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Abstract: In-situ micro X-ray Computed Tomography (XCT) tests of concrete cubes under 

progressive compressive loading were carried out to study 3D fracture evolution. Both direct 

segmentation of the tomography and digital volume correlation (DVC) mapping of the displacement 

field were used to characterise the fracture evolution. Realistic XCT-image based finite element (FE) 

models under periodic boundaries were built for asymptotic homogenisation of elastic properties of 

the concrete cube with Young’s moduli of cement and aggregates measured by micro-indentation 

tests. It is found that the elastic moduli obtained from the DVC analysis and the FE homogenisation 

are comparable and both within the Reuss-Voigt theoretical bounds, and these advanced techniques 

(in-situ XCT, DVC, micro-indentation and image-based simulations) offer highly-accurate, 

complementary functionalities for both qualitative understanding of complex 3D damage and 

fracture evolution and quantitative evaluation of key material properties of concrete. 

Key words: X-ray computed tomography, Fracture, Segmentation, Digital volume correlation, 

Homogenisation, Concrete 

 

1 INTRODUCTION 

Quasi-brittle multiphase composite materials, such as concrete, bones, fibre-reinforced plastics 

(FRP) and ceramic/metal matrix composites are widely used in engineering structures of many 

industries. A better understanding of their mechanical behaviour can lead to development of 

materials with higher load resistance, cost-effective manufacturing processes and optimal structural 

designs. Due to the random distribution of multiple phases from the nano-, micro-, meso- to macro-
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scales, multiphase composite materials have intrinsically heterogeneous and nonlinear mechanical 

properties, which in turn directly determine the performance and reliability of structures and 

systems. Therefore, understanding their mechanical properties including damage and fracture at 

different scales, through both experimental studies and computational modelling, becomes one of 

the most critical and challenging engineering and scientific problems (Oden et al., 2003; Kassner et 

al., 2005). 

The X-ray computed tomography (XCT) technique, a 3D imaging technique originally used in 

medicine, is now widely used to characterise the internal nano/micro/meso-scale structures of many 

materials, because of its high resolution, non-destructive nature, and ability to clearly visualise 

details including different phases, interfaces, pores and cracks. For instance, in the last decade XCT 

has been applied to characterise microstructures and properties of wide range of materials, such as 

geological materials (rock, soil and fossils) (Carlson, 2006), metals and alloys (Babout et al., 2006; 

Marrow et al., 2006; Qian et al., 2008), porous materials (Kerckhofs et al., 2008), composites 

(Drummond et al., 2005; Sharma 2013), asphalt mixtures (Song et al., 2006), cement (Meyer et al., 

2009) and concrete (Garboczi, 2002; Wang et al., 2003; Man and van Mier, 2008; Landis and 

Bolander, 2009). Many XCT studies acquire the internal structures of intact materials without 

external loading, or study damaged materials after loading (i.e. post-mortem analyses). However, 

in-situ XCT studies, which scan the internal structures of materials under progressive loadings so 

that the structural damage and fracture evolution can be examined and related to the loading process 

are now feasible. For example, De Kock et al (2015) have observed the fracture process in rocks 

under ambient freeze−thaw cycling and Nagira et al (2011) studied semi-solid carbon steels., whilst 

in recent years some of the authors of this paper have conducted in-situ XCT experiments to 

examine deformation in metal-metal composites (Baimpas et al., 2014), fatigue cracking in 

magnesium alloy (Marrow et al., 2014), indentation cracking in alumina (Vertyagina et al., 2014) 

and ceramic composites (Saucedo-Mora et al (2016)), tensile deformation in nuclear graphite 

(Marrow et al., 2016), and polymeric foams (McDonald et al. 2011), liquid flow and deformation in 

semi-solid aluminium alloys (Cai et al, 2016), indentation deformation in a metal-matrix composite 

(Mostafavi et al, 2015), and fracture of propagation in nuclear graphite (Mostafavi et al, 2013).  For 

such studies to be successful, it is important to consider the experimental constraints of increasing 

X-ray absorption with sample dimension and density, which limits the maximum dimensions and 

increases the time to record tomographs, and also for digital volume correlation analysis of 

deformation, it is necessary that the microstructure contains sufficient “speckle” contrast that can be 

discerned at the experiment’s resolution (Bay et al, 1999). 
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One particularly attractive research direction is to build micro/meso-scale finite element (FE) 

models from the high-resolution XCT images. As these FE models describe the original 

heterogeneous micro-structures, including the shape, size and distribution of each phase, they can 

be more realistic and accurate than micro/meso-scale models with assumed structures. These XCT 

image-based FE models, after being fully validated against experiments, may be used to optimise 

the micro-structures of a material for user-specified properties without the need of complicated and 

costly experiments. However, 3D XCT images have only occasionally been used to build 

geometrically realistic FE models, for example, by Hollister and Kikuchi (1994) for trabecular 

bones, Terada et al. (1997) for metal matrix composites, McDonald et al. (2011) for foams, Sharma 

et al (2013) for carbon/carbon composites, Man and van Mier (2008) for concrete, and more 

recently Qsymah et at. (2015) for fibre reinforced concrete and Saucedo Mora et al. (2016) for a 

ceramic-matrix composite 

In this study, both in-situ micro XCT tests of concrete cubes under progressive compressive 

loading and XCT-image based FE modelling are carried out, to gain a better understanding of the 

3D fracture mechanisms and mechanical properties of concrete. Two methods are used to 

characterise the fracture evolution considering the unique multi-phasic internal structure of 

concrete. The first segments the attenuation contrast of XCT images (using AVIZO (2013) 

software) into different phases, namely, aggregates, cement, cracks and voids. The second uses the 

digital volume correlation (DVC) technique to map the relative deformations between consecutive 

XCT images with high precision; bulk mechanical properties are measured from the displacement 

field and cracks visualised via the apparent strain of their opening displacement. The 3D crack 

profiles obtained by these two methods are compared. The XCT-images are then transformed into 

3D FE models to calculate the bulk material properties using the asymptotic homogenisation 

technique with periodic boundary conditions. The elastic moduli of aggregate and cement, required 

as inputs for the FE models, are obtained by micro-indentation experiments. The elastic moduli of 

the concrete cube, obtained from the in-situ test, the DVC study, the FE homogenisation and the 

theoretical bounds (Hill, 1952), are compared, in order to validate the FE modelling as well as to 

clarify uncertainties in the recorded load-displacement curves by the in-situ loading rig. 

2 EXPERIMENTAL STUDIES AND ANALYSES 

2.1  In-situ XCT tests 

The in-situ XCT tests were carried out at the Manchester X-ray Imaging Facility (MXIF), the 

University of Manchester, UK, using the 320 kV Nikon Metris custom bay, as shown in Fig. 1a. 
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The loading rig, consisting of a Deben micro-test stage supporting a transparent cylinder, was 

mounted on the circular stage of the XCT machine. 40 mm concrete cubes were cast with a target 

cylinder compressive strength of 15 MPa and a mix ratio of 1.0 cement : 0.6 water : 4.0 aggregates 

in mass. The strength and the size of specimens were chosen so that the specimens could be loaded 

to failure by the loading rig, which had a loading capacity of 25 kN, and also to ensure sufficient X-

ray transmission to obtain high resolution tomographs. The cement was ordinary Portland cement. 

The aggregates were gravels with an average size 5 mm. No fine aggregates (i.e. sand) were used to 

ensure a relatively simple micro-structure.  

Two steel pads, glued by double-side adhesive tapes to the centre of the top and bottom surfaces 

of the specimen, provide a loading area of 17.5 mm×17.5 mm (i.e. 19% of the sample cross-section 

area) to achieve a vertical splitting failure. They were centred inside the enclosing transparent 

cylinder for tests, as in Fig. 1b, where a failed concrete specimen is also shown. 

 

   

(a): The in-situ XCT facility in MXIF (b) A specimen after failure 

Fig. 1 Setup of the in-situ XCT test 

Fig. 2 illustrates the in-situ XCT test procedure. The 1st scan was conducted without loading. The 

load was then applied via compression at a displacement rate of 0.5 mm/min to 2.5 kN, at which 

point the 2nd scan was carried out. The specimen was then reloaded to 6 kN at the same rate and the 

3rd scan was done. The 4th scan was conducted similarly at 10 kN and the 5th at 16.5 kN, after which 

a wide crack was noticeable. The unloading data could not be recorded reliably.  

Following some optimisation of the parameters, each X-ray scan was conducted with 160 kV and 

60 µA intensity. For each scan, the stage was rotated by 360°, resulting in 2000 2D radiographs 

with pixel resolution 37.2 µm; it took about 2 hours for each scan to complete. The 2D radiographs 

were reconstructed into 3D absorption contrast images using the CT Pro and VG Studio software. 

Image defects such as beam hardening and ring artefacts were removed by post-processing with 

standard methods in the CT Pro software. Each 3D data set was initially about 15 Gb in size. To 
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reduce the data processing time, the 3D data volumes were cropped to cubes of side 37.2 mm (i.e. 

1000 pixels in each dimension). This reduced the data size to 2 Gb for each scan, with the bit depth 

also reduced from 32 bit float to 16.  

 

Fig. 2: The in-situ XCT test procedure with load – displacement shown 

2.2  Visualisation and segmentation 

A 2D section of the XCT data is shown in Fig 3.  The aggregate, large pores and cement are 

readily observed, and the crack is also discernable. The software AVIZO (2013) was used to 

visualise the 3D crack evolution during loading, and segment the XCT images into different phases 

for qualitative and quantitative analyses, and image-based numerical modelling. A segmentation 

procedure was developed and outlined below using the images at 16.5 kN as an example. 

 

Fig. 3 A 2D grey scale section of an XCT image (before loading) 

Aggregates 

Cement 
Voids 

Cracks 

10 mm 
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2.2.1 Determination of thresholds for phases 

The Line-Probe command was used to determine a proper threshold of grey value (i.e. 

absorption contrast) to segment each phase in the XCT attenuation image; Fig. 4 shows an example. 

The sensitivity to location was examined to verify that the threshold values reliably segmented each 

phase. The full grey scale is 0~65535 (16 bit image), and the chosen threshold was >33000 for 

aggregates, <19000 for voids and cracks; values between them were identified as cement.  

2.2.2 Segmentation 

The thresholds are then used in AVIZO to segment the XCT images into three phases (cement, 

aggregate, voids and cracks) under different loadings. However, using thresholds alone to segment 

microstructures is unreliable, due to issues from connected aggregates and missed areas (“islands”). 

As the objective was to extract an image-based 3D model of the microstructure, a series of manual 

operations on the 2D slices were carried out to supplement the initial assignment of microstructures 

by thresholding. This included separation of connected aggregates and addition of missed areas. 

Fig. 5a and Fig. 5b show the segmented aggregates, voids and cracks on a typical slice, 

respectively. The segmented cement is shown in Fig. 5c, obtained by an image operation that 

subtracts aggregates, cracks and voids from the original image. A full description of the 

segmentation procedure can be found in (Li, 2012). 

 

 

Fig. 4: Determination of thresholds for different phases 
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a) aggregates in white b) voids and cracks in white c) cement in grey 

Fig. 5: Segmented phases from XCT image 

2.2.3 Visualisation of three phases and fracture evolution 

From the set of segmented 2D image slices, the 3D shape and distribution of aggregates, cement, 

voids and cracks can be visualised, as shown in Figs 6a-c. The combined concrete structure of the 

specimen without load is shown in Fig. 6d. The segmented cracks and voids, the combined concrete 

and the failed specimen at the peak load 16.5 kN are shown in Fig. 7a, 7b and 7c respectively. The 

segmentation of cracks is based on the threshold of grey values (19000 in Fig. 4) and is thus not 

entirely objective, and there also exist initial cracks in the unloaded specimen as shown in Fig. 6c. 

The major cracks on the specimen surface in Fig. 7b are aligned approximately vertically, which is 

typical of concrete specimens under splitting tests.  

Comparison of Fig. 6c and Fig. 7a demonstrates that a large number of 3D cracks propagate, 

leading to a very complicated crack pattern during loading. Although the specimen geometry, 

loading and boundary conditions are all symmetric, the crack pattern is not symmetric. This reflects 

the effects of the random distribution of aggregates and thus the heterogeneous nature of 

mechanical properties of concrete. More detailed examination of 2D slices reveal that the cracks 

first propagate along aggregate-cement interfaces, which are then bridged by cracks in the cement 

to form the macro-cracks.  

Statistical analyses based on the segmented cube were carried out. The volume fraction of 

aggregates, cement, and voids/initial cracks observed in the sample without load is 49.6%, 49.3%, 

and 1.1%, respectively. The mean value of volume, length, width and equivalent diameter of all 

aggregates is 39.1 mm3, 7.4 mm, 2.7 mm and 3.9 mm, respectively, indicating the complicated 

random geometry of aggregates.  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 8

 

a) Aggregates b) Cement c) Voids and cracks d) Concrete  (aggregate 

in green, cement in blue 

and voids in purple) 

Fig. 6: 3D Segmented phases without load. 

 

   

a) Voids and cracks b) Concrete (aggregates in 

blue, cement in purple, 

voids and cracks in green) 

c) Failed specimen from test 

Fig. 7: 3D segmented voids and cracks, combined concrete and failed specimen at peak load 

The calculated volumes of the voids and cracks under different loads are shown in Fig. 8. The 

volume decreases as the load increased to 10 kN, which is attributed to compaction of the concrete 

under compression. As the load increases to 16.5 kN, a higher volume of cracks and voids is 

observed, which is due to initial cracks gradually propagating and new cracks forming. Shortly 

above this peak load, major vertical cracks propagate rapidly, leading to significant dilation in the 

specimen.  
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Fig. 8: Evolution of cracks and voids 
 

2.3  Digital volume correlation 

Measurement of the elastic modulus of the cube from the load and machine displacement is not 

possible due to the loading rig’s compliance; it was not possible to introduce an extensometer or 

strain gauge due to the setup for XCT. The measured vertical stiffness of the cube, using the slope 

of the dashed line in Fig. 2 up to 10.5 kN, gives a modulus of 0.85 GPa which is far lower than the 

expected elastic modulus of 20-30 GPa of normal-strength concrete; this is largely due to the 

compliance of the loading rig. The 3D digital volume correlation (DVC) technique (Bay et al., 1999; 

Mostafavi et al., 2013a; Mostafavi et al., 2013b; Vertyagina et al., 2014) was therefore applied to 

measure the full 3D displacement field within the cube, from which the average strain and elastic 

properties in the loaded volume could then be obtained (Baimpas et al., 2014; Gonzalez et al., 2013; 

Marrow et al., 2016).  In addition, like 2D digital image correlation (DIC), crack opening 

displacements less than the voxel size can be detected and measured by DVC, and thus cracks that 

are too narrow to be detected by threshold-based segmentation of the XCT image can also be 

identified (Marrow et al., 2012; Vertyagina et al., 2014).  

The DVC analyses were carried out using the LaVision Davis software (DaVis, 2012). In the 1st 

analysis, a large interrogation window size (128×128×128 voxels with 2 passes and 50% overlap) 

was used to calculate the overall distribution of displacements. In a 2nd analysis a smaller 

interrogation window was selected (64×64×64 voxels). Reducing the interrogation window 

increases the spatial resolution of the displacement field, which is useful for visualisation of cracks, 

but it also increases random errors.  A 3rd analysis using 32×32×32 voxel was also conducted to 

visualise the damage with higher resolution. 

To improve measurement precision of bulk deformation, the displacements due to rigid body 

translation and rotation, which inevitably occur during mechanical loading, were decoupled from 
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those resulted from deformation.  This was done by identifying the Euler rotation angles and 

applying a reverse rotation to the DVC-measured displacement field at 128×128×128 voxels (i.e. 

the most precise dataset); the details of this method are described in (Mostafavi et al., 2015).  The 

measured rotations of the sample in all loadings were found to be of the order of 0.5°.  The vertical 

displacements over the area of the loading plates were averaged at the top and bottom of the 

tomographed region specimen (separated by a gauge distance of 38.92 mm); the difference between 

them is the vertical compressive displacement of the sample for each loading sequence, as shown in 

Fig. 9.  The elastic modulus calculated from the dashed line in Fig. 9 for the first three loading 

sequences in which no extended cracks were observed, is 26.42±3.20 GPa. The increase in stiffness 

at higher load may be attributed to the complex behaviour of the specimen as cracking develops. 

 

Fig. 9: Load-displacement curve from XCT and DVC. 

Fig. 10 shows a comparison of a series of XCT and DVC data, in a vertical slice near the 

specimen centre, as the load is increased from 2.5 kN (left) to 16.5 kN (right). The DVC data show 

the nominal maximum principle or normal strain (these visualisations use the 32×32×32 subset data 

for higher resolution).  The maximum normal strain is a measure of the crack opening displacement 

magnitude, and reveals the complex pattern of cracking in a more sensitive manner than the 

segmentation of the XCT data.  Some artefacts due to image correlation errors associated with the 

edges of large pores can be seen in the DVC data.  The tomograph obtained at 2.5 kN is slightly 

blurred compared with the others; this may be due to sample movement during the scan, most likely 

from crack propagation. The blurring affects the DVC analysis, and the resulting errors affect the 

produced local uncertainties in the gradients of the displacement field.  This appears in the DVC 

strain map at 2.5 kN as increased local strains, which are absent in the analysis of the better quality 

tomographs. The strain is a measure of the displacement change across the crack, and the strain 
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dataset obtained by DVC can be segmented using a strain threshold, in a similar manner to the grey-

scale segmentation of the attenuation XCT images.  

An example of a semi-quantitative 3D visualisation of the crack, obtained by segmentation of the 

maximum principal strain field data at 16.5 kN is shown in Fig. 11; the hotter colours (red) 

represent higher crack opening displacements. The dataset is that obtained with the 64×64×64 voxel 

subsets, and the strain segmentation threshold is 0.25.  The surface profile is not defined with very 

high resolution due to 32 voxel separation between the displacement vector data, but the crack path 

is continuous and more completely defined than that obtained by segmentation of the XCT data (Fig. 

7). The DVC analysis also discriminates between the crack (which opens) and voids (which do not 

open), unlike segmentation of the XCT data alone. 

 

Fig. 10: Fracture evolution in a vertical slice; by XCT (top) and DVC (bottom), as the 
applied load increases from left to right 

 
 

2.5 kN 6 kN 10 kN 16.5 kN 
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Fig. 11: Segmentation of 3D cracks at 16.5 kN, using DVC-measured nominal 

maximum principle strains: a) attenuation tomograph of damaged specimen; b) 

superposition of strain map on 2D slice of tomograph; c) superposition of 2D 

slice of strain map on 3D tomograph; d) 3D visualisation of 3D strain map. 

2.4  MICRO-INDENTATION TESTS 

Micro-indentation tests were carried out to measure the Young’s moduli of aggregates and 

cement and hence estimate the global elastic modulus of the concrete cube. The measurements were 

done using a CSM micro-indentation tester with Vickers diamond indenters. Two concrete 

specimens of 20×10×10 mm3 and 20×20×10 mm3 were cut from the 40 mm concrete cube. They 

were then ground and polished using silicon carbide abrasive papers up to 6.5 µm and diamond 

particles of suspensions up to 1 µm to achieve highly flat surfaces. Finally, the specimens were 

cleaned by alcohol and distilled water to remove dust and diamond particles left in the voids and 

porous areas before the indention tests.  

A constant linear loading rate was used until the applied force reached a specified value (0.1 N, 

0.3 N, 0.5 N, 0.8 N and 1.0 N) for each tested point. The load was then held for 10 seconds before 

unloading at the same rate before next point was tested. The distance between two adjacent points 

was chosen to avoid overlapping of the areas affected. Both aggregate and cement areas at various 

a) b) 

c) d) 
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locations were tested, with examples with indenter markers shown in Fig. 12. Typical indenter 

depth – force curves for cement and aggregates are shown in Fig. 13. These curves were used to 

calculate elastic moduli using the Oliver and Pharr method (1992). The results are summarised in 

Table 1. The mean value of the Young’s modulus for cement and aggregate is Ec=13.6 GPa and 

Ea=51.0 GPa, respectively; the values tend to decrease at high applied load, which may be caused 

by the cracking damage observable around indenters from Fig. 12b. The lower and upper limits of 

elastic moduli of the concrete cube are 23.1 GPa and 34.6 GPa, which were estimated using the 

Reuss and Voigt bounds (Hill, 1952): 

������ � ���� 	 �
�
                                                                (1) 

���
�� � ����
���������

                                                                      (2) 

where Fa (=0.496) and Fc (=0.493) are the volume fraction of aggregates and cement, respectively, 

obtained from the segmented XCT images (section 3.3). The small void fraction of 1.1% by volume 

was neglected. 

  

(a) Cement (b) Aggregate 

Fig. 12 Typical indents for cement and aggregate under 0.3N 

 

 

Fig. 13 Typical indenter depth - force curves 
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Table 1 Young’s moduli for aggregates and cement under different indentation forces 

Maximum Force (N) 0.1 0.3 0.5 0.8 1 Average 

Ea (GPa) 
Mean 50.6 60.0 53.8 41.7 48.8 51 

Standard deviation 16.7 4.9 13.9 10.8 8.4 / 

Ec (GPa) 
Mean 12.0 16.2 16.2 13.3 10.3 13.6 

Standard deviation 3.4 2.5 4.3 2.7 2.2 / 

 

3 XCT-IMAGE BASED NUMERICAL HOMOGENISATION 

The method of asymptotic numerical homogenisation with periodic boundary conditions is one 

of the most effective approaches to obtain the effective homogenised stiffness matrix of a 

heterogeneous elastic material (Jansson 1992; Li 1997; Sharma et al. 2013). In this approach, six 

boundary conditions are applied to a representative volume element (RVE), which is modelled with 

detailed micro/meso-scale multi-phasic constituents, to calculate the homogenised elastic properties 

of the RVE.  

The general constitutive relation in terms of asymptotic homogenization can be expressed as 

kl

H

ijklij

C εσ =       (3) 

where H
ijklC is the homogenised stiffness matrix.ijσ and klε  are the volume-averaged stress and 

strain tensors, respectively 

〈���〉 � �
|�| �� ���


 	��
��
	 � ���

� 	�����
     (4) 

  〈!��〉 � �
|�| �� !��


 	��
��
	 � !��

� 	�����
     (5) 

where Vc, Va and V are the volume of cement, aggregate and the whole RVE, respectively.  

The components of H
ijklC  are obtained by applying six periodic boundary conditions one by one, 

with unit strain in one direction and zero strain in all other five directions. The details can be 

referred to Li (1997).  

Four sizes of cubic RVEs, i.e., 10mm, 20mm, 30mm and 37 mm, cut from the segmented 3D 

concrete cube in Fig. 6d, were modelled. To investigate the effects of random distribution of 

internal phases, a few RVEs at different regions were used for each size: 5 for 10 mm (RVE10), 3 

for 20 mm (RVE20), 2 for 30 mm (RVE30) and 1 for 37 mm (RVE7), as shown in Fig. 14. These 

XCT images were converted into FE meshes using the commercial software Simpleware (2011). 
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The aggregates were smoothed before mesh generation to avoid too distorted elements. The FE 

mesh for the 37 mm cube is shown in Fig. 15 as an example. It has 838,659 nodes and 2,942,955 

tetrahedron elements. The Young’s moduli of cement and aggregates (Ec=13.6 GPa and Ea=51.0 

GPa) from the micro-indentation tests were used as basic inputs in all the simulations with 

Poisson’s ratio assumed as 0.2 for both phases. 

 

 

Fig. 14 The modelled RVEs (10mm, 20mm, 30mm and 37mm): aggregates in yellow, cement in 

green and voids in blue; not up to scale 
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Fig. 15 The finite element mesh for the 37mm concrete cube 

All the 11 RVEs in Fig. 14 were simulated under the six loading conditions. Fig. 16 shows the 

stress contours of RVE10-1 (10mm) as an example. The stresses in the aggregates are higher than 

those in the cement for all loading conditions because they are much stiffer. 

 

 

Fig. 16 Stress contours under six loading cases for RVE10-1 
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The homogenised stiffness coefficients of RVE10-1 are shown in Eq. 6. The coupling terms show 

that extension-shear and shear-shear components were much lower than those of extension-

extension and were negligible. 

 

(6) 

The calculated means and standard deviations for the five 10 mm RVEs are 
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All the components in Eq. 6 and Eq. 7 are in GPa. A clear cubical symmetry could be seen in Eq. 

7, from which the elastic constants of the cube could be calculated. The elastic constants for all the 

RVE sizes are listed in Table 2, where the effective homogenised properties (EHP) are the volume 

averaged values of all the RVEs. The effective homogenised Young’s modulus, shear modulus and 

Poisson’s ratio of the concrete are 24.2 GPa, 10.0 GPa and 0.194, respectively. It can also be seen 

that the three normal constants differ slightly as well as the three shear constants, and thus the 

concrete cube in this study can be regarded as isotropic. 

Table 1 Homogenised elastic constants 

RVE size 
(mm) 

E11 
(GPa) 

E22 (GPa) 
E33 

(GPa) 
µ12  µ13 µ23 

G12 
(GPa) 

G13 
(GPa) 

G23 
(GPa) 

10 
24.45 
± 0.58 

24.72 
±0.43 

24.91 
±0.65 

0.2  0.2 0.2 
10.11 
±0.13 

10.19 
±0.20 

10.23 
±0.14 

20 
24.19 
±1.05 

24.73 
±1.08 

24.96 
±1.28 

0.195 0.193 0.195 
10.08 
±0.47 

10.15 
±0.46 

10.30 
±0.48 

30 
23.67 
±0.35 

24.40 
±0.37 

24.47 
±0.38 

0.194 0.194 0.195 
9.93 
±0.13 

9.97 
±0.15 

10.15 
±0.16 

37 23.58 24.22 24.38 0.194 0.193 0.194 9.92 9.95 10.11 

EHP 
23.67 
±0.21 

24.33 
±0.22 

24.47 
±0.24 

0.194 0.193 0.194 
9.94 
±0.08 

9.98 
±0.09 

10.14 
±0.09 
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4 CONCLUSIONS 

A suite of advanced experimental and numerical techniques have been used to study the 

complicated 3D progressive failure and evaluate the elastic properties of concrete cubes. The main 

conclusions are  

(1) the in-situ micro XCT testing technique together with image analyses by digital volume 

correlation (DVC) offers a new potential to observe complicated 3D fracture paths in multi-

phasic materials like concrete; 

(2) two methods have been used to quantify and visualise the fracture evolution as the deformation 

increases. The threshold-based segmentation procedure is able to separate the concrete into 

three distinguished phases and visualise directly the development of major cracks. Damage may 

be quantified by the variation of volume fraction of cracks and voids. The DVC technique maps 

the relative deformations between consecutive XCT images with high precision; bulk 

deformation can be measured and cracks visualised indirectly via their opening displacement or 

strain. The 3D crack profiles obtained by the two methods are comparable. The segmented 

microstructures can be used as inputs for image-based FE models, and the displacements and 

strains from the DVC analyses of segmented XCT data may be used to validate predictions of 

these models; 

(3) the XCT-image based FE models have been successfully used in asymptotic homogenisation. 

The homogenised elastic modulus is 24.2 GPa, which is close to the experimentally obtained 

26.42±3.20 GPa using the DVC analysis of displacements. This is within the Ruess-Voigt 

theoretical bounds (23.1-34.6GPa) calculated using the Young’s moduli of cement and 

aggregates obtained from the micro-indentation tests; and 

(4) a combined use of these advanced techniques, including the in-situ micro-XCT, micro-

indentation, DVC and image-based modelling, offers highly-accurate, complementary 

functionalities for both qualitative understanding of complicate 3D damage and fracture 

evolution and quantitative evaluation of elastic material properties of multi-phasic composite 

materials such as concrete. 
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