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Abstract—Dynamical, causal, and cross-frequency coupling analysis using the electroencephalogram (EEG) has
gained significant attention for diagnosing and characterizing neurological disorders. Selecting important EEG
channels is crucial for reducing computational complexity in implementing these methods and improving
classification accuracy. In neuroscience, measures of (dis) similarity between EEG channels are often used as
functional connectivity (FC) features, and important channels are selected via feature selection. Developing a
generic measure of (dis) similarity is important for FC analysis and channel selection. In this study, learning of
(dis) similarity information within the EEG is achieved using kernel-based nonlinear manifold learning. The focus
is on FC changes and, thereby, EEG channel selection. Isomap and Gaussian Process Latent Variable Model
(Isomap-GPLVM) are employed for this purpose. The resulting kernel (dis) similarity matrix is used as a novel
measure of linear and nonlinear FC between EEG channels. The analysis of EEG from healthy controls (HC)
and patients with mild to moderate Alzheimer’s disease (AD) are presented as a case study. Classification results
are compared with other commonly used FC measures. Our analysis shows significant differences in FC between
bipolar channels of the occipital region and other regions (i.e. parietal, centro-parietal, and fronto-central) be-
tween AD and HC groups. Furthermore, our results indicate that FC changes between channels along the
fronto-parietal region and the rest of the EEG are important in diagnosing AD. Our results and its relation to func-
tional networks are consistent with those obtained from previous studies using fMRI, resting-state fMRI and EEG.
� 2023 The Author(s). Published by Elsevier Ltd on behalf of IBRO. This is an open access article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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INTRODUCTION

Electroencephalogram (EEG), recorded at the scalp level,

reflects the grossly summed currents of the electrical

fields generated by neural activity, in the cortical neural

circuits. Thus, through EEG, the behaviour and integrity

of the underlying neural circuits can be indirectly studied

(Nunez and Srinivasan, 2006; Rodriguez-Bermudez and

Garcia-Laencina, 2015). Therefore, analysing hidden

structures within EEG data is important and has gained
https://doi.org/10.1016/j.neuroscience.2023.05.033
0306-4522/� 2023 The Author(s). Published by Elsevier Ltd on behalf of IBRO.
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considerable attention (Stam, 2005; Rodriguez-

Bermudez and Garcia-Laencina, 2015).

In-depth dynamical analysis, such as the analysis of

linear and nonlinear dynamic relationships between

EEG channels, causality, and cross-frequency coupling

analysis, has received much interest (Rodriguez-

Bermudez and Garcia-Laencina, 2015; Stam, 2005;

Jensen et al., 2014; He et al., 2014a; He and Yang,

2021; He et al., 2016). However, some of these methods

can often incur high computational complexity. Conse-

quently, in practice, to reduce the computational complex-

ity, improve classification accuracy and gain prior

knowledge on which underlying cortical regions might be

important in AD, the selection of important EEG channels

from high dimensional EEG data is vital (Alotaiby et al.,

2015). Furthermore, to select channels to perform nonlin-

ear dynamical analysis, the channel selection method

should be able to account for nonlinear dependencies
ons.org/licenses/by-nc-nd/4.0/).
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between channels (Rodriguez-Bermudez and Garcia-

Laencina, 2015; Stam, 2005).

Several recent studies have demonstrated the

usefulness of EEG biomarkers in diagnosing and

monitoring the progression of AD (Gallego-Jutglà et al.,

2015; Li et al., 2019; Babiloni et al., 2020; Jiao et al.,

2023). Individuals with MCI and AD typically exhibit de-

creased alpha/beta power and increased theta/delta pow-

er in various brain regions (Horvath et al., 2018).

Abnormal changes in FC measures and entropy have al-

so been observed (Dauwels et al., 2011; Gallego-Jutglà

et al., 2015; Maturana-Candelas et al., 2019; Li et al.,

2019; Babiloni et al., 2020; Klepl et al., 2022). (Jiao

et al., 2023) found specific neural biomarkers associated

with cognitive function in AD patients, including changes

in the power spectrum of low-frequency oscillations in

the occipital area and altered signal complexity in the pari-

etal and occipital regions. They also determined that

spectral density features and entropy were key EEG

biomarkers in differentiating between HC and patients

with AD and mild cognitive impairment.

In neuroscience, FC is used to assess the statistical

dependence between brain regions (EEG channels)

(Babiloni et al., 2016) and is characterised by different

measures of (dis) similarity (Mohanty et al., 2020; Falk

et al., 2012; Deng et al., 2017; Tylová et al., 2018;

Abásolo et al., 2009; Fraga et al., 2013; Al-Qazzaz

et al., 2014; Tzimourta et al., 2019; Dauwels et al.,

2011; Briels et al., 2020)–distance measures, entropy,

and mutual information (Briels et al., 2020; Mohanty

et al., 2020; Dauwels et al., 2010b). Some of these mea-

sures can be used to analyse nonlinear structures present

locally and globally, within the EEG data (Zerzucha and

Walczak, 2012; Dauwels et al., 2010b; Mohanty et al.,

2020; Babiloni et al., 2016; Briels et al., 2020; Dauwels

et al., 2010a) and are often used in many EEG channel

selection approaches (Alotaiby et al., 2015). However, re-

gardless of structural connectivity, brain regions function-

ally connected under one measure do not necessarily

imply the same with another measure, as they could even

be disconnected (Dauwels et al., 2010b; Mohanty et al.,

2020; Briels et al., 2020). Dauwels et al. (Dauwels et al.,

2010b) showed that various (dis) similarity measures

could be correlated to each other, such as in the applica-

tion of early diagnosis of AD. Therefore, these correlated

measures can often be grouped, and a measure from

each group is sufficient to analyse the structures within

the data (Dauwels et al., 2010b). Therefore, developing

a generic measure of (dis) similarity is important for

analysing brain FC and channel selection (Briels et al.,

2020).

Similarity or dissimilarity between two variables (EEG

channels), in general, express the degree to which the

two objects are respectively alike/related or different/

distinct (Laub et al., 2006; Shirkhorshidi et al., 2015).

Local similarities refer to the relatedness or correlation

between nearby data points. This entails that data points

closer together in space, time, or any other relevant

dimension tend to have similar values or characteristics.

Conversely, global dissimilarities refer to a lack of correla-

tion or differences between data points that are far apart
from each other. It is important that FC measures account

for both local similarities and global dissimilarities within

the EEG (Dauwels et al., 2010b; Mohanty et al., 2020;

Briels et al., 2020).

For most EEG channel selection techniques, features

from the channels are first extracted, and important

channels are selected via feature selection. These

feature selection methods can be categorised into the

following three groups (Alotaiby et al., 2015). a) Filtering
methods: Independent evaluation criteria, including FC

measures, are used for channel selection. Depending

on the criteria, these are often only based on single or

pairwise EEG channel(s). Filtering methods are good at

eliminating irrelevant and redundant features. b) Wrapper

methods: Subsets of features are generated based on a

method of choice. Each subset is evaluated using a clas-

sification algorithm to select a subset of channels. These

are based on greedy search algorithms aiming to find the

best possible combination of features. c) Embedded
Methods: These techniques simultaneously perform fea-

ture selection and classification. For example–LASSO-

based feature selection, logistic regression and decision

tree are techniques that come under embedded methods.

Ranking of features can be easily done using embedded

methods.

In this study, learning spatio-temporal linear and

nonlinear (dis) similarities within the data is achieved

using kernel-based nonlinear manifold learning

(dimensionality reduction). The focus is on the

differences in EEG FC between healthy and patient

groups including the selection of important EEG

channels. The motivation behind using a kernel-based

method is, the learnt (dis) similarity information is

reflected in the kernel, as a generic measure of distance

(Schölkopf, 2000) (pairwise comparisons between EEG

channels). In this work, the kernel matrix is evaluated us-

ing Gaussian Process Latent Variable Model (GPLVM)

(Lawrence, 2003). Robust kernel Isomap (Choi and

Choi, 2007) is used as an initialisation method, for

GPLVM (Isomap-GPLVM). This enables the learning of

both local similarities and global dissimilarities within the

EEG data and embedding this information in the

reduced-dimension manifold (latent space) (Lawrence

and Quiñonero Candela, 2006). Furthermore, since

dimensionality reduction is used to reduce the temporal

dimension, temporal structures within the data are taken

into account in the latent space. Considering the above,

the kernel matrix evaluated using Isomap-GPLVM can

be regarded as a more objective (dis) similarity measure

containing information on both linear and nonlinear

spatio-temporal EEG inter-relationships. It is a generalisa-

tion of different functional connectivity measures

(Schölkopf, 2000) and can be a better alternative to using

various (dis) similarity measures (Dauwels et al., 2010b;

Mohanty et al., 2020; Briels et al., 2020). Based on this

novel FC measure, we introduce an EEG channel selec-

tion method to determine which channel inter-

relationships are more important for in-depth neural dy-

namical analysis, such as, understanding the effect of

neurodegeneration on global and local brain dynamics.

This work presents, the analysis of EEG data from a
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cohort of age-matched healthy controls (HC) and patients

with mild to moderate AD as a case study.

Participant-specific kernel matrices are obtained using

Isomap-GPLVM. Linear SVM classification with Monte-

Carlo cross-validation (SVM-MCV) is used to assess,

how well the proposed FC measure can differentiate

between HC and AD groups. FC analysis is presented

for both eyes-open (EO) and eyes-closed (EC)

conditions. Linear SVM-MCV is also used to rank the

selected pairwise features. Therefore, the proposed

channel selection method is a hybrid form (Alotaiby

et al., 2015) of the aforementioned categories of feature

selection methods. Specifically, the proposed approach

is an integration of filtering and embedded methods.

The channel pairs chosen using our approach can be

linked to other EEG studies in the literature considering

connectivity analysis in AD. This study aims to introduce

and demonstrate the efficacy of our method by comparing

it with other commonly used FC measures.

This paper is organised as follows. Specifics about the

EEG data, participants and the pre-processing steps are

provided in Section ‘Data’. Section ‘Experimental

procedures’ discusses the manifold learning

methodology via Isomap-GPLVM and the use of related

kernel-based (dis) similarity matrix for the classification

of EEG data, which are measured from a group of AD

patients and an age-matched healthy control cohort.

This section also presents the linear SVM and Monte-

Carlo cross-validation procedures. Section ‘Results’

presents the results obtained followed by a discussion

of the results in Section ‘Discussion’. Limitations of the

study and possible improvements to the methodology

are discussed along with the concluding remarks in

Section ’Discussion’.
DATA

In this work, we include a total of 20 AD cases and 20 age

and gender-matched healthy controls (HC) (less than

70 years of age), which are selected based on clinical

and radiological diagnostic criteria as described in

(Blackburn et al., 2018). Task-free EEG recordings that

require minimal cooperation of AD patients are used; typ-

ically, this group of patients can have difficulty engaging

with or following cognitive tasks. The details of experi-

mental design, diagnosis confirmation, data acquisition

and EEG electrode configuration are provided in

(Blackburn et al., 2018). All AD participants were in the

mild to moderate stage of the disease at the time of

EEG recordings.

The Sheffield Teaching Hospital memory clinic team,

focusing mainly on young-onset memory disorder,

recruited all AD participants. AD participants were

diagnosed between 1 month and 2 years before data

collection. The diagnosis was made using a series of

psychological tests, medical history, neuro-radiological

examinations and neurological examinations. High

resolution structural magnetic resonance imaging (MRI)

was used to eliminate other causes of dementia in all

participants. The age and gender-matched HC

participants were recruited, whose structural MRI scans
and neuropsychological tests were normal. This study

was approved by the Yorkshire and The Humber (Leeds

West) Research Ethics Committee (reference number

14/YH/1070). All participants gave their informed written

consent.
EEG data

A modified 10–10 overlapping 10–20 international system

of electrode placement method was used to acquire EEG

recordings. All EEG data were recorded using an XLTEK

128-channel headbox with Ag/AgCL electrodes placed on

the scalp at a sampling frequency of 2 kHz. A common

referential montage with linked earlobe reference was

used. During the 30 min of EEG recording, participants

were encouraged not to think about anything specific.

All participants had their eyes-open (EO) for 2 min and

then eyes-closed (EC) for 2 min, in repeat, during the

30-min recording. The EEG data were reviewed by an

experienced neurophysiologist on the XLTEK review

station with time-locked video recordings (Optima

Medical LTD). Subsequently, from the resting-state EEG

recordings, three 12-s artefact-free epochs under EO

and EC conditions were isolated.

From the referential montage, the following 23 bipolar

channels are produced for the analysis: F8–F4, F7–F3,

F4–C4, F3–C3, F4–FZ, FZ–CZ, F3–FZ, T4–C4, T3–C3,

C4–CZ, C3–CZ, CZ–PZ, C4–P4, C3–P3, T4–T6, T3–

T5, P4–PZ, P3–PZ, T6–O2, T5–O1, P4–O2, P3–O1 and

O2–O1. The bipolar channels are obtained by simply

subtracting the two common referenced signals

involved. In summary, three 12-s epochs of EO EEGs

are collected from 20 HC and 20 AD participants and

used in this study.

It should be noted, that a bipolar montage is preferred

in several studies (Falk et al., 2012; Trambaiolli et al.,

2011) due to evidence of inter-hemispheric disconnection

in patients with AD (Jeong, 2004). Furthermore, Nunez

et al. in (Nunez and Srinivasan, 2006) explains in detail

that the EEG bipolar montages, given the bipolar elec-

trode pairs are sufficiently close (1–3 cm), can be effective

in improving the spatial resolution of the EEG due to

better estimation of localised electric fields along the scalp

surface. Bipolar channels estimate the instantaneous

electric field along the scalp surface midway between

the pair of electrodes (Nunez and Srinivasan, 2006). To

avoid confusion, from now on any bipolar channel(s) will

be referred to as EEG channel(s), or just channel(s), un-
less otherwise specified.
Pre-processing tasks

In this study, since the high-dimensional temporal

structures of the multi-channel EEG are examined, the

use of filters would pose a major issue due to the

phase-related distortions induced (Luck, 2014). There-

fore, we first convert the time-series EEG data to the fre-

quency domain using the Fast Fourier Transform (FFT).

Thus, unwanted frequency components can be easily re-

moved with minimal phase distortions. Thereafter,

inverse-FFT is used to reconstruct the time-domain sig-

nals without the unwanted frequency components. The
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analysis in this work is performed using EEG frequencies

between 2 and 100 Hz. Frequencies below 2 Hz, are not

used to avoid low-frequency artefacts due to eye-blinking

and slow movements. Furthermore, frequency compo-

nents around 50 Hz (49.5–50.5 Hz) are also removed to

avoid any contamination by AC power line noise. After re-

moving the unwanted frequency components, the recon-

structed time-domain signals are then down-sampled to

200 Hz.
METHODOLOGICAL PROCEDURES

This paper introduces a novel measure of FC, a

methodology that employs kernel-based manifold

learning to identify important channel inter-relationships

(channel pairs) within the EEG data for the case of AD.

Manifold learning is a nonlinear dimensionality reduction

technique that learns a lower-dimensional

representation from high-dimensional data (Lawrence

and Quiñonero Candela, 2006). EEG data comprises

multi-channel time-series data, which is high-

dimensional spatio-temporal data. Kernel-based manifold

learning can reduce the temporal dimension and learn

both linear and nonlinear spatial and temporal structures

within the EEG data. The kernel matrix obtained from

such manifold learning methods will contain this informa-

tion as a measure of (dis) similarity and will be named a

kernel (dis) similarity matrix. This matrix can be used as

a general measure of spatio-temporal functional

connectivity.

Manifold learning techniques that maintain local

similarities in the lower-dimensional space (also called

latent space) entail a mapping from the data space to

the latent space (Lawrence, 2005; Lawrence and

Quiñonero Candela, 2006). This ensures that data points

relatively close in the data space are positioned close to-

gether in the latent space. Kernel principal component

analysis (KPCA), locally linear embedding (LLE), t-SNE,

and Isomap are examples of such techniques. In contrast,

techniques that involve a mapping from the latent space

to the data space preserve global dissimilarities; that is,

two points that are relatively distant in the data space

are guaranteed to be distant in the latent space

(Lawrence, 2005; Lawrence and Quiñonero Candela,

2006). Generative topographic mapping, density network-

s, and GPLVM are examples of these techniques. Among

these, GPLVM is a kernel-based method that preserves

global dissimilarity. The kernel in kernel-based manifold

learning techniques, such as Isomap and GPLVM, cap-

tures the nonlinear structures within the data in a non-

parametric fashion.

The methodology proposed in this study combines the

strengths of both local and global (dis) similarity

preservation by utilising GPLVM and Isomap.

Specifically, Isomap is used as an initialisation method

for GPLVM; we name it–Isomap-GPLVM. Furthermore,

since manifold learning is performed to reduce the

temporal dimension, the method takes into account the

temporal structures present within the EEG data.

Consequently, the spatio-temporal local similarities and

global dissimilarities within the EEG data are preserved
in the latent space. The resulting kernel matrix from

GPLVM provides a generic measure of (dis) similarity

between EEG channels, capturing the preserved

information.

Gaussian Process Latent Variable Model (GPLVM)

As a probabilistic nonlinear manifold learning technique, a

GPLVM (Lawrence, 2003) learns the mapping of a high-

dimensional observed dataset Y 2 RN�D from the corre-

sponding low-dimensional latent positions

X 2 RN�Q;Q < D, i.e. a mapping from X ! Y, using a

Gaussian process (GP) (Schulz et al., 2018). Here

Y ¼ y1; � � � ; yN½ �T; yi 2 RD and X ¼ x1; � � � ; xN½ �T; xi 2 RQ.

In principal component analysis (PCA), the mapping

X ! Y is governed by the dominant eigenvectors of the

covariance matrix (Tipping and Bishop, 1999). GPLVM

is a probabilistic manifold learning method, which is a

nonlinear generalisation of PCA (Lawrence, 2003), where

the probabilistic mapping X ! Y is governed by a kernel

matrix K 2 RN�N (Lawrence, 2003). The marginal log-

likelihood of the data Y given the latent positions X
(Lawrence, 2003; Lawrence, 2005) is

L ¼ �DN

2
lnð2pÞ � D

2
lnð Kj jÞ � 1

2
tr K�1YYT
� �

; ð1Þ

where K X;Xð Þ is a positive semi-definite matrix. The ith row

and jth column of K X;Xð Þ is given by kðxi; xjÞ where kð�; �Þ is
the kernel/covariance function with a set of hyper-

parameters h. The use of a kernel function allows the

nonlinear functional mapping from X to Y and provides a

probabilistic nonlinear latent variable model (Lawrence,

2005). In GPLVM, maximising L is done with respect to

both X and h, therefore, the optimal estimates for X and

h are obtained jointly. This is a highly complex optimisation

with the possibility of multiple local minima (Lawrence,

2003). As such, an appropriate initialisation of the latent

positions, X, is critical to guide the optimisation of GPLVM

(Bitzer and Williams, 2010). Which initialisation method to

use depends on the specific application (Lawrence, 2005).

In this study, our objective is to learn the spatial and

temporal structures within the EEG data, taking into

account both local similarities and global dissimilarities.

Since GPLVM only preserves global dissimilarities

(Lawrence and Quiñonero Candela, 2006), initialising X
with respect to local similarities within the data is appropri-

ate (Lawrence and Quiñonero Candela, 2006; Lawrence,

2005; Bitzer and Williams, 2010). Isomap has previously

been successfully applied in spatio-temporal motion cap-

ture data to build latent spaces for controlling a robotic

hand (Tsoli and Jenkins, 2008). Furthermore, the use of

Isomap to initialise GPLVM has been reported to have su-

perior performance in motion capture data (Bitzer and

Williams, 2010). Therefore, Isomap is deemed an appro-

priate method to determine the initial latent positions.

Section ‘Isomap as an initialisation for GPLVM’ provides

further information about the specific Isomap variant used

and its superiority over other methods that learn local

similarities.

Covariance function in GPLVM. In a GP, the

covariance function kð�; �Þ determines what type of
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functions can be learned (Abdessalem et al., 2017). Fur-

thermore, it is the covariance function that defines the re-

gions of similarity and dissimilarity between the input

variables (Rasmussen and Williams, 2006). Therefore,

in GPLVM, kð�; �Þ defines the regions of similarity and dis-

similarity between the latent positions xi 2 X.
In this study, the Radial Basis Function (RBF) (also

called the squared exponential kernel) (Rasmussen and

Williams, 2006) is used as the covariance function for

GPLVM. This is due to its inherent properties and the abil-

ity to clearly interpret its hyper-parameters (Abdessalem

et al., 2017). The RBF kernel has the universal approxi-

mating property (Micchelli et al., 2006) and can be inte-

grated against most functions to obtain a smooth

mapping from X ! Y (Abdessalem et al., 2017;

Rasmussen and Williams, 2006). The RBF covariance

function is given by

k xi;xj

� � ¼ r2 exp � xi � xj

�� ��2
2l2

 !
; ð2Þ

where l and r are the length-scale and the output-variance

hyper-parameters, h ¼ ½l;r�. Here, the length-scale l
determines how quickly the similarity between xi and xj

drops off as the distance between the latent positions

increases (Abdessalem et al., 2017; Rasmussen and

Williams, 2006).
Isomap as an initialisation for GPLVM

Isomap (Tenenbaum et al., 2000) aims to preserve the

geometry within nonlinear data by using the geodesic dis-

tances (along the surface of the high dimensional data)

between the data points. It approximates the geodesic

distances using weighted neighbourhood graphs to pro-

ject high-dimensional data to a lower-dimensional repre-

sentation, preserving shape information (Tenenbaum

et al., 2000). This is the reason for choosing Isomap over

methods such as KPCA and t-SNE as the initialisation for

GPLVM. The robust kernel Isomap variant (Choi and

Choi, 2007) is used in this study.

Robust kernel Isomap approximates the geodesic

distance to project the data into the latent space (i.e.

lower-dimensional representation) while preserving

topological stability and providing a method for

eliminating critical outliers (Choi and Choi, 2007). The

data points are projected, according to how close the

points are, in the data space (i.e. preserving local similar-

ities). In the analysis of EEG data, robustness to noise is

vital as this could affect the local similarities and the geo-

desic distance calculations. This is the main reason for

utilising robust kernel Isomap, instead of the competing

LLE method and its variants.
Kernel-Based nonlinear Manifold Learning of High-
dimensional EEG Data Using Isomap-GPLVM

Isomap-GPLVM is applied individually to the EEG data of

each AD and HC participant by reducing the temporal

dimension. Following the definition of the data space

Y 2 RN�D (in Section ‘Gaussian Process Latent Variable

Model (GPLVM)’), here N ¼ 23 (23 EEG channels,
Section ‘EEG data’) and and D is the temporal

dimension to be reduced. The associated latent space

of each AD and HC participant will be X 2 RN�Q. The

resulting kernel matrix, K X;Xð Þ 2 R23�23 of each

participant, quantifies the spatio-temporal (dis) similarity

information between the 23 respective EEG channels as

a generic measure of similarity. Fig. 1A illustrates this.

Robust Kernel Isomap is a technique that

approximates the geodesic distance between data

points to project them onto a lower-dimensional

representation (latent space), while preserving local

similarities (how close data points are) (Choi and Choi,

2007; Lawrence and Quiñonero Candela, 2006). The size

of the resulting lower-dimensional representation, denot-

ed as Q, is determined by the user. In our approach, we

first apply Robust Kernel Isomap to the high-

dimensional data to obtain an initial estimate of the

lower-dimensional representation. We then use GPLVM

to refine the lower-dimensional representation based on

the global dissimilarities between data points (how far

apart data points are). This will result in the final latent-

space X. The kernel matrix, K X;Xð Þ, from GPLVM gov-

erns the mapping between the latent space X and the

high-dimensional data space Y (see Section ‘Gaussian

Process Latent Variable Model (GPLVM)’). This kernel

matrix K will reflect both local similarities and global dis-

similarities that are learnt from the original data and em-

bedded in X, and we refer to it as the kernel (dis)

similarity matrix. The use of the RBF covariance function

allows to quantify this information in K as a generic mea-

sure of similarity. By reducing the temporal dimension of

the data, temporal information is naturally incorporated in-

to the kernel (dis) similarity matrix.

Given the choice of the latent dimension, Q, the best

set of values, from a grid search, for h ¼ ½l;r� is chosen

based on how well the kernel (dis) similarity matrices

are distinguishable from HC to AD. Linear SVM with

Monte-Carlo cross validation (SVM-MCV) is used to

assess this (see Section ‘Linear SVM and Monte-Carlo

cross-validation (SVM-MCV) procedure’ and Fig. 1B).

The initial conditions that result in the highest average

area under the receiver operator curve (AU-ROC) are

chosen. The grid search is done using the search

ranges l ¼ ½2; 100� and r ¼ ½2; 30� for several latent

dimensions, Q ¼ ½5; 8�.
It was found in this study, that fixing the length-scale l

of the RBF covariance function kð�; �Þ in eq. (2), in the

maximising of L in eq. (1), produces consistently better

average AU-ROC results from applying SVM-MCV

(Fig. 1B and Section ‘Linear SVM and Monte-Carlo

cross-validation (SVM-MCV) procedure’) across latent

dimensions Q ¼ ½5; 8�. Similar behaviour has been

reported in (Rastgoufard and Alsamman, 2016) when us-

ing GPLVM with a back-constrained (Lawrence and

Quiñonero Candela, 2006) likelihood to preserve local

similarities. The appropriate fixed value of l and the initial

condition of r in kð�; �Þ, in maximising L, is found using a

grid search method. Therefore, in other words, the fixed

value for the length-scale l, as mentioned above, leads

the manifold learning method to produce a kernel matrix

where its similarity measure is optimised for the differen-
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Fig. 1. The Isomap-GPLVM method for evaluating the kernel (dis) similarity matrices. A) Isomap-GPLVM: EEG data of each participant is

first pre-processed via FFT filtering, to remove unwanted frequency components and normalise the data (zero mean and unit variance). Then

participant specific kernel (dis) similarity matrices are evaluated using Isomap-GPLVM. From the EEG data, Y, Isomap-GPLVM learns the spatio-

temporal local similarities and global dissimilarities within the data (see Section ‘Kernel-Based nonlinear Manifold Learning of High-dimensional

EEG Data Using Isomap-GPLVM’). This information is embedded in the latent space X and is reflected in the kernel matrix K (see Section ‘Gaussian

Process Latent Variable Model (GPLVM)’). The best set of values for l;r and Q, from a grid search, are chosen based on how well the kernel (dis)

similarity matrices are distinguishable from HC to AD. B) Linear SVM-MCV is used to assess this. The set of values for l;r and Q that produce the

best average AU-ROC from the testing set is chosen. All channel pairwise similarities from the kernel (dis) similarity matrices are used as features.

This study uses EEG data from 20 HC and 20 AD participants. Three epochs of EEG data from each participant are available (see Section ‘EEG

data’). From Epoch 1, 10 HC and 10 AD participants are chosen randomly for the training set, and the remaining 10 HC and 10 AD are used for the

testing set. Epochs 2 and 3 are used for the testing set. The feature space has two classes, AD and HC. The classification is binary – AD is denoted

as 1 and HC as 0. A linear SVM classifier is used on the feature space to determine which channel pairs (inter-relationships) are better at

distinguishing. between groups.
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tiation of HC and mild to moderate AD EEG data. The

complete Isomap-GPLVM methodology is illustrated in

Fig. 1.

It should be noted, that the pre-processed 23-channel

EEG data of each participant contains 2400 time samples

(see Section ‘EEG data’), Y 2 R23�2400. This can be

nearly perfectly represented (recovered from X ! Y with

a 95% confidence) in a latent space X 2 R23�Q, with

Q P 5 using Isomap-GPLVM. To achieve the same

recovery accuracy, the linear principal component

analysis, requires a latent dimension of Q ¼ 20.
Linear SVM and Monte-Carlo cross-validation (SVM-
MCV) procedure

This study comprises of 20 HC and 20 AD participants

(see Section ‘EEG data’). From each participant, three

12-s epochs of EO EEGs are used. The kernel (dis)

similarity matrices of the EEG data are produced for

each AD and HC participant using Isomap-GPLVM, for

all three epochs. The pairwise (dis) similarity measures

are used as features, to assess how well it can

distinguish between the HC and AD groups.

Due to the relatively small number of participants,

linear SVM is preferred, as it has been shown to be

effective with small datasets (Moctezuma and Molinas,

2020; Lotte et al., 2018; Zhang et al., 2017). Furthermore,

it provides a globally optimum solution and the number of

features does not affect the classification complexity

(Moctezuma and Molinas, 2020; Lotte et al., 2018;
Joachims, 1999). The use of a Monte-Carlo cross-

validation strategy is preferred, because of its better per-

formance with smaller data samples (Shan, 2022) and the

asymptotically consistent property for linear (classifica-

tion) models (Shao, 1993). Additionally, some AD partici-

pants could easily be detected, while others might not.

This depends on the severity of neurodegeneration of

the participants with mild to moderate AD used in this

study. Since such information is not explicitly available,

a randomised cross-validation strategy is used to obtain

a fair balance in the linear SVM weights (Shao, 1993;

Xu and Liang, 2001; Xu et al., 2004). Furthermore, this al-

so implies that, including features from more than one

epoch of each participant in the training dataset, could in-

crease the risk of participant-specific biases in the classi-

fier. In this study, we aim to find the group differences in

FC, between HC and AD and thereby to perform channel

selection. Therefore, the use of only one epoch in the

training dataset and the rest in the testing set, ensures

the generalising capability of the linear SVM classifier

and the weightings skewed towards the most significant

predictors.

Monte Carlo cross-validation is used where, from the

first epoch, 10 HC and 10 AD participants are randomly

picked for the training set. The remaining 10 HC and 10

AD participants from the first epoch are used for testing.

1000 such random samples are taken to generate 1000

different training and testing sets. As discussed

previously, the 2nd and 3rd epochs of all participants

will also be included in the testing dataset (Fig. 1B)).
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AU-ROC from the 1000 testing sets are used as a metric

to determine the performance of the linear SVM

classification. This procedure of linear SVM-MCV is

illustrated in Fig. 1B. The AU-ROC is preferred when

considering the cost of misclassification, especially in

medical diagnosis, as it helps to minimise the likelihood

of misdiagnosis (Zweig and Campbell, 1993; Hossin and

Sulaiman, 2015; Carter et al., 2016).

Kernel (dis) similarity matrix analysis

After the initial condition that produces the highest

average AU-ROC is determined, SVM-MCV is used to

analyse the associated kernel (dis) similarity matrices

and rank the pairwise channel FC changes between HC

and AD. The ranking is done using the absolute values

of the normalised average of the linear SVM weights

(normalised average linear SVM weights) resulting from

the 1000 training sets (Section ‘Linear SVM and Monte-

Carlo cross-validation (SVM-MCV) procedure’). The

averaged weights are normalised, so that, the highest

absolute weight is 1 (Fig. 1B). Due to the linearity in the

classification method used, according to the

superposition principle, the averaging of the linear SVM

weights can be easily interpreted. Two approaches are

used, when implementing SVM-MCV:

A). Global EEG FC analysis. All pairwise (dis) similar-

ities are used, as in Fig. 1B. This identifies the best

channel pairwise comparisons that can distinguish

between HC and AD considering the global EEG

interactions.

B). Channel-specific EEG FC analysis. Each row of

all kernel matrices forms a channel-specific feature

space, as shown in Fig. 2. SVM-MCV is applied to

each feature space individually. This ranks channel

pairs, considering a specific channel and its con-
Fig. 2. SVM-MCV: Channel-specific EEG FC analysis. All corre-
sponding rows from HC and AD kernel matrices are grouped into

channel-specific feature spaces. Each feature space has two classes,

i.e. AD (1) and HC (0). Individual linear SVM classifiers are used on

each feature space to determine which EEG channels, considering

only its connectivity with the rest of the EEG, are better at

distinguishing between the groups. The same SVM-MCV approach

(as described in Section ‘Linear SVM and Monte-Carlo cross-

validation (SVM-MCV) procedure’ and Fig. 1B), is now applied to

each individual channel-specific feature space.
nectivity with the rest of the EEG to identify any sig-

nificant region-specific FC changes between the HC

and AD groups (Neufang et al., 2011; Babiloni et al.,

2004; Babiloni et al., 2006).

Software packages used

The Isomap-GPLVM methodology is implemented in

Python. GPLVM is applied using the package ‘GPflow’

(Matthews et al., 2017). Robust kernel Isomap and the

various distance measures (Euclidean, Bray-Curtis, Cor-

relation) are implemented using, the ‘Scikit-learn’ pack-

age (Pedregosa et al., 2011). The ‘Dyconnmap’

package (Marimpis et al., 2021), is used for the FC mea-

sures PLV, iPLV, PLI and iCoherence. Multiple hypothe-

sis testing (in Section ‘Results’) is done using the

Mann–Whitney U test, using the ‘SciPy’ package

(Virtanen et al., 2020), and the Benjamini-Hochberg

(Benjamini and Hochberg, 1995) false discovery rate con-

trolling method, using the ‘MultiPy’ package (Puoliväli

et al., 2020).
RESULTS

The Isomap-GPLVM method introduced in

Section ‘Experimental procedures’ is applied to the EO

and EC EEG data (Section ‘EEG data’) separately. The

best fixed value l and the initial condition r for kð�; �Þ to

maximise L, is determined via a grid search using the

three 12-s epochs according to the procedure explained

in Section ‘Kernel-Based nonlinear Manifold Learning of

High-dimensional EEG Data Using Isomap-GPLVM’,

using SVM-MCV (see Section ‘Linear SVM and Monte-

Carlo cross-validation (SVM-MCV) procedure’ and

Fig. 1B).

Table 1 illustrates, the selected Q and l values for EO

and EC conditions. Given the choices for l;r and Q, from

the participant-specific kernel (dis) similarity matrices

evaluated (Fig. 1 A), the channel inter-relationships (FC)

that are able to differentiate well, between AD and HC

groups are presented in this section, for both EO and

EC conditions. The FC analysis is done in two

approaches: global EEG FC changes and channel-

specific EEG FC changes (see Section ‘Kernel (dis)

similarity matrix analysis’).

Fig. 3 illustrates the bipolar montage EEG channels

used in this work (see Section ‘Data’) on a 10–20

international standard electrode placement map. The

mid-points between the 10–20 EEG overlap with certain

10–10 EEG electrode positions (Jurcak et al., 2007).

Therefore, the EEG channels used in this work (Fig. 3)

measure the scalp electrical activity at those overlapping

positions (see Section ‘Data’). The corresponding under-
Table 1. Selected latent dimension and fixed length-scale values for

EO and EC conditions.

Condition Latent

dimension Q

Fixed length-

scale l

Average AU-

ROC

EO 8 66.5 0.73

EC 8 83.5 0.77



Fig. 3. All the 23 channels, bipolar montage. EEG bipolar

montage channels mapped into a 10–20 international standard

arrangement. The bold grey lines connecting any two EEG electrodes

indicate that these two electrodes result in a bipolar channel. Bipolar

channels give an estimate of the instantaneous electric field along the

scalp surface midway between the pair of electrodes.
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lying cortical regions of these positions (Rojas et al.,

2018) are used as location markers. Table 2 shows the

23 bipolar montage EEG channels used and the respec-

tive underlying cortical regions.

It should be noted, that the EEG has a low spatial

resolution. EEG bipolar channels measure the

propagated electrical activity on the overlying scalp
Table 2. List of all 23 channels of the scalp EEG bipolar montage and

the corresponding underlying cortical regions.

Channel index and

name

Corresponding cortical region

0 O1-O2 Occipital (O)

1 P4-O2

2 P3-O1

3 T5-O1

4 T6-O2

5 P3-PZ Parietal (P)

6 P4-PZ

7 T3-T5 Temporal (T)

8 T4-T6

9 C3-P3 Centro-Parietal (CP)

10 C4-P4

11 CZ-PZ

12 C3-CZ

13 C4-CZ

14 T3-C3 Centro-Temporal (CT)

15 T4-C4

16 F3-C3 Fronto-Central (FrC)

17 FZ-CZ

18 F3-FZ

19 F4-FZ

20 F4-C4

21 F7-F3 Frontal (F)

22 F8-F4
regions (Table 2). Therefore, in this study when results

are presented with respect to the cortical region, it does

not refer to the explicit activity in the actual brain

cerebral cortex.
Comparison of kernel (dis) similarity against
commonly used functional connectivity measures

To demonstrate the efficacy of the proposed FC measure,

comparisons with commonly used FC measures are

presented here. Table 3 shows the comparison of the

AU-ROC values for the SVM-MCV global EEG FC

analysis, for both EO and EC conditions. It is evident

that, when considering all the pairwise kernel (dis)

similarity measures (global EEG FC analysis), our

proposed Isomap-GPLVM based FC measure, has a

considerably higher AU-ROC than other measures. This

is especially true for the EC condition.

Fig. 4 illustrates the performance of our Isomap-

GPLVM-based FC measure with respect to the channel-

specific EEG FC analysis (see Section ‘Kernel (dis)

similarity matrix analysis’). The distribution of the

averaged AU-ROCs from all channel-specific feature

spaces (Fig. 2) of the respective FC measures, is

shown as a box-plot in Fig. 4. The channel-specific EEG

FC analysis is used to identify the important FC

changes, between HC and AD, with respect to a specific

cortical region. In both the EO and the EC conditions, the

average AU-ROC of each channel-specific feature space

is directly compared, between our method and other FC

measures. In both conditions, it was observed that half

of the channel-specific feature spaces (Fig. 2) from our

method attained higher AU-ROC values, than the

corresponding feature spaces in other FC measures.

From the remaining half, most feature spaces matched

the performance of corresponding feature spaces in

other FC measures, while the rest underperformed. The

data for all the average AU-ROCs of all channel-specific

feature spaces for all FC measures used, in this

comparison is not provided here. However, what is

mentioned above is reflected in the box-plots in Fig. 4.

Therefore, in general, with respect to the channel-

specific EEG FC analysis, the proposed method

improves the overall result under both conditions. In the

EO condition, our method performs significantly better

compared to other FC measures.
Table 3. Comparison of SVM-MCV global analysis with AU-ROC

values from the proposed FC measure against commonly used FC

measures, under EO and EC conditions.

FC measure AU-ROC EC

condition

AU-ROC EO

condition

Isomap-

GPLVM

0.77 � 0.07 0.73 � 0.03

Euclidean 0.61 � 0.04 0.62 � 0.04

Bray-Curtis 0.60 � 0.02 0.61 � 0.03

Correlation 0.68 � 0.05 0.67 � 0.04

PLV 0.74 � 0.04 0.70 � 0.04

iPLV 0.59 � 0.05 0.64 � 0.05

PLI 0.58 � 0.06 0.63 � 0.05

iCoherence 0.62 � 0.04 0.58 � 0.04



Fig. 4. Comparison of the proposed Isomap-GPLVM FC measure against commonly used
measures using SVM-MCV channel-specific approach. The distribution of the average AU-ROC

across all channel-specific feature spaces in each FC measure is shown for both EO and EC

conditions.
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Kernel (dis) similarity matrices of HC and AD groups

The Mann–Whitney U test (Mann and Whitney, 1947) is

used for the element-wise statistical comparison of the

kernel matrices between the HC and AD groups. Due to

the multiple statistical comparisons done here, the p-
values need to be approximately corrected (Dauwels

et al., 2010b; Puoliväli et al., 2020). Also, due to the large

number of comparisons (i.e. 23 EEG channels corre-

spond to 253 channel combinations), controlling the false

discovery rate (i.e. positive results that could be in fact

negative) (Benjamini and Hochberg, 1995)) is preferred

over controlling the family-wise error rate (Dauwels

et al., 2010b; Puoliväli et al., 2020). Therefore, the

Benjamini-Hochberg (Benjamini and Hochberg, 1995)

false discovery rate controlling (FDR) method is used to

obtain the corrected p-values. Pairwise kernel (dis) simi-

larities (FC measures) that have statistically significant

differences between the HC and AD groups (p-values
< 0:05) are denoted as–1’s in significance matrix

S 2 R23�23, zero otherwise. The significance matrices

for both the EC and EO conditions are illustrated in

Fig. 5, where blue elements indicate, the statistically sig-

nificant changes in the pairwise connectivities between

the HC and AD groups.

From Fig. 5, it is evident, that there are localised FC

changes within certain underlying cortical regions (e.g.

within the centro-parietal EEG region) and global EEG
FC changes between regions (e.g.

between the centro-parietal and

occipital EEG regions). This can

be a reflection of the specific

patterns of dysfunction that have

been mentioned in the literature,

in which AD EEG data exhibits a

specific change in FC compared

to HC (Stam, 2005; Dauwels

et al., 2010b; Dauwels et al.,

2011) and connectivity in certain re-

gions of the EEG being affected

(Falk et al., 2012; Deng et al.,

2017; Tylová et al., 2018; Abásolo

et al., 2009; Fraga et al., 2013; Al-

Qazzaz et al., 2014). These FC

changes could be linked to within-

frequency and cross-frequency

coupling between brain regions

(Babiloni et al., 2016; Sadaghiani

et al., 2022).
Global functional connectivity
changes and channel pair
selections

All pairwise kernel (dis) similarities

are used (Fig. 1B) to determine, in

a global sense, which spatio-

temporal FC differences between

cortical regions (EEG channels)

are more important in

distinguishing between the HC

and AD groups. Table 4 and 5

shows the top 20 channel pairs
that are ranked according to the averaged normalise

linear SVM weights (Section ‘Kernel (dis) similarity

matrix analysis’, Fig. 1B) for EO and EC conditions,

respectively. EEG channel pairs in these two tables are

arranged in a way so that channels related to the same

underlying cortical regions can be grouped.

Tables 4 and 5 show that inter-regional FC between

EEG channels from the occipital region and other

regions, i.e. parietal (P–O, Fig. 6C), centro-parietal (CP–

O, Fig. 6A), and fronto-central (FrC–O, Fig. 6B), attain a

considerable space among the top 20 rankings. This is

observed in both EO and EC conditions. However, in

the EC condition this is specific to the right occipital

region (channels P4-O2 and T6-O2, Table 5). In

particular to the EO condition, as shown in Table 4, FC

between EEG channels from the frontal and occipital

regions (F–O, Fig. 6D) have a significant presence

within the top 20 weightings. Therefore, this suggests

that connectivity between the occipital region and those

regions mentioned above, respective to each condition,

can be important in identifying people with mild to

moderate AD as shown in Fig. 6.



Fig. 5. The significance matrices, S, for both EC (A) and EO (B) conditions. The figures show,

for both EC and EO conditions, the statistical significance of all the elements of the kernel (dis)

similarity matrices between the HC and AD groups (based on all epochs of all participants). The

corresponding channels are provided in Table 2. The significant FC changes are indicated in blue.
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Channel-specific functional
connectivity changes and channel
pair selections

In this section, the results of the

channel-specific EEG FC analysis

(Section ‘Kernel (dis) similarity

matrix analysis’, Fig. 2), using

kernel (dis) similarity matrices, are

presented. This approach

determines, at the EEG sensor

level, significant changes in FC

specific to the cortical region

between the HC and AD groups.

The channel-specific approach

provides another layer of

information.

To form a channel-specific

feature space, each row of all

kernel matrices that correspond to a

particular channel is used (Fig. 2)).

SVM-MCV is then applied to each

feature space individually to identify

individual EEG channels that exhibit

distinguishable changes in FC with

the rest of the EEG data. The

average AU-ROC of the channel-

specific feature space is used as an

evaluation metric. The normalised

average linear SVM weights

(Section ‘Linear SVM and Monte-

Carlo cross-validation (SVM-MCV)

procedure’) of the channel-specific

feature space are used to rank the

importance of FC changes relative

to the channel being considered

(Section ‘Kernel (dis) similarity

matrix analysis’).

Tables 6 and 7 report channel-

specific feature spaces with an

average AU-ROC > 0:7 for the EO

and EC conditions, respectively.

These tables also report the kernel

(dis) similarity features that attain a

high rank in the feature space being

considered (i.e. normalised average

linear SVM weight 0.9–1). Fig. 7

illustrates the channel-specific

feature spaces with an average AU-

ROC > 0:7 mapped to the

placement of 10–20 international

electrodes.

As seen from Fig. 7, the EEG

channels associated with the

channel-specific feature spaces with

an average AU-ROC > 0:7 lie

mostly within the fronto-parietal

regions of the cortex for both

conditions. However, in the EC

condition (Fig. 7A), channel-specific

feature spaces associated with the

EEG channels in the right



Table 4. EO condition. Ranking of (dis) similarity features of channel-pairs–only the top 20 are shown.

Channel Pairs (Indexes and names) Averaged normalise linear SVM weight Ranking Connecting regions

11 1 CZ-PZ P4-O2 0.84 6 CP - O

13 1 C4-CZ P4-O2 0.78 7

9 1 C3-P3 P4-O2 0.68 12

12 3 C3-CZ T5-O1 0.68 13

13 4 C4-CZ T6-O2 0.60 19

21 3 F7-F3 T5-O1 0.88 3 F - O

22 3 F8-F4 T5-O1 0.72 8

22 4 F8-F4 T6-O2 0.59 20

18 9 F3-FZ C3-P3 0.68 11 FrC - CP

18 17 F3-FZ FZ-CZ 0.68 14 FrC - FrC

16 1 F3-C3 P4-O2 1.00 1 FrC - O

17 1 FZ-CZ P4-O2 0.88 4

16 4 F3-C3 T6-O2 0.71 10

16 2 F3-C3 P3-O1 0.64 16

20 1 F4-C4 P4-O2 0.63 17

5 3 P3-PZ T5-O1 0.91 2 P - O

5 2 P3-PZ P3-O1 0.86 5

5 1 P3-PZ P4-O2 0.72 9

6 1 P4-PZ P4-O2 0.66 15

6 3 P4-PZ T5-O1 0.62 18

Table 5. EC condition. Ranking of (dis) similarity features of channel-pairs–only the top 20 are shown.

Channel Pairs (Indexes and names) Averaged normalise linear SVM weight Ranking Connecting regions

9 4 C3-P3 T6-O2 0.99 3 CP - O

11 4 CZ-PZ T6-O2 0.96 4

13 4 C4-CZ T6-O2 0.90 5

10 4 C4-P4 T6-O2 0.90 7

11 1 CZ-PZ P4-O2 0.80 9

12 4 C3-CZ T6-O2 0.77 11

9 1 C3-P3 P4-O2 0.72 14

22 15 F8-F4 T4-C4 0.68 17 F - CT

21 4 F7-F3 T6-O2 0.62 19 F - O

17 4 FZ-CZ T6-O2 1.00 1 FrC - O

16 4 F3-C3 T6-O2 1.00 2

16 1 F3-C3 P4-O2 0.80 10

17 1 FZ-CZ P4-O2 0.75 12

18 4 F3-FZ T6-O2 0.70 15

20 4 F4-C4 T6-O2 0.62 20

1 0 P4-O2 O1-O2 0.67 18 O - O

6 4 P4-PZ T6-O2 0.90 6 P - O

5 4 P3-PZ T6-O2 0.86 8

5 1 P3-PZ P4-O2 0.74 13

6 1 P4-PZ P4-O2 0.70 16
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hemisphere appear to be important (average AU-ROC

> 0:7). In the case of mild to moderate AD, significant

FC changes between these EEG channels and the rest

of the EEG is observed from the proposed FC analysis

methodology.
DISCUSSION

The results presented in the previous section indicate

that certain key areas of the brain are affected by AD

(Figs. 5–7). In order to identify whether our results are

consistent with functional Magnetic Resonance Imaging

(fMRI) results of mild to moderate AD, first, it is

necessary to determine how the bipolar channels used
in this study (Section ‘EEG data’) relate to the functional

connectivity networks (Yeo et al., 2011) of the brain.

Yeo et. al. (Yeo et al., 2011) revealed the existence of

seven primary functional networks using time correlations

between the fMRI of 1,075 Regions of Interest (ROI). Th-

ese networks are shown to be valid for multiple partici-

pants and robust against various data processing

methods. The seven functional networks are visual net-

work (VN), somatomotor network (SN), dorsal attention

network (DAN), ventral attention network (VEN), limbic

network (LN), fronto-parietal network (FPN) and default

mode network (DMN). Based on (Yeo et al., 2011), Rojas

et. al. (Rojas et al., 2018) used the electrode positions of

the international standard 10–20 EEG and the 10–10



Fig. 6. Inter-regional connectivity between EEG channels from the regions shown can be
important in identifying people with mild to moderate AD. A) CP–O, B) FrC–O, C) P–O for both

EO and EC conditions while D) F–O only for the EO condition (Tables 4 and 5). EEG channels related

to the corresponding cortical regions are shown in different colours. Occipital region (O)–purple,

Parietal region (P)–orange, Centro-parietal region (CP)–green, Fronto-central region (FrC)–blue and

Frontal region (F)–red. It shoud be noted that bipolar channels give an estimate of the instantaneous

electric field along the scalp surface midway between the pair of electrodes.
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EEG as seed positions to provide a reproducible model

demonstrating the relationship between the 10–20 EEG

electrode positions and the seven functional networks re-

vealed by (Yeo et al., 2011). This is carried out by simul-

taneous acquisition of EEG and resting-state fMRI (rs-

fMRI). Rojas et. al. used the Sørensen–Dice index (F1

score) to quantify the similarities between the positions
Table 6. The average AU-ROC values of the channel-specific feature

spaces for the EO condition. Channel-specific feature spaces with

average AU-ROC > 0:7 are only shown.

Channel-

specific feature

space

Channels with

normalised average

weight 0.9–1

Average AU-ROC

of feature space

F3-FZ P4-O2 0.758

FZ-CZ P4-O2, F3-FZ 0.737

F3-C3 P4-O2 0.734

C3-P3 P4-O2, T5-O1 0.733

CZ-PZ P4-O2, F3-FZ 0.719

F4-C4 P4-O2, F3-FZ 0.714

P3-PZ T5-O1 0.713

C4-P4 P4-O2 0.712

T5-O1 T6-O2, F7-F3 0.710

C3-CZ P4-O2, T5-O1 0.706

Table 7. The average AU-

spaces for the EC condi

average AU-ROC > 0:7 ar

Channel-

specific feature

space

Chan

norm

weig

C3-P3 T6-O

CZ-PZ T6-O

T6-O2 T5-O

C4-P4 T6-O

F3-FZ T6-O

P3-PZ T6-O

FZ-CZ T6-O

C3-CZ T6-O

F3-C3 T6-O

P4-O2 F3-C

F4-C4 T6-O

C4-CZ T6-O

T4-C4 F8-F
of the 10–20 electrode placements

and the seven functional networks

mentioned above. The bipolar

EEG channels used in this study

estimate the electric field midway

between the pair of electrodes that

form the said channel (Nunez and

Srinivasan, 2006). Therefore, to

determine approximate similarities

between a bipolar channel (Fig. 3)

and and the functional networks,

the average of the Sørensen–Dice

indices of the two electrodes

(Fig. 9 and Supplementary Table 3

in (Rojas et al., 2018)) that form the

bipolar channel is used. An exam-

ple of this is shown in the appendix

(Appendix A).

Fig. 8 illustrates the relationship

between the bipolar EEG channels

used in this study and functional

networks FPN, DAN, VAN and

DMN. In mild to moderate AD, the

connectivity changes within

networks FPN, DAN, VAN and

DMN have been previously

reported to be significant (Babiloni

et al., 2016; Neufang et al., 2011;

Zhang et al., 2010; Gour et al.,

2014). Therefore, our following dis-

cussion will only focus on these

networks, as shown in Fig. 8.

For the EO condition, changes

in FC between the cortical regions

(EEG channels) shown in Fig. 6 B

and D can be speculated as VAN

related (Zhang et al., 2010). Con-
sidering both EO and EC conditions, changes in the

inter-regional FC (as shown in Fig. 6 A, B, C and D) can

be linked to changes in connectivity within the FPN and

DMN networks (Zhang et al., 2010). Fig. 6 A and C can
ROC values of the channel-specific feature

tion. Channel-specific feature spaces with

e only shown.

nels with

alised average

ht 0.9–1

Average AU-ROC

of feature space

2 0.803

2 0.799

1, T3-T5, F7-F3 0.797

2 0.792

2 0.790

2 0.785

2 0.772

2 0.769

2 0.764

3, F4-FZ, F8-F4 0.758

2 0.757

2 0.746

4 0.721



Fig. 7. EC (A) and EO (B) channel-specific feature spaces with average AU-ROC > 0:7. The
channel-specific feature spaces with average AU-ROC > 0:7 are mapped into the 10–20 international

electrode placement. This is illustrated for both EC and EO conditions. These channels lie mostly

within the fronto-parietal regions of the cortex for both conditions.

Fig. 8. Relationship between the bipolar EEG channels used and the functional networks. The
functional networks discussed in relation to this study and the bipolar channels used is illustrated

here. FPN (fronto-parietal network), DAN (dorsal attention network), VAN (ventral attention network)

and DMN (default mode network).
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be linked to DAN (Zhang et al., 2010; Gour et al., 2014)

while Fig. 6 B can be linked to VAN.

The results in Section ‘Channel-specific functional

connectivity changes and channel pair selections’ show

the channels that have the most significant FC changes

with the rest of the EEG (Fig. 7). This can be a
reflection of the FC changes in

FPN, DAN, VAN and DMN

networks. The EEG channels

shown in Fig. 7 are mostly related

to the fronto-parietal region of the

cortex (fronto-central and centro-

parietal regions combined,

Table 2). This region has been

reported to play an important role

in the diagnosis of AD in several

studies using fMRI (Neufang et al.,

2011) (prodromal AD), rs-fMRI

(Zhang et al., 2010; Gour et al.,

2014) (mild, moderate and severe

AD) and EEG (Babiloni et al.,

2016) (mild AD). Neufang et al.

(Neufang et al., 2011) pointed out,

at the early stages of AD, the vol-

ume of regional grey matter is relat-

ed to the reduction in the effective

connectivity (through dynamic cau-

sal modelling) in the fronto-parietal

region. While Babiloni et al.
(Babiloni et al., 2006) found that a

measure of nonlinear inter-

dependence (via the synchronisa-

tion likelihood) is significantly re-

duced in the fronto-parietal

channels of eyes-closed EEG in

mild AD patients. These studies

are consistent with our results in

showing that the connectivity be-

tween the EEG channels in the

fronto-parietal region (Fig. 7) and

and the rest of the brain regions

have significantly changed in mild

to moderate AD.

A novel FC analysis and

channel selection method based

on kernel-based nonlinear

manifold learning is presented in

this work. The FC measure takes

both local and global spatio-

temporal (dis) similarities between

EEG channels into account and

ranks the pairwise FC measures

that are better at distinguishing

HC from patients with

neurodegenerative diseases. We

demonstrate how a kernel-based

(dis) similarity matrix via manifold

learning can be used as a

measure of spatio-temporal

functional connectivity between

EEG channels and to determine

the important inter-relationships in
characterising patients with mild to moderate AD. The

methodology presented can determine changes in

cortical (EEG channel) inter-relationships that are crucial

in distinguishing AD patients from HCs. Furthermore,

the results reported in our work are consistent with
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other previous studies while linking connectivity changes

to functional networks.

The main purpose of this paper is to introduce this

novel FC analysis and channel selection methodology

and its computational procedure. We also demonstrate

its efficacy against other commonly used FC measures.

The robustness of our method against volume

conduction effects in the EEG could be further assessed

(Briels et al., 2020). The Isomap-GPLVM method can

be made to explicitly control the compromise between lo-

cal similarity and global dissimilarity information being

learnt. This can be achieved by including appropriate prior

probabilities of the latent positions, pðXÞ, in the GPLVM

log-likelihood (Urtasun et al., 2008; Buettner and Theis,

2012). This development can be used to improve the clas-

sification performance further. With the above considera-

tions, the proposed methodology can be developed into a

diagnostic tool not only for the detection of neurodegener-

ative diseases, but also to determine the important FC

changes related to the disease.

An important future study is to investigate the detailed

forms of nonlinearity using nonlinear dynamic modelling

(Billings, 2013) and nonlinear causality measures in the

time and frequency domains (Zhao et al., 2013; He

et al., 2014a; He et al., 2014b). These in-depth dynamical

analysis methods will be applied to the channel pairs and

regions determined using the Isomap-GPLVM method.

Thus, enabling the further study of the underlining dynam-

ic processes, linear and nonlinear dynamic features, in

patients with Alzheimer’s disease.
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Yianni J (2016) Nonlinear interactions in the thalamocortical loop

in essential tremor: A model-based frequency domain analysis.

Neuroscience 324:377–389.

He F, Wei H-L, Billings SA, Sarrigiannis PG (2014b) A nonlinear

generalization of spectral granger causality. IEEE Trans Biomed

Eng 61(6):1693–1701.

He F, Yang Y (2021) Nonlinear system identification of neural

systems from neurophysiological signals. Neuroscience

458:213–228.

Horvath A, Szucs A, Csukly G, Anna Sakovics GS, Kamondi A (2018)

Eeg and erp biomarkers of alzheimer’s disease: a critical review.

FBL 23(2):183–220.

Hossin M, Sulaiman MN (2015) A review on evaluation metrics for

data classification evaluations. Int J Data Min Knowledge Manage

Process 5:01–11.

Jensen O, Spaak E, Zumer JM (2014) Human brain oscillations:

From physiological mechanisms to analysis and cognition. In:

Supek S, Aine CJ, editors. Magnetoencephalography: From

Signals to Dynamic Cortical Networks. Berlin Heidelberg, Berlin,

Heidelberg: Springer. p. 359–403.

Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease.

Clin Neurophysiol 115(7):1490–1505.

Jiao B, Li R, Zhou H, Qing K, Liu H, Pan H, Lei Y, Fu W, Wang X, Xiao

X, Liu X, Yang Q, Liao X, Zhou Y, Fang L, Dong Y, Yang Y, Jiang

H, Huang S, Shen L (2023) Neural biomarker diagnosis and

prediction to mild cognitive impairment and alzheimer’s disease

using eeg technology. Alzheimer’s Res Therapy 15(1):32.

Joachims T (1999) Making large-scale SVM learning practical. In:

Schölkopf B, Burges C, Smola A, editors. Advances in Kernel

Methods - Support Vector Learning. Cambridge, MA: MIT Press.

p. 169–184. Ch. 11.

Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems

revisited: Their validity as relative head-surface-based positioning

systems. NeuroImage 34(4):1600–1611.

Klepl D, He F, Wu M, Blackburn DJ, Sarrigiannis P (2022) Eeg-based

graph neural network classification of alzheimer’s disease: An

empirical evaluation of functional connectivity methods. IEEE

Trans Neural Syst Rehabil Eng 30:2651–2660.

Laub J, Roth V, Buhmann JM, Müller K-R (2006) On the information

and representation of non-euclidean pairwise data. Pattern

Recogn 39(10):1815–1826.

Lawrence N (2005) Probabilistic non-linear principal component

analysis with gaussian process latent variable models. J Mach

Learn Res 6(60):1783–1816.

Lawrence ND (2003) Gaussian process latent variable models for

visualisation of high dimensional data. In: Proceedings of the 16th

International Conference on Neural Information Processing

Systems. NIPS’03. Cambridge, MA, USA: MIT Press. p. 329–336.
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León-Villagrá P, Ghahramani Z, Hensman J (2017) GPflow: A

Gaussian process library using TensorFlow. J Mach Learn Res 18

(40):1–6.
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