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Accurate estimation of the State of Health (SOH) of lithium-ion batteries is crucial 
for ensuring their safe and reliable operation. Data-driven methods have shown 
excellent performance in estimating SOH, but obtaining high-quality and strongly 
correlated features remains a major challenge for these methods. Moreover, 
different features have varying importance in both spatial and temporal scales, 
and single data-driven models are unable to capture this information, leading to 
issues with attention dispersion. In this paper, we propose a data-driven method 
for SOH estimation leveraging the Bi-directional Long Short-Term Memory (Bi-
LSTM) that uses the Differential Thermal Voltammetry (DTV) analysis to extract 
features, and incorporates attention mechanisms (AM) at both temporal and 
spatial scales to enable the model focusing on important information in the 
features. The proposed method is validated using the Oxford Battery 
degradation Dataset, and the results show that it achieves high accuracy and 
robustness in SOH estimation. The Root Mean Squared Error (RMSE) and Mean 
Absolute Error (MAE) are around 0.4% and 0.3%, respectively, indicating the 
potential for online application of the proposed method in the cyber hierarchy 
and interactional network (CHAIN) framework. 

KEYWORDS 

state of health, feature signal analysis, data-driven, Bi-directional long short-term 
memory, attention mechanism 

1 Introduction 

The growing demand for energy and environmental pollution pose urgent requirements 
for the development of new energy sources. LIBs, due to their high energy density, wide 
operating range, strong temperature adaptability and long cycle life, are widely used in 
automobiles, electronic devices and spacecraft (Pang et al., 2021; Liu et al., 2022). During the 
usage of LIBs, degradation occurs due to internal side reactions, and failed LIBs need to be 
replaced in a timely manner to ensure safe usage (Gao et al., 2021; Zhang et al., 2022a). 
Therefore, accurate estimation of the health status of batteries is crucial for ensuring the 
safety of LIBs, as well as for improving efficiency and reducing costs (Zhou et al., 2021; Deng 
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et al., 2023). However, as batteries are highly complex, time-varying 
and nonlinear electrochemical systems, it remains a significant 
challenge to establish a reliable Battery Management System 
(BMS) to accurately estimate the health status of LIBs (Zhang 
et al., 2022b; You et al., 2022; Ruan et al., 2023). 

Currently, the estimation of the SOH of LIBs can be roughly 
divided into direct measurement methods, model-based methods, 
and data-driven methods (Ma et al., 2022; Jin et al., 2023). 

The direct measurement method usually estimates the SOH 
of the battery by measuring the electrochemical impedance 
spectrum of the battery, open circuit voltage (OCV), or by 
using the ampere-hour integral method. As the internal 
resistance of the battery increases with degradation, the SOH 
of the battery can be estimated by measuring its electrochemical 
impedance spectrum. OCV can be directly measured and used to 
estimate SOH through its fitting relationship with the capacity. 
The ampere-hour integral method estimates SOH by measuring 
the current and integrating it over time. The direct measurement 
method has high accuracy, but it requires high measurement 
conditions and instruments, making it suitable for laboratory 
environments and difficult to apply in real-world vehicle 
applications. 

Model-based methods, including equivalent circuit model 
(ECM), electrochemical mechanism model, and empirical model, 
are used to estimate the SOH of LIBs. The ECM method simulates 
the operation process of the battery using circuit components such 
as resistors, power sources and capacitors, and estimates SOH 
through model parameter identification methods such as Kalman 
filtering algorithm. The electrochemical model method builds an 
electrochemical model from the internal degradation mechanism of 
the battery to estimate SOH. The empirical model method estimates 
SOH by constructing an empirical relationship between the SOH 
and other measurable macroscopic physical quantities. Yan et al. 
(2017) estimated the SOH of a battery by establishing a second-order 
ECM and estimating the Ohmic resistance through adaptive 
unscented kalman filter (AUKF), and then mapping the 
resistance and SOH relationship. Lyu et al. (2017) proposed a 
framework combining the electrochemical model and particle 
filter (PF) algorithm to estimate battery degradation. Singh et al. 
(2019) developed a semi-empirical model that achieved fast and 
accurate SOH estimation by using charge-discharge cycle number 

TABLE 1 Specific degradation experiment conditions of the batteries. 

and current as inputs; Zeng et al. (2019) established an improved 
second-order ECM model and used Bayesian for online parameter 
identification, using the fuzzy unscented Kalman filtering algorithm 
for SOH estimation. Yan et al. (2019) improved the extended 
Kalman filter based on Lebesgue sampling and efficiently 
estimated SOH using second-order ECM. Li et al. (2018) 
proposed an single particle (SP) model that considers the 
physical mechanism of battery aging for capacity estimation. 
ECM and electrochemical model-based methods usually have 
high accuracy and strong interference resistance as closed-loop 
systems, but building an accurate battery model might be 
complex, and the established battery model may only perform 
well under specific conditions. Model parameters also need to be 
adjusted in a timely manner with changes in the working 
environment and conditions to ensure accuracy. Empirical 
model-based methods have high real-time applicability due to 
their simplicity and fast computation speed. However, the 
accuracy of empirical models is often limited and cannot fully 
reflect the degradation process (Chen et al., 2022). 

In recent years, with the development of various devices and 
hardware, the computing power and data acquisition technology of 
computers have made significant leaps, and various databases have 
emerged. Data-driven methods have gradually become very popular 
in various industries (Wu et al., 2015; Wang et al., 2022). These 
methods do not require knowledge of complex electrochemical 
mechanisms or the construction of complex mathematical 
models, but are based on data to extract features highly 
correlated with battery degradation contained in macroscopic 
signals completely, and establish nonlinear relationships between 
these features and battery degradation. This makes it easier to 
achieve high-accuracy estimations. For example, Wang et al. 
(2022) implemented high-accuracy SOH estimation based on the 
modified Gaussian process regression (GPR) method. Lin et al. 
(2022a) used the random forest algorithm to fuse three machine 
learning algorithms (Support vector machine (SVM), multiple linear 
regression (MLR) and GPR) to further improve the estimation 
accuracy. In addition to traditional machine learning algorithms, 
deep learning algorithms, which have developed rapidly in recent 
years, are gradually becoming popular and widely used. Eddahech 
et al. (2012) used recurrent neural network (RNN) to estimate the 
SOH of lithium batteries. RNN is good at solving time series 

Technical specifications Cycling tests 

Anode material Graphite Charge test CC charge at 2C 

Cathode material LCO/NCO 

Nominal capacity [mAh] 740 

Nominal voltage [V] 3.7 

Discharge cutoff voltage [V] 2.7 Discharge test Artemis drive cycle discharge 

Charge cutoff voltage [V] 4.2 

Weight [g] 19.5 ± 0.5 

Tester 8-channel Big MPG 205 battery tester 

Environment MK53 hot chamber at 40 °C 
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FIGURE 1 
Battery degradation cycle schemes and data preprocessing. (A) Degradation test of voltage, current and temperature. (B) Capacity degradation 
profiles of the eight batteries. (C) Temperature processed by SG filter (battery #1). (D) DTV processed by data preprocessing, curve1 is the origin DTV 
curve, curve2 is the DTV curve processed by fixing sampling interval and curve3 is the DTV curve processed by SG filter (battery #1). 

problems and is suitable for estimating battery SOH. For long-term 
dependency problems, the effect of RNN is greatly reduced, while its 
variant LSTM can make up for this deficiency. Zhang et al. (2018) 
used LSTM to achieve high-accuracy estimation of the SOH and 
RUL of lithium-ion batteries. Deng et al. (2022) identified 
degradation patterns based on the early degradation data of 
batteries and applied transfer learning to further improve the 
accuracy of SOH estimation, and realized high-accuracy SOH 
estimation based on LSTM network. Deng et al. (2023) 
determined the label capacity based on statistical values of 
capacity and extracted features from charging data, using a 
sequence to sequence model combined with a GPR based 
residual model to estimate SOH. Deep learning methods do not 
require knowledge of the complex internal mechanisms of batteries 
and can model non-linear dynamics well. However, the estimation 
accuracy of data-driven methods is highly dependent on the amount 
and quality of data. To address the problem of insufficient available 
data, Shen et al. (2020) implemented high-accuracy battery SOH 
estimation by using DCNN combined with transfer learning and 
ensemble learning methods, which can be further expanded based 
on small data sets. Traditional data-driven methods are often 
difficult to use with data that do not have SOH labels. Xiong 
et al. (2023) proposed a data-driven method based on semi-
supervised learning to fully utilize these unlabeled data, which 
are usually easy to obtain and have a large amount of data. 
Apart from the limited availability of data from lithium-ion 
batteries, extracting high-quality features strongly correlated with 

battery degradation from large amounts of data is also a challenging 
task. Many signal analysis techniques are commonly used as 
auxiliary tools to extract features. Signal analysis methods 
combine the measurable macroscopic signals of batteries with the 
internal chemical reaction process of battery degradation to obtain 
features strongly related to battery degradation. Commonly used 
methods include independent component analysis (ICA) and DTV 
methods. ICA method analyzes the relationship between voltage and 
capacity changes in charge-discharge cycles, and reflects battery 
degradation through the evolution of peaks and valleys in the curve. 
Li et al. (2020) proposed a multi-timescale framework based on ICA 
method to estimate the SOH of batteries by extracting highly 
correlated features related to battery degradation from the ICA 
curve, and using the GPR algorithm to estimate the SOH of batteries. 
Sun et al. (2022) used the empirical mode decomposition (EMD)-
ICA-gate recurrent unit (GRU) method to decompose capacity data 
through the EMD method, extract features through the ICA method, 
and estimate the SOH of batteries using the GRU algorithm. 
Microscopic phase changes that occur inside batteries during 
degradation lead to entropy changes. The DTV analysis method 
extracts information related to entropy changes in the charging and 
discharging process by analyzing the relationship between 
temperature and voltage and can reflect the internal changes in 
the battery degradation process through measurable macroscopic 
signals (Wu et al., 2015; Merla et al., 2016a; Merla et al., 2016b). The 
DTV curve gradually changes with battery degradation, and features 
with a high correlation with the SOH of the battery can be extracted 
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FIGURE 2 
Features extraction and correlation analysis. (A) Degradation evolution of DTV curves. (B) Schematic diagram of feature extraction. (C) Evolution of 
characteristics with battery degradation. (D) The result of Pearson correlation analysis (battery #1). 

TABLE 2 Pearson correlation coefficient. 

Battery label 

#1 

FV1 

0.958 

FV2 

0.874 

FV3 

0.960 

FV4 

0.932 

FV5 

0.953 

FV6 

0.981 

#3 0.923 0.913 0.965 0.943 0.907 0.964 

#4 0.951 0.958 0.961 0.981 0.948 0.972 

#7 0.940 0.953 0.908 0.890 0.919 0.983 

#8 0.954 0.892 0.958 0.912 0.943 0.981 

from the DTV curve. The implementation of the DTV method does 
not require complex and expensive measurement instruments, only 
the battery voltage and surface temperature are needed, thus it has 
potential for practical applications. 

The technology route of extracting highly correlated features 
with battery degradation through signal analysis techniques and 
training and estimation through data-driven methods can achieve 
high-accuracy SOH estimation (Ma et al., 2022; Zhang et al., 2023). 
Lin et al. (2023) extracted multiple features based on ICA and 
voltage curves, and used an improved GPR model for SOH 
estimation. Xu et al. (2023) extracted features based on ICA and 
voltage and temperature curves, and estimated SOH using an 
ensemble learning framework. Lin et al. (2022b) used differential 
temperature capacity method for feature extraction and combined 
simulated annealing algorithm with support vector regression to 

estimate SOH. However, facing numerous features that can be 
extracted through signal analysis techniques, selecting the most 
relevant features is another challenge. Although correlation 
analysis methods can be used to select highly correlated features, 
the correlation analysis can only reflect the correlation between 
features and battery degradation throughout the entire lifecycle of 
the battery. The importance of the information contained in 
different features at different spatial and temporal scales for local 
changes varies widely, making it difficult to conduct refined research 
on them in practical applications. This can result in the problem of 
scattered attention of deep learning models, making it difficult to 
fully extract more information related to battery degradation from 
the data. 

In order to address the aforementioned issues and achieve high-
accuracy SOH estimation and improve the more comprehensive 
exploration and utilization of limited data, this paper proposes an 
SOH estimation method that combines DTV method and deep 
learning algorithm with the addition of an AM. Firstly, based on the 
degradation dataset of LIBs in the Oxford University database, data 
preprocessing and DTV analysis are performed. Peaks and valleys 
are extracted from the DTV curves as features and high-correlation 
features related to battery degradation are selected using the Pearson 
correlation analysis method. Then, a deep learning model is built 
based on Bi-LSTM and trained based on the selected features. Two 
layers of AM are added to the model to further explore the 
information contained in the data from both spatial and 
temporal scales, and focus on the important features. Finally, the 
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FIGURE 3 
The structural diagram of LSTM and Bi-LSTM. (A) The structural diagram of LSTM. (B) The structural diagram of Bi-LSTM. 

FIGURE 4 
The structural diagram of (A) Attention mechanism and (B) The whole deep learning model. 

trained model is applied to SOH estimation, and the proposed 
method is validated based on error analysis. The results show that 
the DTV analysis method can effectively extract features highly 
correlated with battery degradation from the data and can be 
combined with deep learning models to optimize the SOH 
estimation process, achieving high accuracy. Different features 
have varying degrees of correlation with battery degradation on 
the spatial and temporal scales, and the AM can effectively explore 
the information contained in the data during the local degradation 
process, focus on the most important information and effectively 
solve the problem of attention dispersion. In the CHAIN framework, 
the proposed model can achieve high-accuracy offline SOH 
estimation and has the potential for real-time online application, 
contributing to the development of the next-generation cloud BMS 
(Yang et al., 2020; Yang et al., 2021). 

The remaining sections of this paper are arranged as follows: 
Section 2 describes the battery degradation dataset, data processing 
and feature extraction process. Section 3 describes the principles of 
the model and algorithms used in this paper and provides a detailed 
description of the entire model framework. Section 4 validates the 

proposed method and analyzes the error. Section 5 summarizes the 
main conclusion of this paper. 

2 Degradation data and preprocessing 

2.1 Dataset description 

The lithium-ion battery degradation data set from the Oxford 
University database is utilized in this paper (Birkl, 2017a; Birkl, 
2017b). The whole data set contains data from 8 batteries. Which are 
labelled from #1 to #8. The technical specifications and experimental 
conditions of the batteries are listed in Table 1 in detail. Figures 1A, 
B describe the voltage, current and temperature data and battery 
capacity degradation curves. The battery #1, #3, #4, #7 and #8 are 
used for this paper, because other batteries did not fall below EOL, 
and could not be fully evaluated or the capacity curve drop sharply. 

The definition of SOH can be divided into the definition of 
capacity and the definition of internal resistance. The definition of 
SOH can usually be described as: 
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FIGURE 5 
Timeseries construction. 

Qaged
SOH (1)

Qnew 

REOL − R 
SOH (2)

REOL − Rnew 

Where Qaged represents the current maximum available battery 
capacity, Qnew the Initial maximum available battery capacity, REOL 

the internal resistance of the battery at the end of its lifespan, R the 
internal resistance of the battery of current state and Rnew the initial 
internal resistance. 

In this paper, the definition of SOH is selected from the perspective 
of capacity. Based on the data in the data set, the reference capacity is 
determined by Ampere-hour integration method. 

2.2 Data preprocessing 

Battery degradation is accompanied by microstructural changes, 
which in turn lead to entropy changes. DTV analysis can reflect 
information related to entropy changes during the degradation 
process of lithium-ion batteries. This method can establish a 
connection between macroscopic signals and microstructural 
changes by analyzing changes in temperature and voltage, and 
can be used to reflect battery degradation. The DTV methods 
could be calculated as follows: 

dT 
dt dT 

DTV (3)dV dV
dt 

Where T represents the battery surface temperature, and V the 
battery terminal voltage. 

During data collection, noise and outliers can be introduced due 
to fluctuations in the signal and sensor errors. As shown in 
Figure 1A, there is a large amount of noise in the temperature 
data. To address this issue, data preprocessing is performed. Firstly, 
the sampling interval is adjusted to avoid amplifying the impact of 
noise. A sampling interval of 20 s is chosen based on a balance 
between noise reduction and information loss. Secondly, an SG filter 
is applied to the temperature data for smoothing. The SG filter is 
well-suited for our application as it has an excellent ability to capture 

peaks and valleys in waveform. In our study, the peaks and valleys 
extracted from the DTV curve are used as features for subsequent 
analysis (Chen et al., 2004). The SG filter could be described as 
follows: 

j p 1 
y i( )  � Cjx i� + j� (4)

Ncj �−p 

Where y represents the smoothed signal, Cj the coefficient of the 
SG filter, Nc is equal to the smoothing window size (2p+1) and x the 
original signals. 

Based on the data processing steps described, the results are 
shown in Figures 1C, D. After the data preprocessing, the 
temperature data is significantly smoother, and the DTV curve 
has reduced noise. However, some noise still exists in the DTV 
curve, and the SG filter is used to further smooth the curve, as shown 
in Figure 1D, resulting in a smoother DTV curve. 

2.3 Features extraction and correlation 
analysis 

In this section, the feature extraction on the DTV curve obtained 
after data preprocessing is conducted. Figure 2A shows the changes in 
the DTV curve with battery degradation. It can be observed that with 
battery degradation, the peaks and valleys in the DTV curve experience 
significant shifts. The peak values of the two peaks decrease, and their 
positions shift higher, while the valley values decrease and their 
positions shift higher as well. These changes in peaks and valleys are 
strongly related to battery degradation, further demonstrating that the 
DTV method can reflect the micro changes in battery degradation 
through macroscopic signals and thus can be used as a tool to assist 
SOH estimation. Therefore, we extracted the peak and valley 
information from the DTV curve as features to input into the deep 
learning model for SOH estimation. A total of six features, including the 
peak values and positions of the two peaks and the valley values and 
positions of one valley, are extracted from the DTV curve. Figure 2B 
shows the schematic diagram of the feature extraction process. The 
mathematical expression of the feature can be described as follows: 
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FIGURE 6 
The framework of the proposed method. 

Vpeak Vi dDTV� dVi 0,andf Vi( )≥ f V( ),V∈ Vi−( 1 ,Vi+1 ) 
(5) 

DTVpeak f Vpeak�   (6) 
Vvally Vi dDTV� dVi 0,andf Vi( )≤ f V( ),V∈ Vi−( 1 ,Vi+1) 

(7) 

DTVvally f Vvally�   (8) 

Where f(·) is the mapping relationship of DTV and voltage. 
The changes in the extracted features are shown in Figure 2C, 

and further Pearson correlation analysis is performed on the 
extracted features to select highly correlated features to improve 
the estimation accuracy and training efficiency. The Pearson 
correlation analysis can be described as follows: �n

i 1(xi − x�)�yi − y�� 
(9)rxy �n

i 1(xi − x�)2 �n
i 1�yi − y��2 

where x and y are the variable and n the number of sample points. 
The results are shown in Figure 2D and Table 2, where  it  can  be  

observed that FV1, FV3, and FV6 exhibit high correlation on all batteries, 
with correlation coefficients above 90%. Particularly, for FV6, the 
correlation coefficient is above 95%. Therefore, we select FV1, FV3, 
and FV6 as features to be input into the model for SOH estimation, in 
order to improve estimation accuracy and training efficiency. 

3 Methodology 

3.1 Bi-LSTM network 

Battery degradation is a typical time series problem. RNN is a 
good choice for dealing with time series problems. However, in long-
term time series problems, RNN has the problems of gradient 
disappearance and gradient explosion. LSTM is a variant of 

RNN, and the main structure of LSTM is similar to RNN(Greff 
et al., 2017). The forgetting gate, input gate and output gate are 
added in the hidden layer, which can be better applied to long-term 
time series problems. The structure of LSTM unit is shown in 
Figure 3A. The calculation of each LSTM unit can be described 
as follows: 

Firstly, the LSTM units receive the xj and j−1 and the forgetting 
gate is used to control which information to be forgotten in the cell 
state: 

fj σ�Wf · hj−1, xj + bf  (10) 

Where σ is a nonlinear activation function named sigmoid. The 
sigmoid function will limit the value to the range of 0–1, which 
represents the forgotten ratio and update the unit status cj. 

Then, the input sequence data at current position is processed by 
the input gate and the input gate will determine which information 
to be updated and added to the cell state through the sigmoid 
function. The tanh function is used to generate new candidate 
vectors, and the information which to be reserved will be added 
to the cell state. The input gate is calculated as follows: 

ij σ Wi� · hj−1, xj + bi  

gj tanh Wg� hj−1, xj + bj  

Next, the unit state update from cj−1 to cj: 

(11) 
(12) 

cj cj−1 *fj + ij *gj (13) 

Where cj−1*f j is the information to be reserved and ij*gj is the 
new information to be added. The sum of the two information is the 
cell state of the current sequence. 

Finally, the sigmoid function determines which part of the 
information to be output, and the cell state is processed by the 
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FIGURE 7 
SOH estimation results under different data split proportion. (A) Estimation result with split proportion of 4: 6 (battery #1). (B) Estimation result with 
split proportion of 5: 5 (battery #1). (C) Estimation result with split proportion of 6: 4 (battery #1). (D) MAE and RMSE analysis. 

tanh function. The result of multiplying the two parts is the final 
output: 

oj σ�Wo · hj−1, xj + bo  (14) 
hj oj*tanh cj (15)�   

Where j is the new hidden state, and the cj is the unit state. 
The structure of Bi-LSTM is shown in Figure 3B, which consists 

of two independent LSTM networks. The input time series are fed 
into two LSTM neural networks in forward and backward order 
respectively. The output vectors from the two networks are 
concatenated to form the final feature representation for the 
current sequence position. The core idea of Bi-LSTM is to add 
information from both the future and the past to the features of 
current sequence position, thus combining the bidirectional 
correlations of the data to more effectively explore the time series 
features hidden in the data and achieve higher efficiency and 
superior performance compared to a single LSTM. In this paper, 
a deep learning model based on Bi-LSTM is constructed to achieve 
high-accuracy SOH estimation. 

3.2 Attention mechanism 

Using features highly correlated with SOH is crucial for 
achieving high-accuracy SOH estimation in deep learning 
models. Although correlation analysis methods can screen out 
features strongly correlated with SOH, they can only select these 

features throughout the entire life cycle of the battery, while these 
features have different impacts on the estimation results at local 
positions in spatial  and temporal scales.  However, deep learning 
models tend to disperse attention among various features, 
resulting in a lack of capturing important features. To address 
this issue, this paper introduces AM into the deep learning model 
to improve its performance. The AM assigns weights to the 
features to enable the model to focus more on important 
information by calculating the correlation between each 
element in the input sequence and assigning weights to each 
element (Vaswani et al., 2017). The input features pass through a 
fully connected layer to obtain a feature vector, which is then 
compared for similarity with itself to obtain the weight of each 
element. The weights of important features will be higher, while 
the weights of unimportant features will be lower. Finally, these 
weights are multiplied by the input features to obtain the newly 
weighted features. The structure of the AM is shown in Figure 4A, 
and the overall framework of the deep learning model with AM is 
shown in Figure 4B. The AM can be described as follows: 

et u tanh wht +( b) (16) 

at 
t 

exp et( ) � exp ej�   
j 1

(17) 

st 
i� athtt 1 

(18) 

Where u and w are the weight, b the bias, at the attention 
weight, ht the input vector of the attention layer, et the value of 
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FIGURE 8 
SOH estimation results with attention mechanism. (A) Estimation result with spatial attention (battery #1). (B) Estimation result with temporal 
attention (battery #1). (C) Estimation result with spatiotemporal attention (battery #1). (D) MAE and RMSE analysis. 

the hidden layer of attention layer and st is the output of the 
attention layer. 

The input features are firstly weighted by the spatial AM. The 
structure of the spatial AM is essentially a multi layer perceptron 
(MLP) network, and the parameters in the network are also 
trained during the model training process. The ht of the 
spatial AM is an vector of spatial scale between different 
features. Therefore, after passing through the spatial AM, the 
weights of the features can be adaptively adjusted at the spatial 
scale.  The new  features  are then input  into  the Bi-LSTM  network,  
which consists of two Bi-LSTM layers. A dropout layer is added 
to the model to prevent overfitting. The output state vectors from 
the Bi-LSTM network are then passed through the temporal AM. 
The temporal AM can adjust the attention level of the sequence 
adaptively through training. The ht of the temporal AM is an 
vector of temporal scale along the timeseries. Finally, the output 
of the temporal AM layer is fed into a Dense layer with a sigmoid 
activation function added. The output of the Dense layer 
represents the final estimated SOH. 

3.3 Input and output structure 

Figure 5 illustrates the structure of the input and output data. 
The data is constructed as a time series and input into the network. 

Firstly, the three features are taken and formed into a two-
dimensional matrix based on a fixed window length, which is 
called the time series length represented as N in the figure. This 
two-dimensional matrix represents the time series, and the 
window is moved downward based on a fixed step length.  The  
data is eventually divided into multiple time series. For the kth time 
series, the estimated target value is the SOH of the (k + N)-th cycle. 
Then, several time series are selected to form a three-dimensional 
tensor, and the number of selected time series is called the batch 
size. The constructed three-dimensional tensor is called a batch, 
which is input into the network for training based on the 
batch unit. 

3.4 Framework of the proposed SOH 
estimation model 

The overall framework of the proposed method is illustrated in 
Figure 6. The entire process is divided into four parts. Firstly, data 
preprocessing is performed, which is described in detail in 
Subsection 2.2. The preprocessed data is then used to calculate 
the DTV curve, which is further processed to extract the peaks and 
valleys of the DTV curve as features. The feature data is then 
constructed in a time-series format. Subsequently, the 
constructed time-series data is fed into a deep learning model for 
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FIGURE 9 
SOH estimation results of different batteries. (A) Estimation result of battery #3. (B) Estimation result of battery #4. (C) Estimation result of battery #7. 
(D) Estimation result of battery #8. (E) MAE and RMSE analysis of the model without AM. (F) MAE and RMSE analysis of the model with AM. 

FIGURE 10 
Validation of the robustness. (A) Estimation result of battery #1. (B) Estimation result of battery #3. (C) Estimation result of battery #4. (D) Estimation 
result of battery #7. (E) Estimation result of battery #8. (F) MAE and RMSE analysis. 
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FIGURE 11 
Leave-one-out cross-validation results. (A) Estimation result of battery #1. (B) Estimation result of battery #3. (C) Estimation result of battery #4. (D) 
Estimation result of battery #7. (E) Estimation result of battery #8. (F) MAE and RMSE analysis. 

training. The deep learning model is based on Bi-LSTM and includes 
dropout techniques to prevent overfitting. Two layers of AM are also 
incorporated to focus on the important information in the data for 
optimizing estimation accuracy. The RMSprop technique is utilized 
for optimization during the training process. Finally, the trained 
model is used for estimating the SOH and for error analysis. The 
estimated results are compared with the ground truth values and are 
quantitatively analyzed and compared using RMSE and MAE as 
evaluation metrics. The RMSE and MAE can be calculated as 
follows: 

1 N 

4.1 Estimation results of Bi-LSTM under 
different data split proportion 

In this subsection, the influence of the dataset split portions on the 
SOH estimation accuracy is studied to determine the optimal ratio that 
balances the accuracy and early estimation ability. The estimation results 
are shown in Figure 7. When the dataset is split into portions of 4:6, 5: 
5 and 6:4, the RMSE of the estimation results are below 0.8%, and the 
MAE are below 0.7%, demonstrating that the DTV method can establish 
a strong correlation with battery degradation and achieve high-accuracy 
SOH estimation when combined with deep learning methods. It can also �� �yk − y * (19)MAE be seen that with an increase in the amount of training data, the accuracykN 

k 1�� of SOH estimation gradually improves, as more training data allows the 
model to fully learn the distribution pattern of the data. Although more 
training data can improve the accuracy, it can greatly compromise the 

N1 
yk − y * �2 (20)k��RMSE 

N 
k 1 

early estimation ability of the model. Therefore, the choice of dataset split 
portions should balance both accuracy and early estimation ability. The*where yk represents the real value and y the estimated value.k split portions of 5:5 showed an significant improvement in the 
performance compared to 4:6, with an error improvement of 30.3%. 
However, the split portions of 6:4 showed only a small error 

4 Result and discussion improvement of 6.9% compared to 5:5, with a compromise in early 
estimation ability. Therefore, the dataset split portions of 5:5 is chosen for 

In this section, the proposed method is validated and error 
analysis is performed. First, the influence of the proportion of the 
training and testing set on estimation accuracy is studied to select the 
optimal data set split portions that balances accuracy and early 
estimation ability. Then, the optimization effect of applying the AM 
on the temporal and spatial scales for estimation accuracy is 
compared. Finally, the robustness of the proposed method is 
verified. 

the following experiments in this paper. 

4.2 Estimation result with attention 
mechanism 

In this section, the information contained in the features is 
further explored by incorporating the AM into the Bi-LSTM model. 
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Firstly, the effect of adding AM at different scales, including 
temporal, spatial, and spatiotemporal scales, are compared on a 
the battery #1 to capture the importance of information at different 
scales. Then, the proposed method is validated on other batteries. In 
this evaluation, the battery #1, #3, #4, #7 and #8 are used, because 
other batteries did not fall below EOL, and could not be fully 
evaluated, or the capacity curve drop sharply. 

Figure 8 shows the estimation results using Battery 1 with the 
AM added at different scales. The curve descriptions are the same as 
described in the previous subsection. It can be seen that the RMSE 
and MAE of the estimation results with AM added at spatial scale are 
0.503% and 0.442%, respectively. The RMSE and MAE of the 
estimation results with AM added at temporal scale are 0.405% 
and 0.328%, respectively. The estimation accuracy is higher than 
that without AM. This indicates that AM can further explore more 
information from the features and focus more on important features 
locally, thus improving estimation accuracy. Moreover, it is noted 
that the improvement in estimation accuracy by adding AM at 
temporal scale is greater than that at spatial scale. This indicates that 
the features selected by the correlation analysis method have small 
differences at spatial scale and have a good correlation with battery 
degradation. The RMSE and MAE of the estimation results with the 
addition of the AM on the spatiotemporal scale are 0.281% and 
0.233% respectively, and the estimation accuracy is higher than that 
of the estimation results with the application of the AM on the 
spatial or temporal scale alone. Compared with the model without 
the addition of the AM, the RMSE and MAE of the estimation results 
are reduced by 0.265% and 0.224% respectively, and the error 
improvement of the RMSE and MAE are 48.6% and 49% 
respectively, which indicates that the addition of the AM at 
spatiotemporal scale can fully combine the advantages of both 
spatial and temporal scales to achieve better optimization effects. 

Then, the proposed method is verified on different batteries, and 
the estimation results are shown in Figure 9. The results show that 
the proposed method achieved satisfactory estimation accuracy for 
all batteries, with RMSE below 0.6% and MAE below 0.5%. In 
particular, for battery #8, the RMSE and MAE are only 0.318% and 
0.251% respectively, and the error improvements are all about 10%. 
In conclusion, the AM can reasonably allocate weights to features 
with different importance at spatial and temporal scales, allowing 
the model to capture more important underlying information and 
achieve high-accuracy SOH estimation. 

4.3 Validation of robustness 

In this subsection, the robustness of the proposed method is 
validated, and the estimation results are shown in Figure 10. The 
blue dot line represents the real value of SOH, and the red line 
represents the estimated value of SOH. In the robustness validation, 
different starting cycles of the batteries are applied by discarding the 
first 20% of the data, and the validation was conducted on all 
batteries. The RMSE and MAE analysis are presented in Figure 10F. 
The results show that the RMSE and MAE of the estimation results 
are distributed around 0.25% and 0.2%, respectively, under different 
starting cycles of the batteries. The RMSE and MAE of the 
estimation results only differ by 0.1% compared to the normal 
condition, indicating that the proposed method exhibits stable 

performance and strong robustness under different starting cycles 
of the batteries. 

In this subsection, a cross validation method is also used to 
validate the proposed model. The specific approach is to use data 
from one battery as the test set, while data from other batteries as the 
training set. When dividing data on the same battery data, due to the 
similar data distribution, the high-precision estimation results may 
be caused by overfitting. By leaving a cross validation, the 
performance of the model can be more accurately verified and 
the limited amount of data can be fully utilized. Figure 11 shows 
the results of leaving a cross validation. The results show that the 
method proposed in this article still achieves high accuracy despite 
leaving a cross validation, with estimated RMSE below 0.5% and 
MAE below 0.4%. It is also noted that the accuracy of the estimation 
results on each battery has a small difference, indicating that the 
inconsistency between batteries has a small impact on the estimation 
results. It indicates that the method proposed in this article has 
strong generalization in situations with abundant data volume. 

5 Conclusion 

This paper proposes a data-driven method for estimating the SOH 
of LIBs. In practice, battery data is preprocessed through data cleaning, 
fixed sampling intervals and filtering. The DTV method is used to 
extract features from the data, and then feature selection is performed 
through Pearson correlation analysis. The deep learning model includes 
two Bi-LSTM layers and dropout technology to prevent overfitting. The 
temporal AM and spatial AM are added to the deep learning model to 
assign weights at different scales. Finally, the trained model is used for 
estimation, and RMSE and MAE are used as error indicators for error 
analysis. The results show that the proposed method can achieve high-
accuracy SOH estimation, with an RMSE of about 0.4% and an MAE of 
about 0.3%. Adding AM can bring error improvement about 10%, and 
the proposed method has strong robustness under different battery 
start-up cycles, with an RMSE and MAE difference of only 0.1% 
compared to the estimation results from 0 starting points. 

The main contributions of this paper are as follows: 
(1) The DTV analysis method can establish the connection 

between micro-phase transitions during battery degradation and 
macro signals, and obtain high-quality features strongly correlated 
with battery degradation through DTV analysis. (2) The AM is 
added to the deep learning model at both the temporal and spatial 
scales to assign weights, making the model more focused on the 
important parts of the features. (3) This model has high accuracy 
and strong robustness, with estimation errors within 0.3% in 
different start-up cycles. The proposed method has the potential 
for online applications under the CHAIN framework and can be 
combined with cloud BMS and end-cloud collaboration framework 
for further realization of high-accuracy and real-time battery SOH 
estimation in practical applications. 
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