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ABSTRACT 

This paper develops a new fibre tracking algorithm to efficiently locate fibre centrelines 

(skeletons), from X-ray Computed Tomography (X-ray CT) images of carbon fibre reinforced 

polymer (CFRP), which are then used to generate micro-scale finite element models. Three-

dimensional images with 330nm voxel resolution of multidirectional [+45/90/-45/0] CFRP 

specimens were obtained by fast synchrotron X-ray CT scanning. Conventional image 

processing techniques, such as a combination of filters, delineation of plies, binarisation of 

images, and fibre identification by local maxima and ultimate eroding points, were tried first but 

found insufficient to produce continuous fibre centrelines for segmentation, especially in regions 

with highly congested fibres. The new algorithm uses a global overlapping stack filtering step 

followed by a local fibre tracking step. Both steps are based on the Bayesian inference theory. 

The new algorithm is found capable of efficiently define fibre centrelines for the generation of 

micro-scale finite element models with high fidelity. 

Keywords: A. Carbon fibres; B. Microstructures; C. Finite element analysis (FEA); D. CT 

analysis 

1. INTRODUCTION  

X-ray computed tomography (X-ray CT) is a technique being increasingly used to understand the 

relationship between the fibre architecture and the mechanical performance of fibre reinforced 

composites, owing to its non-destructive nature, and the capability of producing high-resolution 
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and clear visualisation of 3D internal structures of the material at nano- and micro-scales [1, 2]. 

This technique, integrated with in-situ loading rigs, allows the microstructural evolution inside 

the composites to be observed, for example, to track the onset of fibre fracture, delamination, 

transverse-ply cracking etc. [3-5]. X-ray CT image-based numerical models (most commonly the 

finite element (FE) method) have also been recently built to investigate the mechanical 

behaviour of some multi-phase materials, such as homogenisation of elastic properties of fibre 

reinforced concrete [6], damage evolution of carbon-carbon composites [7], and complicated 

nonlinear fracture in concrete [8, 9]. The marriage of in-situ X-ray CT tests and numerical 

simulations is now emerging as a very promising tool for both validation of complicated 

numerical models and optimisation of internal structures of composite materials. 

The approaches for generation of FE models from X-ray CT images can be categorised into two 

classes: (i) direct voxel (or pixel) to mesh mapping and (ii) phasic segmentation based meshing. 

In the first class, each voxel or pixel in the image is directly transformed into a finite element, 

and the resultant bi-material interfaces in the mesh can be further smoothed. The material 

constituents are distinguished based on their respective grayscale intensity values or CT 

numbers. Such approaches are widely reported, e.g., the direct voxel mapping methods [8, 10], 

the discrete Fourier transform approach [11, 12], and the enhanced volumetric marching cubes 

[13]. A problem of these approaches is that automatic meshing algorithms are difficult to apply 

and the element sizes are usually too uniform. In the second class of approaches, the X-ray CT 

image is segmented into different constituent phases based on the gray value thresholds for each 

phase. The bi-material interfaces or phasic boundaries can be naturally identified and smoothed 

if necessary. Generation of FE meshes is then conducted based on the segmented images. 

Examples of fibre reinforced composites include the combined segmentation and voxel-based 

fibre tracking algorithm [14], the simplified marching cubes method [15-17], the fibre contacts 

and orientation method [18, 19] and the intersecting fibre cluster method [20]. The main 

advantage of direct segmentation for fibre composites is that various 3D skeletonisation 

algorithms can be applied to extract fibre centrelines [18, 20] after segmentation, so that the 

fibres can be modelled as exact cylinders. Another advantage is that the segmented images can 

be automatically meshed with flexible control so that dense meshes can be used in stress 

concentration areas such as bi-material interfaces.  

However, most of the above approaches are difficult to implement for fibre reinforced 

composites with highly congested fibres and/or touching fibres, before FE models can be built. 

The difficulties include finding exact segmentation boundaries, fibre tracking due to inherent X-
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ray CT noises and fibre discontinuities, and high computational cost due to large X-ray CT 

datasets. The low image contrast between the polymer matrix and the thin fibres with thickness 

of a few microns may also lead to FE meshes with inaccurate material interfaces. New numerical 

reconstruction methods with advanced image filtering and stack conditioners have thus been 

developed for fibre tracking and noise reduction. For example, Czabaj and co-workers developed 

a template matching algorithm to determine the fibre centre points from X-ray CT images of 

unidirectional carbon fibre reinforced polymers (CFRP) [2, 21]. The fibre centre points are then 

converted into higher-order splines followed by sweeping non-overlapping 3D volumes along 

each spline. The method has not been tested on multidirectional fibre volumes. 

This paper is aimed at efficiently building high-fidelity micro-scale CT image-based FE meshes 

for 3D, cross-plied, multidirectional fibre reinforced composites by developing a new fibre 

tracking algorithm to resolve some of the above issues. The images of a notched CFRP cylinder 

with [+45/90/-45/0] fibre orientation sequence are captured by fast synchrotron X-ray CT 

scanning with 330nm voxel resolution. The images are then analysed and rendered in the 

commercial software Avizo (FEI/Avizo, 2016) and reconstructed using the developed algorithm 

implemented in the open-source code ImageJ [22]. After the fibre centrelines are identified by 

the new fibre tracking algorithm, which is based on the ultimate eroding points and the Bayesian 

inference theory, 3D micro-scale FE models are built in ABAQUS. The developed algorithm can 

also be used to characterise fibre waviness, tortuosity, orientation etc. and the FE models will be 

used to simulate 3D micro-scale damage and fracture evolution in CFRP in the future. 

2. IN-SITU SYNCHROTRON X-RAY CT EXPERIMENTS 

It is known that the images of CFRP obtained from conventional X-ray CT machines have 

relatively low phase-contrast, due to similar material densities between the carbon fibres and the 

epoxy resin. In this study, the 3
rd

 generation synchrotron radiation (beamline I13) at Diamond 

Light Source in Oxfordshire, UK with high brilliance is used to enhance phase contrast [23]. An 

in-house loading rig is designed and used for the in-situ uniaxial tensile test, as shown in Fig. 1a.  

The investigated material is carbon fibre/epoxy resin cross-ply composite with a ply sequence [-

45/90/+45/ 0/-45/90/+45/ 0]s. The manufacturer specification of the carbon fibre diameter is 

5.2µm. The matrix is pre-impregnated epoxy resin with a tensile strength of 50MPa. The average 

fibre volume fraction for individual unidirectional plies is 50%. Figure 1b illustrates a sample 

with a nominal thickness 1.8mm, prepared using a diamond water blade and notched on two 

sides using a carbide blade of 0.3mm thickness. Thin steel metal end tabs are glued to the 
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specimen using a bi-component epoxy adhesive so that it could be loaded in-situ on the X-ray 

CT stage. 

 

Fig. 1: In-situ X-ray CT tensile test of a CFRP specimen using an in-house loading rig 

The gap of the undulator (a 2m long U22) was set to 5.5mm for increased flux. Intense radiation 

over an extended energy bandwidth was used to enhance phase contrast and speed up image 

acquisition. The energy bandwidth was carefully tuned by 3mm Al filters inserted into the beam 

path to attenuate soft X-rays below 18keV. This complemented the cut-off of the platinum mirror 

stripe at 25keV, allowing good penetration of the sample whilst maintaining sample visibility. 

This mirror was slightly focussed to collimate in the horizontal direction and to counteract the 

large horizontal divergence of the source, giving around 7x10
13 

photons per second into the field 

of view (FoV) of 712µm (height) × 840µm (diameter). The beam was propagated about 30mm 

before detection, making use of the edge enhancement from the inline phase-contrast to pick up 

individual carbon fibres in the matrix. 

A PCO edge 5.5 CMOS detector based microscope system with 14bit dynamic range was used. 

The system images the light generated by the X-rays via a GGG:Eu scintillator with a 10× 

magnification lens. A 2× tube lens in the microscope led to a total 20× magnification factor of 

the scintillated images, providing an effective pixel size of 330nm at the CMOS detector. The 

fast readout of this detection system (up to 100Hz), combined with the high flux from the 

beamline, allowed tomograms to be collected in the fly-scan mode at 0.2s per exposure. More 

detailed information about the instrumentation can be found in [24].  

In-situ 
rig 
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Reconstruction of 3D images from the X-ray CT attenuation data is conducted using the well-

known filtered back projection approach [25]. The dataset consists of a stack of 2160 slices each 

comprising 2560×2560 pixels. Fig. 2a shows the rendered FoV in Avizo using the volrenGreen 

tool. Fig. 2b shows the fibres in a small cube with length 50µm. It can be seen that the fibres are 

blurred, discontinuous and not clearly defined. A crack initiating from the notch, captured at the 

peak load (about 600N) from an in-situ X-ray CT test under quasi-static uniaxial tension, is also 

clearly visible.  

 

Fig. 2: X-ray CT volume render of a multidirectional CFRP specimen 

3. IMAGE-BASED MODEL GENERATION 

Fig. 3 shows the main steps to extract the CFRP geometry from X-ray CT image slices and 

generate FE meshes. Firstly, effective filters were identified and applied to the stack of X-ray CT 

images to remove noises and facilitate fibre identification. The 3D dataset was then delineated 

into plies according to fibre orientations. The fibre centres were then identified using the ultimate 

eroding point approach. Image binarisation was also tried using the traditional watershed 

splitting and skeletonisation techniques. The conventional approaches failed to obtain continuous 

fibre centrelines. Therefore, a new algorithm for fibre tracking with two steps using stack 

conditioning incorporating the Bayesian inference was developed. The obtained fibre centrelines 

were finally processed with consideration to manufacturing practice of CFRP, before they are 

used to generate FE meshes in ABAQUS assuming a constant fibre diameter. 

Notch 

Crack 

-45° 
0° 

(colormap pixel intensity tresholds:128.5, 147) (colormap pixel intensity tresholds:129.6, 138) 

0⁰  
-45⁰  

90⁰  
+45⁰  

(a) (b) 



  

 

6 

 

 

Fig. 3: Illustration of the image-based model extraction framework from X-ray CT to FE meshes 

3.1. Images filtering 

Fig. 4 shows half of a typical raw X-ray CT image slice. The low phase-contrast and pixel 

oversaturation can be seen. Also shown in Fig. 4 is a small region of interest (RoI) after different 

combinations of filters (Filter-A to Filter-E as detailed in Table 1) were applied. These filtering 

operations were implemented using the JavaScript library in ImageJ. None of the common filters 

from Filter-A to Filter-D alone was able to enhance the detectability and shape of congested 

fibres as they used fixed stencil and gradient based kernels.  

 

Fig. 4: X-ray CT image filtering by different filter combinations in Table 1. 

 
RoI 

Image stack 

RAW 

        RAW               Filter-A + Filter-B          Filter-C           Filter-D 

  Image filtering  
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Final processing 
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A New Fibre tracking algorithm using stack conditioning & Bayesian inference 
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Table 1: Image filters for X-ray CT datasets. 

Reference Image Filter Combinations & Order Intended use 

Filter-A Mean 2pixels – Smooth De-noising, intensity 

smoothening. 

Filter -B Mean 2pixels twice – Smooth – Unsharp mask (radius: 7 pixels, 

mask weight: 0.2) 

Phase contrast, Edge 

enhancing, Interface 

threshold. 

Filter-C Smooth – Mean 2px – Min maxima & region growth 2.5pixels – 

Max maxima & region growth 3pixels 

Pragmatic fibre 

centreline network 

search. 

Filter-D Smooth – Median 7pixels – Min maxima 3pixels - Max maxima 

2.5pixels – Unsharp mask (radius: 7 pixels, mask weight: 0.2), 

Enhance contrast (saturated pixels: 0.01% /normalise) 

High fidelity fibre 

centres & fibre 

identification.  

Filter-E Smooth – Mean 2px – Kernel convolution – Max maxima 2.5 

pixels – local maxima search for fibre identification. 

Fidelity fibre centroids & 

fast processing. 

 

The identified image filter strategy with best effect is a combination of a series of filters (Filter-

E in Table 1). A fixed size kernel convolves all the pixels contained within the image slices. The 

convolution uses a continuous stencil pattern (pixel-wise) and the new images are obtained 

through multiplication and weight summation of the 2D matrices overlaid as demonstrated by 

Eq. 1: 

2 2

2 2

( , ) [x ][y ] [ / 2 ][h/ 2 ]

w h

w h

xy xy w h xy w h
w h

e e

conv f k f k f e e k w e e

 

        
 

Eq. 1 

where fxy are the pixel intensities from the image overlay and kxy is the processing kernel of size 

[(w+1)(h+1)] with the square size kernel property w=h. This approach has been widely used in 

the image processing, especially for edge detection and target tracking [26, 27]. 2D convolution 

operations are typically implemented using vector operations such as the one-dimensional 

convolution approach. For example, Habibi et al. [28] described a  decomposition strategy using 

two consecutive vertical and horizontal convolution steps for a 3 by 3 kernel size. In this study 

the size of kernel and convolution factors are semi-empirically estimated using Eq. 2 that 
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represents the general probability density kernel [29]. This is fitted iteratively by trial and error 

adjusting the sample values xi.  

1

1
( )  ,   < .

n
i

xy e s

i

x x
k k x k x

nh h

 
     

 


 
Eq. 2 

where n is the kernel size, ks the kernel smoothing function and h the bandwidth (h=1). A similar 

model can be found in [30]. Fig. 5 shows the parametric estimation of the convolution factors 

based on a few popular smoothing functions ks used in Eq. 2.  

The step function ke illustrated in Fig. 5 is used to estimate the convolution factors kxy in Eq. 1. 

Because the average fibre diameter is 5.2µm and the fibres are highly congested in the X-ray CT 

dataset, the size of the convolution and local filtering kernels in Eq. 1 and Eq. 2 are set at 5×5 

pixels, which means the convolution factors taken from the step function in Fig. 5 are located 

between -2 and 2. 

 

Fig. 5: Estimation of the convolution factors based on different smoothing functions; the insets 

typify the effect of the combined filter Filter-E and convolution using the step function estimates 

at the boundary between 0° to -45° plies. 

3.2. Volume delineation to different plies 

After image filtering and before fibre identification, it is necessary to split or delineate the X-ray 

CT volume into plies. The delineation was carried out using a changing polygon algorithm with 

linear pitch between the corresponding extraction corner points which are located within the first 

RAW 

Filter-E + step conv 
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and last slices of the X-ray CT dataset. As the transverse eroding basin approach ultimately leads 

to a single point identification [31], the current fibre identification method requires transverse 

scans with fibre orientations <50°. Consequently, the FoV was separated into two sub-domains, 

one with fibres oriented at < 50° (0° and +/-45° plies in Fig. 6a) and another with fibre 

orientation of 90° (Fig. 6b). The two sub-domains were then combined to form a single volume 

geometry (in Fig. 6f). 

 

Fig. 6: Illustration of volume delineation based on fibre orientations 

3.3. Identification of fibre centres 

The well-established local maxima finding algorithm in ImageJ was applied to the filtered image 

slices to identify ultimate eroding points (UEP) as fibre centres [31]. The UEPs are obtained 

using a procedure combining watershed delimitation basins and eroding Euclidean maps. The 

algorithm is able to retrieve the fibre centre points from the 330nm image resolution datasets in 

this study with relatively low errors, as can be seen from the tortuosity of fibre volumes shown in 

Fig. 7. However, Fig. 7b shows that due to misidentification of UEPs of some fibres, fibre 

discontinuities still arose, particularly in inclined ply regions with highly congested fibres, where 

the identification of separate Euclidean maps became difficult.  

    <50° <50° 

 
90⁰  

X-ray CT 

full size + 
  

+ 

  

(a) (b) (c) 

(d) (e) (f) 
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Fig. 7: Identification of the fibre centroids after image filtering in a RoI at the 0°/ -45° ply 

boundary (bounding box corner=255,1400,0 & 152 voxels): (a) volume render after image 

filtering and (b) identified UEPs in top image slice 

3.4. Image binarisation 

Further to the image filtering and the identification of UEPs in previous sections (3.1 and 3.3), 

the 2D image slices were converted into binary images (Fig. 8a) by growing uniform intensity 

fibre domains of equal diameters centred on the UEPs. The well-known water basins approach 

was used to separate touching fibres when necessary. A volume render based on the binary 

image slices is shown in Fig. 8b, from which either direct segmentation or skeletonisation to 

retrieve the fibre centrelines by volume shrinking can be carried out. However, it was found that 

this reconstruction method was not only computationally expensive due to the large number of 

fibres, it could also result in imprecise boundaries and discontinuous fibres in volume renders 

(see Fig. 8b). 

(a) Volume render 

0 50 
[µm] 

0 50 
[µm] 

(b) Identified fibre UEPs 
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v  

Fig. 8: Fibre tracking from binary images in a RoI at the 0°/ -45° ply boundary (the fibre 

discontinuities are highlighted by arrows). 

3.5. New fibre tracking algorithm with stack conditioning 

To acquire more continuous fibre centrelines with lower computational cost than the 

conventional image processing techniques tried and discussed above, a new fibre tracking 

algorithm was developed. It consists of two steps: a global stack overlap filtering and a local 

fibre centreline tracking, both employing the Bayesian inference, as presented below. 

3.5.1. Global overlapping stack filtering 

After the identification of fibre centre points (UEPs) and the image binarisation, an overlapping 

discretisation of the continuous slices was conducted to find the best matching slices. This step is 

necessary to test continuity of the fibres and to transpose data in the best possible filtered stack. 

It can also lower the computational cost compared with tracking fibres in 3D within the full 

stack. 

The idea of stack overlap filtering is illustrated in Fig. 9. The total stack domain D comprises 

2160 CT image slices. The images within the kernel stack domain d are iteratively correlated in 

pairs covering all combinations with respect to the stack centre. A first global filter can be then 

applied according to the degree of matching between all image pairs.  

0 50 
[µm] 

0 50 
[µm] 

0 50 
[µm] 

0 50 
[µm] 
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Fig. 9: Bayesian inference domains for fibre tracking: kernel  

stack domain (d) and stack overlap (d/2). 

3.5.2. Estimation of image matching and fibre shifts 

The matching or similarity of two images with pixel intensity distribution function f and g can be 

estimated by their cross-covariance: 

( , ) ( ( , ) )( ( , ) )Tcov f g E f x y f g x i y j g        
Eq. 3 

where f  and g  are the average pixel intensity values, and i and j are the integer image shift. The 

mathematical expectation of pixel intensity of an image f  with m × n pixels is  

   
,

( ) ( , ) )
m n

E f f f x y f      
                  Eq. 4 

Note that the variance of an image f can be written as: 

2 2( , ) ( ) ( )cov f f E f f f  
 

Eq. 5 

The Normalised Correlation Coefficient (NCC) is defined as: 

D d  

 

 

  

  

 

  

  

level-1 

level-1 

level-2 

level-2 

kernel stack 
(K) 
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2 2

( , )
( , )

( ( , ) ( , ) )
NCC

cov f g
C corr f g

sqr E f f E g g
 

 

Eq. 6 

The NCC index measures the degree of similarity or matching and ranges between 0 and 1. 

Furthermore, a global integer shift can be obtained by maximising the NCC index. Similarly, by 

maximising the NCC index a local integer fibre shift can be found by using smaller image 

masks. If needed, a sub-pixel shift can also be found by applying the local quadratic fitting 

around the peak value (Δx, Δy) of the correlation results: 

( 1, ) ( 1, )

2[ ( 1, ) ( 1, ) 2 ( , )]

corr x y corr x y
x

corr x y corr x y corr x y


      


           

( , 1) ( , 1)

2[ ( , 1) ( , 1) 2 ( , )]

corr x y corr x y
y

corr x y corr x y corr x y


      


           

Eq. 7 

  

where x  and y range between -0.5 and +0.5 pixels. For completeness, the total image shift 

can be estimated by the summation of results in Eq. 7 as an integer. It is used to estimate the total 

metric threshold for fibre tracking in inclined plies, and the threshold is further used by the local 

Bayesian inference model to track individual fibres (see Sections 3.5.4 and 3.5.5). 

3.5.3. Global Bayesian inference for optimal stack width 

To reduce the large number of slices from an X-ray CT dataset, the slices within a kernel were 

correlated in pairs with respect to the overlapping stack centre. The filtered slices can be selected 

by maximising the NCC index over each kernel domain (meaning the selected slice contains 

most similar pixel patterns out of the total number of pairs). Instead of using pixels, the slices 

can be simplified as separate sets of independent fibre UEPs. Therefore, the filter iterated over a 

prescribed number of half overlapping kernel stacks as shown in Fig. 9. The overlapping stacks 

were thus divided into two equal subdomains (Kd=K+N). For all slices contained in half of a 

kernel stack (K), the probability field P(K) was defined as the total number of UEPs contained 

within the slice K. The neighbouring slices in N were also defined in a similar manner via prior 

probability ( )P KN  that contained the corresponding UEPs. By iterating over the slices in K, 

the slice UEP filtering from similar probabilities ( )P K N  could be found by maximising the 

following Bayesian equation:  
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( )
( ) ( )

( ) ( )

P K
P K P K

P K P K
 


N
N

N
 Eq. 8 

where 1 2 3{n ,n ,n ,...,n }kN  represent the UEP sets from the corresponding slices within half 

the kernel width (i.e. k=d/2). In Eq. 8 K  denotes the slice that contains the average number of 

UEPs over stack K. ( )P KN  represents the probability of all slices within kernel Kd.  

This method can be applied when the kernel stack is relatively narrow and the overlapping 

region captures the inclined fibre plies as illustrated in Fig. 10. In contrast, the number of 

correlated fibres is relatively large for the aligned fibre plies as shown by the correlated images 

in Fig. 10d and e (shown by the left hand ply points). Because the method correlates all slices 

within a given stack width, the fibres that do not cross this full-width are not detected. To solve 

this problem, the method was calibrated using a sensitivity study as explained below. Results in 

Table 2 indicate that a kernel width of 8 slices can be used that reduces the computational stack 4 

times. 

 

Fig. 10: Sensitivity of fibre tracking UEPs with different Bayesian overlapped stack  

widths, using the parameters in Table 2. 

In order to capture fibre continuity, the kernel width d should be sufficiently large to avoid 

misidentified UEP centres, but also reasonably small to reduce the computational time. The 

optimal kernel width is determined by inspection of fibre discontinuity visually in the volume 

render in Avizo, for example, Fig. 7. In this paper, it was found that the method could be applied 

to kernel widths equal to half the fibre diameter, namely, 2.6µm, as demonstrated in Fig. 10b and 

the optimum overlapping distance was found to be 4 slices. 
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Table 2: Bayesian overlapped stack width sensitivity study for the inclined plies 

Kernel width d in 

number of slices 

Overlapping distance in 

number of slices 

Initial number of 

fibre UEPs 

Matched number 

of fibres 

Image reference 

in Fig. 10 

4 2 

6198 

4847 (a) 

8 4 4497 (b) 

10 5 4267 (c) 

16 8 3017 (d) 

20 10 2029 (e) 

3.5.4. Local Bayesian inference for tracking individual fibres  

This local tracking step searches only within the filtered slices for individual fibre coordinates to 

ensure fibre continuity. 

The general Bayesian inference theory was tailored to map the identified fibres in a kernel slice 

to the globally filtered neighbouring slices as follows: 

( )
( ) ( )

( ) ( )

P N K
P K N P K

P N K P K
 


 Eq. 9 

where N are the UEP fibre centres coming from the neighbouring/overlapping domains with 

unknown probability ( )P N K  and K are the UEPs from the searching slice, that are updated 

from slice to slice. The fibre UEPs from kernel slice K here, are seen as events representing the 

total number of identified fibres in the slice. The probability ( )P K N  is therefore stored in a 

vector defined over a slice that can be also unequal to the neighbouring slice after the global 

filter due to errors in the identification process (especially in inclined fibre plies).  

The denominator ( )P N K  represents a local conditional probability of a perpendicularly 

projected point that is the degree of belief of each fibre in N to match its projection UEP point K  

versus the probability of the same point, i.e. ( )P K . However, the denominator in Eq. 9 plays a 

minor role and can be also dropped or used as a scaling factor for normalisation and calibration 

purposes.  
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The numerator in Eq. 9 is the probability ( )P N K  calculated using the asymmetric power law 

metric in Eq. 8, or can be directly limited by a prescribed fibre shift distance. When the power 

law metric is used to map and threshold the matching fibre coordinates, the probability can be 

expressed as follows: 

                                                                                                                    Eq. 10 

where (x, y) are the coordinates of a fibre UEP and (p, q) are two arbitrary power law indices 

with the asymmetric property ( ;  , 1)p q p q  . In this case, an initial threshold of 10 pixels is 

approximated as the equivalent to a maximum inclination angle of approximately 50°. The 

probability is then substituted back into Eq. 9, which is updated iteratively until processing of the 

filtered stack. Alternatively, a fibre shift distance can also be used. This shift can be estimated by 

maximising the NCC index in Eq. 6 or by calculating the distance between each two consecutive 

fibres. For more accurate geometric estimates, Eq. 7 can be used to quantify the fibre shift with 

sub-pixel precision. In this paper, the threshold distance is 8 pixels, namely, approximately half 

the fibre diameter. 

3.5.5. Calibration of local inference model 

The local Bayesian model discussed in Section 3.5.4 was calibrated using a series of restrictive 

fibre shift trials. These were implemented by an inverse exponential fitting to find the adaptive 

threshold coefficients using Fig. 10. Fig. 11 shows two such cases used to estimate the threshold 

values based on the two corresponding shifted probability distributions. 

 

Fig. 11: Calibration of the local Bayesian tracking approach using                                                                                                     

Eq. 10 by inverse fitting for: (a) tolerant fibre shifts equivalent to less than 9 pixels and (b) 

restrictive fibre shifts to less than 4 pixels (the power law factors are: p=0.2, q=0.3)  

(a) (b) 
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One may note that [2] proposed a similar fibre tracking algorithm using the Kalman filtering. 

This algorithm also has two steps: a linear extrapolation of the fibre centre points is done first as 

a predictor, followed by a corrector minimising the local mean square error based on the adjacent 

slices. However, this algorithm follows a bottom-up approach and may not capture the continuity 

of inclined fibres if some fibre centroids are misidentified.  

3.6. Final processing of identified fibre centrelines 

The obtained data of fibre centrelines were further processed to consider the effects of real 

manufacturing process of CFRP, including: (1) removal of fibre centrelines with unrealistically 

short length, for example, less than the fibre diameter; and (2) splitting of fibre centrelines into 

segments. This operation is activated when the distance of two adjacent UEPs on a centreline is 

more than a predetermined gap distance, for example, 30µm in this study. This case may 

represent two fibres in reality but be interpreted as only one fibre by the above fibre tracking 

algorithm. The final fibre centrelines of the small region in Fig. 2b are shown in Fig. 12. It can 

be seen that the fibre centrelines are now clearly defined. 

 

Fig. 12: Final extracted fibre centrelines of Fig. 2b (75 fibres). 

3.7. Geometry reconstruction and mesh generation 

The extracted fibre centrelines (modelled by third-order splines) in each ply were then integrated 

into a single domain of FoV as shown in Fig. 13, followed by image-based mesh generation. 

There are 19,954 fibres in total in Fig. 13c.   
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Fig. 13: Full-size X-ray CT reconstructed fibre centrelines (19,954 fibres). 

It is known that the FE mesh size for accurate modelling of composite materials should be at 

least one order lower than the size of inclusions or reinforcements [32]. The 50µm
 
cube in Fig. 

12 was converted into a FE mesh shown in Fig. 14 using the free meshing option in ABAQUS. 

The seed of element size was 0.667µm (note the fibre diameter 5.2μm) and the mesh was 

generated in approximately 2 minutes. This mesh contained 75 fibres and about 2 million C3D4 

elements. Converting the full FoV with 19,954 fibres would lead to a gigantic number (in 

billions) of finite elements which even supercomputers may struggle to model. This makes 

multiscale modelling necessary. However, 3D multi-scale modelling of quasi-brittle composites 

like CFRP and concrete is still largely limited to predictions of homogenised elastic properties 

and much research is still needed to develop more robust multi-scale methods for complicated 

damage and fracture evolution [32-34]. To this end, the in-situ X-ray CT tests undertaken in this 

study will prove very valuable in both providing high-fidelity initial FE models and also 

validating them by direct comparison of the simulated results with the CT images under 

progressive loadings [8-9]. 

+ 
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Fig. 14: X-ray CT image-based FE model  

4. CONCLUSIONS 

This paper has presented the development of a set of image processing and segmentation 

algorithms to efficiently identify fibre centreline (skeletons), from micro-scale X-ray CT images 

of multidirectional CFRP composites, which are then used to generate finite element meshes.  

The new fibre tracking algorithm combines an ultimate eroding point (UEP) approach with a 

new Bayesian filtering and tracking approach and offers the following advantages: 

 The identification of fibre centre points is enhanced by using a combination of various 

image filters and the image convolution; 

 The delineation of the X-ray CT dataset allows identification of fibres in multidirectional 

CFRP laminates; 

 The global Bayesian filter based on overlapping stacks reduces the number of slices for fibre 

tracking and thus the computational cost, especially in inclined plies; 

 The local fibre tracking algorithm based on Bayesian inference updates the coordinates of 

fibre centrelines incrementally, which is necessary to track inclined fibres; and 

 The FE meshes can be built naturally once the fibre centrelines are identified. 

Finally, the synchrotron X-ray CT scanning technique used in this study is very promising in 

visualising and quantifying microscale geometric features of FRP such as the length, tortuosity, 

orientation and distribution of fibres. Scanning at faster speed of specimens under in-situ 

0 50 
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-45⁰  0⁰  -45⁰  0⁰  
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dynamic loadings will lead to 3D microscale understanding of damage and fracture evolution 

inside FRP, which will be invaluable for material design and optimisation in many applications.    
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NOMENCLATURE 

fxy -pixel gray scale intensity at pixel position (x,y). 

kxy -processing kernel value corresponding to position (x,y). 

( , )conv f k  -convolution of image f using image processing kernel k.  

  -convolution operator that performs a piecewise multiplication. 

d -overlapping stack containing a number of X-ray CT image 

slices. 

d/2 -stack overlapping distance measure in number of X-ray CT 

image slices. 

( , )cov f g  -covariance of two images f and g. 

,f g  -average pixel intensity values of images f and g respectively. 

NCCC , ( , )corr f g  -normalised correlation criterion of two images f and g. 

Δx , Δy -position coordinates at integer pixel precision of matching peak 

value from correlation of images f and g. 

x , y  -interpolated position coordinates at sub-pixel precision from 

correlation of images f and g using the neighbouring subsets 

around a matching peak. 

Kd -overlapping stack of slices separated into kernel slices K and 

neighbouring-overlapping slices N. 

( )P KN  -global prior probability of slices N to match kernel slices K. 

This probability is evaluated as a collection of overlapping fibre 

centres. 

( )P K N  -global Bayesian updated probability of slices K to match 
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neighbouring slices N. This probability is evaluated using a 

Bayesian inference model. 

K -kernel slice as a collection of UEPs. 

N -neighbouring slice as a collection of UEPs. 

( )P N K  -local prior probability of UEP coordinates in slice N to match 

kernel slice K. This probability is evaluated as individually on 

each fibre centre. 

( )P K N  -local Bayesian updated probability of UEP coordinates in slice 

K to match neighbouring slice N. This probability is evaluated 

using a Bayesian inference model. 
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