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Effect of intracranial pressure on 
photoplethysmographic 
waveform in different cerebral 
perfusion territories: A 
computational study 

Haipeng Liu1, Fan Pan2, Xinyue Lei2, Jiyuan Hui3, Ru Gong3, 
Junfeng Feng3* and Dingchang Zheng1* 
1Research Centre for Intelligent Healthcare, Coventry University, Coventry, United Kingdom, 2College of 
Electronics and Information Engineering, Sichuan University, Chengdu, China, 3Brain Injury Center, Renji 
Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China 

Background: Intracranial photoplethysmography (PPG) signals can be measured 
from extracranial sites using wearable sensors and may enable long-term non-
invasive monitoring of intracranial pressure (ICP). However, it is still unknown if ICP 
changes can lead to waveform changes in intracranial PPG signals. 

Aim: To investigate the effect of ICP changes on the waveform of intracranial PPG 
signals of different cerebral perfusion territories. 

Methods: Based on lump-parameter Windkessel models, we developed a 
computational model consisting three interactive parts: cardiocerebral artery 
network, ICP model, and PPG model. We simulated ICP and PPG signals of 
three perfusion territories [anterior, middle, and posterior cerebral arteries 
(ACA, MCA, and PCA), all left side] in three ages (20, 40, and 60 years) and four 
intracranial capacitance conditions (normal, 20% decrease, 50% decrease, and 
75% decrease). We calculated following PPG waveform features: maximum, 
minimum, mean, amplitude, min-to-max time, pulsatility index (PI), resistive 
index (RI), and max-to-mean ratio (MMR). 

Results: The simulated mean ICPs in normal condition were in the normal range 
(8.87–11.35 mm Hg), with larger PPG fluctuations in older subject and ACA/PCA 
territories. When intracranial capacitance decreased, the mean ICP increased 
above normal threshold (>20 mm Hg), with significant decreases in maximum, 
minimum, and mean; a minor decrease in amplitude; and no consistent change in 
min-to-max time, PI, RI, or MMR (maximal relative difference less than 2%) for PPG 
signals of all perfusion territories. There were significant effects of age and territory 
on all waveform features except age on mean. 

Conclusion: ICP values could significantly change the value-relevant (maximum, 
minimum, and amplitude) waveform features of PPG signals measured from 
different cerebral perfusion territories, with negligible effect on shape-relevant 
features (min-to-max time, PI, RI, and MMR). Age and measurement site could also 
significantly influence intracranial PPG waveform. 

KEYWORDS 

intracranial pressure (ICP), photoplethysmography (PPG), windkessel effect, 
computational simulation, artery network, cerebral microcirculation 

Frontiers in Physiology 01 frontiersin.org 

https://www.frontiersin.org/articles/10.3389/fphys.2023.1085871/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1085871/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1085871/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1085871/full
https://www.frontiersin.org/articles/10.3389/fphys.2023.1085871/full
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2023.1085871&domain=pdf&date_stamp=2023-03-16
mailto:fengjfmail@163.com
mailto:fengjfmail@163.com
mailto:dingchang.zheng@coventry.ac.uk
mailto:dingchang.zheng@coventry.ac.uk
https://doi.org/10.3389/fphys.2023.1085871
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2023.1085871
https://8.87�11.35


Liu et al. 10.3389/fphys.2023.1085871 

1 Introduction 

Intracranial pressure (ICP), defined as the pressure within the 
craniospinal compartment, is an important physiological parameter 
that reflects the biomechanical status of the brain. ICP is derived 
from cerebral blood and cerebrospinal fluid (CSF) circulatory 
dynamics. ICP can be significantly changed in many neurological 
diseases (Czosnyka and Pickard, 2004). For decades, ICP monitoring 
has been a cornerstone of traumatic brain injury (TBI) management 
(Stocchetti et al., 2014). Currently, external ventricular drain (EVD) 
is considered as the gold standard of ICP monitoring due to its 
accuracy with additional function of CSF drainage (Harary et al., 
2018). In EVD measurement, the ICP is transmitted into an external 
saline-filled tube through a strain-gauge transducer for pressure 
measurement. The insertion of the tube is invasive with a 5%–7% 
risk of hemorrhage, and is difficult to perform in some patients with 
inherently small ventricles size (Harary et al., 2018). To ease the 
postoperative ICP monitoring especially in TBI patients, it is 
essential to develop non-invasive methods of ICP monitoring. 

The photoplethysmography (PPG) technology has been 
applied in the daily monitoring of many physiological 
parameters and may enable non-invasive long-term ICP 
monitoring. The cyclic fluctuations of a PPG signal reflect 
volumetric changes in the microcirculation, which is regulated 
by many physiological factors, e.g., respiratory pattern, arterial 
stiffness, and the mechanical properties of surrounding tissues. 
Therefore, PPG signals derived from the distal area of intracranial 
arteries might reflect ICP-related changes in cerebral 
microcirculation. The infra-red PPG signals measured from 
extracranial skin surface could reflect the intracranial 
microcirculation in different cerebral perfusion territories (Viola 
et al., 2013). A recent pilot study showed that the PPG signal 
recorded non-invasively from forehead can detect apnea-induced 
cerebral blood flow oscillations (Alex et al., 2019). In a pilot study 
on 14 subjects, Morgan et al. (2021) estimated ICP using retinal 
vein PPG signal and achieved clinically acceptable accuracy 
(−0.35 ± 3.6 mmHg). These studies indicated that intracranial 
PPG signals measured from extracranial areas might be a 
promising tool for non-invasive ICP monitoring. However, it is 
uncertain if ICP changes could generate waveform changes of 
intracranial PPG signals, with a lack of theoretical basis and in-
depth analysis from a physiological perspective. 

Computational modelling and simulation based on 
biomechanical and hemodynamic theories have been widely 
applied in the investigation of intracranial blood flow and ICP 
(Liu et al., 2020b). Especially, the Windkessel model is a highly 
simplified one where the resistance and compliance in the 
circulatory system are simulated as resistors and capacitors in a 
circuit (Alastruey et al., 2007). The unidirectional flow in the CSF 
circulation can be simulated using diode elements (Ursino and Di 
Giammarco, 1991). Recently, data-driven algorithms were proposed 
to improve the accuracy of ICP simulation. It was suggested that ICP 
can be computationally estimated from the cerebral blood flow and 
blood pressure (Kashif et al., 2012). However, the biomechanical 
properties of arteries are non-linear and age-dependent, which was 
not fully considered in existing models of ICP simulation. Moreover, 
the hemodynamic data in existing models were from invasive 
measurement. The relationship between non-invasively measured 

FIGURE 1 
(A) Scientific hypothesis of this paper: changes in ICP values can 
lead to PPG waveform changes which can be computationally 
simulated. (B) Structure of the computational model. The arrows show 
the data flows. ICP: intracranial pressure; PPG: 
photoplethysmography. 

intracranial PPG and ICP has not been comprehensively 
investigated using computational modelling. 

To fill this research gap, we aim to develop a computational 
model of intracranial PPG signals and investigate if the changes in 
ICP could lead to the changes in intracranial PPG signals of different 
cerebral perfusion territories (Figure 1). 

2 Methods 

2.1 Overview of the computational model 

As shown in Figure 1A, we hypothesize that the changes in ICP 
can lead to waveform changes in intracranial PPG signals. To verify 
this hypothesis, we developed a computational model to simulate the 
PPG signals of different cerebral perfusion territories in different 
ICP conditions. The computational model consists of three parts: A 
cardiocerebral artery network, an ICP model, and a PPG model 
(Figure 1B). The cardiocerebral artery network simulated the blood 
flow of intracranial arteries and the local blood pressure, which were 
transmitted to the ICP and PPG models as model input. The ICP 
signal derived from the ICP model was transmitted back to the 
cardiocerebral artery networks to generate the boundary conditions. 
At the same time, the ICP model generates the input of the PPG 
model at microcirculatory level. In summary, the three parts are 
interactive. All the components of the three parts are based on lump-
parameter Windkessel models. The computational models are 
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TABLE 1 Data sources of the parameters in the computational models. 

Models 

Cardiocerebral artery network 

Data sources and references of the parameters 

Anatomic parameters of arteries: Table 1 of (Alastruey et al., 2007); Calculation of parameters of Windkessel elements: Eqs 1–3 
and Table 1 of (Zhang et al., 2014) 

Age-dependent non-linear arterial capacitance Parameters in age-dependent capacitance of aorta: Table 1 and Eq. 5 of (Wesseling et al., 1993); Parameters of age-dependent 
capacitance of CCA: basic function from Table 1 and Eq. 1 of (Kopustinskas et al., 2010), References pressure (mean pressure of 
healthy adults) from the subsection “Theoretical Background” and Eq. 1 of (Giudici et al., 2022), age-dependent capacitance 
changes from Figure 2 of (Vriz et al., 2017) 

ICP model Parameters of circuit elements in the ICP model: Table 1 of (Lee et al., 2015); Piecewise ICP function: References ICP value 
(5 mmHg) from (Ryding, 2017) and  (Alperin et al., 2000); parameter in the inverse proportional function from the subsection 
“Assignment of Parameter Basal Values” of (Ursino and Lodi, 1997) and  Figure 8 of (Ursino and Di Giammarco, 1991) 

PPG model Values of distal resistance and capacitance: same as those in cardiocerebral artery network; Ratios between different 
components: Table 1 of (Tanaka, 2022) 

CCA, common carotid artery; ICP, intracranial pressure; PPG, photoplethysmography. 

FIGURE 2 
The structure of cardiocerebral artery network and the boundary conditions. The illustration of artery structure is adapted from Figure 2 of (Kang 
et al., 2021). 

detailed in the following subsections. The parameters in the models 
are listed in Table 1. 

2.2 Cardiocerebral artery network 

The cardiocerebral arterial network was based on the classic 
brain circulation model proposed by Alastruey et al. (2007), with 
outlet boundary conditions of intracranial arteries modified to 

include the effect of ICP on cerebral microcirculation. The 
cardiac output flow (i.e., the inflow of the aorta) was used as the 
inlet boundary condition. The structure of the artery network starts 
from the aorta and includes the major branches of intracranial 
arteries (Figure 2). The intermediate (i.e., connecting other artery 
segments without any inlet or outlet) branches included: ascending 
aorta, aortic arch (in two segments), brachiocephalic artery, 
common carotid arteries (left and right), subclavian arteries (left 
and right), vertebral arteries (left and right), internal carotid arteries 
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(left and right, both in two segments), basilar artery, as well as the 
connecting arteries in the Circle of Willis, i.e., posterior 
communicating arteries (left and right), anterior communicating 
artery, and the first segments of anterior and posterior cerebral 
arteries (left and right, for both). Each intermediate artery was 
simulated using a three-element Windkessel model which consisted 
of a resistor, a capacitor, and an inductor that reflected the 
resistance, capacitance, and inductance of an elastic artery wall, 
respectively (Figure 2). The anatomic properties of the arteries and 
the methods of calculating the values of circuit elements can be 
found in Alastruey et al. (2007) and Zhang et al. (2014) (Table 1). 

Regarding the outlets, the extracranial ones included thoracic 
aorta, brachial arteries (left and right), and external carotid arteries 
(left and right). These arteries were connected to a 3-element 
Windkessel model (Figure 2). The resistance included peripheral 
and distal ones which denoted the flow resistances in the artery and 
microcirculation, respectively. The outlet pressure was the venous 
pressure (5 mmHg) which was simulated by a voltage source. For the 
intracranial arteries (anterior, middle, and posterior cerebral 
arteries, left and right for all), the outlet pressure at 
microvascular level (i.e., prearteriole pressure) was derived from 
the ICP value generated by the ICP model. 

2.3 Age-dependent non-linear arterial 
capacitance 

To simulate the artery blood flow in different age groups, we 
used age-dependent parameters in the Windkessel models of aorta 
and common carotid arteries. 

In the aorta model, we used the pressure-dependent Windkessel 
capacitance element proposed by Wesseling et al. (1993). The 
capacitance value depends non-linearly on the pressure: 

A max · L 
CA( )P (1)

2 
1 + P−P0πP1 P1 

where A max is the maximal cross-sectional area, approximated as 
5.8 cm2 for male adults, L is the length of aorta, P denotes the local 
blood pressure, whilst parameter P0 and P1 are age-dependent 
reference pressure values. 

P0 76 − 0.98*age mmHg age ∈ [20, 70] (2) 
P1 57 − 0.44*age mmHg age ∈ [20, 70] (3) 

The biomechanical relationship between the capacitance of 
common carotid artery and local blood pressure is described by a 
non-linear exponential function: 

−b·P t( )CCCA P a · (4)( )  e 

1 1where a 3.14 ml*mmHg− , b 0.018 mmHg− , and P(t) denotes 
transient value of blood pressure in common carotid artery which is 
a major source of the capacitance effect on intracranial blood flow 
(Kopustinskas et al., 2010). 

−b·[P t( )− ]PrefCCCA( )P CCCA Pref · e 
· 1.3 − 0.012* age − 20 age ∈ [20, 70] (5) 

where Pref 100 mmHg is an established value for mean pressure 
of healthy adults and has been used in computational simulation 
studies (Giudici et al., 2022). The age-dependent function is based 
on a large-scale physiological measurement of common carotid 
artery stiffness in 900 healthy subjects (Vriz et al., 2017). 

2.4 ICP model 

The computational model for continuous ICP simulation was 
based on the classic model proposed by Ursino and Di Giammarco 
(1991) which has been widely used in ICP estimation (Lee et al., 
2015). The model includes resistors and capacitors to simulate the 
overall resistance and capacitance of intracranial arteries, 
microcirculation, and veins, respectively (Figure 3). Two diodes 
were used to simulate the unidirectional flow in the CSF circulation. 

The intracranial capacitance is a piecewise function of ICP, 
which is a constant when ICP < 5 mmHg (venous pressure) and 
depends non-linearly on ICP when ICP ≥ 5 mmHg: 

⎧ 7.502*10−9*RatioCD ICP ∈ 0, 666.5⎪⎨ 
C 5*10−6 (6)⎪ *RatioCD ICP ∈ [ 666.5, +∞)⎩ 

ICP 

where the unit of ICP and intracranial capacitance are Pa and 
m3/Pa, respectively. RatioCD denotes the ratio of intracranial 
capacitance decrease, which is used to simulate the pathological 
conditions due to the brain injury with acute increase of brain tissue 
volume where ICP increases. The connection point of the two 
subintervals (5 mmHg) was modified from the reference pressure 
of 6 mmHg in (Ryding, 2017) to match the reference venous 
pressure. The reference ICP value of 5 mmHg is also in 
accordance with the clinical observation after the withdrawal of 
CSF (Alperin et al., 2000). Both normal and pathological situations 
were simulated, therefore, the parameter in the inverse proportional 
function (5*10−6 m3, or 5 ml) was set marginally below the normal 
range (6.66–20 ml) derive from (Ursino and Lodi, 1997) and within 
the range used in the simulation of pathological situations 
(1.92–6.41 ml) (Ursino and Di Giammarco, 1991). 

2.5 PPG model 

The PPG model was based on a cerebral microcirculation model 
including arteriole, capillary, and venule components (Figure 4) 
(Tanaka, 2022). The ratios of element values among the different 
components were from physiological measurement results of human 
cerebral circulation (Mandeville et al., 1999). The inputs of the 
model include prearteriole pressure and ICP generated by the 
cardiocerebral artery network and ICP model, respectively. The 
PPG signals were generated from distal perfusion territories of 
anterior, middle, and posterior cerebral arteries (ACA, MCA, and 
PCA) on the left side. For the territory of a cerebral artery (e.g., 
MCA), the arteriovenous anastomoses in brain tissues were 
simulated by a resistance between the middle points of arteriole 
and venule components (RAVA-MCA in Figure 4). The PPG signal 
was simulated as the voltage along the capacitance elements in the 
Windkessel model (Figure 4). Therefore, the simulation result 
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FIGURE 3 
ICP model. (A) Electric analog of the human intracranial hydrodynamics for ICP simulation. R1-1, R1-2, and Ci-1: hydraulic resistance and 
compliance of the proximal arterial cerebrovascular bed (basal brain arteries and large pial arteries), respectively; R2-1, R2-2, and Ci-2: hydraulic 
resistance and compliance of the distal arterial cerebrovascular bed (medium and small pial arteries), respectively; Cic: intracranial tissue compliance; Cvi: 
intracranial venous compliance; Rpv: hydraulic resistance of the proximal venous cerebrovascular bed; Rdv: hydraulic resistance of the distal venous 
cerebrovascular bed (lateral lacunae and bridge veins); Rf: CSF formation resistance; Ro: CSF outflow resistance; Rve and Cue: hydraulic resistance and 
compliance of the extracranial venous pathways; Pcv: central venous pressure. (B) The piecewise function between ICP and intracranial capacitance. 

(“simulated PPG”) reflects the pressure drop on microvascular level 
induced by the volumetric changes from which the PPG signal 
originates, whereas the unit is in Pa instead of V or mV. 

2.6 PPG waveform features 

To quantitatively investigate the ICP-induced changes of PPG 
waveform, we used five waveform features, as shown in Figure 5. 
Besides the maximum and minimum (i.e., baseline) values, we 
calculated the mean value as the integration of the PPG signal in 

T 
PPG(t)dt 

a cardiac cycle divided by the length of a cardiac cycle (T): 0 ,T 

where PPG(t) is the transient value of simulated PPG signal, and 
T 0.8s. The amplitude was defined as the difference between the 
maximum and the minimum: Amplitude PPG max − PPG min. 
The min-to-max period was defined as the length of the period 
from minimum to maximum, which was named as rising time in 
existing studies on finger PPG signals where the systolic period was 
clearly observable (Khalid et al., 2020). 

Based on the directly measured basic waveform features, we 

calculated three secondary waveform features which have been 

applied in hemodynamic research: pulsatility index (PI): 
PPG max−PPG min PPG max−PPG min PI ; resistive index (RI): RI ,PPGmean PPG max 

and the ratio between maximum and mean values of PPG 
PPG max signal, i.e., max-to-mean ratio (MMR): MMR . The  PPGmean 

definitions of PI and RI were in accordance with those in 4D 

flow magnetic resonance imaging (MRI) observation of cerebral 

microcirculation based on flow velocity (Rivera-Rivera et al., 

2015). 

2.7 Simulation and evaluation 

The simulation was performed on MATLAB-Simulink 
(Version: r2021a, MathWorks, Natick, MA, United States). 
We simulated the ICP and PPG signals in male subjects of 
three ages: 20, 40, and 60 years old. The simulation was repeated 
in four pathophysiological conditions of intracranial 
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FIGURE 4 
The structure of microcirculatory model to generate the PPG signal in MCA territory. RA1-MCA and RA2-MCA: equally divided arteriole resistances. 
RC-MCA: capillary resistance. RV2-MCA and RV1-MCA: equally divided venule resistances. CC-MCA: capillary capacitance. CV1-MCA and CV2-MCA: 
equally divided venular capacitances. 

FIGURE 5 
Basic waveform features of a simulated PPG signal in a cardiac 
cycle. 

capacitance decrease: 0 (i.e., normal status), 25%, 50%, and 75%. 
To verify the model, the ICP values simulated at normal 
condition were compared with the results of existing 
physiological measurement. Each simulation lasted 30 s. To 
avoid any initial effect, the features were measured in the first 
cardiac cycle after 10 s when the signal was stable. The PPG 
waveform features derived were quantitatively compared 
between different intracranial capacitance conditions to 
investigate if ICP changes could lead to the waveform changes 
of intracranial PPG signals. 

3 Results 

3.1 Model validation: ICP and PPG 
waveforms in different ages 

As shown in Figure 6, the simulated ICP signals of 20, 40, and 
60 years old subjects with normal intracranial capacitance have 
minor differences in waveform but are similar in range: 
9.31–11.12, 9.13–11.35, and 8.87–11.68 mmHg, with nearly 
identical mean values of 11.12, 11.35, and 11.68 mmHg 
(Figure 7). These mean ICP values were within the normal range 
of healthy adults: 10–15 mmHg (Rangel-Castillo et al., 2008). 

As to the PPG waveform, it can be observed that PPG signals of 
ACA, MCA, and PCA territories are similar in amplitude and baseline, 
but different in waveform (Figure 6). There is no sharp fluctuations in 
the PPG waveform, which is in accordance with the fact that high-
frequency components (i.e., sharp fluctuations) are absorbed by the 
capacitance of large arteries before arriving arterioles. The results of 
simulated PPG waveform features in Table 2 are in accordance with the  
4D MRI flow observations that PI is large in PCA compared with MCA, 
and in older subjects (Rivera-Rivera et al., 2015). 

As a more general case of all the simulations, Figure 7 shows the 
simulated waveforms of arterial blood pressure, PPG, and ICP of a 
40 years old subject with 25% decrease of intracranial capacitance. It 
can be observed that the dicrotic notch and secondary peak are 
blurred with a flat systolic peak in the arterial blood pressure of 
intracranial arteries, which reflects the buffering effect of 
intracranial capacitance on the pulse wave (i.e., neutralization of 
backward wave) and is basically in accordance with existing 
modelling studies (Blanco et al., 2017; Schollenberger et al., 2021). 
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FIGURE 6 
Simulated ICP and PPG waveforms during five cardiac cycles (10–14s) in 20, 40, and 60 years old healthy male subjects with normal intracranial 
capacitance. 

Therefore, the model can reliably simulate the ICP values in 
subjects with different ages, and reflect the waveform features of 
human cerebral microcirculation in different perfusion 
territories. 

3.2 ICP values in different intracranial 
capacitance conditions 

As shown in Figure 8, ICP increases when intracranial 
capacitance decreases. Between different ages, the differences in 
maximum and minimum of ICP are very limited, while the 
difference in mean ICP is even negligible. With 50% decrease of 
intracranial capacitance, the mean values of ICP in all three ages are 
above 15 mmHg (16–16.1 mmHg), which is beyond the normal 
range (7–15 mmHg). With 75% decrease of intracranial capacitance, 
the mean values of ICP in all three ages are marginally beyond 
20 mmHg (20.2–20.3 mmHg) where clinical intervention is 
recommended (Rangel-Castillo et al., 2008). 

3.3 PPG waveform features in different 
intracranial capacitance conditions 

Figure 9 and Figure 10 illustrate the effects of age and 
intracranial capacitance condition on the basic and secondary 
PPG features in different cerebral perfusion territories. 

In Figure 9, the maximum, minimum, and mean values 
significantly decrease with intracranial capacitance, while the ICP 
increases from <11.5 mmHg to hypertensive condition (>20 mmHg). 
Meanwhile, there is a minor decrease in amplitude. In contrast, there is 
no consistent changes in min-to-max time or any secondary waveform 
feature (Figure 10) where the maximal relative difference is less than 2% 
among all intracranial capacitance conditions. 

On  the other  hand, we observed significant effects of age and 
cerebral perfusion territory on all the waveform features. When age 
increases, maximum, amplitude, PI, RI, and MMR are higher, while the 
minimum and min-to-max time are lower, with negligible changes of 
the mean. Compared with PCA and ACA territories, MCA territory has 
lower maximum, minimum, amplitude, PI, RI, and MMR, with lower 
age-relevant differences in min-to-max time (Figure 9 and Figure 10). 

4 Discussion 

4.1 Summary of results 

In this study, based on lump-parameter Windkessel models with 
age-dependent non-linear elements, we simulated the effect of ICP 
increase due to intracranial capacitance decrease on the waveform 
features of PPG signals of different cerebral perfusion territories in 
subjects of different ages. The simulation results showed that ICP 
changes could significantly influence the maximum, minimum, 
and amplitude of PPG signals, with limited effect on min-to-max 
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FIGURE 7 
Arterial blood pressure, PPG, and ICP waveforms in a 40-years old subject with 20% decrease of intracranial capacitance. The illustration of artery 
structure is adapted from (Kang et al., 2021). 

TABLE 2 Simulated PPG waveform features in normal intracranial capacitance. 

ACA MCA PCA 

Age (years) 20 40 60 20 40 60 20 40 60 

PI 0.134 0.178 0.222 0.114 0.147 0.182 0.137 0.181 0.226 

RI 0.127 0.165 0.201 0.108 0.138 0.167 0.130 0.167 0.205 

MMR 1.052 1.081 1.104 1.047 1.069 1.085 1.050 1.079 1.104 

PI, pulsatility index; RI, resistive index; MMR, max-to-mean ratio. 

FIGURE 8 
The maximum, minimum, and mean values of ICP in a cardiac cycle in different intracranial capacitance conditions. 
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FIGURE 9 
The basic waveform features of the simulated PPG signals in different intracranial capacitance conditions. 

time, PI, RI, and MMR. As far as we know, this is the first study that 
quantitatively investigates the effect of ICP on the waveform features 
of intracranial PPG signals using computational simulation. 

4.2 Clinical need on non-invasive ICP 
monitoring: A wearable pathway via PPG? 

Recent years have witnessed the development of non-invasive 
ICP monitoring technologies, including transcranial Doppler 

measurement of cerebral blood flow, near-infrared spectroscopy 
(NIRS), tympanic membrane displacement (TMD) (Lee et al., 2020), 
ophthalmodynamometry (Nag et al., 2019), optic nerve sheath 
diameter (ONSD) analysis based on ultrasound (i.e., transcranial 
Doppler) or radiological [e.g., computed tomography (CT), MRI, 
and optical coherence tomography (OCT)] data, and other imaging-
based methods (e.g., analysis of CT-derived ratio of CSF volume to 
the total intracranial volume) (Harary et al., 2018; Nag et al., 2019). 
These techniques enable the non-invasive measurement of ICP in 
clinical practice. However, these methods depend on expensive 
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FIGURE 10 
The secondary waveform features of the simulated PPG signals in different intracranial capacitance conditions. 

devices or clinical imaging data, which require professional skills of 
operation and data processing. Considering the risk of infection and 
limited medical resources, the postoperative ICP monitoring was 
often performed for a couple of days or a week for invasive and non-
invasive methods, respectively, despite its clinical significance 
(Chang et al., 2019; Chang et al., 2021). To achieve better 
postoperative management of TBI patients, there is a high 
clinical need for easy-to-perform and low-cost techniques of 
non-invasive long-term ICP monitoring. 

Compared with existing techniques, PPG signals can be detected 
from different body sites using low-cost wearable sensors without 
any need for expertise or training. PPG technology has been widely 
used in healthcare monitoring and early detection of cardiovascular 
diseases (Allen, 2007; Liu et al., 2019). Transcranial Doppler 
ultrasonography (TCD) and servo-controlled finger PPG have 
been applied in continuous bedside monitoring of cerebral blood 
flow and blood pressure, as well as the evaluation of cerebral 
autoregulation (Aries et al., 2010). Some pilot studies showed 
that PPG waveform features may indicate pathological 
hemodynamic changes in cerebral circulation on which ICP has 
a strong influence. The amplitude of PPG signals measured from 
bilateral index fingers is associated with cerebral artery stenosis 
(Kang et al., 2018). The TCD-derived PI and PPG waveform are 

associated with cerebrovascular hemodynamic changes in the 
patients with the disorder of consciousness (Liu et al., 2016). 
Morgan et al. (2014) developed a modified PPG system using 
video recordings taken through an ophthalmodynamometer and 
timed to the cardiac cycle to investigate the phase lag between retinal 
venous and arterial pulses. Based on this modified PPG system, 
Abdul-Rahman et al. (2020) recently estimated ICP value from 
retinal vascular pulse wave attenuation. Abnormal morphological 
and biomechanical properties of retinal veins have been proven to be 
biomarkers to guide diagnosis and management of elevated ICP 
(Moss, 2021). In accordance with existing studies, our results 
provided new evidence that waveform features (i.e., maximum, 
minimum, mean, and amplitude) of intracranial PPG signals 
could reflect the changes in ICP. Therefore, PPG technology may 
enable the non-invasive long-term ICP monitoring. 

Meanwhile, the majority of existing studies on PPG-assisted 
ICP monitoring are based on the PPG signals of fingers, retina, or 
other extracranial sites. The transcranial brain PPG technology 
was developed to study the venules of cerebral cortex (Viola et al., 
2013) but has not been applied in ICP monitoring. Our results 
provide new reference on ICP estimation based on intracranial 
PPG signals which directly reflect the status of cerebral 
microcirculation. 
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4.3 ICP-relevant PPG waveform features 

We observed that ICP significantly influenced the value-related 
waveform features (i.e., maximum, minimum, mean, and 
amplitude), with negligible effect on shape-related ones 
(i.e., min-to-max time, PI, RI, and MMR). Especially, the ICP 
changes did not generate any consistent differences in PI, which is 
in accordance with Fernando et al.‘s observation in a recent 
systematic review that PI derived from TCD signal (TCD-PI) 
has poor accuracy in estimating ICP (range of area under the 
receiver operating characteristic curve: .550–.718) (Fernando et al., 
2019). Here we try to provide an initial explanation on this 
phenomenon from a physiological perspective based on our 
computational model. The changes in intracranial capacitance 
influence the ICP, thus the boundary conditions of intracranial 
arteries in the cardiocerebral artery network. However, the 
fluctuations of ICP signals in a cardiac cycle are limited 
(amplitude<5 mmHg, Figure 6 and Figure 8). Thus, the increase 
of ICP changes the value of outlet pressure in the model, without 
generating much pulsatility at the outlets. On the other hand, ICP 
is much lower in value than the blood pressure, which does not 
change the biomechanical properties of the vessel wall on both 
macro- and microvascular levels. Therefore, ICP can significantly 
change the value-related PPG waveform features of ICP with 
minor effect on the shape-related ones. 

4.4 Role of other physiological factors in 
ICP-induced PPG waveform changes 

We observed strong effects of age and measurement site 
(i.e., cerebral perfusion territory) on intracranial PPG 
waveform features. The PPG waveform depends on many 
physiological features including age, measurement site, blood 
pressure, respiratory pattern, and neural activities (Liu et al., 
2020a). The biomechanical properties of the cardiovascular 
system (e.g., arterial stiffness) depends on the age. In Figure 9, 
age-related changes in PPG waveform features are more 
significant than ICP-related ones. Age-adjusted analysis can be 
considered in PPG-based ICP estimation. However, the effect of 
age on the mean is negligible, which indicates that the normal 
intensity of cerebral microcirculation is unaffected by age (Cidis 
Meltzer et al., 2000). 

PPG waveform also strongly depends on the blood pressure 
value and can be used for blood pressure estimation (Allen, 2007). 
The combination of TCD and blood pressure showed much higher 
accuracy than the TCD-PI method in estimating ICP (Fernando 
et al., 2019). Ruesch et al. (2020) investigated the estimation of ICP 
based on cerebral blood flow measured by diffuse correlation 
spectroscopy, and found an obvious improvement in accuracy 
when mean arterial blood pressure was included (R-squared 
values: .82 and .92). Furthermore, the ICP-induced dysfunction 
of cardiorespiratory system and cerebral autoregulation can lead 
to complex changes in cerebral microcirculation and resultant PPG 
waveform (Winklewski et al., 2019). Therefore, other physiological 
factors and their interactions deserve further consideration in 
investigating the relationship between ICP and PPG waveform 
features. 

4.5 Towards better accuracy: 
Individualization of arterial parameters and 
venous model 

The proposed model consists of 33 artery segments from aorta to 
the Circle of Willis. To generate reliable simulation results for 
clinical application, the biomechanical properties of the arteries 
need to be evaluated individually in different subjects. In this model, 
the biomechanical and anatomic properties of the arteries were 
derived from some earlier physiological measurement results 
(Stergiopulos et al., 1992; Fahrig et al., 1999; Moore et al., 2006) 
where the properties distributed in wide ranges. We noted that the 
parameters of vascular anatomy in Alastruey et al. (2007) and Zhang 
et al. (2014) models were not exactly the same. All the values fell in 
the normal ranges, whilst the differences in anatomic parameters 
provided a chance to observe the effect of individual vascular 
anatomy on the simulated ICP and PPG signals. Figure 11 shows 
the simulation results of a 40-year old male subject with 25% 
decrease in intracranial capacitance based on Alastruey et al. 
(2007) and Zhang et al. (2014) arterial models (scenarios 1 and 
2, respectively), with the parameters of other parts identical. The 
ICPs of both scenarios are similar in range but different in 
waveform. The PPG signals of both scenarios are different in 
range and waveform, whereas, similar trends can be observed, 
i.e., the PPG of MCA territory is lower in amplitude, maximum, 
and minimum compared with those of ACA and PCA territories. 
Therefore, this model initially indicated the possibility of PPG-based 
ICP estimation, while there is a long way to explore towards 
individualization of the model where patient-specific anatomic 
data are essential. 

In addition, the simulated ICP has one or two peaks, while in 
vivo ICP often has three peaks in a cardiac cycle: P1 (percussion 
wave), P2 (tidal wave), and P3 (dicrotic wave) (Harary et al., 2018). 
This might partly due to the simplification of venous circulation and 
its interaction with ICP. Although the precise origin of ICP peaks is 
not fully understood yet, P2 and P3 are often thought relevant to the 
retrograde venous pulse of the jugular against the cortical veins 
(Rodríguez-Boto et al., 2015). In the classic ICP model which we 
adopted, the cerebral venous system was simplified as a unilateral 
flow dependent on ICP (Ursino and Di Giammarco, 1991; Lee et al., 
2015). Some advanced mathematical models have been proposed to 
describe the non-linear hemodynamic properties of cerebral veins 
(Toro, 2016). However, these models have not been fully validated 
on patients with different ICP levels. Considering the complexity 
and individual difference of cerebral venous system, patient-specific 
hemodynamic data (e.g., MRI-derived flow) are essential in the 
individualization of the cerebral circulation model measurement 
(Müller and Toro, 2014). A computationally efficient model that 
reflects the interaction between ICP and intracranial venous system 
is essential for improving the accuracy of ICP waveform estimation. 

4.6 Limitations and future directions 

There are some limitations in this pilot study. First, as 
aforementioned, the model was an idealized one where the values 
of elements and boundary conditions were derived from literature. 
Considering the individual difference in waveform which may 
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FIGURE 11 
The ICP and PPG signals simulated in two scenarios with different values of the elements in cardiocerebral artery network. 

involve other confounders, we did not include the analysis of focal 
waveform features, e.g., the location of maximal/minimal first or 
second derivatives. These features may reflect important 
physiological information including neural activities (Khalid 
et al., 2022) and cardiovascular pathophysiological changes 
(Elgendi et al., 2018). Second, the Windkessel models were highly 
simplified where the local hemodynamic changes within an arterial 
segment or a perfusion territory could not be reflected. For 
simplification, the aging effect was only considered in aorta and 
big arteries. The aging effects on cerebral vasculature (Oudegeest-
Sander et al., 2014; Graff et al., 2021) and veins (Fulop et al., 2019; 
Huang et al., 2021) were not included in the proposed model due to 
the lack of comprehensive measurement results among subjects with 
different ages and ICP levels. Cerebral autoregulation and 
respiration can also significantly influence the dynamics of ICP 
(Budohoski et al., 2012; Vinje et al., 2019). In addition, the ICP 
model was simplified as a unidirectional flow system where the 
interactions between cerebral ventricles were not included. The PPG 
signals was also highly simplified as the pressure drop due to 
volumetric changes. The optical and electronic components were 
not included. In real-world scenarios, the PPG signals are sensitive 
to many physiological and technical factors, e.g., motion artefact, 
contact pressure, etc., which can significantly deform the PPG 

signals (Fine et al., 2021). It needs further validation whether the 
ICP-related changes can be reliably detected from the real-world 
noisy PPG signals. Most importantly, the ICP values were generated 
by setting different intracranial capacitance decrease levels, while an 
elevated ICP could be generated by different pathological 
mechanisms where multiple physiological factors are involved. 

In future studies, by introducing patient-specific 
biomechanical parameters and hemodynamic parameters as 
boundary conditions, using more advanced biomechanical 
models (e.g., venous valves, starling resistors) especially in 
cerebral venous system (Toro et al., 2022), adding optical 
sensing components, and including more physiological factors 
(e.g., respiratory regulation), the relationship between ICP and 
the waveform features of intracranial PPG signal could be further 
investigated in different pathological conditions. 

5 Conclusion 

ICP values could significantly change the value-relevant 
(maximum, minimum, mean, and amplitude) waveform features 
of PPG signals measured from different cerebral perfusion territories, 
with negligible effect on shape-relevant features (min-to-max time, PI, RI, 
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and MMR). In addition, age and measurement site significantly influence 
all PPG waveform features except the mean. 
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