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Abstract 

Gaussian process regression (GPR) is a kernel-based learning model, which unfortunately suffers from com-
putational intractability for irregular domain and large datasets due to the full kernel matrix. In this 
paper, we propose a novel method to produce a sparse kernel matrix by using the compact support radial 
kernels (CSRKs) to efficiently learn the GPR from large datasets. The CSRKs can effectively avoid the 
ill-conditioned and full kernel matrix during GPR training and prediction, consequently reducing compu-
tational costs and memory requirements. In practice, the interest in CSRKs waned slightly as it became 
evident that, there is a trade-off principle (conflict between accuracy and sparsity) for compactly supported 
kernels. Hence, when using kernels with compact support, during GPR training, the main focus will be 
on providing a high level of accuracy. In this case, the advantage of achieving a sparse covariance matrix 
for CSRKs will almost disappear, as we will see in the numerical results. This trade-off has led authors 
to search for an ”optimal” value of the scale parameter. Accordingly, by selecting the suitable priors on 
the kernel hyperparameters, and simply estimating the hyperparameters using a modified version of the 
maximum likelihood estimation (MLE), the GPR model derived from the CSRKs yields maximal accuracy 
while still maintaining a sparse covariance matrix. In fact, in GPR training, modified version of the MLE 
will be proportional to the product of MLE and a given suitable prior distribution for the hyperparameters 
that provides an efficient method for learning. The misspecification of prior distributions and their impact 
on the predictability of the sparse GPR models are also comprehensively investigated using several empirical 
studies. The proposed new approach is applied to some irregular domains with noisy test functions in 2D 
data sets in a comparative study. We finally investigate the effect of prior on the predictability of GPR 
models based on the real dataset. The derived results suggest the proposed method leads to more sparsity 
and well-conditioned kernel matrices in all cases. 

Keywords: 
Compact support radial kernels, Gaussian process, Hyperparameter, Maximum likelihood estimation, 
Priors. 

1. Introduction 

Gaussian Processes (GP) is a generic supervised learning method designed to solve a wide range of 
probabilistic Machine Learning, including classification, regression, probabilistic forecasting, uncertainty 
quantification, etc [1, 2, 3, 4]. The Gaussian processes regression (GPR) has been proven to be a powerful 
and effective method for non-linear regression problems due to many desirable properties such as simple to 
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implement, flexibility and fully probabilistic models [5, 6, 7, 8]. Unlike other kernel-based approaches such 
as support vector machines (SVMs) [9, 10], GPR can quantify the uncertainty of predictions due to their 
explicit probabilistic formulation. In addition, GPR has been proposed as an appropriate alternative for 
supervised neural networks in non-linear regression and classification [11]. 

GPR as a kernel-based non-parametric method, is hugely relied on selecting the appropriate kernel 
function [12], and efficiently estimating its hyperparameters. The kernel functions represent our assumptions 
about the function we wish to learn and define the closeness and similarity between data points [7]. In other 
words, GPR inherits the existed properties in the used kernels [6]. There are many different kernel types 
with various features and properties which one can be selected depending on the purposes of study [13]. For 
instance, the radial kernel is more suitable for predicting the future. This kernel is a real valued function 
whose output depends exclusively on the distance of its input from some origins. There are two general 
scenarios for selecting the radial kernels: global and compact support. Since all the training data is required 
for prediction the future using GPR, global support radial kernels (GSRKs) have some computational 
limitations due to producing a full and dense presentation for ill-conditioned kernel (or kernel matrix). 
The size of dense kernel matrix would then increase quadratically with the size of training set. Moreover, 
updating the Bayesian posterior distribution given the new data-points is also computationally expensive. 
These computational burdens are due to this fact that the kernel matrix derived using GSRKs is commonly 
computationally expensive to invert, and thus to use for prediction tasks. To cope with these issues, many 
researchers have been proposed different ways on using sparse kernel matrix to speed up the computations 
and reduce the memory requirements [14, 15, 16, 17, 18, 19]. In all of these strategies to increase the 
computational speed and to reduce memory requirements, lack of modelling accuracy can be seen. One 
of these methods which is not very relevant to the rest creates a down-dates kernel matrix by removing 
certain rows and columns corresponding to the discarded training data set [18]. This model is not very 
efficient, since valuable information will be lost by removing certain rows and columns. Other methods 
make structural assumptions, such as assuming the kernel matrix to be block diagonal, whence the GPR 
can be decomposed into a number of smaller GPR [20]. Another algorithm to yield sparse GPR is proposed 
in [21] which is based on updating the Cholesky factor of the kernel matrix. In this paper, we propose a novel 
method to efficiently derive sparse kernel matrix by using compact support radial kernels (CSRKs). We then 
demonstrate the nice properties of these kernels and how they can improve efficiency of the corresponding 
GPR for a wide range of applications including the problems involved with high dimensional data and 
complicated geometries which would be very challenging under the GSRK. It should also noted that the 
proposed method in this paper unlike the other methods mentioned above directly deals with the kernel 
matrix itself in a very easy to implement manner, which turns out to be also well-conditioned. Once a 
radial kernel such as CSRK is selected for a GPR, the unknown hyperparameters of the kernel need to be 
estimated from the training data [6]. However, the Monte Carlo (MC) methods can be used to implement 
GPR even without estimating hyperparameters as discussed in [22, 23, 24, 25], but the common approach 
is to estimate the hyperparameters by means of MLE [11, 26, 27, 28] due to the high computational cost 
of MC methods. The MLE makes optimal use of the information contained in the data [29]. In addition, 
a trade-off between the model complexity and model fit can be automatically incorporated due to a nice 
property of the marginal likelihood [30]. 

If we use the CSRKs in GPR, then the main difference to the global support structure is that now the 
kernel matrix can be made sparse by scaling the support of the CSRK appropriately. In fact, only the entries 
in the kernel matrix corresponding to nodes lying closer than λ (whose support is [0; λ], with λ = 1/ϵ) to 
a given CSRK center are non-zero, leading to a sparse kernel matrix. Indeed, the ϵ determines the size of 
the support and, consequently, the sparsity in the kernel matrix. In practice, the interest in CSRKs waned 
slightly as it became evident that, to obtain good accuracy, the ϵ is decreased such that the overlap distance 
λ should cover most nodes in the point set. So, there is a trade-off principle (conflict between accuracy and 
sparsity) for CSRKs. Hence, when using CSRKs, during GPR training, the main focus will be on providing 
a high level of accuracy. In this case, the advantage of achieving a sparse covariance matrix for CSRKs will 
almost disappear, as we will see in the numerical results. This trade-off has led authors to search for an 
”optimal” value of the scale parameter ϵ, i.e., a value that yields maximal accuracy while still maintaining 
a sparse covariance matrix. Accordingly, by selecting a suitable prior on the kernel hyperparameters, and 
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simply estimating the hyperparameters using a modified version of the MLE, during GPR training, in 
addition to providing the desired accuracy, an appropriate quantity of sparsity will also be obtained. This 
modified version of the MLE will be proportional to the product of MLE and a given prior distribution for 
the hyperparameters. Here, the MLE ensures that the obtained model has maximum agreement with the 
training data, and the suitable prior distribution guarantees the achievement of a sparse covariance matrix. 
Accordingly, the final sparse kernel matrix by CSRKs can be efficiently derived from the modified version 
of MLE, and available data. We will investigate and analyze this subject well in the numerical results. 
It is therefore interesting to know how prior distributions for hyperparameters affect the performance of 
GPR-based CSRKs. 

As a summary, in this paper, we propose a novel method to produce a sparse kernel matrix by using the 
compact support radial kernels (CSRKs) to efficiently learn the GPR from large datasets. Then, we provide 
the first empirical study of the impact of the prior distributions on the hyperparameter estimation and the 
performance of GPR-based CSRKs, for some commonly used kernels in GPR modeling. 

It should be noted that, selecting the best prior or best kernel is not subject of this paper and as the 
results will show, once a CSRK is chosen, the impact of different priors for the initial hyperparameters on 
the performance of GPR prediction is investigated. However, this paper aims to demonstrate the capa-
bilities and improved efficiency of the prior-CSRKs method (GPR-based CSRKs by a prior distribution on 
hyperparameters) presented in this paper for GPR problems with large datasets and complicated geometries. 

The layout of the article is as follows. In Section 2, we briefly review GPR model, and the MLE method 
to estimate the hyperparameters. In Section 3, we attempt to compare the main nature of the GSRKs 
and CSRKs. Then, we explain prior-MLE or modified version of MLE to estimate hyperparameter of the 
GP model with CSRKs in Section 4. Section 5 provides an overview of the computational complexity of 
Cholesky decomposition for sparse kernel matrices. Section 6 presents the results of our extended numerical 
experiments concerning GPR-based GSRKs and CSRKs. In addition, in Section 7, we investigate the 
influence of prior on the predictability of GPR models based on the real dataset. Finally, Section 8 is 
devoted to brief conclusions. 

2. Gaussian process regression review 

A GP is a collection of random variables with the property that the joint distribution of any of its subset is 
consistent joint Gaussian distribution. In fact, for N ∈ N and x1, x2, ..., xN , the vector of random variables 
f(x1), f(x2), ..., f(xN ) is (multivariate) Gaussian. As a Gaussian distribution is specified by mean and 
covariance, a GP is also completely defined by mean and covariance function or kernel. Therefore, for any 
mean function µ and kernel K, there exists a GP f(x) such that E[f(x)] = µ(x) and Cov(f(xs), f(xt)) = 
K(xs, xt). It denotes by f ∼ GP (µ, K). 
To define a probabilistic regression based on GP given a training set D = {(xi, yi), i = 1, · · · , N} of N pairs 
of (vectorial) inputs xi and noisy (real, scalar) outputs yi, consider a regression problem ( )

yi = f (xi) + ζi, where ζi ∼ N 0, σ2 ,ζ 

it yields that the collection of functions {f(x1), ..., f(xN )} follow a multivariate Gaussian distribution such 
that 

f = [f(x1), ..., f(xN )]
T ∼ N (µ, K), 

where µ = [µ(x1), ..., µ(xN )]
T is the mean vector and K is the N × N covariance matrix of which the (i, j)-th 

element Kij = K(xi, xj ). Also, we can compute the predictive distribution of the function values f(x ∗) 
∗ ∗(hereafter f∗) or noisy y at test locations x . To predict the function values f∗ = [f1 

∗, ..., f∗ ]T at the testM 
∗ ∗ ∗locations X∗ = [x1, ..., x ]T , the joint distribution of training observations y and predictive targets f areM 

given by [ ] ([ ] [ ])
y µ(X) K(X, X) + σ2I K(X∗ , X)∼ N , ζ ,
f∗ µ(X∗) K(X∗ , X) K(X∗ , X∗) 

∗ ∗where X = [x1, ..., xN ]
T , µ(X) = µ, µ(X∗) = [µ(x1), ..., µ(x )]T , K(X, X) = K, K(X∗ , X) = K∗ is anM 

∗M ×N matrix of which the (i, j)-th element [K(X∗ , X)]ij = K(xi , xj ), and K(X∗ , X∗) = K∗∗ is an M ×M 
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∗ ∗matrix with the (i, j)−th element [K(X∗ , X∗)]ij = K(xi , xj ) and I is the identity matrix. In GPR method 
the mean function µ(X) is often assumed to be 0. Thus the predictive distribution is 

−1 −1 
∗ (K+σ2 

∗ (K+σ2 
ζζ y, K∗∗−KT p(f∗|X, y, X ∗ ) = N (KT K∗).I) I) (1) 

In fact, the main task in regression is to use the values y1, · · · , yN sampled at locations x1, · · · , xN in order 
∗ to predict the unknown value f∗ at a location x whose entries are given by the kernel [7]. Also, one can 

produce confidence intervals of the standard form √ 
−1 −1 

∗ (K+σ2 y ± zα ∗ (K+σ2 
ζ2ζ K∗∗−KT p(f ∗ ∈ KT K∗) = 1 − α, I) I) 

where z α 
2 
= F −1( α ) = −F −1(1 − α ) where 100(1 − α)% is the confidence level and F is the cumulative 2 2 

distribution function of the standard normal distribution, used as the critical value. This value is only 
dependent on the confidence level for the test. The valid kernels give rise to positive semi-definite covariance 
matrices. The kernel encodes our assumptions about the function we wish to learn, by defining a notion of 
similarity between two function values, as a function of the corresponding two inputs. Therefore, the kernel 
plays a crucial role in the predictive mean and variance. The kernels contain our presumptions about the 
function we wish to learn and define the closeness and similarity between data points. Therefore, the choice 
of kernel has a profound impact on the performance of a GPR model, just as activation function, learning 
rate can affect the result of a neural network [12]. In fact, GPR inherits the existed properties in the used 
kernels. Many different types of kernels were featured in [13] such as radial, translation invariant and series 
kernels. In GPR, the radial kernel is a popular kernel which is used for making predictions. A radial kernel 
is a real valued function whose output depends exclusively on the distance of its input from some origins 
[31]. There are two general scenarios for selecting these radial kernels: global and compact support kernels. 
In the sequel, we show that the GPR method based on GSRKs is not useful for irregular domain and large 
data sets. The computational complexities for irregular domain and large data sets are produced by full and 
dense kernel matrix, and also to invert kernel matrix and to use in prediction. To cope with these issues, 
we investigate to show that the GPR based on CSRKs can produce a sparse kernel matrix versus a dense 
kernel matrix. 

The kernels usually contain unknown hyperparameters (such as the length-scale, signal variance, and 
noise variance) need to be inferred from the data in GPR models. As the posterior distribution over the 
hyperparameters is generally difficult to obtain, full Bayesian inference of the hyperparameters is generally 
not used. There are recent efforts to make hyperparameter estimation fully Bayesian which are promising 
to result in more robust estimates by additionally providing uncertainty estimates for the obtained hyper-
parameters [32]. One common criterion for estimating the hyperparameters in GPR is usually computed by 
MLE. In other words, MLE maximizes the agreement between the observed data and the model. Following 
the GP assumption, the MLE is given as 

ζ 

ζ 

ζ 

p( y| X, ϵ) = N (0, K + σ2 

where ϵ is the collection of the unknown hyperparameters. Therefore, the negative log MLE is 

1 1 NT (K + σ2 log K + σ2 

I), 

I)−1L(ϵ) = − log p( y| X, ϵ) = I + log 2π. (2)y +y
2 2 2 

To set the hyperparameters by minimizing (2), we seek gradient the partial derivatives of (2) w.r.t. the 
hyperparameters: 

2 
ζI)−1 ∂(K+σ 

∂ϵ )−1 

I)∂ L(ϵ) = − 1 
∂ϵ 2 I)−1yy 

ζ 

ζ 
T (K + σ2 ((

K + σ2 I) 

ζ(K + σ2 ) 

. 
2 
ζ∂(K+σ1 I+ tr2 ∂ϵ 

Here, (2) can normally be used through a numerical optimization algorithm in Matlab such as Conjugate 
Gradient to find optimal hyperparameter. 
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3. GPR-based compact support radial kernels 

From the equation (1), the kernel plays an important role in the predictive mean and covariance. The 
choice of kernel is based on assumptions such as smoothness and likely patterns to be expected in the data 
[7]. In fact, the GPR models are non-parametric kernel-based probabilistic models, where the choice of kernel 
has a profound impact on the performance of a GPR model. The main advantages of kernel-based methods 
lie in their simplicity and their effectiveness in dealing with high-dimensional problems with complicated 
geometries since no mesh generation is needed. Here based on the [13], we consider a domain Ω ⊆ Rd , and 
call a function K : Ω×Ω −→ R as a kernel. Also, a kernel K is symmetric, if K(x, z) = K(z, x) holds for all 
x, z ∈ Ωd . A kernel K : Ω×Ω −→ R is called to be radial if there exists a univariate function k : [0, ∞) −→ R 
such that K(x, z) = k(r), where r = ||x − z|| and || · || denotes the Euclidean distance. In Table 1 we report 
a list of some well-known radial kernels with their orders of smoothness and support, where ϵ a positive 
constant which is known as the shape parameter, (·)+ denotes the truncated power function, and ν ∈ N [33]. 

Table 1: Examples of some popular radial kernels 

Radial kernel k(r) Support 

Gaussian C∞ (GA) −ϵ2 2 re GSRK 

MultiQuadric C∞ (MQ) 2)1/2(1 + ϵ2r GSRK 

Inverse MultiQuadric C∞ (IMQ) 2)−1/2(1 + ϵ2r GSRK 

Thin Plate Spline Cν+1 (TPS) (−1)ν+1r2ν log r GSRK 

Matérn C4 (M4) −ϵr(ϵ2e r2 + 3ϵr + 3) GSRK 

Matérn C2 (M2) e−ϵr(ϵr + 1) GSRK 

Wendland C6 (W6) 8
(1 − ϵr) (32ϵ3r3 + 25ϵ2r2 + 8ϵr + 1) + CSRK 

Wendland C4 (W4) 6
(1 − ϵr) (35ϵ2r2 + 18ϵr + 3) + CSRK 

Wendland C2 (W2) 4
(1 − ϵr) (4ϵr + 1) + CSRK 

There are various radial kernels which are suitable for GPR. They can be divided in two groups: GSRKs 
and CSRKs. The traditional kernels are GSRKs such as MQs, IMQs and GAs. Since all the training data 
is required for making predictions in GPR, GSRKs have some computational limitations such that they 
produce full and dense kernel matrix which is ill-conditioned. We will clearly show the effects the size of 
training set has on the condition number (CN) of kernel matrix (and therefore the numerical stability) of our 
computations. Therefore, in Figure 1 we display CNs of kernel matrix as a function of the size of training set 
by using M4 kernel. In fact, the size of dense kernel matrix increases quadratically with the size of training 

0 100 200 300 400 500 600
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10

15
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size of training set
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Figure 1: The effects of the size of the training set on the condition number of kernel matrix when using M4. 
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set with used GSRKs. The computational difficulties are generated by the Bayesian posterior update to 
incorporate data, and also to inverting of kernel matrix, and per test case for prediction. To cope with these 
issues, we show that the GPR based on CSRKs can produce sparse kernel matrix which is in contrast dense 
kernel matrix. The CSRKs can result in a sparse kernel matrix and effectively avoids the ill-conditioned 
and dense matrix and consequently reduces computational costs. As a simple consequence of a theorem of 
Schoenberg, a CSRK can not be positive definite for all space dimensions [34]. The CSRKs can be strictly 
positive on Rd only for a fixed maximal dimension d [38]. Therefore authors focus their attention on the 
characterization and construction of functions that are compactly supported, strictly positive definite and 
radial on Rd for some fixed dimension d. 

Wendland constructs, by dimension walk, a popular family of CSRKs, expressed with a piecewise polyno-
mial form whose degree is minimal for a given dimension space d and whose continuity is C2n [35]. Wendland 
defines a certain integral operator I and show how they facilitate the construction of CSRKs. 

Definition 1. Let ϕ be such that t 7−→ tϕ(t) ∈ L1[0, ∞). Then we define the integral operator I via ∫ ∞ 

(Iϕ)(r) = tϕ(t)dt, r ≥ 0. 
r 

The resulting function is to be interpreted as even function using even extension. 

Theorem 1. Suppose that ϕ is continuous. 

(1) I preserve compact support, i.e., if ϕ has compact support, then so do Iϕ. 

(2) If t 7−→ td−1ϕ(t) ∈ L1[0, ∞) and d ≥ 3, then Fd(ϕ) = Fd−2(Iϕ). 

The operator I allows us to express d-variate Fourier transform as (d − 2)-variate Fourier transform, 
respectively. Since according to Bochner’s theorem and generalizations thereof, positive definite and radial 
kernels on Rd are characterized by a nonnegative d-variate Fourier transform we can draw the following 
conclusion. 

Corollary 1. Suppose ϕ ∈ C(R). If t 7−→ td−1ϕ(t) ∈ L1[0, ∞) and d ≥ 3, then ϕ is strictly positive definite 
and radial on Rd if and only if Iϕ is strictly positive definite and radial on Rd−2 . 

Proof. This follows immediately from the preceding theorem and Bochner’s characterization for radial and 
integrable functions. 

This allows us to construct new strictly positive definite radial functions from given ones by a ”dimension-
walk” technique that steps through multivariate Euclidean space in even increments. 

For example, Wendland constructed the most popular family of CSRKs by this technique. Wendland 
starts with the truncated power function 

ϕl(r) = (1 − r)l +, 

which we know to be strictly positive definite and radial on Rd for l ≥ ⌊d/2⌋ +1 [38]. Then he walks through 
dimensions by repeatedly applying the integral operator I. 

With ϕl(r) = (1 − r)l +, we define Wendland CSRKs ϕd,k such that ϕd,k = IK ϕ⌊d/2⌋+k+1. It turns out 
that the functions ϕd,k are all supported on [0, 1] and have a polynomial representation there. More precisely, 
Wendland CSRKs ϕd,k are positive definite on Rd0 for d0 ≤ d and are of the form {

pd,k(r), 0 ≤ r ≤ 1,
ϕd,k = 

0, r > 1, 

with a univariate polynomial pd,k of degree ⌊d/2⌋ + 3k + 1. They possess continuous derivatives up to order 
2k. Whereas, Wu presents another way, by convolution, to construct similar CSRK, but provides higher 
polynomial degree for a prescribed smoothness and dimension [36]. There are many other ways in which 
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one can construct compactly supported functions that are strictly positive definite and radial on Rd . In [37] 
several such possibilities are described. However, Wenldland’s CSRK are used in this paper because other 
compactly supported polynomial function that globally C2n and strictly positive definite and radial on Rd 

will not have a smaller polynomial degree [38]. In this paper, the notation ϕd,k(r) for Wendland CSRKs is 
replaced by k(r). Some of the most important and widely used types of Wendland’s CSRKs are W2, W4 
and W6, which are introduced in Table 1. 

If we use the Wendland’s CSRKs in GPR then the main difference to the global support structure is 
that now the kernel matrix can be made sparse by scaling the support of the CSRK appropriately. In 
fact, only the entries in the kernel matrix corresponding to nodes lying closer than λ (whose support is 
[0; λ], with λ = 1/ϵ) to a given CSRK center are non-zero, leading to a sparse kernel matrix. Indeed, the ϵ 
determines the size of the support and, consequently, the sparsity in kernel matrix. In practice, the interest 
in CSRKs waned slightly as it became evident that, in order to obtain a good accuracy, the ϵ is decreased 
such that the overlap distance λ should covered most nodes in the point set. So, there is a trade-off principle 
(conflict between accuracy and sparsity) for CSRKs. Hence, when using CSRKs (without priors on the 
hyperparameters), during GPR training, the main focus will be on providing a high level of accuracy. In 
this case, the advantage of achieving a sparse covariance matrix for CSRKs will almost disappear, as we will 
see in the numerical results. 

This trade-off has led authors to search for an ”optimal” value of the scale parameter ϵ, i.e., a value that 
yields maximal accuracy, while still maintaining a sparse covariance matrix. Accordingly, by selecting a 
suitable prior on the kernel hyperparameters, and simply estimating the hyperparameters using a modified 
version of the MLE, during GPR training, in addition to providing the desired accuracy, an appropriate 
quantity of sparsity will also be obtained. We will investigate and analyze well this subject in the numerical 
results and we will deal with it as a novelty of this paper. 

4. Estimating hyperparameters in CSRKs-GPR by a modified version of MLE 

One of the issues that affect the sparsity of the kernel matrix and accuracy of the GPR based on 
CSRKs (CSRKs-GPR) is the estimated hyperparameters in the used CSRKs. As mentioned earlier, the 
scale parameter ϵ of CSRK is the hyperparameter should be specified during CSRKs-GPR training. 

According to the structure of CSRKs-GPR, depending on the support of the CSRKs, many of the 
entries in the kernel matrix will be zero. Indeed, the shape parameter determines the size of the support 
and, consequently, the sparsity in the kernel matrix. Since increasing the size of the support in order to 
achieve higher accuracy reduces the sparsity of the kernel matrix, there will always be a trade-off principle 
(conflict between accuracy and sparsity) for CSRKs. In this paper, we propose a novel method to yields 
maximal accuracy, while still maintaining a sparse covariance matrix by using CSRKs. 

In CSRKs-GPR models, the hyperparameters involved in the CSRK need to be estimated from the 
training data. Although, MC methods can perform GPR without the need of estimating hyperparameters, 
the common approach is to estimate the hyperparameters by means of MLE due to the high computational 
cost of MC methods. Therefore, the hyperparameters in CSRKs-GPR with a specified CSRKs are often 
estimated from the data via MLE. Hence, as mentioned, during CSRKs-GPR training by minimizing (2), 
the main focus will be on providing a high level of accuracy (targets fitting the training data). In this case, 
the advantage of achieving a sparse covariance matrix for CSRKs will almost disappear, as we will see in 
the numerical results. 

In Bayesian inference, a prior distribution of an uncertain quantity is the distribution that would express 
one is beliefs about this quantity before some evidence is taken into account. Accordingly, by selecting a 
suitable prior on the kernel hyperparameters, and simply estimating the hyperparameters using a modified 
version of the MLE, the GPR model derived from the CSRKs yields maximal accuracy while still maintaining 
a sparse covariance matrix. It is usually assumed that the covariance function of a GP belongs to a certain 
parametric family [7] whose hyperparameters need to be estimated from data. If the hyperparameters 
are specified by a certain prior distribution, then the modified version of MLE by prior distribution on 
hyperparameters (prior-MLE) will be proportional to the product of marginal likelihood depending on the 
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hyperparameters of the covariance function and a given prior distribution. Here, the MLE ensures that 
the obtained model has maximum agreement with the training data, and the suitable prior distribution 
guarantees the achievement of a sparse covariance matrix. 

The prior distributions that can be considered include non-informative [12] and informative [39] priors. 
In the cases when there is little information about the data, vague prior distributions can be selected with the 
intention that they should have a slight influence on the inferences. However, with a small amount of data, 
the use of non-informative prior may be problematic, and a vague prior distribution may be misleading on 
any inference made because the results are easily sensitive to the selection of prior distributions. Therefore, 
by incorporating some information inferred from training data, we have listed different informative prior 
distributions like Gamma and Gaussian priors which have been discussed in our study. 

Now, assume that we are also given a certain prior distribution p(ϵ) on the hyperparameter ϵ. Then the 
prior-MLE is usually written as 

−L(ϵ)p( ϵ| X, y) ∝ e p(ϵ). 

Therefore, the improved function in the modified version of MLE to be optimized will be as follows: 

Lmod(ϵ) = − log p( ϵ| X, y) = L(ϵ) − log p(ϵ), (3) 

Here, (3) can normally be used through a numerical optimization algorithm such as Conjugate Gradient to 
find optimal hyperparameter. The procedure for hyperparameter estimation is described below. 

1. Randomly choose an initial hyperparameter ϵ0 from certain prior distribution p(ϵ). 
2. Numerically minimize Lmod(ϵ) in (3) using ϵ0 as the starting value and obtain an estimate of the 

hyperparameter. 

As mentioned earlier in the introduction, selecting the best prior or best kernel is not subject of this paper and 
as the results will show, once a CSRK is chosen, the impact of different priors for the initial hyperparameters 
on the performance of GPR prediction is investigated. However, this paper aims to demonstrate the capa-
bilities and improved efficiency of the prior-CSRKs method presented in this paper for GPR problems with 
large datasets and complicated geometries. We will conclude how prior distributions for hyperparameters 
affect the performance of GPR-based CSRKs such that kernel matrix is more sparse and well-conditioned. 
We will investigate the influence of the modified version of MLE on the hyperparameters in sparsity structure 
of kernel matrix for GPR-based GSRKs problems with high dimensional and complicated geometries. 

5. Computational complexity review 

In this paper, we propose a novel method to produce a sparse kernel matrix by using CSRKs to efficiently 
learn the GPR from large datasets. In practical implementation of GPR, Cholesky decomposition is usually 
used instead of directly inverting the kernel matrix, since it is faster and numerically more stable [7]. So, 
we will review a simple yet very effective scheme for applying Cholesky decomposition to large and positive 
definite kernel matrix that is banded or has an envelope structure [40]. This method is in widespread use 
and, as we shall see, it can yield enormous savings in computer time and storage space. 

A kernel matrix K is banded if there is a narrow band around the main diagonal such that all of the 
entries of K outside of the band are zero. More precisely, if K is N × N , and there is an s ≪ N such that 
Ki,j = 0 whenever |i − j| > s, then all of the nonzero entries of K are confined to a band of 2s + 1 diagonals 
centered on the main diagonal. We say that K is banded with band width 2s + 1. Since we are concerned 
with symmetric matrices in this paper, we only need half of the band. Since Ki,j = 0 whenever i − j > s, 
there is a band of s diagonals above the main diagonal that, together with the main diagonal, contains all 
of the nonzero entries of K. We say that K has semiband width s. 

Banded positive definite kernel matrix can be solved economically because it is possible to ignore the 
entries that lie outside of the band. For this it is crucial that the Cholesky factor R inherits the band 
structure of the original kernel matrix. Thus we can save storage space by using a data structure that stores 
only the semiband of K, and R can be stored over K. Just as importantly, computer time is saved because 
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all operations involving entries outside of the band can be skipped. As we shall soon see, these savings are 
substantial. 

Instead of analyzing banded systems, we will introduce a more general idea, that of the envelope of a 
matrix. This will increase the generality of the discussion while simplifying the analysis. The envelope of a 
symmetric or upper-triangular matrix K is a set of ordered pairs (i, j), i < j, representing element locations 
in the upper triangle of K, denned as follows: (i, j) is in the envelope of K if and only if Kk,j ̸= 0 for some 
k ≤ i. Thus if the first nonzero entry of the jth column is Km,j and m < j, then (m, j), (m + 1, j), ..., 
(j − 1, j) are the members of the envelope of K from the jth column. 

The crucial theorem about envelopes (Theorem 2) states that if R is the Cholesky factor of K, then R 
has the same envelope as K. Thus K can be stored in a data structure that stores only its main diagonal 
and the entries in its envelope, and R can be stored over K. All operations involving the off-diagonal entries 
lying outside of the envelope can be skipped. If the envelope is small, substantial savings in computer time 
and storage space are realized. It should be noted that Banded matrices have small envelopes. 

Theorem 2. Let K be positive definite matrix, and let R be the Cholesky factor of K. Then R and K have 
the same envelope [40]. 

Corollary 2. Let K be a banded, positive definite matrix with semiband width s. Then its Cholesky factor 
R also has semiband width s. 

To get an idea of the savings that can be realized by exploiting the envelope structure of a matrix, 
consider the banded case. If K has semiband width s, then the portion of the jth row that lies in the 

2envelope has at most s entries, so the flop count for the jth step is about s . Since there are N steps in the 
algorithm, the total flop count is about Ns2 . 

Letting Z = R−1 , we have RZ = I where I is the identity matrix. Rewriting this equation in partitioned 
form as 

R [z1 z2 ... zN ] = [e1 e2 ... eN ] , 

where z1, ..., zN and e1, ..., eN are the columns of Z and I, respectively, we find that the equation RZ = I 
is equivalent to the N equations 

Rzi = ei, i = 1, ..., N. 

Solving these N systems by back substitution, we obtain R−1 . Let R be an N × N upper-triangular matrix 
with semiband width s. Show that the system Rzi = ei can be solved by back substitution in about 2Ns 
flops. 

The algorithm for solving a upper -triangular system with semiband width s by back substitution looks 
like this: 

for j = 1, ..., N 
for k = j − s, ..., j − 1 

ej,i ←− ej,i − Rj,kek,i 
if Rj,i = 0, set error flag, exit 
ej,i ←− ej,i/Rj,j 

To get an idea of the execution time of algorithm, let us count the floating-point operations (flops). In the 
inner loop of algorithm, two flops are executed. These flops are performed s times on the jth time through 
the outer loop. The outer loop is performed N times, so the total number of flops performed in the k loop 
is 2Ns. Each of the N systems has to be solved by back substitution at a cost of 2Ns flops. Thus the total 
flop count is 2N2s. 

How much does it cost to calculate K−1? The Cholesky decomposition has to be done once, at a cost of 
Ns2 flops. the N systems in algorithm have to be solved by back substitution at a cost of 2N2s flops. Thus 
the total flop count is Ns(2N + s). 

For example, the kernel matrix K is 100 × 100 (N = 100) with a semiband width of s = 10. If we 
perform a Cholesky decomposition using a program that does not exploit the band structure of the matrix, 

the cost of the arithmetic is about 
1 
N3 ≈ 3.3 × 105 flops. In contrast, if we do exploit the band structure,

3 
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the cost is about Ns2 = 104 flops, which is about 3% of the previous case. In the back substitution steps, 
substantial but less spectacular savings are achieved. The combined arithmetic cost of back substitution 
without exploiting the band structure is about N3 = 106 flops. If the band structure is exploited, the flop 
count is about 2N2s = 2 × 105 , which is 20% of the previous case. For more details, refer to [40]. 

6. Numerical results 

In this section, we show that the GPR based on the observation from CSRKs can produce sparse 
kernel matrix, which is in contrast to the kernel matrix derived from GSRKs. The major purpose of this 
section is to show the capabilities and improved efficiency of the CSRK method for GPR problems with 
high dimensional and complicated geometries rather than GSRK. The performance of a GPR model can be 
modified efficiently in producing of a more sparsity and well-conditioned kernel matrix using the prior-CSRK 
method. We investigate the influence of the prior-CSRK method on the predictability of the GPR models. 
We will conclude how prior distributions for hyperparameters affect the performance of GPR-based CSRKs 
such that kernel matrix is more sparse and well-conditioned. To this end, we will investigate the influence of 
the modified version of MLE on the hyperparameters in sparsity structure of kernel matrix for GPR-based 
GSRKs problems with high dimensional and complicated geometries. Also, we can obtain statistical criteria 
such as mean, standard deviation and confidence interval for our prediction. All these results in some 
tables and figures have been carried out in Matlab on a laptop with a 2.4 GHz Intel Core i5 processor. 
We consider M4 kernel as GSRK, and then we put different prior distributions for the hyperparameters 
in the following example such that our prior distributions cover enough cases. But in most cases Gamma 
and Normal distributions were appropriate prior distributions. Here, there are several examples with all 
circumstances, 2D and irregular domains. In addition, W2 kernel used as CSRK for different domains. For 

2problem, the σtest parameter ζ = 10−2 as a variance for noise in the presented method is used to obtain 
the results and we perform 1000 realizations based on the simulation design. Note that the prior-CSRK 
can be used to estimate optimal value of the hyperparameter ϵ which implemented by Conjugate Gradient 
algorithm based on the prior-MLE estimation. In order to investigate the accuracy of the GPR based on the 
prior-CSRK method, we compute maximum absolute error (MAE) and root mean squared error (RMSE) 
given by 

MAE = max |f ∗ − fi|,i
1≤i≤M 

RMSE = 

vuut 1 ∑M 

M 
i=1 

(f∗ − fi)2 
i , 

where M is the total number of test points. Also, f∗ and fi is used respectively for the predicted meani 
values and the actual test values. On the other hand, the criterion CN obtained by using the Matlab 
command condest. We calculate the criteria of sparsity and memory as the number of non-zero entries in 
the kernel matrix divided by the number of entries in the kernel matrix and the memory requirement for 
the kernel matrix, respectively. 

Example 1 

Now for the 2D example on the convex domain, consider 1680 training data xi’s over a circular domain 
Ω as shown in Figure 2 (a). In this example, we consider a training data set {(xi, yi), i = 1, . . . , 1680} by 
the following test function 

f(x) = cos (2π (x1 + x2)) . 

Also, the noise distribution is chosen as N . In addition, to evaluate the accuracy of GPR model 720
)

ζ

(
0, σ2 

test data are used in this example. Figure 2(a) shows training data distribution, marked with circles, and 
test data distribution, marked with plus signs. The profile of the surface representing the noise-free solution 
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Figure 2: The data distribution (a) and the noise-free solution (b) on the circular domain in Example 1 

is depicted in Figure 2(b). In Table 2 we present analysis on the CSRK and GSRK methods. More precisely, 
Table 2 gives the optimal ϵ computed with MLE, the CN of the kernel matrix, MAE, RMSE, sparsity and 
memory requirement for kernel matrix. 

Table 2: Comparison of ϵ, CN, MAE, RMSE, sparsity and memory (in bytes) between CSRK and GSRK methods on the 
circular domain in Example 1 

CSRK GSRK 

ϵ CN MAE RMSE Sparsity Memory ϵ CN MAE RMSE Sparsity Memory 

0.5915 1.3153 × 106 0.0343 8.7 × 10−3 0.9460 3.0851 × 106 3.4597 1.3080 × 107 0.0229 7.2 × 10−3 1 3.0851 × 106 

Also, in Figure 3, we show the sparsity structure of the kernel matrix in GPR model based on CSRK and 
GSRK schemes. These results points out essentially that CSRK method is a little more sparser and a 

Figure 3: Comparison of sparsity structure between CSRK(left) and GSRK (right) methods on the circular domain in Example 
1 

little more well-conditioned than GSRK method. As a result, it is computationally very expensive to apply 
GSRK method to GPR problems. Also, when using kernels with compact support (without priors on the 
hyperparameters), during GPR training, the main focus will be on providing a high level of accuracy. In 
this case, the advantage of achieving a sparse covariance matrix for CSRKs will almost disappear, as we can 
see in Figure 3. To overcome this difficulty, we use prior-MLE method which will be proportional to the 
product of MLE and a given prior distribution for the hyperparameters as can be seen in (3). Table 3 gives 
us some useful information on the possible choice of normal priors. 

11 



)
))

((((

1 
Table 3: Influence of normal priors for ϵ, CN, MAE, RMSE, sparsity and memory (in bytes) on the circular domain in Example 

Normal prior ϵ CN MAE RMSE Sparsity Memory 

N 4.8, 1 × 10−3 4.6747 9.4584 × 101 0.0839 1.9 × 10−2 0.0376 2.3667 × 105 )
N 3.4, 1 × 10−3 3.2229 4.6746 × 102 0.0552 1.3 × 10−2 0.0799 4.9811 × 105 

N 2.8, 1.6 × 10−3 2.2081 3.1850 × 103 0.0317 9.6 × 10−3 0.1502 9.3190 × 105 

N 2.2, 1.3 × 10−3 1.4664 2.3345 × 104 0.0383 9.4 × 10−3 0.3070 1.8993 × 106 ( )
N 1.9, 1.5 × 10−3 0.9310 2.0246 × 105 0.0287 9.1 × 10−3 0.6086 3.0851 × 106 

It is therefore interesting to know how prior distributions for hyperparameters affect the performance of 
GPR-based CSRKs. In fact, we should investigate the empirical study of prior-MLE strategy on the hyper-
parameter estimation and the performance of GPR-based CSRKs, for some commonly used kernels in GPR 
modeling. Indeed, in table 3, we can see how the normal prior of hyperparameter affect the estimates of the 
hyperparameter. Simulation results show that by selecting a suitable prior on the kernel hyperparameters, 
and simply estimating the hyperparameters using a modified version of the MLE, during GPR training, in 
addition to providing the desired accuracy, an appropriate quantity of sparsity will also be obtained. Fur-
thermore, based on the CN of kernel matrix, GPR models using prior-CSRK scheme is more well-conditioned 
than GPR models using GSRK and CSRK schemes. As a result, it is computationally very suitable to apply 
the prior-CSRK method to do GPR. In general, for the prior-CSRK scheme we found a good compromise 
between CN, MAE, RMSE, sparsity and memory requirement. 
By empirical analysis, the optimal balanced between accuracy, sparsity and conditioning obtained when prior( ) ( )
distribution is N 2.8, 1.6 × 10−3 . In Table 4 we present analysis on the N 2.8, 1.6 × 10−3 prior-CSRK 
method, which is also compared with the CSRK and GSRK methods studied in Table 2. More precisely, 
Table 4 gives the optimal ϵ, the CN of the kernel matrix, MAE, RMSE, sparsity and memory for each 
methods, separately. 

( )
Table 4: Comparison of ϵ, CN, MAE, RMSE, sparsity and memory (in bytes) between N 2.8, 1.6 × 10−3 prior-CSRK, CSRK 
and GSRK methods on the circular domain in Example 1 

Method ϵ CN MAE RMSE Sparsity Memory 

Prior-CSRK 2.2081 3.1850 × 103 0.0317 9.6 × 10−3 0.1502 9.3190 × 105 

CSRK 0.5915 1.3153 × 106 0.0343 8.7 × 10−3 0.9460 3.0851 × 106 

GSRK 3.4597 1.3080 × 107 0.0229 7.2 × 10−3 1 3.0851 × 106 

( )
From this study we can note a quite uniform behavior: accuracy of the (N 2.8, 1.6 × 10−3 ) prior-CSRK 
versus CSRK and GSRK is almost similar. But, on the other hand, we observe a significant reduction of CN,( )
the criteria of sparsity and memory requirement in kernel matrix for the N 2.8, 1.6 × 10−3 prior-CSRK 
scheme compared to the CSRK and GSRK schemes. 

To illustrate the applicability of our method for other prior distributions, Table 5 gives us some useful 
information on the possible choice of Gamma priors. A similar empirical analysis has been performed for( )
the Gamma prior distribution, and we show that the best prior distribution is Gamma 3030, 1 × 10−3 .( )
In Table 6 we compare Gamma 3030, 1 × 10−3 prior-CSRK method with the CSRK and GSRK methods 
studied in Table 2. Analyzing these experiments, we can thus observe a behavior - in terms of ϵ, CN, MAE,( )
RMSE, memory and sparsity - similar to that exhibited for N 2.8, 1.6 × 10−3 prior-CSRK method and 
already beforehand remarked. 
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1 
Table 5: Influence of Gamma priors for ϵ, CN, MAE, RMSE, sparsity and memory (in bytes) on the circular domain in Example 

Gamma prior ϵ CN MAE RMSE Sparsity Memory 

Gamma 5280, 1 × 10−3 4.6928 9.3002 × 101 0.0925 1.9 × 10−2 0.0375 2.3654 × 105 

Gamma 3960, 1 × 10−3 3.2148 5.1371 × 102 0.0549 1.2 × 10−2 0.0800 4.9836 × 105 

Gamma 3030, 1 × 10−3 2.2122 3.1564 × 103 0.0358 9.6 × 10−3 0.1502 9.3177 × 105 

Gamma 2310, 1 × 10−3 ( )
Gamma 1550, 1 × 10−3

1.4747 
0.9354 

2.2698 × 104 

1.9803 × 105 
0.0336 
0.0338 

9.9 × 10−3 

9.0 × 10−3 
0.3003 
0.6004 

1.8577 × 106 

3.0851 × 106 

( )
Table 6: Comparison of ϵ, CN, MAE, RMSE, sparsity and memory (in bytes) between Gamma 3030, 1 × 10−3 prior-CSRK, 
CSRK and GSRK methods on the circular domain in Example 1 

Method ϵ CN MAE RMSE Sparsity Memory 

Prior-CSRK 2.2122 3.1564 × 103 0.0358 9.6 × 10−3 0.1502 9.3177 × 105 

CSRK 0.5915 1.3153 × 106 0.0343 8.7 × 10−3 0.9460 3.0851 × 106 

GSRK 3.4597 1.3080 × 107 0.0229 7.2 × 10−3 1 3.0851 × 106 

( )
Also, in Figure 4, we show the sparsity structure of the kernel matrix in GPR model based on N 2.8, 1.6 × 10−3 ( )
and Gamma 3030, 1 × 10−3 prior-CSRK schemes. It is evident from graphs that kernel matrix is very 
sparse. 
We present predictive mean, predictive standard deviation, confidence interval, noise-free value and ab-

( ) ( )
Figure 4: Comparison of sparsity structure between N 2.8, 1.6 × 10−3 (left) and Gamma 3030, 1 × 10−3 (right) prior-CSRK 
methods on the circular domain in Example 1 ( )
solute error of N 2.8, 1.6 × 10−3 prior-CSRK for some points in Table 7. Also, we present the results on( )
Gamma 3030, 1 × 10−3 prior-CSRK in Table 8. ( )
The lower bounds and upper bounds are presented for prediction of 720 test data, by using N 2.8, 1.6 × 10−3 

prior in Figures 5 (a) and 5 (b). In addition, the lower bounds and upper bounds are presented for prediction( )
of 720 test data, by using Gamma 3030, 1 × 10−3 prior in Figures 6 (a) and 6 (b). 
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( )
Table 7: The detailed analysis of N 2.8, 1.6 × 10−3 prior-CSRK on the circular domain in Example 1 

∗ x Mean Standard deviation Confidence interval Noise-free value Absolute error 

(−0.9257, −0.2400) 0.5035 0.1076 (0.2927, 0.7143) 0.5052 1.7 × 10−3 

(−0.7200, −0.5143) 0.0987 0.1071 (−0.1111, 0.3086) 0.0986 2 × 10−4 

(−0.6514, 0.4457) 0.2758 0.0959 (0.0879, 0.4637) 0.2747 1.1 × 10−3 

(−0.4457, −0.3771) 0.4411 0.0256 (0.3910, 0.4911) 0.4420 9 × 10−4 

(0, −1) 1.0012 0.0836 (0.8373, 1.1651) 1 1.2 × 10−3 

(0.3086, 0.4457) 0.0272 0.0463 (−0.0636, 0.1180) 0.0269 3 × 10−4 

(0.4457 − 0.7886) −0.5503 0.1129 (−0.7717, −0.3290) −0.5509 6 × 10−4 

(0.58290.0343) −0.7392 0.1231 (−0.9804, −0.4980) −0.7411 2 × 10−3 

(0.7886, 0.1029) 0.7743 0.1309 (0.5177, 1.0308) 0.7762 1.9 × 10−3 

(0.8558, −0.5173) −0.5270 0.0390 (−0.6033, −0.4506) −0.5275 6 × 10−4 

( )
Table 8: The detailed analysis of Gamma 3030, 1 × 10−3 prior-CSRK on the circular domain in Example 1 

∗ x Mean Standard deviation Confidence interval Noise-free value Absolute error 

(−0.9257, −0.2400) 0.5042 0.1007 (0.3069, 0.7015) 0.5052 9 × 10−4 

(−0.7200, −0.5143) 0.0980 0.1119 (−0.1212, 0.3173) 0.0986 5 × 10−4 

(−0.6514, 0.4457) 0.2732 0.0931 (0.0907, 0.4558) 0.2747 1.4 × 10−3 

(−0.4457, −0.3771) 0.4405 0.0238 (0.3939, 0.4871) 0.4420 1.4 × 10−3 

(0, −1) 0.9981 0.0801 (0.8412, 1.1550) 1 1.9 × 10−3 

(0.3086, 0.4457) 0.0283 0.0477 (−0.0651, 0.1218) 0.0269 1.4 × 10−3 

(0.4457, −0.7886) −0.5490 0.1043 (−0.7534, −0.3446) −0.5509 1.9 × 10−3 

(0.5829, 0.0343) −0.7429 0.1163 (−0.9708, −0.5151) −0.7411 1.8 × 10−3 

(0.7886, 0.1029) 0.7751 0.1279 (0.5244, 1.0259) 0.7762 1.1 × 10−3 

(0.8558, −0.5173) −0.5281 0.0364 (−0.5994, −0.4569) −0.5275 6 × 10−4 

14 



( )
The predictive means and standard deviation are shown for 720 test data by using N 2.8, 1.6 × 10−3 

prior in Figure 7. The predictive means and standard deviation are shown for 720 test data by using( )
Gamma 3030, 1 × 10−3 prior in Figure 8. The absolute errors are demonstrated in Figure 9 for prediction 
of 720 test data, by using these priors. 
Based on these results, a low standard deviation indicates that the predicted values for each test point in 
simulations tend to be close to the predicted mean. Also, the predicted mean of each test point will fall 
within interval of lower and upper bounds. 
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Figure 5: The lower bounds (a) and upper bounds (b) by using N 2.8, 1.6 × 10−3 prior on the circular domain for prediction 
of test data in Example 1 
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Figure 6: The lower bounds (a) and upper bounds (b) by using Gamma 3030, 1 × 10−3 prior on the circular domain for 
prediction of test data in Example 1 

Example 2. 

Now, to show the efficiency of proposed method on the more complexed and irregularly shaped domain 
with holes (non-convex domain), we consider 1820 data xi’s over a non-convex domain Ω as shown in Figure 
10 (a). Specifically, we hereby define the boundary of this non-convex domain Ω as follows 

∂Ω = {(ρ, θ) |ρ (θ) = 1 + 0.1 (sin (6θ) + sin (3θ))}. 

Let {(xi, yi), i = 1, . . . , 1820} be a training data set. Now, we evaluate the noisy scattered test data set( )
i.i.d 

based on the ζi ∼ N 0, σ2 , i = 1, . . . , 1820. It should be mentioned that 780 test data are used to evaluate ζ 

the accuracy of GPR model in in this example. Figure 10 (a) shows training data distribution, marked with 
circles, and test data distribution, marked with plus signs. The profile of the surface representing the noise-
free solution is depicted in Figure 10 (b). In Table 9, we present the analysis of the GPR based on the CSRK 
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Figure 7: The predictive means (left) and standard deviation (right) for test data on the circular domain in Example 1 by ( )
using N 2.8, 1.6 × 10−3 prior 
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Figure 8: The predictive means (left) and standard deviation (right) for test data on the circular domain in Example 1 by ( )
using Gamma 3030, 1 × 10−3 prior 
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test data on the circular domain in Example 1 
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Figure 10: The data distribution (a) and the noise-free solution (b) on the non-convex domain in Example 2 
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and GSRK methods. More precisely, Table 9 gives the optimal hyperparameter ϵ which is computed with 
MLE. Also, the CN of kernel matrix for both the CSRK and GSRK methods is calculated. In addition, we 
report the MAE, RMSE, sparsity and memory requirement for kernel matrix computed with optimal ϵ. 

Table 9: Comparison of ϵ, CN, MAE, RMSE, sparsity and memory (in bytes) between CSRK and GSRK methods on the 
non-convex domain in Example 2 

CSRK GSRK 

ϵ CN MAE RMSE Sparsity Memory ϵ CN MAE RMSE Sparsity Memory 

0.5758 2.2045 × 106 0.0288 8.3 × 10−3 0.9455 4.5120 × 106 3.4323 1.8617 × 107 0.0269 6.9 × 10−3 1 4.5120 × 106 

Also, in Figure 11, we show the sparsity structure of the kernel matrix in GPR model based on CSRK 
versus GSRK schemes. These results points out essentially that CSRK method is a little more sparse and a 

Figure 11: Comparison of sparsity structure between CSRK (left) and GSRK (right) methods on the non-convex domain in 
Example 2 

little more well-conditioned than GSRK method. According to the results, the use of kernels with compact 
support did not significantly increase the sparseness of the kernel matrix. Consequently, we will not benefit 
from the computational advantages of sparse matrices. As mentioned before, to meet this challenge, we use 
the prior-MLE method to achieve the best possible balance between sparsity, accuracy and conditioning. 
Table 10 gives us the prior-MLE estimation for hyperparameter based on the possible choice of normal 
priors. 
Simulation results show that by selecting a suitable prior on the kernel hyperparameters, and simply es-
timating the hyperparameters using a modified version of the MLE, during GPR training, in addition to 
providing the desired accuracy, an appropriate quantity of sparsity will also be obtained. Furthermore, 
based on the CN of kernel matrix, GPR models using prior-CSRK scheme is more well- conditioned than 
GPR models using GSRK and CSRK schemes. As a result, it is computationally very suitable to apply the 
prior-CSRK method to do GPR even on more complexed domain. In general, for the suitable prior-CSRK 
scheme we found a good compromise between CN, MAE, RMSE, sparsity and memory requirement. 

By empirical analysis, the optimal balanced between accuracy, sparsity and conditioning obtained when( ) ( )
prior distribution is N 2.7, 1 × 10−3 . In Table 11 we present analysis on the N 2.7, 1 × 10−3 prior-
CSRK method, which is also compared with the CSRK and GSRK methods studied in Table 9 . More 
precisely, Table 11 gives the optimal ϵ, the CN of the kernel matrix, MAE, RMSE, sparsity and memory for 
each methods, separately. 

( )
From Table 11, we observe that the accuracy of the (N 2.7, 1 × 10−3 ) prior-CSRK method is comparable to( )
the CSRK and GSRK methods studied in Table 9. Additionally, the (N 2.7, 1 × 10−3 ) prior-CSRK scheme 
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Table 10: Influence of normal priors for ϵ, CN, MAE, RMSE, sparsity and memory (in bytes) on the non-convex domain in 
Example 2 

Normal prior ϵ CN MAE RMSE Sparsity Memory 

N 4.7, 1 × 10−3 4.5355 1.9802 × 102 0.0736 1.6 × 10−2 0.0438 4.0110 × 105 

N 3.5, 1 × 10−3 )
N 2.7, 1 × 10−3

N 2.5, 1.5 × 10−3 ( )
N 1.8, 1.1 × 10−3

3.2447 
2.2562 
1.4562 
0.9110 

9.3335 × 102 

5.3997 × 103 

4.4881 × 104 

3.8470 × 105 

0.0598 
0.0316 
0.0411 
0.0366 

1.2 × 10−2 

9.4 × 10−3 

9.1 × 10−3 

8.8 × 10−3 

0.0790 
0.14727 
0.3025 
0.6034 

7.1892 × 105 

1.3350 × 106 

2.7356 × 106 

4.5120 × 106 

( )
Table 11: Comparison of ϵ, CN, MAE, RMSE, sparsity and memory (in bytes) between N 2.7, 1 × 10−3 prior-CSRK, CSRK 
and GSRK methods on the non-convex domain in Example 2 

Method ϵ CN MAE RMSE Sparsity Memory 

Prior-CSRK 2.2562 5.3997 × 103 0.0316 9.4 × 10−3 0.14727 1.3350 × 106 

CSRK 0.5758 2.2045 × 106 0.0288 8.3 × 10−3 0.9455 4.5120 × 106 

GSRK 3.4323 1.8617 × 107 0.0269 6.9 × 10−3 1 4.5120 × 106 

offers a remarkable decrease of of CN, the criterions of sparsity and memory in kernel matrix compared to 
the CSRK and GSRK schemes. 

To illustrate the applicability of our method for other prior distributions on the more complexed do-
main with holes, Table 12 gives us the prior-MLE estimation for hyperparameter based on the possible 
choice of Gamma priors. A similar empirical analysis has been performed for the Gamma prior distribu-( )
tion, and we show that the best prior distribution is Gamma 3260, 1 × 10−3 . In Table 13 we compare( )
Gamma 3260, 1 × 10−3 prior-CSRK method with the CSRK and GSRK methods studied in Table 9. 

Table 12: Influence of Gamma priors for ϵ, CN, MAE, RMSE, sparsity and memory (in bytes) on the non-convex domain in 
Example 2 

Gamma prior ϵ CN MAE RMSE Sparsity Memory 

Gamma 5350, 1 × 10−3 4.5527 1.9464 × 102 0.0772 1.6 × 10−2 0.0437 4.0081 × 105 

Gamma 4140, 1 × 10−3 3.2191 9.6888 × 102 0.0513 1.2 × 10−2 0.0792 7.2062 × 105 

Gamma 3260, 1 × 10−3 2.2572 5.2306 × 103 0.0323 9.6 × 10−3 0.1472 1.3348 × 106 

Gamma 2470, 1 × 10−3 1.4567 4.4792 × 104 0.0327 9.0 × 10−3 0.3024 2.7352 × 106 ( )
Gamma 1660, 1 × 10−3 0.9153 3.8425 × 105 0.0322 8.8 × 10−3 0.6010 4.1520 × 106 

Analyzing these experiments, we can thus observe a behavior – in terms of ϵ, CN, MAE, RMSE, memory( )
and sparsity – similar to that exhibited for N 2.7, 1 × 10−3 prior-CSRK method and already beforehand 
remarked. In Figure 12 we show the sparsity structure of the kernel matrix in GPR model based on( ) ( )
N 2.7, 1 × 10−3 prior-CSRK in comparison with Gamma 3260, 1 × 10−3 prior-CSRK. It is evident from 
graphs that the kernel matrix is very sparse. ( )
We present an extensive and detailed analysis on N 2.7, 1 × 10−3 prior-CSRK method is used to obtain 
predictive mean, predictive standard deviation, confidence interval, noise-free value and absolute error for 
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( )
Table 13: Comparison of ϵ, CN, MAE, RMSE, sparsity and memory (in bytes) between Gamma 3260, 1 × 10−3 prior-CSRK, 
CSRK and GSRK methods on the non-convex domain in Example 2 

Method ϵ CN MAE RMSE Sparsity Memory 

Prior-CSRK 2.2572 5.2306 × 103 0.0323 9.6 × 10−3 0.1472 1.3348 × 106 

CSRK 0.5758 2.2045 × 106 0.0288 8.3 × 10−3 0.9455 4.5120 × 106 

GSRK 3.4323 1.8617 × 107 0.0269 6.9 × 10−3 1 4.5120 × 106 

( ) ( )
Figure 12: Comparison of sparsity structure between N 2.7, 1 × 10−3 (left) and Gamma 3260, 1 × 10−3 (right) prior-CSRK 
methods on the non-convex domain in Example 2 

( )
some points in Table 14. Also, we present an extensive and detailed analysis on Gamma 3260, 1 × 10−3 

prior-CSRK in Table 15. 
Figures 13 (a) and 13 (b) show lower bounds and upper bounds for prediction of 780 test data, by using( )
N 2.7, 1 × 10−3 prior. In addition, Figures 14 (a) and 14 (b) show lower bounds and upper bounds for( )
prediction of 780 test data, by using Gamma 3260, 1 × 10−3 prior. Figure 15 show the predictive means( )
and standard deviation for 780 test data by using N 2.7, 1 × 10−3 prior. Also, Figure 16 show the predictive ( )
means and standard deviation for 780 test data by using Gamma 3260, 1 × 10−3 prior. Figure 17 show 
absolute errors for prediction of 780 test data, by using these priors. 

( )
Table 14: The detailed analysis of N 2.7, 1 × 10−3 prior-CSRK on the non-convex domain in Example 2 

∗ x Mean Standard deviation Confidence interval Noise-free value Absolute error 

(−0.6384, −0.5274) 0.5057 0.0747 (0.3592, 0.6522) 0.5048 9 × 10−4 

(−0.5253, −0.7763) −0.3170 0.0310 (−0.3779, −0.2562) −0.3186 1.5 × 10−3 

(−0.4737, −0.9357) −0.8423 0.0272 (−0.8956, −0.7890) −0.8424 1 × 10−4 

(−0.3789, 0.6947) −0.4026 0.0821 (−0.5634, −0.2417) −0.4017 9 × 10−4 

(−0.2526, 0.3158) 0.9221 0.0623 (0.8001, 1.0442) 0.9223 2 × 10−4 

(−0.1895, −0.4421) −0.6767 0.0712 (−0.8162, −0.5372) −0.6773 6 × 10−4 

(0.0632, −0.3158) −0.0154 0.0931 (−0.1979, 0.1670) −0.0165 1.1 × 10−3 

(0.1895, −0.7579) −0.9071 0.1077 (−1.1183, −0.6960) −0.9090 1.9 × 10−3 

(0.2526, 0.3789) −0.6757 0.0549 (−0.7832, −0.5681) −0.6773 1.6 × 10−3 

(0.5053, 0.2526) 0.0510 0.0651 (−0.0766, 0.1785) 0.0496 1.4 × 10−3 

(0.6947, 0.3789) 0.8967 0.0872 (0.7258, 1.0675) 0.8947 1.9 × 10−3 

(0.7842, −0.2529) −0.9815 0.0701 (−1.1190, −0.8440) −0.9808 7 × 10−4 
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x 

( )
Table 15: The detailed analysis of Gamma 3260, 1 × 10−3 prior-CSRK on the non-convex domain in Example 2 

∗ Mean Standard deviation Confidence interval Noise-free value Absolute error 

(−0.6384, −0.5274) 0.5048 0.0775 (0.3530, 0.6566) 0.5048 0 
(−0.5253, −0.7763) −0.3198 0.0327 (−0.3838, −0.2557) −0.3186 1.2 × 10−3 

(−0.4737, −0.9357) −0.8439 0.0248 (−0.8925, −0.7952) −0.8424 1.4 × 10−3 

(−0.3789, 0.6947) −0.4035 0.0858 (−0.5716, −0.2354) −0.4017 1.8 × 10−3 

(−0.2526, 0.3158) 0.9231 0.0559 (0.8136, 1.0326) 0.9223 8 × 10−4 

(−0.1895, −0.4421) −0.6792 0.0714 (−0.8191, −0.5393) −0.6773 1.9 × 10−3 

(0.0632, −0.3158) −0.0177 0.0932 (−0.2003, 0.1649) −0.0165 1.1 × 10−3 

(0.1895, −0.7579) −0.9109 0.1007 (−1.1083, −0.7136) −0.9090 1.9 × 10−3 

(0.2526, 0.3789) −0.6759 0.0547 (−0.7830, −0.5688) −0.6773 1.4 × 10−3 

(0.5053, 0.2526) 0.0481 0.0643 (−0.0778, 0.1741) 0.0496 1.5 × 10−3 

(0.6947, 0.3789) 0.8936 0.0799 (0.7370, 1.0501) 0.8947 1.2 × 10−3 

(0.7842, −0.2529) −0.9801 0.0697 (−1.1166, −0.8435) −0.9808 7 × 10−4 
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Figure 13: The lower bounds (a) and upper bounds (b) by using N 2.7, 1 × 10−3 prior on the non-convex domain for prediction 
of test data in Example 2 
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Figure 14: The lower bounds (a) and upper bounds (b) by using Gamma 3260, 1 × 10−3 prior on the non-convex domain for 
prediction of test data in Example 2 
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Figure 15: The predictive means (left) and standard deviation (right) for test data on the non-convex domain in Example 2( )
by using N 2.7, 1 × 10−3 prior 
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Figure 16: The predictive means (left) and standard deviation (right) for test data on the non-convex domain in Example 2( )
by using Gamma 3260, 1 × 10−3 prior 
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Figure 17: The absolute errors of N 2.7, 1 × 10−3 prior (left) and Gamma 3260, 1 × 10−3 prior (right) for prediction of test 
data on the non-convex domain in Example 2 
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Based on numerical results in Examples 1 and 2, by selecting a suitable prior on the kernel hyperparame-
ters, and simply estimating the hyperparameters using a modified version of the MLE, during GPR training, 
in addition to providing the desired accuracy, an appropriate quantity of sparsity will also be obtained. This 
modified version of the MLE will be proportional to the product of MLE and a given prior distribution for 
the hyperparameters. Here, the MLE ensures that the obtained model has a maximum agreement with the 
training data, and the suitable prior distribution guarantees the achievement of a sparse covariance matrix. 

7. Application 

To emphasize the importance of this work, we provide real dataset to illustrate how our method could 
be applied in practice. Therefore, we will fit a GP and compare our presented method (Prior-CSRK) with 
GPR-based GSRK and CSRK methods. 

CO2 data 

We will use a modelling problem concerning the concentration of CO2 in the atmosphere to illustrate 
how prior distribution affect the estimates of the hyperparameters and the accuracy of GPR models such 
that kernel matrix is more sparse and well-conditioned. The data consists of weekly average atmospheric 
CO2 concentrations (in parts per million by volume (ppmv)) derived from in situ air samples collected at the 
Mauna Loa Observatory, Hawaii, from 2010 until 2020 (https : //gml.noaa.gov/ccgg/trends/data.html). 
Our goal is the model the CO2 concentration as a function of time (calendar year). The data set is split into 
the training data set (2/3 samples) and the testing data set (1/3 samples). In Table 16 we present analysis 
on the CSRK and GSRK methods. More precisely, Table 16 gives the optimal computed ϵ with MLE, the 
CN of the kernel matrix, sparsity and memory requirement for kernel matrix. 

Table 16: Comparison of ϵ, CN, sparsity and memory (in bytes) between CSRK and GSRK methods for CO2 data 

CSRK GSRK 

ϵ CN Sparsity Memory ϵ CN Sparsity Memory 

0.1195 9.5397 × 104 0.9316 1.2418 × 106 1.4777 1.9488 × 105 1 1.2418 × 106 

Also, in Figure 18, we show the sparsity structure of the kernel matrix in GPR model based on CSRK 
and GSRK schemes. These results point out essentially that CSRK method is a little more sparser and a 

Figure 18: Comparison of sparsity structure between CSRK(left) and GSRK (right) methods for CO2 data 

little more well-conditioned than GSRK method. As a result, it is computationally very expensive to apply 
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GSRK method to GPR problems. Also, when using kernels with compact support (without priors on the 
hyperparameters), during GPR training, the main focus will be on providing a high level of accuracy. In this 
case, the advantage of achieving a sparse covariance matrix for CSRKs will almost disappear, as we can see in 
Figure 18. To overcome this difficulty, we use prior-MLE method which will be proportional to the product of 
MLE and a given prior distribution for the hyperparameters as can be seen in (3). It is therefore interesting 
to know how prior distributions affect the performance of GPR. A similar empirical analysis has been 
performed for prior distribution of previous example, the optimal balanced between accuracy, sparsity and( ) ( )
conditioning obtained when prior distributions are N 2.6, 1.1 × 10−2 and Gamma 1.85 × 102 , 3 × 10−2 . 
Also, the accuracy of the prior-CSRK method compared with the CSRK and GSRK methods is almost 
same, we will thus report the numerical results regardless of them. In Table 17 we present analysis on( )
the N 2.6, 1.1 × 10−2 prior-CSRK method, which is also compared with the CSRK and GSRK methods 
studied in Table 16. More precisely, Table 17 gives the optimal ϵ, the CN of the kernel matrix, sparsity and 
memory for each methods, separately. 

( )
Table 17: Comparison of ϵ, CN, MAE, RMSE, sparsity and memory (in bytes) between N 2.6, 1.1 × 10−2 prior-CSRK, CSRK 
and GSRK methods for CO2 data 

Method ϵ CN Sparsity Memory 

Prior-CSRK 1.0976 7.1093 × 103 0.1535 3.8444 × 105 

CSRK 0.1195 19.5397 × 104 0.9316 1.2418 × 106 

GSRK 1.4777 1.9488 × 105 1 1.2418 × 106 

( )
In Table 18 we compare Gamma 1.85 × 102 , 3 × 10−2 prior-CSRK method with the CSRK and GSRK 
methods studied in Table 16. From these studies we can note a quite uniform behavior: accuracy of the 
prior-CSRK versus CSRK and GSRK is almost similar. But, on the other hand, we observe a significant 
reduction of CN, the criteria of sparsity and memory requirement in kernel matrix for the prior-CSRK 
scheme compared to the CSRK and GSRK schemes. 

Also, in Figure 19, we show the sparsity structure of the kernel matrix in GPR model based on( ) ( )
N 2.6, 1.1 × 10−2 and Gamma 1.85 × 102 , 3 × 10−2 prior-CSRK schemes. It is evident from graphs that 
kernel matrix is very sparse. 

( )
Table 18: Comparison of ϵ, CN, sparsity and memory (in bytes) between Gamma 1.85 × 102 , 3 × 10−2 prior-CSRK, CSRK 
and GSRK methods for CO2 data 

Method ϵ CN Sparsity Memory 

Prior-CSRK 1.0888 7.2024 × 103 0.1539 3.8549 × 105 

CSRK 0.1195 19.5397 × 104 0.9316 1.2418 × 106 

GSRK 1.4777 1.9488 × 105 1 1.2418 × 106 

In conclusion, we have seen an example of how prior distribution may affect the performance of GPR 
models by using CSRK schemes, and that the ability to estimate hyperparameters by the real data is useful 
in practice. Accordingly, the final sparse kernel matrix by CSRKs can be efficiently derived from the modified 
version of MLE, and available data. 
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( ) ( )
Figure 19: Comparison of sparsity structure between N 2.6, 1.1 × 10−2 (left) and Gamma 1.85 × 102 , 3 × 10−2 (right) 
prior-CSRK methods for CO2 data 

8. Conclusion 

In this paper, we illustrated that the GPR learned from the data and selected CSRKs can produce 
sparse kernel matrix which is considerably more efficient than the GP model constructed using GSRKs. 
The proposed method in this paper deals directly with the kernel matrix itself which is more convenient 
to implement in practice and turns out to be well-conditioned. If we use the CSRKs in GPR then the 
main difference to the global support structure is that now the kernel matrix can be made sparse by scaling 
the support of the CSRK appropriately. In practice, the interest in CSRKs waned slightly as it became 
evident that, to obtain good accuracy, the size of the support is increased such that the overlap distance 
should cover most nodes in the point set. Hence, when using CSRKs, during GPR training, the main focus 
will be on providing a high level of accuracy. In this case, the advantage of achieving a sparse covariance 
matrix for CSRKs will almost disappear, as we will see in the numerical results. Accordingly, by selecting a 
suitable prior on the kernel hyperparameters, and simply estimating the hyperparameters using a modified 
version of the MLE, during GPR training, in addition to providing the desired accuracy, an appropriate 
quantity of sparsity will also be obtained. Therefore, we use prior-MLE method which will be proportional 
to the product of MLE and a given prior distribution for the hyperparameters as can be seen in (3). Here, 
the MLE ensures that the obtained model has a maximum agreement with the training data, and the 
suitable prior distribution guarantees the achievement of a sparse covariance matrix. We show that the 
modified version of MLE would have a great impact on the sparse representation of the GP models and its 
performance. Then, we provided the first empirical study of the impact of the prior distributions on the 
hyperparameter estimation and the performance of GPR-based CSRKs, for some commonly used kernels in 
GPR modeling through several examples on the irregular domains. We finally investigate the effect of prior 
on the predictability of GPR models based on the real dataset. The derived results suggest the proposed 
method leads to more sparsity and well-conditioned kernel matrices in all cases. 
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