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Forecasting the number of hospitalization patients is important for hospital management. The number of hospitalization
patients depends on three types of patients, namely admission patients, discharged patients, and inpatients. However,
previous works focused on one type of patients rather than the three types of patients together. In this paper, we propose
a multi-task forecasting model to forecast the three types of patients simultaneously. We integrate three neural network
modules into a unified model for forecasting. Besides, we extract date features of admission and discharged patient flows to
improve forecasting accuracy. The algorithm is trained and evaluated on a real-world data set of a one-year daily observation
of patient numbers in a hospital. We compare the performance of our model with eight baselines over two real-word data
sets. The experimental results show that our approach outperforms other baseline algorithms significantly.
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1. Introduction
In China, due to the large amount of population and
rapid growth of elderly people, there is an increasing
gap between supply and demand of the relatively scarce
medical resources (Luo et al., 2017). Many patients
cannot get treatment immediately due to the shortage
of healthcare resources, especially the inpatient beds.
To alleviate the shortage of healthcare resources, it is
important to achieve the reasonable allocation of inpatient
beds based on the accurate estimation of the hospital
occupancy. Accurate forecasting of inpatient occupancy
can improve the allocation of healthcare resources in
many aspects including nurse staffing (Ledersnaider and
Channon, 1998) and patients receiving (Mackay, 2001).

However, building an accurate forecasting system
for hospital occupancy is difficult. Hospital occupancy
depends dynamically on the flows of admission and
discharged patients. These patient flows fluctuate from
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week to week. Therefore, to achieve accurate forecasting
of hospital occupancy, we should solve two sub-tasks
of forecasting the admission patients and the discharged
patients.

There are some previous works that focus on patient
flow forecasting, which can be divided into three groups,
including statistical methods, machine learning methods
and neural network-based methods.

1. Statistical methods. There are two main statistical
methods, namely autoregression integrated moving
average (ARIMA) and exponential smoothing (ES).
The ARIMA can perfectly model the linear patterns
of a time series with minimum computational efforts,
so it is widely used by researchers for various
types of forecasting tasks (Box et al., 2015). Sun
et al. (2009) adopted the ARIMA to forecasting
daily attendances at an emergency department. Li
et al. (2015) adopted the ARIMA to forecast
monthly outpatient visits. Hadavandi et al. (2012)
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developed a hybrid ARIMA model for outpatient
visits forecasting. What is more, Bergs et al. (2014)
used the automated exponential smoothing approach
to predict monthly visits.

2. Machine learning methods. Machine learning
(ML) methods have been proposed in the academic
literature as alternatives to statistical ones for
time-series forecasting (Makridakis et al., 2018).
By treating time series forecasting problems as
regression problems, many machine learning models
are applied to find an appropriated mapping between
input features and prediction values. Wang and Gu
(2014) proposed to use support vector regression
to forecast the daily diarrheal outpatient visits in
Shanghai.

3. Neural network-based methods. In recent years,
artificial neural networks (ANNs) attract more and
more attention in various fields (Bingi and Prusty,
2021; Kowal et al., 2021). ANNs have been adopted
in many difficult tasks, like machine translation
(Cheng, 2019), image recognition (Chen et al.,
2019) and speech recognition (Nassif et al., 2019)
etc., and obtained satisfying results due to their
intrinsic property that they can approximate any
nonlinear function (Cross et al., 1995). There are
also some works adopting ANNs for forecasting
problems. Menke et al. (2014) adopted ANNs to
predict emergency department (ED) volume. Jiang
et al. (2018) adopted an ANN to model the flow
of patients under different severities. Hou et al.
(2021) proposed a time-varying mechanism to solve
forecasting problems with imbalanced data.

However, these methods were based on single-task
strategies, with no reference to the relationship among
admission patients, discharged patients and inpatients. To
overcome the limitations of the single-task strategy, a
multi-task strategy has been proposed to train a model by
learning multiple tasks which are different but correlated
(Zhang and Yang, 2021). A trained model based on the
multi-task strategy is able to capture the latent relationship
between these tasks and to achieve better performance in
forecasting a process with different flows. The multi-task
strategy has been widely used in many fields including
natural language processing (Sanh et al., 2019), compute
vision (Dai et al., 2016), and urban computing (Zhang
et al., 2019).

In order to forecast the number of admission patients,
discharged patients and inpatients simultaneously, in this
paper, we propose an end-to-end neural network based
forecasting model with the multi-task strategy, named
HPNet. We construct three groups of features, namely
date features, closeness features and periodic features as
the inputs of HPNet. To learn the latent influence of

timestamps, we propose a timestamp fusion strategy that
will embed date features into low-dimensional vectors.
The HPNet consists of three key components: an encoder
of historical data, an embedding layer of date features,
and three forecasting modules. Moreover, we design
a constraint loss to model the relationship among the
three types of patients and bound the forecasting results.
Finally, we conduct extensive experiments based on two
real-world data sets. The experimental results show
that our approach outperforms other baseline algorithms
significantly.

The contributions of this paper can be concluded as
follows:

• A novel neural network-based forecasting model is
proposed to forecast the number of admission
patients, discharged patients and inpatient
simultaneously.

• The forecasting timestamp fusion strategy and
a constraint loss are proposed to improve the
forecasting accuracy.

• We conduct extensive experiments based on two
real-world data sets and compare the performance
of our model with six baselines. The experimental
results demonstrate that HPNet outperforms the
state-of-the-art solution.

The rest of the paper is organized as follows.
Section 2 outlines the preliminaries, including some
important concepts and our problem definition. Section 3
presents the dataset we used and some insights about
this data set. Section 4 describes our solution in detail.
Section 5 presents the experimental results of our model
on real-world data sets. Finally, we conclude our paper in
Section 6.

2. Preliminaries
2.1. Three types of patients. There are three types
of patients in our problem setting, they are admission pa-
tients, discharged patients and inpatients. Their detailed
descriptions are as follows:

• Admission patients: For a certain day t, admission
patients refer to the new patients who are admitted
into the hospital on this day. The number of
admission patients on the day t is denoted by nta.

• Discharged patients: In contrast to admission
patients, discharged patients refer to the patients
who leave the hospital every day. The number of
discharged patients on the day t is denoted by ntd.

• Inpatients: Inpatients represent all patients who are
in the hospital at the end of the day. Apparently,
the number of inpatients is influenced by admission
patients and discharged patients.
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The number of the three types of patients can be
formulated as

ntp = nt−1
p + nta − ntd, (1)

where np, na, nd represent the numbers of inpatients,
admission patients and discharged patients, respectively.
Here ntp and nt−1

p represent the numbers of inpatients on
the day t and day t− 1, respectively.

2.2. Hospitalization prediction problem. Generally
speaking, hospitalization prediction is a time series
forecasting problem, which aims to predict the number of
inpatients at time T + 1 given the historical observations
until time T . But the hospitalization in our paper
contains three perspectives, which are admission patients,
discharged patients and inpatients, as defined above. Our
task in this paper is to predict the number of all these
patients in the future.

Specifically, assume that the historical
hospitalization observations {Xt | t = t1, . . . , tT }
were made with the corresponding timestamp t, where
Xt = {nta, ntd, ntp} is a triplet representing the number of
admission patient, discharged patients and inpatients on
the day t. The goal of this paper is to collectively predict
XtT+1 in the future.

3. Data description and analysis

In this section, we first describe a real-world
hospitalization data set collected from a branch hospital
of The First Affiliated Hospital of the Zhejiang University
School of Medicine. Then we conduct empirical analyses
to explore the characteristics of the hospitalization
distribution.

3.1. Data description. We collect hospitalization data
from 2015-01-01 to 2019-12-31. The data set contains
daily numbers of admission patients, discharged patients
and inpatients with time information. An example of such
data is (2019-10-24,524,541,3378). It indicates that 524
patients were admitted to the hospital while 541 patients
left the hospital on October 24th, 2019. At the end of this
day, there were 3378 patients in the hospital.

Figure 1 displays the distributions and pairwise
scatter plots of the three types of patients. As we
can see from Fig. 1(a), the Pearson coefficient between
the number of admission patients and the number of
discharged patients is 0.94, which proves that the number
of admission patients is positively correlated with the
number of discharged patients. There is no obvious
correlation between other types of patients (Figs. 1(b) and
(c)).

3.2. Empirical analysis and feature extraction.
In this section, we make an empirical analysis on
hospitalization data and introduce what features we
extract for prediction.

Date features. Figure 2(a) shows the box plot of
admission patients and discharged patients on different
weekdays. As can be seen, the numbers of admission
patients and discharged patients show three different
trends on different weekdays. Specifically, the numbers
of admission patients and discharged patients are highest
on Monday while their numbers on Saturday and Sunday
are significantly low. The rest of the four days (from
Tuesday to Thursday) show similar distributions. This
phenomenon reflects the characteristic that admission
patients and discharged patients are active on working
days while their numbers are relatively stable on Saturday
and Sunday. According to this observation, we can
conclude that weekday is an important factor that
should be taken into consideration when we predict
hospitalization in the future.

Similarly, Fig. 2(b) displays the box plot of the
numbers of admission patients and discharged patients
on working days and holidays, respectively. We can
see that the numbers of both admission patients and
discharged patients on working days are much larger
than that on holidays. Therefore, the time information
indicating working or holidays is also important to predict
hospitalization.

All the above observations indicate the temporal
trend of hospitalization distributions. Hence, we extract
the two types of date features based on the given time
information: weekday feature fw and holiday feature fh.
The values of fw are {1, 2, 3, 4, 5, 6, 7} indicating the
weekday and fh ∈ {0, 1} indicating whether or not it is a
holiday.

Closeness features. Figure 3 summarizes the Pearson
correlation of admission patients and discharged patients.
As can be seen, the numbers of admission patients
from Monday to Friday are strongly correlated with
one another, while they are weakly correlated with the
numbers of admission patients on Saturday and Sunday.
On the contrary, the numbers of admission patients on
Saturday and Sunday are strongly correlated with each
other, while they are weakly correlated with the number
of admission patients from Monday to Friday. Besides,
discharged patients show a similar correlation. This
indicates that when we predict hospitalization on different
weekdays, historical data should contribute different
importance. For example, if the forecasting day is from
Monday to Friday, we should pay more attention to the
historical hospitalization of working days.

Then we conduct the Ljung–Box test for admission
patients and discharged patients to study the existence of
autocorrelation. The p-values are less than 0.05 (3.5 ×
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(a) discharged patients vs. admission patients (b) discharged patients vs. inpatients (c) admission patients vs. inpatients

Fig. 1. Pairwise scatter plots of three types of patients.

(a) weekday distribution (b) holiday distribution

Fig. 2. Box plots.

(a) correlation of admission
patients

(b) correlation of discharged
patients

Fig. 3. Pearson correlation.

10−14 and 1.4 × 10−14). Therefore, we can conclude
that the data are not independently distributed and they
exhibit serial correlation. To quantitively determine how
much historical data should be utilized for forecasting,
we conduct autocorrelation and partial autocorrelation
analyses for admission patients and discharged patients.
Figures 4 and 5 display the ACF and PACF of admission
patients and discharged patients, respectively. As can
be seen, both the series of admission patients and
discharged patients show strong autocorrelation with the
time lag of 7. Therefore, in our experiments, we use

(a) auto-correlation of
admission patients

(b) auto-correlation of
discharged patients

Fig. 4. Auto-correlation.

(a) partial auto-correlation
of admission patients

(b) partial auto-correlation
of discharged patients

Fig. 5. Partial auto-correlation.

a time window whose size equals 7 to select historical
hospitalization data for prediction. Formally, given the
prediction time T + 1, we extract closeness features fc =
{XtT−6 , XtT−5 , . . . , XtT }
Periodic features. According to Figs. 4 and 5, the
auto-correlation coefficients get maximal when the time
lag is a multiple of 7, which means there are obvious
periodic patterns for admission patients and discharged
patients. Therefore, to provide more information
and improve forecasting accuracy, we extract historical
hospitalization observations from the previous four weeks
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at seven-day intervals. Formally, given the prediction
time T + 1, we extract periodic features fp =
{XtT−6 , XtT−13 , XtT−20 , XtT−27}.

4. Methodology
Figure 6 presents the framework of HPNet. The main
idea of the HPNet is the following. Given the historical
data and the target forecasting timestamp, the HPNet
will output the numbers of admission patients, discharged
patients, and inpatients simultaneously. The HPNet
consists of three key components: an encoder of historical
data, an embedding layer of date features, and three
forecasting modules. The encoder takes the partial
historical data as the input and derives a high-dimensional
latent context vector c. By exploring the hospitalization
data, we find that admission patients and discharged
patients show a strong correlation with weekdays and
holidays. Therefore, we propose the embedding layer to
transfer the time information into an embedding vector
to improve the forecasting accuracy. The context vector
c and the embedding vector e are then fed into three
forecasting modules simultaneously to forecast the three
types of patients, respectively. Furthermore, we proposed
a constraint loss to keep the relationship between the three
types of patients (expressed as Eqn.(1)).

4.1. Input encoding. First, we project historical data
X into a high-dimensional latent context c by an encoder.
To capture different temporal dependencies, Zhang et al.
(2019) proposed a deep spatiotemporal residual network
that selects different key frames along the time. Inspired
by this solution, we select recent, periodical data to
forecast the patient flows for timestamp t, denoted by
Xclose
t and Xperiod

t , respectively. Recent data represent
the numbers of patients during the latest lc days while
periodical data represent the numbers of patients on the
same day of weeks in historical data. They are defined as
follows:

Xclose
t = {Xt−l′c , Xt−lc+1, . . . , Xt−1},

Xperiod
t = {Xt−lp×7, Xt−(lp−1)×7, . . . , Xt−7},

where lc and lp are the lengths of these two parts
of sequences. According to the exploration results of
Section 3.2, in our experiments we set lc = 7 and lp = 4.

The encoder consists of three linear layers, followed
by a rectified linear unit (ReLu) (Nair and Hinton, 2010)
activation function after each layer. Given the input X ,
the encoder can be formulated as follows:

Z1 = σ (W1X + b1) , (2)
Z2 = σ (W2Z1 + b2) , (3)
c = σ (W3Z2 + b3) , (4)

where W1 ∈ R
I×H ,W2 ∈ R

H×2H ,W3 ∈
R

2H×H ,b1 ∈ R
H ,b2 ∈ R

2H , and b3 ∈ R
H

are learnable parameters, which can be updated by the
gradient decent algorithm. I represents the dimension
of inputs while H represents the number of hidden units
in the encoder. Finally, the output c of the encoder is
an H-dimensional vector based on the input data. The
output c can be regarded as a deep latent vector containing
characteristics of the input sequence.

4.2. Date feature embedding. Admission patients and
discharged patients show strong dependency over time
(detailed in Section 3.2). For example, there are many
admission patients on the weekday while few patients are
admitted to the hospital over the weekend. Inspired by
this observation, we additionally fuse date features of the
forecasting timestamp as an external factor to improve
forecasting accuracy. Therefore, we extract two types of
date features: (i) the day of the week fw, (ii) the indicator
of holiday fh. These two features are categorized
attributes; we transform them into a low-dimensional
vector by feeding them into different embedding layers
separately, and then concatenate those embeddings to
construct the final categorical vector e = [eTw eTf ]

T . It
is worth noting that in our experiments, the dimensions of
embedding results are calculated as

df =
⌊catf + 1

2

⌋
, (5)

where catf represents the number of categories of
features. Therefore, the dimensions of ew and eh are 4
and 1, respectively.

4.3. Forecasting modules. Once we get the encoding
results c and the embedding vector e, we concatenate
them and feed the concatenation vector into three
forecasting modules simultaneously to forecast the
number of patients. The reason we adopt three separate
modules is that the three types of patients may contain
different intrinsic relationships which cannot be modeled
by a single module. These three forecasting modules are
independent but have the same structure. Therefore, for
brevity, we take the admission patient forecasting module
as an example to illustrate the main idea.

The forecasting module consists of two linear
layers that contain H hidden units and one hidden
unit, respectively. The input of the admission patient
forecasting module is the concatenation of the encoding
result c and the embedding vector e, i.e., S = [cT eT ]T .
By using linear layers, the input is compounded to
construct a hidden representation, which models the
complicated interaction. The output ŷa of the module
forecasts the number of admission patients at time t. The
admitted patient forecasting module can be formulated as
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Fig. 6. Framework of HPNet.

follows:

Z
(1)
A = σ

(
W

(1)
A S+ b

(1)
A

)
, (6)

ŷa = W
(2)
A Z

(1)
A + b

(2)
A , (7)

where W
(1)
A ∈ R

(H+5)×H , b
(1)
A ∈ R

H , W
(2)
A ∈

R
H×1 W(2) ∈ RH×1, b(2)

A ∈ R are learnable parameters.
σ is the ReLu activation function. Similarly, we can obtain
the forecasting results about discharged patients ŷd and
hospitalized patients ŷp by other two forecasting modules.

4.4. Losses. Let φ comprise all the learnable
parameters in the admitted patient forecasting module;
we intend to tune them by minimizing the following
objective function aggregating the differences between the
forecasting results ŷa and the true numbers ya:

argmin
φ

Lossa =
1

N

N∑
i=1

(yai−ŷai)
2
, (8)

where N represents the number of training records.

Similarly, let θ and ψ be the learnable parameters
in the discharged patient forecasting module and the
inpatient forecasting module, respectively. They can be
updated by minimizing the following objective functions:

argmin
θ

Lossd =
1

N

N∑
i=1

(ydi−ŷdi)
2
, (9)

argmin
ψ

Lossp =
1

N

N∑
i=1

(ypi−ŷpi)
2
. (10)

To model the relationship between patients as shown
in Eqn. (1), we further construct a constraint loss Lossc
to model the quantitative relationship between the three

types of patients. The constraint loss is defined as

Lossc =
1

N

N∑
i=1

[ (
ŷtpi − y(t−1)

pi

)
︸ ︷︷ ︸

inpatient difference

− (
ŷtai − ŷtdi

)
︸ ︷︷ ︸

forecasting patient
transition

]2
. (11)

Finally, we obtain the combined loss as follows:

Loss = Lossa + Lossd + Lossp + λLossc, (12)

where λ is the adjustable hyper-parameter to control the
trade off.

5. Experiment
5.1. Settings. Experimental settings are as follows.

Data sets. Table 1 details the two data sets we
used, namely ZJFirst and COVID-19. The former
has been introduced in Section 3 and the latter is
provided by the work of Dong et al. (2020). The raw
COVID-19 data set contains the numbers of accumulated
confirmed patients, accumulated recovery patients and
accumulated dead patients. By differencing the data
for two consecutive days, we could get the number of
newly confirmed patients, newly recovered patients and
newly dead patients. Then we calculated the number
of currently confirmed patients that is analogous to the
number of inpatients in ZJFirst dataset. The sum of newly
recovered patients and newly dead patients is analogous
to the number of discharged patients while the number of
newly confirmed patients is analogous to the number of
admission patients.

We divided the whole data set into the training set
and test set in a ratio of 8:2. Then we split the training
set into five subsets in chronological order, and then
employed every unique subset as a validation set, and
treated the subsets that occur before the validation set as



Hospitalization patient forecasting based on multi-task deep learning 157

Table 1. Data description.

Dataset ZJFirst COVID-19

Time span
1/1/2015-

12/31/2019
3/26/2020-
11/20/2020

Admission patients [18,1204] [786,5138]
Discharged patients [13, 932] [16,5320]
Inpatients [890,3068] [3528,80808]

the training set. In this way, we can adopt five-fold cross
validation for time series forecasting to prevent overfitting
and evaluate model performance in a more robust way.

Model details. We use the min-max normalization to
normalize the number of patients into [0, 1]. In the
evaluation, we rescale the predicted values back to normal
values. The learning rate is 0.001 and the batch size
equals the total numbers of the whole training data set.
We leverage the Adam optimizer (Kingma and Ba, 2014)
for stochastic gradient descent. We adopt the early
stop strategy where training will be terminated when the
training loss does not decrease during consecutive 50
epochs. The numbers of hidden units H of the HPNet for
two data sets are set to 800 and 2500, respectively, which
are determined by a grid search experiment. All of the
models are implemented by PyTOrch (Paszke et al., 2019)
and are trained on an INVIDIA 3080 GPU.

Evaluation metrics. We use three metrics for evaluation,
namely the mean absolute error (MAE), the mean absolute
percentage error (MAPE) and the root mean squared
error(RMSE). They are defined as follows:

MAE =
1

n

n∑
t=1

| yi − ŷi |, (13)

MAPE =
1

n

n∑
t=1

| yi − ŷi |
yi

, (14)

RMSE =

√√√√ 1

n

n∑
t=1

(yi − ŷi)2, (15)

where yi and ŷi are ground truth and the corresponding
predicted value, and n is the total number of all available
ground truth. Note that MAE and RMSE are more
affected by larger values, while MAPE receives more
penalty from smaller values. To remove the randomness,
we run five times for each method and calculate the
average metrics as the final results.

Baselines and variants. We compare the forecasting
performance of our model against the following baselines:
seasonal ARIMA (SARIMA) (Box et al., 2015),
Holt-Winters (Chatfield and Yar, 1988), support vector
regression (SVR) (Drucker et al., 1997), random
forest (RF) (Liaw and Wiener, 2002), XGBoost (Chen
and Guestrin, 2016), multi-layer perceptron (MLP)

(Greenwood, 1997), long short term memory network
(LSTM) (Neil et al., 2016) and N-Beats (Oreshkin et al.,
2019). Besides, we also compare the performance of the
HPNet with its two variants to study the effectiveness of
different components of the HPNet. Specifically, the first
variant is HPNet/od, where date features are excluded.
The second variant is denoted as HPNet/oc, where the
constraint loss is not considered.

5.2. Results on ZJFirst.

5.2.1. Overall performance comparison. Table 2
displays the experimental results on the ZJFirst data set.
We compare the forecasting accuracy of different methods
on the three types of patients, and we can conclude the
following insights.

Admission and discharged patient prediction. From
the perspectives of admission patients and discharged
patients, we can observe that the HPNet achieves
the best performance among all methods according
to Table 2. For instance, HPNet outperforms the
runner-up baseline (MLP) by yielding 31.51% lower
MAE, 25.97% lower MAPE, and 26.09% lower RMSE
respectively for admission patients, reporting 24.84%
lower MAE, 26.22% lower MAPE, and 21.05% lower
RMSE, respectively, for discharged patients. This
indicates the proposed multi-task architecture is helpful to
improve the prediction accuracy of admission patients and
discharged patients. Besides, N-Beats is less accurate than
MLP and LSTM. The indicates that the proposed input
features are helpful for forecasting. Among all baselines,
Holt-Winters and SARIMA have the lowest prediction
accuracy in terms of MAPE, which indicates they are not
suitable for long-term forecasting.

Compared with the two variants, HPNet yields
better performance in terms of three metrics from the
perspectives of two types of patients. Specifically, HPNet
produces 21.7% MAE, 30.5% MAPE and 22.7% RMSE
reductions on the average for admission patients, and
gives rise to 21.8% MAE, 20.6% MAPE, 28.5% RMSE
reductions on the average for discharged patients. This
indicates that excluding date features and the constraint
loss will deteriorate the capability of HPNet significantly,
which proves the effectiveness of the proposed date
features and constraint loss.

Inpatient prediction. From the perspective of inpatients,
we can find the following observations according to
Table 2. First, instead of HPNet, XGBoost achieves the
best performance in terms of MAE and MAPE, while
HPNet achieves the runner-up performance in terms of
MAE and MAPE. On the contrary, in terms of RMSE,
HPNet achieves the best performance while the XGBoost
achieves the runner-up performance. This indicates that
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Table 2. Results of comparison on ZJFirst.

Methods Admission patients Discharged patients Inpatients

MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE
Holt-Winters 62.235 39.481% 119.754 100.394 52.845% 139.023 325.466 15.233% 419.741

SARIMA 62.898 40.534% 116.007 71.734 40.849% 121.434 173.895 8.762% 297.135
SVR 69.054 28.703% 106.311 89.702 34.891% 119.273 38.204 1.633% 66.086
RF 99.800 34.379% 154.530 100.091 30.305% 150.510 39.964 1.684% 58.309

XGBoost 88.556 37.999% 147.204 96.302 30.508% 143.690 35.450 1.513% 53.253
MLP 61.497 20.180% 93.098 65.459 22.285% 95.697 49.684 2.065% 68.005

LSTM 90.343 39.595% 124.508 82.915 30.926% 119.764 52.356 2.259% 73.118
N-Beats 129.901 42.476% 228.186 118.855 38.894% 188.821 37.980 1.554% 52.406

HPNet/oc 53.799 21.320% 92.546 62.971 20.061% 109.541 50.540 2.146% 68.343
HPNet/od 53.840 21.695% 85.683 62.844 21.371% 102.013 45.354 1.950% 67.978

HPNet 42.118 14.939% 68.808 49.201 16.442% 75.550 36.058 1.571% 51.663

(a) admission patients (b) discharged patients (c) inpatients
Fig. 7. Residual results of HPNet.

(a) admission patients (b) discharged patients (c) inpatients
Fig. 8. Histogram of residual results.

HPNet is capable of achieving lower error when the
ground truths are abnormal. On the other hand, this also
indicates that the HPNet loses its dominating advantage
in forecasting accuracy for inpatients. The reason behind
this may be that the introduction of the constraint loss will
drive the model to learn the quantitative relationship of the
three types of patients, thus influencing the model to focus
on forecasting the number of inpatients to a certain extent.

Secondly, according to the obtained results, we can
observe that the errors of forecasting admission patients
and discharged patients are relatively higher than those of
inpatients in terms of MAPE. This is because the daily
number of admission patients or discharged patients are

stochastic. It is influenced by many factors, including
weather, healthy status of patients, even their wealth
status. Therefore, errors may appear when the forecasting
is exclusively based on historical data. Nevertheless, the
number of inpatients is relatively stable, where historical
data can achieve more accurate forecasting. Besides, due
to the large base number, the MAPE of the forecasting of
inpatients is small.

Residuals. To check whether HPNet overfits the training
dataset, we further study the residuals of forecasting
results. Figure 7 presents the residual results along
the timeline, and Fig. 8 displays the histogram of the
forecasting residual. We can observe that the residuals
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are approximately Gaussian distributed with a mean zero.
This implies that HPNet does not overfit the training data
set. However, the p-values of the Ljung–Box test are
less than 0.05, which indicates that residuals are still
correlated with one another. This means that the proposed
method HPNet can be further improved, which will be
investigated in our future work.

Summary. In this part, we compare the proposed
approach with seven baselines and two variants on the
ZJFirst data set. From the results shown in Table 2,
we can conclude that the HPNet is the best approach
for prediction since it shows excellent performance when
forecasting numbers of admission patients and discharged
patients. Although it does not yield the best performance
when forecasting inpatients, it is still competitive (almost
1% MAE higher than the best method). Secondly, the
proposed date features and constraint loss are very helpful
to improve the forecasting accuracy for all cases. Thirdly,
because we combine three forecasting modules into a
unified model, we only need to tune hyper-parameters
once, which is more convenient than baselines.

5.2.2. Case study. In the previous section, we have
studied the accuracy of the HPNet quantitatively. In this
section, we visualize the forecasting results to study the
performance of the HPNet qualitatively. The forecasting
span is from 2019/01/05 to 2019/12/31. For clarity, we
plot the forecasting results of HPNet against the other
two competitive baselines, namely random forests and
XGBoost. The visualization results can be found in
Fig. 9. To study the obvious differences between different
approaches, we then zoom in on the forecasting curves
from 2019/08/01 to 2019/08/31, which can be seen in the
black box of each figure.

We can find that all these methods can capture
the trends of patients approximately. However, we can
observe the superiority of the HPNet when we look
inside the forecasting results of the admission patients
and discharged patients. As we can see from Fig. 9(a)
and (b), although these methods can be more accurate in
the case of a low number of patients, they will produce
obvious differences when the number of patients is large.
Specifically, the forecasting results of HPNet are closer
to the ground truth. This accounts for the superiority
of the HPNet that it can maintain better accuracy when
predicting high traffic of patients. As for inpatients, three
methods are competitive along time.

5.3. Results on COVID-19. Experimental results on
the second data set have demonstrated the superiority of
our framework again. From Table 3, we can observe that
HPNet shows significant improvements against baselines
on the COVID-19 data set, validating its great generality
in different applications. Specifically, HPNet yields

(a) admission patients

(b) discharged patients

(c) hospitalized patients

Fig. 9. Visualization of forecasting results.

10.07%, 8.03%, 39.69% improvements compared with
the runner-up method in terms of MAE, MAPE and
RMSE, respectively, for admission patients. HPNet
produces 1.33%, 6.53%, 3.15% improvements compared
with the runner-up method in terms of MAE, MAPE and
RMSE, respectively, for discharged patients. HPNet gives
rise to 6.54%, 9.39%, 1.31% improvements in comparison
with the runner-up method in terms of MAE, MAPE and
RMSE, respectively, for inpatients.

6. Conclusions
In this paper, we propose an end-to-end neural network
based forecasting model to forecast the number of
hospitalization patients. In contrast to the previous works,
we forecast three types of patients simultaneously by
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Table 3. Comparison of results on COVID-19.

Methods Admission patients Discharged patients Inpatients
MAE MAPE RMSE MAE MAPE RMSE MAE MAPE RMSE

Holt-Winters 791.091 27.184% 1130.137 638.303 31.852% 750.628 15148.708 37.498% 15361.337
SARIMA 501.626 16.241% 831.765 329.607 14.340% 508.230 9027.069 19.774% 11835.930

SVR 693.875 23.658% 992.065 763.715 44.308% 781.960 1937.368 4.556% 2129.506
RF 745.472 25.669% 1054.149 201.520 10.776% 241.592 3554.312 8.846% 3845.745

Xgboost 577.045 19.871% 820.461 171.334 8.548% 230.681 8138.861 18.501% 9476.800
MLP 995.279 36.432% 1245.147 336.899 20.238% 362.518 2863.093 6.533% 3379.343

LSTM 709.742 24.746% 974.778 199.448 9.698% 295.463 2289.664 5.051% 2962.883
N-Bats 354.512 14.552% 571.722 311.038 16.220% 391.788 948.690 2.280% 1039.345
HPNet 318.795 13.383% 344.815 169.048 7.990% 237.945 886.691 2.066% 1052.908

using a constraint loss to study their relationship. They
are admission patients, discharged patients and inpatients.
We propose a multi-task strategy and a constraint loss
to improve the forecasting accuracy. The experimental
results over two real-world data sets demonstrate the
superiority of our approach.

In the future, we will explore more effects affecting
the patient flows to strengthen our model. At present, we
only use historical data of patients to train our model and
forecast the results, without considering many external
factors, like weather, breaking news and so on. In the
future, we will try more external factors to improve the
accuracy further. Second, the structure of the three
forecasting modules can be improved by introducing
more complex but efficient structures, like an attention
mechanism, convolution neural networks and so on. We
will explore more promising structures to improve the
performance of the model. Besides, we will try to apply
our method to other scenarios, such as forecasting patient
flows for emergency departments.
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