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Abstract: A geometrical method for assessing stochastic processes in plasma turbulence is investi-
gated in this study. The thermodynamic length methodology allows using a Riemannian metric on 
the phase space; thus, distances between thermodynamic states can be computed. It constitutes a 
geometric methodology to understand stochastic processes involved in, e.g., order–disorder tran-
sitions, where a sudden increase in distance is expected. We consider gyrokinetic simulations of 
ion-temperature-gradient (ITG)-mode-driven turbulence in the core region of the stellarator W7-X 
with realistic quasi-isodynamic topologies. In gyrokinetic plasma turbulence simulations, avalanches, 
e.g., of heat and particles, are often found, and in this work, a novel method for detection is inves-
tigated. This new method combines the singular spectrum analysis algorithm with a hierarchical 
clustering method such that the time series is decomposed into two parts: useful physical information 
and noise. The informative component of the time series is used for the calculation of the Hurst 
exponent, the information length, and the dynamic time. Based on these measures, the physical 
properties of the time series are revealed. 
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Experimental investigations of heat and particle transport in magnetically confned 
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levels in the core stellarator plasma. Furthermore, outside of the bulk plasma, large-scale 
events termed blobs and avaloids may be generated that have a signifcant impact on the 
overall transport [2–11]. Moreover, there exist modes that connect the bulk and edge plasma 
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modes (ELM), may also have a harmful impact on the frst wall [9]. The understanding and 
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characterization of these structures has been elusive due to their intermittent nature and
distributed under the terms and 
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among the most promising tools for the study of micro-scale turbulence and its interaction 
with large-scale modes, such as the mitigating effects of zonal fows and the detrimental 
effects of streamers and avalanches. Here, we numerically evaluate the generated quasi-
stationary time series of the surface-averaged heat fux from the gyrokinetic simulations 
of ITG-mode-dominated plasma with adiabatic electrons [1] performed by the GENE 
code [12]. These simulations are carried out in order to model turbulence in the core of the 
stellarator W7-X at different locations and with varying temperature and density gradients 
using a realistic and optimized quasi-isodynamic topology [13]. 

The analysis of the results is performed by means of singular spectrum analysis (SSA) 
and information length estimation. The SSA methodology [14] is a well-known mathematical 
method for analyzing the different components of time traces, where deterministic components 
are filtered out. In weakly stochastic systems, oscillatory components, such as normal modes, 
that are typically superposed on the turbulent signal may conceal interesting turbulent 
dynamics and have to be removed before analysis. The SSA method has rendered acclaim 
in widely different areas, such as geology [15], economics [16], and medicine [17]; however, 
a couple of interesting instances in plasma physics are to be found [18,19]. In Ref. [19], an 
analysis using SSA that proved valuable for the detection of intermittent events, such as blobs, 
in experimental signals or code simulations was presented. Understanding and characterizing 
the effects of large-scale structures is, e.g., possible by employing a probabilistic approach 
where the probability density function (PDF) is computed. Although there is a relatively 
small likelihood of these intermittent events, they may be spatially extended and have a large 
amplitude; thus, the total mediated transport may be significant. In terms of the PDFs, these 
events dominate and elevate the tails of the distribution function. Assessing for temporal 
changes in the system-state PDF is one option for characterizing intermittent events. Imposing 
a metric for the thermodynamic length allows one to measure the distance that a system 
travels between thermodynamic equilibrium states, as described by a PDF [20–28]. This is 
a novel methodology to measure distance in statistical space. When a PDF continuously 
changes with time, the information length measures the total number of different statistical 
states that a system passes through in time [26–28]. 

The work performed in this paper extends the previously described situation by 
combining an analysis using the SSA methodology and the possible identifcation of events 
in the time traces, the information length L, with a discussion on the statistical properties 
of the time traces, such as variability and persistence. 

This paper is organized as follows. The gyrokinetic model and setup of the stellarator 
simulations are discussed in Section 2, and the statistical analysis and its interpretation are 
explained in Sections 3 and 4, respectively. The paper is concluded with a discussion in 
Section 5. 

2. GK Model and Simulation Set-Up 

In this section, the GENE gyrokinetic code used to obtain the time series data is briefy 
described, and the physical parameter setup in the simulations are presented. Turbulence 
produced by plasma micro-instabilities is considered the main reason for the anomalous 
transport observed in fusion devices. Small-scale plasma turbulence, meaning fuctuations 
of physical observables that present spatial scales in the order of the Larmor radius and 
frequencies signifcantly smaller compared to the cyclotron frequency (gyro-frequency), is 
studied by gyrokinetic theory [29]. Many numerical codes have been created to simulate 
gyrokinetic turbulence in fusion machines. In this work, we used the GENE (gyrokinetic 
electromagnetic numerical experiment), which is a Eulerian δ f code developed by the Gene 
Development Team and is publicly available [30]. A detailed description of the equations 
solved by the code, as well as their numerical implementation and the produced output of 
the code, can be found in Refs. [12,31–35]. 

We performed gyrokinetic, nonlinear, and fux tube (local) simulations of ITG-mode-
driven turbulence using the realistic magnetic geometry of the W7-X stellarator. Our 
specifc aim was the modelling and statistical analysis of turbulent heat fuxes in a realistic 
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confguration of quasi-isodynamicity. The stellarator’s magnetic geometry that was used 
in these simulations was created with the use of the VMEC code, which calculated the 
confguration of the MHD equilibrium. The latter served as input for the GIST code, 
which calculated the various geometric and physical quantities needed for the gyrokinetic 
equations while transforming them in the coordinate system that GENE uses; see, e.g., [36]. 
We performed non-linear fux tube simulations at two different radial positions. The GIST 
code used the toroidal fux as a fux surface label, which was normalized to be in the range 
between zero and unity. Thus, s is defned as 

Φ 
s = with s ∈ [0, 1] (1)

Φedge 

with Φ being the toroidal fux and Φedge being the toroidal fux of the last closed fux surface. 
Simulations were performed with s = 0.5, 0.81. GENE uses a feld-aligned coordinate 
system that takes advantage of the differences in the characteristics of the turbulence 
perpendicular to and along the magnetic feld lines. Assuming that x, y, and z express 
these feld-aligned coordinates, x is considered the radial normalized coordinate, which √ 
is defned as x = ρN = s. Applying the latter in the studied test cases, the values of 
the radial positions of the fux tubes simulated were x0 = 0.7, 0.9, respectively, to the 
mentioned s values. The z coordinate was along the magnetic feld line and parameterized 
it. In this case, z = θ, where θ is the poloidal Boozer angle ranging in both simulated fux 
tubes between z = θ ∈ [−π, π]. The variation of the value of the normalized magnetic 
feld along the z coordinate for both tubes is presented as calculated by the GIST code in 
Figure 1. 

Figure 1. Variation of the value of the normalized magnetic feld B with respect to z coordinate as 
defned for GENE for both fux tubes. 

Finally, y represents the binormal coordinate, which is defned in GENE as 
√ √ 

y = 
s0 
(qθ − ζ) = 

q0 

s0 
α, 

q0 
(2) 

where the index 0 denotes fux functions calculated on the selected surface, which are 
treated as constants. The quantities θ and ζ are the poloidal and toroidal Boozer angles,√
respectively, q0 represents the safety factor value at the radial position x0 = s0 of the fux 
tube, q represents the safety factor function, and α = qθ − ζ represents a magnetic line label. 
In these simulations, both tubes started from the outboard plane with α = 0. 

In the fux tube approximation, a small tube was created along the magnetic feld line. 
The equilibrium temperature, density, and pressure were kept constant for the tube; their 
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parallel dependence was, therefore, neglected, and they were completely determined by 
their value on the feld line and their radial gradient. In the direction perpendicular to the 
magnetic feld line, for the x and y coordinate directions, periodic boundary conditions were 
assumed, where Lx and Ly were the lengths of the simulation domain in the corresponding 
directions creating the tube along the line in the z direction. For both simulated radii, 
two different temperature gradients were examined: a/LT = 1.0, 4.0, with a = 0.512 m 
being the minor radius of the W7-X stellarator. The minor radius was also used as a 
reference length for normalization purposes. All simulations were considered electrostatic, 
meaning that fuctuations of the magnetic feld are not considered. Simulations that were 
extended in time were needed to reach a stationary phase in the evolution of the physical 
observables in the time series. For the numerical grid resolution in the x, y, and z GENE 
magnetic coordinates, we used typical values for the number of grid points for such (local) 
simulations, with nx = 60, ny = 60, and nz = 160. The fux tube of these local simulations 
had a radial length Lx = 137.129 in units of the ions’ Larmor radius ρi, and the minimum 
wave number used in the simulations in the binormal direction y was kymin = 0.05, which 
was used by the code to determine the binormal Ly length of the tube. 

In gyrokinetic theory, the fast gyromotion is averaged out through transformations 
that remove the dependence of the equations from the gyro-angle used for describing the 
cyclotron motion of particles. The latter results in the so-called gyrokinetic Vlasov equation, 
which describes the evolution of the perturbating part of each particle species distribution 
function in a fve-dimensional space with three spatial and two velocity coordinates instead 
of the usual six dimensions. The remaining two coordinates of the velocity space are the 
velocity component parallel to the magnetic feld, uk, and the magnetic moment µ, which is 
related to the component of the velocity perpendicular to the magnetic feld. The number 
of grid points used in discretizing the velocity space for the parallel velocity uk and the 
magnetic moment µ are, respectively, nv = 40 and nw = 20, where the symbols uk, µ, → v, 
and w are used. In the velocity space, the extent of the direction of the parallel velocity 
is lv = 3.0 in the units of the thermal velocity, while the length of the simulation grid in 
the direction of the magnetic moment µ is lw = 9.0 in units of T0ref/Bref, with T0ref being 
the value of the ions’ temperature at equilibrium and Bref being the reference value of 
the magnetic feld strength provided by the GIST magnetic geometry fle. The value of 
the plasma beta is assumed to be close to zero for both tubes. Finally, for the tube at the 
radial position x0 = 0.7, the safety factor is equal to q0 = 1.114, and the magnetic shear is 
ŝ0 = −0.145, while for the tube at the radial position x0 = 0.9, the safety factor is equal to 
q0 = 1.066, and the magnetic shear is ŝ0 = −0.23. Moreover, the density gradient is set to 
a/Ln = 0, 1, and the electrons are considered adiabatic. 

We examined the time series of the ions’ radial heat fux calculated by volume aver-
aging the normalized velocity space moment of the fuctuating part of their distribution 
function F1i(x, u), which can be defned as 

ZZZ 2 
x miuQi(x) = F1i(x, u)v d3u (3)ξ 2 

where miu2 
is the ion kinetic energy and vξ 

x is the contravariant component of the general-2 
ized E × B velocity used for taking the radial projection of the heat fux. Concerning the 
units of the various physical observables, one must take into account that GENE uses the 
gyrokinetic equations in their dimensionless form; thus, its calculated quantities are also 
dimensionless, meaning that normalization is used throughout the code implementation. 
We selected as reference length Lre f the minor radius of the stellarator a, as already men-
tioned. Due to the latter, time was measured in units of a/ci, with ci the ions’ sound speed 
under radial heat fux was measured in gyro-Bohm units; see Figure 2. GENE produces 
time series with a varying time step selected during the simulation for optimized accuracy. 
The statistical tools used demanded data equally spaced in time; thus, the time series was 
interpolated with the use of cubic splines and re-evaluated at equidistant data points in 
time without changing the simulated time interval or the number of data points evaluated. 
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Figure 2. Ion heat fux Qi in gyro-Bohm units QgB for the cases without density gradients. 

3. Statistical Methods 

The output generated by the GENE gyrokinetic code forms a weakly steady-state 
time series with complex features due to the non-linearly interacting plasma modes. The 
structural behavior of the stochastic time series can be analyzed by the singular spectrum 
analysis (SSA) method [37]. Inspired by Ref. [19], where the SSA was used for the statistical 
analysis of intermittent transport events in the tokamak scrape-off layer, the SSA method 
is used here for the analysis of the heat fux (Q) time series provided by the nonlinear 
gyrokinetic code GENE. Compared to the SSA method of Ref. [19], the SSA is implemented 
here in conjunction with a clustering method. In this way, the time series is decomposed 
to its physical components, as will be described later on. In general, the SSA method 
accepts a time series in the form X = (x1, x2, . . . , xN ) as input and yields a decomposition 
of X into identifable subseries components, X = X1 + X2 + . . . + Xm. SSA consists of 
four steps: embedding, decomposition, grouping, and reconstruction. The embedding step 
involves the linear map TSSA : TSSA(X) = X̃ , where X̃ is defined as the trajectory matrix (a 
Hankel matrix where the entries are equal on the anti-diagonals). X̃ is of size L × K, where 
K = N − L + 1 and L is a window length (lag) specified based on the application at hand [37]. 

TThe i-th column of the trajectory matrix is of the form Xi = (xi, xi+1, . . . , xi+L−1) . Next, the 
trajectory matrix X̃ is decomposed into a sum of rank-1 components as X̃ = X̃1 + ... + X̃ d, 
X̃ i = σiUiVT 

i , where Ui and Vi are the L and K dimensional vectors of the unit norm, 
respectively, and σi are non-negative numbers (singular values). The above decomposition� �˜is the singular value decomposition (SVD) of X̃ i, and d = max{j : σj > 0} = rank Xi . 
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A grouping strategy is applied to the rank-1 components of the trajectory matrix X̃. If 
it is assumed that the index set I = {1, ..., d} is partitioned into m disjoint sets I1, . . . Im, 
the grouped matrix decomposition of the trajectory matrix is X̃ = X̃ I1 + . . . + X̃ Im , where 

˜ + . . . + ˜Ik = {i1, ..., ip(k)} ⊂ I and X̃ Ik 
= Xi1,k 

Xip,k 
., k = 1 . . . m. The partition of I into 

m disjoint sets is achieved using hierarchical clustering based on the weighted series � �� � 
distance matrix dw = 1 − ρw, where ρw(i, j) ≡ Xi, Xj / kXik Xj , (X, Y) ≡w ww w� � p
∑l

N 
=1 wlXlYl , wl = card {x(l) ∈ X̃ } , kXk = (X, X) , and Xi and Xj are reconstructed w w 

series obtained from the corresponding trajectory matrices X̃ i and X̃ j. 
Hierarchical clustering (HC) is a clustering method that produces a hierarchy of 

clusters. In this work, agglomerative HC is considered, which is a bottom-up approach in 
the sense that each observation forms its own cluster and observations are then merged 
in an additive manner as we move up the hierarchy. Each observation is one of the 
reconstructed series Xi, i = 1, . . . , d. The distance between observations i, j is given by 
(dw)i,j. In the frst HC step, pairs of observations i, j form a cluster if i = agr mini∗ (dw)i∗ ,j . 
In the second HC step, since clusters have been formed, there must be a defnition of cluster 
distance. This is provided by the linkage clustering method, for which there are many 
choices, including single-linkage, complete-linkage, average-linkage, and Ward-linkage 
clustering. The single-linkage clustering method is used here, where the clusters A and B� � 
are at a distance min (dw)i,j, i ∈ A, j ∈ B . The HC steps continue with upwards clustering 
until the desirable number of clusters, nc, are formed (the HC stopping criterion in this 
work) or until the clusters are too far apart to merge. In Figure 3, the SSA method with 
the HC automatic grouping of the eigenvalues is tested on a signal y = x + sin(2πx) + n 
containing white Gaussian noise n (with a signal-to-noise ratio of SNR = 10 dB), a trend, 
and oscillation. Running the SSA with HC where three clusters of eigenvalues are created 
results in the correct identifcation of the three subseries corresponding to noise, trend, 
and oscillation. 

Finally, in the reconstruction step on each of the trajectory matrices X̃ Ik 
of the grouped 

matrix decomposition X̃ = X̃ I1 + . . . + X̃ Im , a projection operator PH is applied, which is just 
antidiagonal averaging followed by the inverse embedding transform T−1. It is proven [37] 
that the reconstructed series XIk 

is optimal in the sense that it minimizes X̃ Ik 
− T 

� 
XIk 

� 
F, 

where kMkF is the Frobenius norm of the matrix M. From SSA, we obtain a time subseries 
of Xi, where i = 1, . . . , d are the SSA components, and it is possible to calculate their 
dynamic time and information length. The dynamic time τ(t) is a time scale over which 
the probability of Xi changes, on average, at time t (denoted as p(Xi, t)). The probability 
p(Xi, t) is estimated from a subset (window) of Xi samples of length WL produced around 
the time index t. In particular, frst, the samples of Xi are interpolated to equally spaced 
time instances (separated by dt); then, from the samples of each window w of size WL, 
the p(Xi, t) is calculated at the time instant t at the middle of the window’s time interval. 
Then, the window w is moved (running window) by one time sample, and p(Xi, t + dt) 
is calculated at the time instant t + dt, and so on. The calculation of p(Xi, t) is carried 
out based on the histogram of w samples. Usually the histogram-produced p(Xi, t) is 
non-smooth and a smoothing Gaussian kernel is applied. In particular, the probability p is 
approximated by � � 

1 WL y − Ximp̂(y) = ∑ K , (4)
WL · hK hKm=1,im∈w 

where K(x) is a positive function (the kernel) and hK is the bandwidth parameter. A 
Gaussian kernel (standard normal pdf) and an optimum bandwidth h∗ K (for the Gaussian 
kernel) are chosen as [38] � �1/5 2 � � 

h∗ = min σ̂R, iqrˆ R , (5)K 3WL 
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where σ̂R and iqrˆ R are the empirical standard deviation and interquartile deviation, respec-
tively. σ̂R is optimal in the sense that it minimizes the `2 approximation error kp − p̂k2. 

0 2 4 6 8 10
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-1

0

1

y

Original

series of class1 (noise)

0 2 4 6 8 10

x

-1

0

1

y

Original
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0 2 4 6 8 10

x

-1

0

1
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y=x+sin(2  x)+n

Figure 3. Validation of the SSA method by applying it on the time series y, where y = x + sin(2πx) + 
n and n is white Gaussian noise. Obviously, y contains a noise part, a trend part, and an oscillatory 
part. All three components are correctly identifed by the SSA method. 

Then, τi(t) of the Xi subsequence is given by [28] 

Z � �21 ∂p(Xi, t)τi(t)
2 = 1/ dXi . (6)

p(Xi, t) ∂t 

From the dynamic time, the information length, Li(t), can be directly calculated [28]: Z t 1
Li(t) = ds . (7)

0 τi(s) 

In the implementation of Equations (6) and (7), since Xi and t are discrete, the integrals 
and differentiations become summations and differences, respectively. 

Another quantity of interest is the Hurst exponent [39] of X. In general, 0 < H < 1 
but if H = 0.5, the series is considered random (uncorrelated); if H > 0.5, the series has a 
long-term positive autocorrelation, meaning that high (low) values in the series X will have 
a higher probability of being followed by another high (low) value. Conversely, if H < 0.5, 
in the long run, with high probability, high (low) values in X will have a higher probability 
of being followed by another low (high) value. The Hurst exponent is calculated by the 
rescaled range (RS) method as the exponent H such that E[R(n)/S(n)] = CnH for n → ∞, 
where C is a constant, E[x] is the expected mean, S(n) is the standard deviation of the series 
X1, X2, . . . , Xn, and R(n) is the range of the n cumulative deviations from the mean; that is, 
R(n) = max(Z1, Zs, . . . , Zn) − min(Z1, Zs, . . . , Zn), Zj = ∑i

j 
=1(Xi − m), m = (∑n

i=0 Xi)/n. 
Then, H is calculated as the slope of the line that fts the log(R(n)/S(n)) data as a function 
of log(n). 
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4. Results and Discussion 

All data obtained from the GENE code are based on the variation of three parameters: 
the normalized radius of the stellarator s ∈ {0.5, 0.8}, the normalized temperature gradient 
R/LT ∈ {1, 4}, and the normalized density gradient R/Ln ∈ {0, 1}. Note that the threshold 
for instability is non-linearly dependent on both density and temperature gradients such 
that, with a linear increase in the density gradient, the corresponding growth rate changes 
in a non-linear way; see, e.g., Ref. [40]. Using the fuid model, the critical gradient is 
R/LT = 2.7 for R/Ln = 0 and R/LT = 3.0 for R/Ln = 1.0 in the local limit (k|| = 0). This 
indicates that the realizations with R/LT = 1 are just below the stability limit, whereas 
R/LT = 4 is in the unstable regime. In addition, the data have been normalized to zero 
mean and unit variance. In the following table, the Hurst exponent is shown for all 
8 realizations of the parameters s, R/LT , and R/Ln for the complete or full-time series 
including oscillating and noise parts. 

It is noted that cases (0.8, 1, 1), (0.5, 1, 1) are of less importance since the heat fux Q is 
close to zero and not in a quasi-stationary state and is thus diffcult to compare with the 
other cases. Note that although the cases with higher density gradients yielded almost zero 
fux in comparison with the lower density gradient case, this may be indicated from the 
linear dynamics, where the driving is a competition between the density and temperature 
gradients. These almost-zero heat fux cases are neglected in the following analysis. Note 
that the information length in the zero heat fux cases are several orders of magnitude 
larger than the cases discussed here. Furthermore, all cases of interest in Table 1 exhibit 
Hurst exponents larger than 0.5, which is an indication of a positive autocorrelation in the 
time series, as discussed previously. In short, a Hurst exponent of 0.5 indicates that the 
signal is uncorrelated and thus mostly dependent on random events; however, if H > 0.5, 
as is the case here, there is a persistence in the time series such that there is a higher 
probability of having repeated similar values. It is also of interest to discuss the effect 
of oscillatory components. A pure sinusoidal component is an example of deterministic 
dynamics that would have a Hurst exponent H = 1.0 for time lags much smaller than 
the period. The values obtained here, [0.57, 0.70], is in the same range as those found in 
Ref. [41] by the Langmuir probe measurement of turbulent fluctuations in edge plasmas, 
which were estimated to be in the range of 0.62 to 0.72 as measured in a collection of widely 
different devices such as tokamaks, stellarators, and one reverse field pinch (RFP). It is known 
that competing low-frequency, large-scale phenomena have significant impacts on the heat 
flux. These are primarily attributed to mitigating zonal flows and detrimental avalanches, 
which would both lead to increased Hurst exponents. A general observation regarding the 
time traces is that the comparable signal-to-noise ratio is vastly different for the different 
parameters, thus influencing the Hurst exponent. This will be discussed further below. 

Applying the Wiener-–Khinchine theorem, the second-order structure function is the 
Fourier-transformed power spectrum. There is a relationship between the fractality of the 
process and the Hurst exponent, which yields a power spectrum of the form 

S(ω) ∝ ω−β , (8) 

where β = 2H − 1 if the time series is indeed self-similar. This indicates a weak power-law 
scaling, which is in the same range as those indicated in gyrokinetic simulations of ITG 
turbulence in Ref. [42]. 
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Table 1. The Hurst exponent and the β for all 8 realizations of the parameters s, R/LT , and R/Ln of 
the full time series. 

(s, R/LT , R/Ln) H β = 2H − 1 

(0.5, 1, 0) 0.7039 0.4078 

(0.5, 4, 0) 0.5687 0.1374 

(0.5, 1, 1) 0.6937 0.3874 

(0.5, 4, 1) 0.6316 0.2632 

(0.8, 1, 0) 0.6954 0.3908 

(0.8, 4, 0) 0.5851 0.1702 

(0.8, 1, 1) 0.5993 0.1986 

(0.8, 4, 1) 0.5859 0.1718 

In Figure 4, the information length (L), computed using Equation (7), is shown for 
different values of the parameters (s, R/LT , R/Ln). For the calculation of L, as described 
previously, a number of subseries samples, WL, of the running window were used. The 
subseries Xi used corresponds to the non-noise part of the series X, as identifed by the HC 

|nn|method. In particular, Xi = ∑ Xj, where the set nn contains the subseries indices j=1,j∈nn 
belonging to the class of noise-free Xj subseries. Initially, these samples were used for the 
calculation of the probability p(Xi, t) at sample time t in the middle of the running window. 
It is observed that the information length is monotonously increasing due to the positive 
defniteness inherent in its defnition. It is thus pertinent to point out that the information 
length describes any change in the system (as defned by a change in the PDF of the system) 
with an increasing function; a system in a steady state would have a constant PDF and thus 
a constant information length (see Equation (7)). It is found, as expected, that the system is 
close to a quasi-steady state with an almost linearly or stepwise linearly increasing information 
length over time. However, in order to compute the PDFs, a finite number of sampling points 
must be used; thus, the accuracy of the PDF is dependent on the time and sampling points to 
estimate the PDF. Moreover, the sampling time cannot be too long since then rapid changes 
in the dynamics will not be captured. Thus, several tests with varying sampling points and 
window length were performed; see Figure 3 for a subset of these tests. 
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Figure 4. Information length (L) as a function of time samples, where running windows of samples 
have been used with different lengths WL (a) for WL = 21, (b) for WL = 101, and (c) for WL = 201. 

In Figure 5, the 1/τ parameter is presented as a function of the time samples for 
different values of the Hurst exponent (H), as given in Table 1 for the corresponding 
parameters (s, R/LT , R/Ln). It is observed that peak values of the 1/τ parameters occur 
at the same time samples where the information length changes abruptly. This is to 
be expected since the information length is the integral of 1/τ, as seen in Equation (7). 
However, only consistent or persistent sampling over the time scale in the value of 1/τ in 
the integration will make signifcant changes in the information length. This persistence in 
the time series is a property that is related to the Hurst exponent. 

When WL increases, a more accurate estimation of p(Xi, t) and consequently of L is 
obtained. However, as WL increases, the sampling length for the PDF results in a decreased 
number of time intervals or instances, t (which is N − WL), where the information length L 
is determined. It is observed in Figure 4 that as WL increases roughly by a factor of 5 from 
Figure 4a,b, the values of L decrease by roughly a factor of 20, while from Figure 4b,c, it can 
be seen that L decreases by a factor of 3 when WL increases by a factor of 2. Considering 
also that as WL increases, more time samples of the time trace are used, L is more accurately 
estimated for increasing values of WL, and convergent results are to be expected for 
WL = 201. Fewer data points for the estimation of the PDF will result in situations where 
higher moments are not well-represented and the integration approximated by summation 
of the PDFs may become questionable. Since the dynamic time is related to the information 
length, it was also calculated for WL = 201. 
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Figure 5. 1/τ as a function of time samples for various values of the Hurst exponent H of Table 1. 

In analyzing the effect of increased density gradients (R/Ln), it is pertinent to remem-
ber that, as mentioned previously, there is a threshold value for turbulence. A change in 
linear stability is indicative of changes in the plasma state, whichis here approximated 
by the PDFs; e.g., in Figure 4c, the information length approaches an almost stepwise 
linear function in the cases of R/Ln = 1. A linear increase in information is found in 
linear and non-linear Fokker–Planck models with linear time evolution. Note that several 
combinations of density and temperature gradients indicate conditions close to marginal 
stability where the dynamical system is expected to rapidly change between different states, 
including the effects of large-scale modes such as zonal fows. Due to this, the infuence 
of the normalized radius and density and temperature gradients on information length 
will not be a linear relationship; however, the triplet (s, R/LT , and R/Ln) will determine 
the path in the phase space and yield a Hurst exponent depending on the persistence or 
randomness of the resulting fuctuations. In particular, it is interesting to observe if there is 
a relationship between the fnal value of the information length according to Equation (7) 
and the triplet, as summarized in Table 2. 

Table 2. Maximum value of information length and Hurst exponent as a function of the parameter 
triplet s, R/LT , and R/Ln. 

Case Number s R/LT R/Ln max(L) H 

1 0.5 1 0 41.3 0.7039 

2 0.5 4 0 18.4 0.5687 

3 0.5 4 1 58.0 0.6316 

4 0.8 1 0 55.8 0.6954 

5 0.8 4 0 43.4 0.5851 

6 0.8 4 1 46.3 0.5859 

It is found that, for s = 0.5, an increased density gradient R/Ln in combination with 
a higher temperature gradient R/LT = 4 yield increased information length. However, 
keeping the density gradient constant (R/Ln = 0) results in decreased information length. 
In the case with s = 0.8, the increased density gradient results in decreased information 
length. Furthermore, it is observed that an increase in s gives an increased information 
length for both temperature gradients, except for the case with R/LT = 4 and R/Ln = 1. 
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One other interesting property of the time trace is the fractality, which seems to have an 
impact, as indicated by the varying Hurst exponent. Arranging the maximum information 
lengths with increasing Hurst exponents indicates that randomness and persistence in 
the time series give smaller values of information length. This could be explained by the 
closeness to marginal stability; the case with a Hurst exponent of 0.70 is close and may 
be impacted by non-linearly generated fows, yielding an increased Hurst exponent and 
a smaller information length. On the other hand, the smallest Hurst exponent is close to 
0.5, indicating more randomness. This case is further from marginal stability, and the time 
trace is thus more prone to randomly generated transport events. 

In Figures 6–11a, it is observed that the case R/LT = 4 seems to mainly consist of 
the oscillatory component, whereas the random part is small compared to the case of 
R/LT = 1. This property seems to hold independently of the s and R/Ln values. It 
has been suggested that the dynamic time can indicate large changes in the plasma state 
since it is the instantaneous distance between two PDFs describing the state. Although 
the information length is monotonously increasing, there exist large fuctuations in the 
dynamic time for all window lengths WL, indicating rapid changes in the plasma state. 
However, to have signifcant changes in the dynamics, a consistent trend is needed, as 
can also be seen in the information length. Thus, by analyzing the information and the 
dynamic time in tandem, a change in dynamics can be indicated. There are a few examples 
visible in the information length for WL = 201 and (s, R/LT , R/Ln) = (0.8, 1, 0) around a 
time step of 700–800. In this case, there is also a consistent minimum in the dynamic time, 
yielding, on average, a larger contribution (see Figure 10) to the information length since 
the dynamic time is inversely proportional to the information length. In Figure 7, there 
is a consistent minimum around time step 1500, which coincides with a rapid change in 
information. Quantifcation of the noise and oscillatory parts of the time trace is needed to 
delve deeper in the dependence of the Hurst exponent and the persistence of the properties 
of the oscillatory and noise parts since it was noted that it seems that the different cases 
have largely varying degrees of stochastic and oscillatory parts that may infuence the 
information length and the Hurst exponent. � �PsignalIn Table 3, the signal-to-noise ratio (dB)is computed as SNR = 10 × log10 Pnoise 

(where Pi denotes the power), or variances of the oscillatory and noise parts of the time 
trace are presented. It is interesting to compare the time traces in Figures 7 and 10 with the 
highest and lowest signal-to-noise ratios with the same gradients. It is observed that in 
Figure 7, the noise is only a very small part of the total time trace, whereas in Figure 10, the 
noise is a signifcant part of the signal. The information length is widely different (18.4 in 
Case 2 and 43.4 in Case 5), whereas the Hurst exponent is very similar (0.5687 in Case 2 
and 0.5851 in Case 5). In comparing the cases with the largest Hurst exponents, such as 
Case 1 (0.7039) and Case 4 (0.6954), where these cases also have the same gradients, the 
signal-to-noise ratio is in the middle range. However, the information length increases from 
Case 1 (41.3) to Case 4 (55.8), which is due to the different position s. Note that in comparing 
Cases 3 and 6, it seems that these are quite similar in the sense that they are identifed 
to have not too different Hurst exponents and information length in the mid range with 
similar signal-to-noise ratios. There are differences, in particular, in the information length, 
which is likely to be due to different conditions in the core and edge. 

This indicates that it is possible to identify time instances where relatively sudden 
changes in the plasma state happen by investigations of the dynamic time and information 
length. However, unless the PDFs are investigated, there is no classifcation of what type of 
event it is. It is merely an indicator that the state is changing rapidly, which might be due 
to the generation of a high-transport event, such as an avalanche. If it is some other type of 
mode, it is not visible in the information length, and it is encoded in the PDF itself. 
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Table 3. The signal-to-noise ratio in dB and the variance of the oscillatory and noise parts. 

Case Number (s, R/LT , R/Ln) SNR (dB) VAR (Oscillatory) VAR (Noise) 

1 (0.5, 1, 0) 6.9 0.64 0.13 

2 (0.5, 4, 0) 20.1 0.92 0.01 

3 (0.5, 4, 1) 8.9 0.76 0.10 

4 (0.8, 1, 0) 13.4 0.81 0.04 

5 (0.8, 4, 0) 3.8 0.52 0.22 

6 (0.8, 4, 1) 9.4 0.78 0.09 
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Figure 6. Case 1: (a) Hierarchical clustering results and (b) dynamic time calculations for WL = 201. 
Here, nc is the maximal number of clusters, as defned in Section 3. 
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Figure 7. Case 2: (a) Hierarchical clustering results and (b) dynamic time calculations for WL = 201. 
Here, nc is the maximal number of clusters, as defned in Section 3. 
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Figure 8. Case 3: (a) Hierarchical clustering results and (b) dynamic time calculation for WL = 201. 
Here, nc is the maximal number of clusters, as defned in Section 3. 
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Figure 9. Case 4: (a) Hierarchical clustering results and (b) dynamic time calculations for WL = 201. 
Here, nc is the maximal number of clusters, as defned in Section 3. 
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Figure 10. Case 5: (a) Hierarchical clustering results and (b) dynamic time calculations for WL = 201. 
Here, nc is the maximal number of clusters, as defned in Section 3. 
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Figure 11. Case 6: (a) Hierarchical clustering results and (b) dynamic time calculations for WL = 201. 
Here, nc is the maximal number of clusters, as defned in Section 3. 

5. Discussion 

In this work, time series generated by gyro-kinetic (GENE) simulations were investigated 
using the information geometric paradigm. The aim of this investigation was to quantify if 
changes in turbulent states could be identified by changes in information. As a testbed for 
the statistical analysis, we performed gyrokinetic simulations of ITG-mode-driven turbulence 
at two different magnetic flux radii, s = 0.5 and s = 0.8, with adiabatic electrons, which 
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were relevant for the experimental conditions of the W7-X stellarator. The modeling and 
statistical analysis of turbulent heat fluxes in realistic configurations of different degrees of 
quasi-isodynamicity were the specific aims of the current paper. In order to create a reasonable 
test bed for the analysis, variations in density and temperature gradients were included 
in the test cases; however, only electrostatic perturbations were considered. The statistical 
analysis required long time series, where the statistics in the quasi-stationary state of the 
physical observables in the time series were of interest. These long time series (in terms of 
many turn-over times of the turbulence) were needed to capture the higher moments of the 
probability distributions (PDFs). 

In this paper, we investigated the time series data from these simulations using the 
Hurst exponent, cluster analysis, and the information length approach. The Hurst exponent 
provided information on the long-term memory of the time series and was calculated by 
the RS method. The time series were further analyzed by the SSA method. In particular, the 
series were decomposed into subseries corresponding to the eigenvalues of the trajectory 
matrix, as described in the SSA. These eigenvalues were classifed by the hierarchical 
clustering algorithm, which was built upon an appropriate weighted distance measure 
of the corresponding subseries. The eigenvalues were classifed into three groups: noise, 
trends, and oscillatory parts. The part of the time series where noise was subtracted was 
then used to calculate the dynamic time and the information length. 

A summary of the most important findings in this paper is presented in the following list. 

1. The instantaneous change in information length is stored in the dynamic time, in-
dicating that this could be a measure of instantaneous change in the plasma state. 
However, the dynamic time exhibits rapid fuctuations, and to have a consistent 
change in dynamics, a signifcant change in the information over a short interval is 
needed due to the effects of inertia on the dynamics. 

2. We fnd several distinct changes in state, from a quiescent state to a state with in-
creased transport where large-scale transport events occur and are caused by the 
plasma turbulence in W7-X. In particular, the Hurst exponent (H) is consistently 
above H > 0.5, suggesting that in this case, larger transport events can indeed oc-
cur. This methodology provides another tool in fnding coherent transport events 
mediating large fuxes. 

3. By analyzing the information and the dynamic time in tandem, a change in dynamics 
can be indicated. Here, it is pertinent to remember that due to inertial effects, to have a 
signifcant change in the dynamics, a consistent change in the dynamic time is needed, 
as is then indicated in a rapid increase in information. It is only by the analysis of the 
original time trace that the properties of persistence can be elucidated, e.g., observing 
the fuctuations and oscillatory parts. 

This study paves the way for further work on analyzing different types of plasma and 
investigating the possible usefulness of the information regarding the change of plasma 
state. However, it would be even more interesting to see if there are trends or possibilities 
in predicting changes in the dynamic time from a previous knowledge of the system, such 
as by statistical or specifc types of machine learning techniques. Then, sudden changes 
in dynamics could be predicted by looking at series of PDFs describing the system. In 
particular, to validate the methodology, analyzing other time series data from simulation or 
experiments is necessary. 

Author Contributions: Conceptualization, J.A.; methodology, J.A. and E.-j.K.; software, A.D.P. and 
M.M.; validation, A.D.P.; formal analysis, A.D.P.; investigation, A.D.P.; resources, H.I.; writing— 
original draft preparation, J.A. and A.D.P.; writing—review and editing, J.A. and E.-j.K.; visualization, 
A.D.P.; project administration, H.I.; funding acquisition, H.I. All authors have read and agreed to the 
published version of the manuscript. 

Funding: This work was carried out within the framework of the EUROfusion Consortium and 
received funding from the Euratom research and training programme 2014–2018 and 2019–2020 



Entropy 2023, 25, 942 20 of 21 

under grant agreement No. 633053. The views and opinions expressed herein do not necessarily 
refect those of the European Commission. 

Institutional Review Board Statement: Not applicable. 

Data Availability Statement: The data that support the fndings of this study are available from the 
corresponding author upon reasonable request. 

Acknowledgments: For the computational resources needed for the simulations, we gratefully 
acknowledge PRACE for awarding us access to the Dutch national supercomputer Cartesius part of 
the SURFsara systems. 

Conficts of Interest: The funders had no role in the design of the study; in the collection, analyses, 
or interpretation of data; in the writing of the manuscript; or in the decision to publish the results. 

References 
1. Horton, W. Drift waves and transport. Rev. Mod. Phys. 1999, 71, 735. [CrossRef] 
2. Horton, W.; Ichikawa, Y.-H. Chaos and Structures in Nonlinear Plasmas; Sections 6.1 & 6.2; World Scientifc: Singapore, 1996; p. 221. 
3. Zweben, S.S.; Boedo, J.A.; Grulke, O.; Hidalgo, C.; LaBombard, B.; Maqueda, R.J.; Scarin, P.; Terry, J.L. Edge turbulence 

measurements in toroidal fusion devices. Plasma Phys. Contr. Fusion 2007, 49, S1. [CrossRef] 
4. Politzer, P.A. Observation of Avalanchelike Phenomena in a Magnetically Confned Plasma. Phys. Rev. Lett. 2000, 84, 1192. 

[CrossRef] [PubMed] 
5. Beyer, P.; Benkadda, S.; Garbet, X.; Diamond, P.H. Nondiffusive Transport in Tokamaks: Three-Dimensional Structure of Bursts 

and the Role of Zonal Flows. Phys. Rev. Lett. 2000, 85, 4892. [CrossRef] [PubMed] 
6. Drake, J.F.; Guzdar, P.N.; Hassam, A.B. Streamer Formation in Plasma with a Temperature Gradient. Phys. Rev. Lett. 1988, 61, 2205. 

[CrossRef] [PubMed] 
7. Antar, G.Y.; Krasheninnikov, S.I.; Devynck, P.; Doerner, R.P.; Hollman, E.M.; Boedo, J.A.; Luckhardt, S.C.; Conn, R.W. Experimental 

Evidence of Intermittent Convection in the Edge of Magnetic Confnement Devices. Phys. Rev. Lett. 2001, 87, 065001. [CrossRef] 
[PubMed] 

8. Carreras, B.A.; Hidalgo, C.; Sanchez, E.; Pedrosa, M.A.; Balbin, R.; Garcia-Cortes, I.; van Milligen, B.; Newman, D.E.; Lynch, V.E. 
Fluctuation-induced fux at the plasma edge in toroidal devices. Phys. Plasmas 1996, 3, 2664. [CrossRef] 

9. Lang, Y.; Guo, Z.B.; Wang, X.G.; Li, B. Avalanches triggered by Kelvin-Helmholtz instability in a cylindrical plasma device. Phys. 
Rev. E 2019, 100, 033212. [CrossRef] 

10. Anderson, J.; Xanthopoulos, P. Signature of a universal statistical description for drift-wave plasma turbulence. Phys. Plasmas 
2010, 17, 110702. [CrossRef] 

11. Kim, E.; Anderson, J. Structure based statistical theory of intermittency. Phys. Plasmas 2008, 15, 114506. [CrossRef] 
12. Jenko, F.; Dorland, W.; Kotschenreuther, M.; Rogers, B.N. Electron temperature gradient driven turbulence. Phys. Plasmas 2000, 

7, 1904. [CrossRef] 
13. Nührenberg, J. Development of quasi-isodynamic stellarators. Plasma Phys. Control. Fusion 2010, 52, 124003. [CrossRef] 
14. Broomhead, D.S.; King, G. Extracting qualitative dynamics from experimental data. Phys. D 1986, 20, 217–236. [CrossRef] 
15. Ghil, M.; Allen, M.R.; Dettinger, M.D.; Ide, K.; Kondrashov, D.; Mann, M.E.; Robertson, A.W.; Saunders, A.; Tian, Y.; Varadi, F.; 

et al. Advanced Spectral Methods for Climatic Time Series. Rev. Geophys. 2002, 40, 1–41. [CrossRef] 
16. Hassani, H.; Zhigljavsky, A. Singular spectrum analysis: Methodology and application to economics data. J. Syst. Sci. Complex. 

2009, 22, 372–394. [CrossRef] 
17. Ghodsi, M.; Hassani, H.; Sanei, S.; Hick, Y. The use of noise information for detection of temporomandibular disorder. Biomed. 

Signal Process. 2009, 4, 79–85. 
18. Marrelli, L.; Bilato, R.; Franz, P.; Martin, P.; Murari, A.; Gorman, M.O. Singular spectrum analysis as a tool for plasma fuctuations 

analysis. Rev. Sci. Instrum. 2001, 72, 499. [CrossRef] 
19. Anderson, J.; Halpern, F.D.; Xanthopoulos, P.; Ricci, P.; Furno, I. Statistical analysis and modeling of intermittent transport events 

in the tokamak scrape-off layer. Phys. Plasmas 2014, 21, 122306. [CrossRef] 
20. Weinhold, F. Metric geometry of equilibrium thermodynamics. Z. Phys. Chem. 1975, 63, 2479. [CrossRef] 
21. Rupeiner, G. Thermodynamics: A Riemannian geometric model. Phys. Rev. Lett. 1979, 20, 1608. [CrossRef] 
22. Schlögl, F. Thermodynamic metric and stochastic measures. Z. Phys. B 1985, 59, 449. [CrossRef] 
23. Diósi, L.; Kulacsy, K.; Lukács, B.; Rácz, A. Thermodynamic length, time, speed, and optimum path to minimize entropy 

production. Z. Phys. Chem. 1996, 105, 11220. [CrossRef] 
24. Crooks, G.E. Measuring Thermodynamic Length. Phys. Rev. Lett. 2007, 99, 100602. [CrossRef] 
25. Feng, E.H.; Crooks, G.E. Far-from-Equilibrium Measurements of Thermodynamic Length. Phys. Rev. E 2009, 79, 012104. 

[CrossRef] [PubMed] 
26. Nicholson, S.B.; Kim, E. Investigation of the statistical distance to reach stationary distributions. Phys. Lett. A 2015, 379, 83. 

[CrossRef] 

http://doi.org/10.1103/RevModPhys.71.735
http://dx.doi.org/10.1088/0741-3335/49/7/S01
http://dx.doi.org/10.1103/PhysRevLett.84.1192
http://www.ncbi.nlm.nih.gov/pubmed/11017476
http://dx.doi.org/10.1103/PhysRevLett.85.4892
http://www.ncbi.nlm.nih.gov/pubmed/11102144
http://dx.doi.org/10.1103/PhysRevLett.61.2205
http://www.ncbi.nlm.nih.gov/pubmed/10039015
http://dx.doi.org/10.1103/PhysRevLett.87.065001
http://www.ncbi.nlm.nih.gov/pubmed/11497833
http://dx.doi.org/10.1063/1.871523
http://dx.doi.org/10.1103/PhysRevE.100.033212
http://dx.doi.org/10.1063/1.3505824
http://dx.doi.org/10.1063/1.3033751
http://dx.doi.org/10.1063/1.874014
http://dx.doi.org/10.1088/0741-3335/52/12/124003
http://dx.doi.org/10.1016/0167-2789(86)90031-X
http://dx.doi.org/10.1029/2000RG000092
http://dx.doi.org/10.1007/s11424-009-9171-9
http://dx.doi.org/10.1063/1.1323250
http://dx.doi.org/10.1063/1.4904202
http://dx.doi.org/10.1063/1.431689
http://dx.doi.org/10.1103/PhysRevA.20.1608
http://dx.doi.org/10.1007/BF01328857
http://dx.doi.org/10.1063/1.472897
http://dx.doi.org/10.1103/PhysRevLett.99.100602
http://dx.doi.org/10.1103/PhysRevE.79.012104
http://www.ncbi.nlm.nih.gov/pubmed/19257090
http://dx.doi.org/10.1016/j.physleta.2014.11.003


Entropy 2023, 25, 942 21 of 21 

27. Kim, E. Investigating Information Geometry in Classical and Quantum Systems through Information Length. Entropy 2018, 
20, 574. [CrossRef] 

28. Anderson, J.; Kim, E.; Hnat, B.; Rafq, T. Elucidating plasma dynamics in Hasegawa–Wakatani turbulence by information 
geometry. Phys. Plasmas 2020, 27, 022307. [CrossRef] 

29. Brizard, A.J.; Hahm, T.S. Foundations of nonlinear gyrokinetic theory. Rev. Mod. Phys. 2007, 79, 421. [CrossRef] 
30. The GENE Development Team. The Gyrokinetic Plasma Turbulence Code Gene: User Manual. Available online: http://genecode. 

org/ (accessed on 1 June 2023). 
31. Görler, T.; Lapillonne, X.; Brunner, S.; Dannert, T.; Jenko, F.; Mertz, F.; Told, D. The global version of the gyrokinetic turbulence 

code GENE. J. Comput. Phys. 2011, 230, 7053–7071. [CrossRef] 
32. Görler, T.; Lapillonne, X.; Brunner, S.; Dannert, T.; Jenko, F. Flux- and Gradient-Driven Global Gyrokinetic Simulation of Tokamak 

Turbulence. Phys. Plasmas 2011, 18, 056103. [CrossRef] 
33. Görler, T.; Lapillonne, X.; Brunner, S.; Chowdhury, J.; Dannert, T.; Jenko, F.; McMillan, B.F.; Merz, F.; Told, D. Nonlocal Effects in 

Gyrokinetic Turbulence Simulations Using GENE. J. Phys. Conf. Ser. 2010, 260, 012011. [CrossRef] 
34. Dannert, T.; Jenko, F. Gyrokinetic Simulation of Collisionless Trapped-Electron Mode Turbulence. Phys. Plasmas 2005, 12, 072309. 

[CrossRef] 
35. Merz, F. Gyrokinetic Simulation of Multimode Plasma Turbulence. Ph.D. Thesis, Universität Münster, Münster, Germany, 2008. 
36. Xanthopoulos, P.; Cooper, W.A.; Jenko, F.; Turkin, Y.; Runov, A.; Geiger, J. A geometry interface for gyrokinetic microturbulence 

investigations in toroidal confgurations. Phys. Plasmas 2009, 16, 082303. [CrossRef] 
37. Golyandina, N.; Nekrutkin, V.; Zhigljavsky, A. Time Series Structure SSA and Related Techniques; CRC Press (Chapman & Hall): 

Boca Raton, FL, USA, 2001. 
38. Silverman, B. Density Estimation for Statistics and Data Analysis; Chapman and Hall: London, UK, 1986. 
39. Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770. [CrossRef] 
40. Anderson, J.; Nordman, H.; Weiland, J. Effects of non-circular tokamak geometry on ion-temperature-gradient driven modes. 

Plasma Phys. Contr. Fusion 2000, 42, 545. [CrossRef] 
41. Carreras, B.A.; van Milligen, B.P.; Pedrosa, M.A.; Balbin, R.; Hidalgo, C.; Newman, D.E.; Sanchez, E.; Frances, M.; Garcia-Cortes, 

I.; Bleuel, J.; et al. Self-similarity of the plasma edge fuctuations. Phys. Plasmas 1998, 5, 3632. [CrossRef] 
42. McMillan, B.F.; Jolliet, S.; Tran, T.M.; Villard, L.; Bottino, A.; Angelino, P. Avalanchelike bursts in global gyrokinetic simulations. 

Phys. Plasmas 2009, 16, 022310. [CrossRef] 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual 
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to 
people or property resulting from any ideas, methods, instructions or products referred to in the content. 

http://dx.doi.org/10.3390/e20080574
http://dx.doi.org/10.1063/1.5122865
http://dx.doi.org/10.1103/RevModPhys.79.421
http://genecode.org/
http://genecode.org/
http://dx.doi.org/10.1016/j.jcp.2011.05.034
http://dx.doi.org/10.1063/1.3567484
http://dx.doi.org/10.1088/1742-6596/260/1/012011
http://dx.doi.org/10.1063/1.1947447
http://dx.doi.org/10.1063/1.3187907
http://dx.doi.org/10.1061/TACEAT.0006518
http://dx.doi.org/10.1088/0741-3335/42/5/305
http://dx.doi.org/10.1063/1.873081
http://dx.doi.org/10.1063/1.3079076

	Open Access  (1)
	entropy-25-00942
	Introduction
	GK Model and Simulation Set-Up
	Statistical Methods
	Results and Discussion
	Discussion
	References


