
containing fly ash. The inclusion of SCMs was highly recommended to improve strength
while maintaining cement content.

One important factor that influences the properties of pervious concrete aggregate
size is the aggregate-to-binder ratio [14]. This could adversely impact the porosity as well
as permeability and consequently affect strength and durability characteristics of pervious
concrete. It has been observed by several researchers [15–21] that two distinct properties
that influence the performance of pervious concrete are compressive strength and porosity.
These properties can, however, be greatly affected by the size and type of coarse aggregate
used in the production of the light-weight aggregate and pervious concrete [22].

The durability of concrete is its capacity to withstand abrasion, weathering action,
and chemical attack while retaining the necessary technical qualities [23]. Depending
on the exposure environment and intended qualities, different concretes require varying
levels of durability [7]. As pervious concrete, by its design, is a porous material, practical
steps should be considered to ensure its long-term durability. To examine the durability
performance of pervious concrete, Taheri et al. [24] observed that the size of coarse aggregate
could not significantly affect the mass of the pervious concrete after freeze and thaw
cycles. When the cement content in pervious concrete was replaced with 5–20% rice
husk ash (RHA) and calcium carbide waste (CCW), Adamu et al. [25] observed that these
supplementary cementitious materials negatively affected the durability. The researchers,
however, recommended that 0% RHA and 5% CCW could be utilised to achieve the
optimum durability performance. According to Bilal et al. [26]], it may be possible to
improve the mechanical and durability performance of pervious concrete with acceptable
permeability and porosity by replacing silica fume, metakaolin, and binary combinations
of silica fume and metakaolin from 5 to 10%. Based on an improvement in the mechanical
and freeze–thaw durability performance of pervious concrete with appropriate functional
qualities, the optimum SCM percentage replacement was discovered to be 10%.

Many laboratory and field investigations [1,2,11–13,24–28] have been conducted in
the past on the functionality of pervious concrete mixtures. Researchers have previously
studied the effects of altering variables such as the water–binder ratio, aggregate type, and
their influence on properties such as density, porosity, and strength. A limited number of
studies have also looked at how pervious concrete mixtures are affected by SCMs such as
silica fume [11,26], metakaolin [12], fly ash [13], and incineration bottom ash (IBA) [29].
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One SCM that has recently been promoted for construction application is calcined
clay because of the availability of clay in almost every region in the world. However, little
study has been conducted on the use of calcined clay in pervious concrete, focusing on
its influence on mechanical and durability properties. Again, whether these properties
of pervious concrete incorporated with calcined clay could also be affected by aggregate
gradation remains to be investigated.

2. Materials and Methods
2.1. Materials

CEM I cement of Class 52.5 N, complying with BS EN 197-1 requirements, was used in
this study. The mineralogical composition of the cement was found to be 60.3% C3S, 14.2%
C2S, 6.8% C3A, and 8.6% C4AF. The calcined clay was obtained by heat-treating an impure
kaolinitic clay at a temperature of 800 ◦C for 2 h, adopting a heating rate of 20 ◦C/h to
ensure complete dihydroxylation of the kaolinite mineral. Table 1 presents the chemical
compositions of the cement and calcined clay using X-ray fluorescence (XRF). The X-ray
diffraction (XRD) spectra showing the mineralogical make-up of the cement and calcined
clay are also shown in Figure 1.

Table 1. Chemical compositions of calcined clay and cement.

Oxides, % SiO2 A12O3 Fe2O3 MgO CaO Na2O K2O MnO TiO2 P2O5 Cl SO3 LOI

Calcined clay 62.77 18.71 11.68 1.89 0.25 0.03 2.12 0.46 0.41 0.03 – 0.19 1.46
Cement 18.88 3.57 3.36 1.89 59.64 4.7 2.12 0.14 0.14 0.22 0.01 4.93 0.4
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Two nominal sizes of coarse aggregates were used for this study: 9.5 mm and 20 mm.
The grading curves of the coarse aggregates are presented in Figure 2. Other properties of
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the coarse aggregates are shown in Table 2. Portable water having a pH of 7.0 was used in
the preparation of the concrete as well as curing. Auracast 400, manufactured by FOSROC
and having a solid content of 35 ± 2%, was the superplasticiser used in achieving the
workability of the mixes.
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Table 2. Physical properties of coarse aggregates.

Aggregate
Size

Specific
Gravity

Crushing
Value

Flakiness
Index

Elongation
Index

Impact
Value

Combined
Index

9.5 mm 2.65 23.4 17.0 10.0 11.0 13.05
20 mm 2.41 25.3 16.5 8.6 11.5 12.8

The mix ratio of the concrete was designed in accordance with ACI 522R-10 [30]. To in-
vestigate the influence of these cementitious materials on pervious concrete, a water–binder
ratio of 0.4 and aggregate–binder ratio of 4.0 were maintained, as well as a superplasticiser
content of 0.95% (obtained by trial and error). Table 3 presents the details of the mix design.

Table 3. Mix proportion of pervious concrete.

Sample ID Cement Calcined Clay 9.5/20 mm
Aggregate Water Superplasticiser

(kg) (kg) (kg) (kg) (kg)

0% (control concrete) 1.5 – 5.4 0.525 0.075
5% 1.425 0.075 5.4 0.525 0.075

10% 1.35 0.15 5.4 0.525 0.075
15% 1.275 0.225 5.4 0.525 0.075
20% 1.2 0.3 5.4 0.525 0.075
25% 1.125 0.375 5.4 0.525 0.075
30% 1.05 0.45 5.4 0.525 0.075
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2.2. Methods
Sample Preparation

Per the ACI 522R-10 standards, the raw materials were batched and mixed in a mo-
torised concrete mixer for 3 min. The concrete was placed in 100 mm × 100 mm × 100 mm
steel moulds in three layers and tamped 25 times and afterwards vibrated on a vibrating
table to attain even distribution and compaction. The concrete was left on a shelf, de-
moulded after 24 h, cured under water (of temperature 23 ◦C), and crushed after 28 days
for compressive strength determination. The compressive strength for each mix was tested
in triplicate and the average strength recorded. Beams of size 500 × 150 × 150 mm were
prepared to determine the flexural strength with reference to ASTM C78 [31]. Cylinders of
diameter 100 mm and length 200 mm were moulded for the splitting tensile test per ASTM
C497 [32].

The slump test, which is frequently used on normal concrete, does not accurately
describe the workability of pervious concrete [12]. The rheology test method was, therefore,
used to measure the workability of the pervious concrete mixes using a rotational rheometer.
The vane spindle had an initial and final speed of 0.5 and 0.05 rev/s, respectively. The yield
stress was then determined using the greatest torque recorded during the test.

The densities of the pervious concrete cube samples were determined using a specific
gravity balance. In this test, the weight of each specimen was measured, both in air and
water. The density of the porous concrete was calculated using Equation (1) where V is the
volume of concrete, P is density, m is mass, and pc is pervious concrete.

Ppc =
m pc

V
=

mpc

mpc − mwater
(1)

The porosity, on the other hand, was calculated using Equation (2) [33], where VT is
the total volume of the specimen and VM is the change in volume of the sample because
of voids.

n =
(VT − VC)

VT
(2)

Water permeability is an important property due to its relation to strength and the
long-term durability of concrete. The permeability test in this investigation was carried out
using the falling head permeameter as prescribed by ASTM C1701/M [34]. Permeability
was calculated using Equation (3), where ‘a’ is the area of the standpipe, L is the height
of the specimen, A is the area of the specimen, and t is the time between h1 (initial water
head) and h2 (final water head). The setup of the permeability test is shown in Figure 3.

Permeability =
aL
At

ln
(

h1

h2

)
(3)

The pervious concrete cubes underwent a UPV test, which revealed information about
the dense structure of the concrete specimen. A dense specimen with few pores has a high
UPV value; the opposite is true for a sample with many pores. The ultraviolet pulse velocity
test was conducted by estimating how long it takes for a pulse to go through the opposite
sides of the pervious concrete cubes (approximately 100 mm) using the UPV equipment.
The ultrasonic transducers were programmed to frequencies of 1 kHz. The velocity was
calculated using Equation (4).

Velocity (km/s) = Distance travelled by the pulse time (4)

With reference to the ASTM C 1202 RCPT procedure, electrical current was made to
flow through sliced pervious concrete samples for a period of 6 h. Two slices of the same
sample were placed in sodium chloride and sodium hydroxide solutions. At the ends of
the samples, a potential difference of 60 V was preserved. The ASTM C 1113-90 method
was used to measure the thermal conductivity of the pervious concrete. For the sulphate
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resistance test, samples were cured for 28 days in water and then immersed in 5%-Na2SO4
solutions. It was allowed to stand for 90 days, and the effect of the 5%-Na2SO4 solution on
their respective compressive strength and weight loss was determined.
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3. Results and Discussion
3.1. Rheology

The results showing the rheological properties of the calcined clay blended cement
mixtures, according to the mix design, are presented in Figure 4. The reference concrete
obtained a yield stress of 40 Pa, which increased by 38.5% when 5% calcined clay was
added to the plain concrete. There was a further increase in yield stress until it reached its
maximum at 15% calcined clay replacement. The viscosity, on the other hand, increased
with increasing calcined clay replacement up to 20% replacement. There was no visible
change in viscosity between 20% and 25%. A further increase in calcined clay content,
however, caused the viscosity to increase.
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3.2. Density, Porosity, and Permeability

The mechanical properties of Portland cement concrete are significantly affected by
density and porosity, which ultimately impacts the ability of concrete to withstand harsh
conditions and longevity [13]. The density of pervious concrete is greatly affected by
aggregate size and shape. From Figure 5, as the aggregate size changed from 9.5 mm to
20 mm, the density was observed to decrease across all replacement levels. It was also
observed that the density increased considerably with increasing calcined clay content
for both aggregate types. At a maximum of 30% replacement, the density of the pervious
concrete increased by 3.2% and 6.7% for 9.5 mm and 20 mm aggregates, respectively, after
28 days of curing.
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As observed in Figure 6, the porosity decreased with the increase in calcined clay
content for the mixes containing 9.5 mm and 20 mm aggregates, respectively. This could be
attributed to the fine particles of the calcined clay, which are likely to occupy some of the
pores in the concrete mix [35,36]. For both aggregate sizes, the porosity was highest in the
control sample and lowest in the pervious concrete containing 30% calcined clay. Aggregate
size was also observed to influence the degree of porosity in the concrete. The pervious
concretes prepared with 9.5 mm aggregate was found to be less affected by porosity than
20 mm aggregate concretes, irrespective of the calcined clay content. On average, the
porosity in mixes prepared with 20 mm aggregates was about 30.9% higher than that of
9.5 mm aggregates. This observation is consistent with results obtained by Saboo et al. [13],
Singh and Murugan [12], and Shen et al. [29]. This is because the larger the aggregate size,
the less it bonds with the mortar, thereby creating pores at the surface of contact [37–39].
The porosity in all batches was, however, found with the limits set by ACI 522R-10.

Similarly, as expected, permeability decreased as the dosage of calcined clay increased
(shown in Figure 7). For mixes containing 30% calcined clay, permeability values were
found to be about 39.2% and 31.5% (for 9.5 mm and 20 mm aggregates), respectively, less
than those of the reference concrete samples.

This means that permeability was higher in samples containing 20 mm aggregates
than 9.5 mm aggregates.
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3.3. Mechanical Properties
3.3.1. Compressive Strength

The compressive strength performance of calcined clay pervious concrete is shown
in Figure 8. Compressive strength values obtained for 9.5 mm aggregate concrete were
observed to be 7.7% greater than those of the 20 mm aggregate concrete. The larger aggre-
gate sizes create pores between the paste and aggregates, leading to enhanced porosity and
strength loss [38,40]. Again, larger aggregate sizes increase the fracture energy and fracture
process zones, thereby resulting in expanded cracks and strength loss [41,42]. Compressive
strength values, for both aggregate sizes, steadily improved with the addition of 5–20% cal-
cined clay. With the incorporation of 20% calcined clay, the compressive strength improved
by 12.7% and 16%, respectively, as compared to the 2 reference concrete mixes. The strength
increase was due to the endothermic reaction between the constituents of the calcined
clay and the cement to further generate cementitious compounds such as calcium silicate
hydrates needed for strength formation during cement hydration [43–45]. Beyond 20%
calcined clay inclusion, the compressive strength declined for both mixes, consistent with
the results reported by Singh and Murugan [12]. This reduction in compressive strength is
due to the clinker dilution effect [46]. A reduction in cement content impacts the pozzolanic
reaction, leading to a shortage of the formation of C-S-H [47,48]. Therefore, raising the
calcined clay content beyond 20% overburdens the concrete with excess unreacted SiO2
and Al2O3, which do not contribute to strength development [49,50].

J. Compos. Sci. 2023, 7, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 8. Compressive strength of pervious concrete. 

3.3.2. Splitting Tensile Strength 
The trend of results obtained for split tensile strength was consistent with that of 

compressive strength. The tensile strength increased as the aggregate size increased from 
9.5 mm to 20 mm. Calcined clay significantly impacted the splitting tensile strength irre-
spective of the aggregate size. For pervious concrete prepared with 9.5 mm aggregate, the 
tensile strength increased by 8.4%, 15.7%, 26.6%, and 35.4% when cement was replaced 
with 5%, 10%, 15%, and 20% calcined clay, respectively. Percentage increments for 20 mm 
aggregate concrete were 8.9%, 10.5%, 24.7%, and 35.7%, respectively. An optimum split-
ting tensile strength was found at 20% replacement, which recorded 35.5% and 35.7% in-
creases, respectively. Results for splitting tensile strength are shown in Figure 9. 

 
Figure 9. Tensile and flexural strength of pervious concrete. 

Figure 8. Compressive strength of pervious concrete.

3.3.2. Splitting Tensile Strength

The trend of results obtained for split tensile strength was consistent with that of
compressive strength. The tensile strength increased as the aggregate size increased from
9.5 mm to 20 mm. Calcined clay significantly impacted the splitting tensile strength
irrespective of the aggregate size. For pervious concrete prepared with 9.5 mm aggregate,
the tensile strength increased by 8.4%, 15.7%, 26.6%, and 35.4% when cement was replaced
with 5%, 10%, 15%, and 20% calcined clay, respectively. Percentage increments for 20 mm
aggregate concrete were 8.9%, 10.5%, 24.7%, and 35.7%, respectively. An optimum splitting
tensile strength was found at 20% replacement, which recorded 35.5% and 35.7% increases,
respectively. Results for splitting tensile strength are shown in Figure 9.
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3.3.3. Flexural Strength

Flexural strength, also a measure of tensile strength, is the ability of the concrete
beam or slab to overcome bending moments [51]. The results of the flexural strength
test, conducted after 28 days of water curing, are shown in Figure 9. It was observed
that the variables (i.e., aggregate sizes resulting in porosity) that influenced compressive
strength also affected the flexural strength development of the pervious concrete [52,53].
The flexural strength was found to be greater in 9.5 mm aggregate concrete than in 20 mm
aggregate concrete. Furthermore, the incorporation of the pervious concrete with 5–20% of
calcined clay increased the flexural strength by 1.7%, 6.0%, 11.6%, and 13.5% for 9.5 mm
aggregate concrete and 3.3%, 6.8%, 9.2%, and 11.5%, respectively, for 20 mm aggregate
pervious concrete. Beyond 20% calcined clay replacement, all concrete samples suffered
a decline in flexural strength. The effect of calcined clay on flexural strength is shown in
Figure 9.

3.4. Durability Properties
3.4.1. Ultrasonic Pulse Velocity (UPV)

Evaluation of the differences in the mechanical strength of concrete can be conducted
by measuring the ultrasonic pulse velocity [54]. UPV technology is also used to detect
voids as well as other discontinuities in concrete [55]. The UPV of concrete is significantly
affected by the elasticity and mechanical properties of the concrete [56]. The influence of
calcined clay and aggregate size on ultrasonic pulse velocity is illustrated in Figure 10.
Samples modified with calcined clay of 5–20% experienced increasing UPV with increasing
percentage replacement. The optimum UPV data were recorded at 20% calcined clay
replacement, about 0.56% (for the 9.5 mm aggregate concrete) and 0.8% (for the 20 mm
aggregate concrete) more than those of the reference concrete samples. Generally, the 20 mm
aggregate concrete specimens recorded lower UPV values than the 9.5 mm aggregate
concrete specimens. Higher UPV values of the calcined clay pervious concrete are an
indication of the lower porosity and continuity of the samples, which may not be ideal for
the purposes of pervious concrete. Similar results were reported by Dabbaghi et al. [57]
and Nagrockiene et al. [58].
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3.4.2. Thermal Conductivity

Figure 11 shows the thermal conductivity measurements of pervious concrete contain-
ing calcined clay. Thermal conductivity reductions recorded between 5 and 30% calcined
clay replacement were 4%, 6.3%, 26.3%, 30.2%, 37.5%, and 51.2. Similarly, the thermal con-
ductivity of samples containing 20 mm aggregates decreased with increasing calcined clay
content, obtaining a similar range of values as the 9.5 mm aggregates. Clearly, aggregate
size had little influence on thermal conductivity.
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The decrease in thermal conductivity was due to the pozzolanic reaction between
calcined clay and portlandite from the cement to form a dense structure of calcium silicate
hydrates, which serves as a thermal insulator [59].
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3.4.3. Rapid Chloride Permeability Test (RCPT)

Figure 12 presents the findings for chloride permeability of the pervious concrete at
28 days. It was determined in the form of electric charge (in coulombs) travelling through
the concrete samples. The charge passing through all samples was observed to decrease
with calcined clay replacement. The results demonstrated that, compared to the reference
cement, the incorporation of the calcined clay greatly improved the chloride penetration
resistance. After 28 days, the amount of electric charge passing through the reference
cement decreased by 18.5%, 19.1%, 20.4%, 23.6%, 26.4%, and 33.1% when 5%, 10%, 15%,
20%, 25%, and 30%, respectively, of the CEM I cement were replaced with the pozzolan.
From Figure 12 an R2 value of 0.7821 showed an imperfect relationship between calcined
clay content and chloride permeability. Even though chloride permeability appeared to
consistently decrease with increasing calcined clay content, other factors were likely to
contribute to this trend of results. Again, 9.5 mm aggregate concrete outperformed the
20 mm aggregate concrete in terms of chloride resistance. This improvement in chloride
resistance could be attributed to the improved density and less porosity in blended cement
pervious concretes, as well as the reaction between the pozzolan and calcium hydroxide
from the cement and the low electrical conductivity of blended cement concrete [6]. This
trend is consistent with results obtained by Ramezanianpour and Jovein [60]. The scatter
plots were plotted for identifying the relation of permeability and chloride penetration.
It can be seen from Figure 13 that with the increase in permeability, chloride penetration
increased. However, the goodness-of-fit between chloride penetration and permeability
was lower, which can be mainly due to several other properties of pore structure other than
permeability affecting chloride penetration directly.
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3.4.4. Sulphate Resistance

The effect of 5%-Na2SO4 on blended cement pervious concrete, in terms of strength
loss and weight loss, is presented in Figure 14. In addition, 5%-Na2SO4 was observed
to have an adverse effect on the weight and, consequently, compressive strength of the
pervious concrete. The reference sample recorded the highest weight and strength losses
as compared to the blended cement samples, for all aggregate sizes. As the calcined
clay content increased, weight loss and compressive strength loss increased. As seen in
Figure 14, losses in compressive strength increased with increasing weight loss. R2 values
of 0.9558 and 0.9472 were obtained for 9.5 mm and 20 mm aggregate concretes, indicating
a good fit. However, generally, concrete prepared with 20 mm aggregates suffered more
weight and strength losses than the 9.5 mm concrete did. This could be linked to the
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porosity of the two samples [61]. This trend is in line with results reported by other
researchers [62,63].
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4. Conclusions

In this study, the behaviour of pervious concrete containing calcined clay pozzolan and
two different aggregate sizes was investigated. CEM-I cement was replaced with calcined
clay in weight percentages of 5%, 10%, 15%, 20%, 25%, and 30%. The influence of calcined
clay on the mechanical and durability properties of pervious concrete was investigated and
the following conclusions presented:

The density of the reference concrete was found to be lower than that of the calcined
clay pervious concrete, which could be attributed to the fine particles of calcined clay occu-
pying some of the voids in the concrete. Fewer voids often lead to denser concrete. Density
was found to increase with increasing calcined clay concrete. This explains why, generally,
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porosity and permeability decreased with increasing calcined clay content, irrespective of
aggregate degradation. Comparatively, concrete prepared with 9.5 mm aggregates was
observed to be denser and consequently exhibited less porosity and permeability than the
20 mm aggregate concrete did. Larger aggregate sizes took up a little more paste to coat its
surfaces, leaving voids behind and reducing its density.

The mechanical properties of the pervious concrete displayed a similar trend. Compres-
sive, flexural, and splitting tensile strengths increased as the calcined clay content increased
up to 20%. Beyond 20% replacement, the tested strength declined. At 20% replacement,
the compressive strength increased by 12.7% and 16% for 9.5 mm and 20 mm aggregates,
respectively. The flexural strength improved by 13.5% and 11.5%, whereas the splitting
tensile strength increased by 35.4% and 35.7%, respectively.

Generally, the 20 mm aggregate concrete specimens recorded lower UPV values than
the 9.5 mm aggregate concrete specimens did. Samples modified with calcined clay of
5–20% experienced increasing UPV with increasing percentage replacement. In the RCPT
test, the charges passing through the pervious concrete decreased as calcined clay increased.
The charge flow was more pronounced in 20 mm aggregate concrete. The calcined clay
concrete samples exhibited poorer thermal conductivity than the reference cement pervious
concrete. The thermal conductivity of samples containing 20 mm aggregates decreased with
increasing calcined clay content, obtaining a similar range of values as 9.5 mm aggregates.
Clearly, aggregate size had little influence on thermal conductivity. Samples subjected
to 5%-Na2SO4 for 90 days caused significant weight and compressive strength losses.
However, losses in the reference cement were greater than those of the calcined clay
pervious concrete. A linear relation indicated that compressive strength loss increased with
increasing weight loss.

The optimum calcined clay replacement was found to be 20% by weight. Between
the two aggregate sizes, 20 mm is recommended as porosity and permeability are crucial
in designing pervious concrete, even though its mechanical properties were found to be
slightly lower than those of 9.5 mm aggregates.
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