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of Aerospace, Transport and Manufacturing (SATM), Cranfield University, Cranfield, 
UK, Roger Woodman, WMG, The University of Warwick, Coventry, UK, 
Stewart Birrell, National Transport Design Centre, Centre for Future Transport and 
Cities, Coventry University, Coventry, UK, and Mark T. Elliott, WMG, The University 
of Warwick, Coventry, UK 

Objective: Using brain haemodynamic responses to measure 
perceived risk from traffic complexity during automated driving. 

Background: Although well-established during manual 
driving, the effects of driver risk perception during automated 
driving remain unknown. The use of fNIRS in this paper for 
assessing drivers’ states posits it could become a novel method 
for measuring risk perception. 

Methods: Twenty-three volunteers participated in an 
empirical driving simulator experiment with automated driving 
capability. Driving conditions involved suburban and urban 
scenarios with varying levels of traffic complexity, culminating in 
an unexpected hazardous event. Perceived risk was measured 
via fNIRS within the prefrontal cortical haemoglobin oxygen-
ation and from self-reports. 

Results: Prefrontal cortical haemoglobin oxygenation levels 
significantly increased, following self-reported perceived risk and 
traffic complexity, particularly during the hazardous scenario. 

Conclusion: This paper has demonstrated that fNIRS is 
a valuable research tool for measuring variations in perceived risk 
from traffic complexity during highly automated driving. Even 
though the responsibility over the driving task is delegated to the 
automated system and dispositional trust is high, drivers perceive 
moderate risk when traffic complexity builds up gradually, re-
flected in a corresponding significant increase in blood oxygena-
tion levels, with both subjective (self-reports) and objective 
(fNIRS) increasing further during the hazardous scenario. 

Application: Little is known regarding the effects of 
drivers’ risk perception with automated driving. Building upon 
our experimental findings, future work can use fNIRS to in-
vestigate the mental processes for risk assessment and the 
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effects of perceived risk on driving behaviours to promote the 
safe adoption of automated driving technology. 

Keywords: aggressive and risky driving, autonomous driving, 
cognitive neuroscience, human-automation interaction, risk 
assessment 

INTRODUCTION 

Assessing drivers’ functional state is es-
sential to ensure the safe adoption of auto-
mated driving technology (Alrefaie et al., 
2019; Lohani et al., 2019; Perello-March 
et al., 2021; Wörle et al., 2019). Driver mon-
itoring systems (DMS) will soon be a manda-
tory safety feature for new production vehicles 
in Europe (EuropeanCouncil, 2019) and  the  
US (NHTSA, 2022). 

Current literature mainly relies on gaze-
behaviour and well-established peripheral 
physiology metrics such as heart rate variability, 
respiration, blood pressure, and skin conduc-
tance (Dong et al., 2011; Lohani et al., 2019; 
Melnicuk et al., 2021). However, driving and 
supervising an automated system are primarily 
cognitive and executive tasks. Much relevant 
data is overlooked when neurophysiology and 
neural activity are not measured. Electroen-
cephalography (EEG) is the most well-
established neuroimaging technique in driving 
research (Lohani et al., 2019; Seet et al., 2020; 
Solı́s-Marcos et al., 2017, 2018), yet the use of 
functional near-infrared spectroscopy (fNIRS) 
in driving research has been increasing over the 

Copyright © 2023, The Author(s). recent years (Balters et al., 2021). Current fNIRS 
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devices are portable, wearable, lightweight kits, 
robust to movement artefacts, and allow flexible 
configurations. In addition, fNIRS provides 
good spatial resolution but slower temporal 
resolution than EEG (Balters et al., 2021), 
making fNIRS an ideal technique for naturalistic 
research. 

Driving research using fNIRS has primarily 
focused on measuring mental workload and 
fatigue from manual driving (Foy & Chapman, 
2018; Z.  Li et al., 2009; Lin et al., 2020; Lohani 
et al., 2019), but little work has been conducted 
in the context of driving automation. Only a few 
studies have used fNIRS to explore constructs 
such as trust in automation in a driving simulator 
(Perello-March et al., 2023), where the authors 
found lower prefrontal activation during haz-
ardous events for participants trusting the 
automated vehicle compared to those dis-
trusting. Another driving simulator study 
(Balters et al., 2017) indicated that drivers’ 
prefrontal activity tends to decrease with 
continuous exposure to automated driving, 
a phenomenon described as habituation. The 
habituation to automation increases with 
higher levels of automation. Relatedly, Sibi 
et al. (2016) observed a similar decrease in 
prefrontal activity with automation engaged 
compared to when driving manually. 

These studies suggest that reliable driving 
automation decrease cortical activity. In short, 
relegating drivers to a mere monitoring role of 
a ‘reliable’ system leads to underload and a lack 
of cognitive capacity to perform an optimal take-
over of control – also known as being out-of-the-
loop (Merat et al., 2019). This phenomenon 
could be attributed to situation awareness 
worsening as the automated system assumes 
greater control of the driving task (Endsley, 
2017). Poor situation awareness and reduced 
monitoring behaviours due to the shared control 
between the driver and the automation may put 
drivers at risk when unexpected take-over re-
quests are issued, especially in conditionally 
automated driving (SAE Level 3) (SAE 
International, 2021). 

We suspect this poor situation awareness is 
related to a lower perception of risk resulting 
from the shared control of the driving task. A 
lack of risk perception from automated 

driving is not trivial since it can lead to 
overtrust and automation misuse (Kundinger 
et al., 2019; Parasuraman & Riley, 1997), 
which may compromise safety. Indeed, age-
related risky behaviours have previously been 
explored in traffic psychology research with 
fNIRS (Foy et al., 2016). The authors found 
that reduced prefrontal cortex activity during 
several simulated driving tasks was associ-
ated with lower risk perception in young 
males compared to females and older drivers. 
The authors attribute these results to a lack of 
prefrontal maturation in younger male 
drivers. 

Extensive traffic behaviour and psychology 
work has explored risky driving and driver 
hazard perception from personality traits (Du 
et al., 2020; Jonah, 1997). In short, driver hazard 
perception has been defined as drivers’ situation 
awareness for potentially dangerous incidents in 
the traffic environment. That is the ability to 
detect dangerous traffic situations (Horswill & 
McKenna, 2004). Effective hazard perception 
can be considered a central executive task based 
on a dynamic mental model of the driving en-
vironment used for actively searching dangerous 
situations. A mentally effortful and proactive 
process that requires working memory and at-
tentional resources (Horswill & McKenna, 
2004). 

Another related concept that is often con-
founded with hazard perception is risk per-
ception. It is the subjective evaluation of how 
well drivers think they – or the driving 
automation – can handle the situation and apply 
an appropriate action (Borowsky & Oron-
Gilad, 2013). Risk perception has been found 
to have two major components: (1) the likeli-
hood of a crash and (2) the severity outcomes of 
a crash  (Borowsky & Oron-Gilad, 2013; Riley, 
1996). To summarise, hazard perception is the 
skill to detect hazards in real-time, whilst risk 
perception is the evaluation of the chances of 
being involved in a crash in a certain situation. 
Both have strong ties to situation awareness 
and trust in automation (Endsley, 1995; Muir, 
1994). 

In a video-based driving hazard detection and 
evaluation task experiment, Borowsky & Oron-
Gilad (2013) found that drivers would put more 



3 PERCEIVED RISK, FNIRS, AUTOMATED DRIVING 

weight on the likelihood of a crash in real-time 
driving. On the other hand, they would pay more 
attention to the severity of the outcome of a crash 
when required to evaluate risk in hindsight. The 
authors argue that under the time pressure of 
driving, drivers usually focus on preventing the 
crash (i.e., the likelihood of the crash, the first 
component of risk perception) rather than 
thinking of the severity outcomes of the crash 
(i.e., the second component of risk perception). 
However, whether these findings are transfer-
able to highly automated driving (HAD, SAE 
Level 4) remains unclear, where drivers are 
released from the responsibility and time con-
straints of real-time driving. To put it in other 
words, are these components of risk perception 
equally manifested during HAD? Or instead, 
drivers remain out of the loop since they are not 
in control? 

Taking the notion that hazard perception is 
a mentally effortful proactive process involving 
working memory and attentional resources 
(Horswill & McKenna, 2004) and that hazard 
perception is a necessary condition for risk 
perception to exist (Borowsky & Oron-Gilad, 
2013), we considered that cortical neuro-
physiology could be an adequate research tool 
to investigate this phenomenon. In particular, 
cortical haemoglobin oxygenation levels 
could indicate the underlying central executive 
cognitive processes involved in real-time risk 
perception assessments. Previous work using 
fNIRS has evidenced that cortical haemoglo-
bin oxygenation levels indicate different levels 
of trust during highly automated driving 
(Perello-March et al., 2023). Hence, since risk 
perception is a major factor affecting trust (Lee 
& Moray, 1992; Muir, 1994; Riley, 1996), 
cortical haemoglobin concentrations could 
also be used to measure risk perception in this 
context. 

Borowsky & Oron-Gilad (2013) considered 
several environmental characteristics, such as 
the nature of the driving environment – for 
example, urban or residential, as well as traffic 
complexity as the combination of environmental 
features – for example, traffic flow and volume 
and lane changes among other road users (Teh 
et al., 2014) to be hazard instigator types, and 
have been found to increase drivers’ stress levels 

(Foy & Chapman, 2018; Healey & Picard, 2005; 
Perello-March et al., 2021). These hazard in-
stigator types can appear in different states of 
progression – that is, materialised (require an 
evasive response), hidden unmaterialised (ob-
scured by other road objects but not require 
a response), and potential unmaterialised (visi-
ble but not require response). Thus, we have 
conducted a high-fidelity driving simulator 
study with two types of hazard instigators: 

(1) Potential unmaterialised hazards across suburban 
and urban driving conditions with moderate 
levels of traffic complexity slowly building up. 

(2) A materialised hazard in a quickly escalating 
driving scenario requiring an evasive manoeuvre. 

We expect cortical prefrontal oxygenation 
levels to increase if drivers actively search for 
potential hazards and evaluate the likelihood and 
severity of the outcomes of a potential crash. On 
the contrary, low perception of risk should result 
in a decrement in prefrontal cortical activity. 
Based on the findings described in the literature 
review, we hypothesise: 

Hypothesis 1: Prefrontal haemoglobin oxy-
genation levels during suburban and urban 
driving conditions with moderate levels of traffic 
complexity and potential un-materialised haz-
ards will not differ from baseline resting and 
a recovery period due to a lack of situation 
awareness and perceived risk. 

Hypothesis 2: The materialised hazard in 
a quickly escalating driving scenario requiring 
an evasive manoeuvre will produce variations in 
prefrontal haemoglobin oxygenation compared 
to the baseline resting and recovery period due to 
perceived risk. 

METHOD 

Participants 

A convenience sample of twenty-three vol-
unteers was recruited to participate in this ex-
periment. Three participants were excluded from 
the analysis as they dropped out from the ex-
periment due to motion sickness, with the data of 
20 participants analysed (10 female, Mage = 
24.60, SD = 3.91). All had held a UK-EU 



4 nn n - Human Factors 

driving license for an average of 5.30 years 
(SD = 4.18) and an average driving experience 
of 6780 miles/year (SD = 6140.08). Participants 
were recruited from the University of Warwick 
(UK), including undergraduate and postgraduate 
students and professionals. Recruitment and 
data collection procedures received approval 
from the University of Warwick’s Biomedical 
and Scientific Research Ethics Committee. 
Participants were free to withdraw at any point 
and did not receive compensation. 

Driving Simulator 

The experiment took place in the driver-in-
the-loop 3xD driving simulator at WMG, the 
University of Warwick. The 3xD (Figure 1) is  
a fixed-base high-fidelity driving simulator with 
a whole-body Range Rover Evoque and 8 

Figure 1. Snapshot of the driving simulator and the 
virtual environment projected on a curved screen. 

projectors generating a 360° image projected 
into a cylindrical screen 8 metres in diameter and 
3 meters in height. The simulated driving au-
tomation is capable of lateral and longitudinal 
control, adapting to speed limits, queuing 
leading vehicles, maintaining safe distances, 
emergency braking, and overtaking slower/ 
stopped vehicles for predefined use cases. The 
road environment sound and motion vibration 
are played stereo via 2 × 20 W speakers. 

Functional Near-Infrared Spectroscopy 

Neurophysiological data was obtained from 
the prefrontal cortex with a NIRSport CW-NIRS 
device (NIRx Medical Technologies LLC, USA) 
(Figure 2), using NIRStar acquisition software 
(CA, USA; version 15.0). NIRSport is a non-
invasive wearable device consisting of eight 
sources and seven detectors sampling at a fre-
quency of 7.8125 Hz. The sources simulta-
neously emit infrared signals of two distinct 
wavelengths, 760 nm and 850 nm, allowing 
quantification of oxygenated haemoglobin 
(HbO), deoxygenated haemoglobin (HbR), and 
total haemoglobin (HbT = HbO + HbR). Both 
chromophores can be differentiated when light 
attenuation is measured at two or more wave-
lengths due to their differential absorption 
spectra in the near-infrared spectrum (600– 
950 nm). 

Plastic spacers located at a distance of 3 cm 
between each source and detector pair constitute 
a recording channel, thus resulting in 22 recording 

Figure 2. Channels montage and representation of the whole setup device – in our case, 
the hardware was placed behind the passenger seat. 
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channels. Channels were mounted within the 
Brodmann areas coordinate space for consistency 
across head size variation using the fNIRS Op-
todes’ Location Decider (fOLD), which is a tool-
box for probe arrangement guided by brain regions 
of interest. The toolbox automatically decides 
optodes positions based on 10–10 and 10–5 
systems according to a set of brain regions of 
interest (Zimeo Morais et al., 2018). These co-
ordinates allow subsets of fNIRS channels to di-
rectly measure particular regions of interest (ROIs) 
(Table 1) 

Questionnaires 

Subjective measures included a bespoke risk 
perception questionnaire comprising two items 
which were asked after completing the trial: 

(1) Did you feel any sensation of risk or threat from 
the whole scenario? 

TABLE 1. List of Channels and Regions of Interest 

Source Detector Channel Brodmann Area 

1 1 1 8 right 
1 3 2 -
2 1 3 8 right 
2 2 4 8 left 
2 4 5 8 left 
3 2 6 8 left 
3 5 7 44 left 
4 1 8 8 right 
4 3 9 9 right/46 right 
4 4 10 9 left/9 right 
4 6 11 9 right 
5 2 12 -
5 4 13 9 left 
5 5 14 44 left/45 left 
5 7 15 10 left 
6 3 16 46 right 
6 6 17 10 right/46 right 
7 4 18 9 left 
7 6 19 10 right 
7 7 20 10 left 
8 5 21 45 left 
8 7 22 45 left/46 left 

(2) Did you feel any sensation of risk or threat from 
the traffic accident at the end? 

These were rated on a Likert scale ranging 
from 1 (not at all) to 7 (extremely). 

Current validated measures for hazard per-
ception are image/video-based tests in which 
participants are asked to detect promptly potential 
hazards from several road scenarios (Joanne et al., 
2010; Malone & Brünken, 2016). Hazard per-
ception performance is measured by latency (re-
sponse time) and accuracy (success/failure to 
detect). However, to the authors’ knowledge, no 
existing validated self-reported tools for risk 
perception assessment in the driving context exist. 

Li et al. (2019) used the scale from Rajaonah 
et al. (2008) to assess risk perception associated 
with trusting in automation. Even though both 
studies reported significant effects on risk per-
ception, we did not use this scale because it 
needs to be validated and measures perceived 
situational and relational risk. In our experiment, 
we were interested in comparing perceived sit-
uational risk with the hazardous event during the 
automated driving scenario. Thus, this would 
have implied reporting perceived risk at the end 
of each condition, which we considered was 
contraindicated due to our continuous driving 
experimental design and as the hazardous event 
occurred immediately after the automated 
driving conditions. Stopping the scenario im-
mediately before the Driving Hazard event could 
have affected the realism of the scenario and any 
neurophysiological reactions. 

In addition, the Trust in Automated Systems 
Scale (Jian et al., 2000) was included to evaluate 
the perceived risk’s impact in building trust in 
automation. The scale was rated before and 
immediately after the trial was completed. 

Experimental Procedure 

Upon arrival, participants were guided into 
the simulator control room, where they were 
briefed on lab safety procedures and filled in the 
consent form and demographic inventories. 
Participants were then guided inside the driving 
simulator. They were informed that the experi-
ment would start by recording their resting 
physiological state baseline for 4 minutes, and 
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after that, the driving scenario would begin. 
They were asked to remain seated in the driver’s 
seat, not move excessively, to breathe normally, 
and stay relaxed during the baseline recording. 
Participants were advised that the experimenter 
would inform them of the start and end of the 
baseline recording. The driving simulator lights 
were switched off, the room was silent, and 
driving scenarios were not projected on the 
screen. The fNIRS data recording hardware was 
placed in a backpack behind the driver’s seat 
(Figure 3). The fNIRS headset was attached 
when the participant was seated and calibrated to 
start the baseline recording. After recording the 
baseline, the automated driving scenarios lasted 
approximately 5 minutes. The total duration of 
the experiment was 11 minutes and 30 seconds. 

Participants were instructed to sit in the 
driver’s seat but were not explicitly asked to 
monitor the environment. Instead, they were 
asked not to engage in the driving task. The 
rationale for doing this was that they were 
about to test a highly automated vehicle that 
they did not need to drive manually, nor would 
they be requested to take over. Participants 
were not free to perform other tasks, as this 
could disrupt their situation awareness or af-
fect their neurophysiology. 

The automated driving scenarios were split 
into two segments. An initial two-minute 
suburban driving scenario labelled Driving 
Condition 1 was split into 30-second blocks 

Figure 3. fNIRS equipment. In our experiment, we 
attached the backpack to the back of the driver’s seat. 
Source: nirx.net. 

for fNIRS analysis, with interblock intervals 
of 15 seconds (Figure 4). These segments were 
thus referred to as DC1.1, DC1.2, and DC1.3. 
Driving scenarios started with the ego vehicle 
stopped at a red traffic light  at  a  five-lane 
roundabout, which carries traffic to and from 
the highway to the suburbs and the city centre. 
This initial portion of the scenario lasted 
60 seconds and served as a familiarisation so 
participants could adjust to the driving sim-
ulation. The ego vehicle took the third 
roundabout exit leading to a straight dual 
carriageway, separated by a central reserva-
tion. Speed  was limited  from 30 to 50 mph.  
Surrounding traffic levels were low (<5 road 
users per minute), and weather conditions 
were cloudy. Approximately 1 minute later, 
the ego vehicle entered the suburbs. This 
layout consisted of two lanes passing through 
residential areas at a maximum of 30 mph, 
including several left and right turns and give-
way exits. Oncoming traffic increased to 
medium levels (<20 road users per minute), 
including pedestrians, cyclists, and parked 
cars, on the roadside and driveways. 

The simulation continued with a two-minute 
city centre scenario, denoted as Driving Con-
dition 2, that is, DC2.1, DC2.2, and DC2.3, as 
these were also split into 30-second blocks with 
interblock intervals of 15 seconds (Figure 3). In 
this scenario, the layout changed to a ‘high 
street’ area surrounded by commercial build-
ings, signs, and billboards. It also implied higher 
levels of moving pedestrians and vehicles, in-
cluding vans and buses, stopped on the 
roadside – which the vehicle had to overtake – 
and T-junctions with traffic approaching from 
both directions (between 20 and 40 road users 
per minute). The speed limit was 30 mph, and 
the weather shifted to heavy rain, degrading the 
visual range. 

Finally, the Driving Hazard event occurred 
when leaving the city centre to enter the suburbs 
again, on the approach of a T-junction, in 
a residential area from a straight two-way lane. 
This event was the sudden appearance of 
a heavy single-cabin semitrailer truck, which 
accelerated into the scene at high speed (60 mph) 
from the left side of the T-junction ahead, 
moving sideways and heading directly towards 

http://nirx.net
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the ego vehicle. The ego vehicle performed 
a sudden evasive manoeuvre to avoid the trailer, 
steered to the right side and collided with 
a garden fence. This sequence (i.e., from leaving 
DC2 to the end of the crash) occurred over 
30 seconds. After the hazardous event, partic-
ipants remained in the vehicle with the scenario 
displayed on-screen for 2 minutes to record 
a postevent recovery. Afterwards, the experi-
menter entered the simulator and accompanied 
them back into the control room to fill in the risk 
perception and the trust in automation scale. 

Data Preprocessing 

Raw fNIRS data were preprocessed using 
HomER 3 (Huppert et al., 2009) scripts running 
on MATLAB R2019a (Mathworks Inc.) ac-
cording to the current recommendations for 
preprocessing fNIRS data (Pinti et al., 2019) 
(Table 2). For current best practices and publi-
cation guidelines see Yücel et al., 2021. Cor-
rected optical density data were then converted 
to HbO, HbR, and HbT concentrations using the 

TABLE 2. Data Preprocessing 

modified Beer–Lambert law. Once optical 
density concentrations were calculated, data was 
block-averaged and exported as haemodynamic 
response function (HRF) means. 

Data Analysis 

Block-averaged HbO and HbR values from 
HomER 3 were exported in excel files con-
taining HRF means for each channel, condition, 
and participant. The underlying ROIs were 
determined using the NIRS Brain AnalyzIR 
toolbox (Santosa et al., 2018) to calculate the 
corresponding anatomical labels for each posi-
tion. The toolbox creates a variable that lists the 
channels and BAs covered by the probe and the 
relative ‘weights’ for each channel and BA. The 
weights for each BA add up to 1. The channel 
with the most sensitivity to a BA has the highest 
weight for that area. The relative weight is 
a helpful metric, but it does not give the com-
plete picture, so we also extracted a ‘depth’ 
value for each channel and BA. Depth values 
represent the distance on average between the 

Step Description Function Input Values 

1 Remove channels in which the signal was too hmrRPruneChannels dRange = 1 × 104 

weak, too strong, or their standard 1e + 07 
deviation was too great SNRthresh = 5 

SDrange = 0.0 to 
45.0 

2 Transforms fNIRS raw data into optical hmrRIntensity2OD None 
density 

3 Identifies and corrects motion artefacts hmrRMotionCorrectPCArecurse tMotion = 0.5 
tMask = 1 
STDthresh = 20 
AMPthresh = 5 
nSV = 0.97 
maxIter = 5 

4 Eliminates noise from physiological activity, hmrRBandPassFilt hpf = 0.01 
low-frequency signal drifts or machine lpf = 0.5 
noise. 

5 Converts optical density to concentrations hmrROD2concNew ppf = 1 (760 nm) 1 
(850 nm) 

6 Calculates the block average of the given hmrR_BlockAvg None 
conditions 
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channel and the BA – that is, the further the 
distance, the lower the likelihood that the 
channel captures that BA. Therefore, we se-
lected up to three channels accounting for at 
least a combined relative weight of 0.80 (i.e., 
covering at least 80% of a particular ROI) and 
for the lowest combined depth value (i.e., the 
smallest combined distance on average). 

The rationale for not averaging all channels 
with a relative weight greater than 0 for a given 
BA is that some values are too low. If too many 
channels are averaged together, the response will 
be negated. Following Wiggins et al. (2016), we  
established averaging only up to 3 channels 
together. The most sensitive channels of each 
ROI were grouped. This led to 10 ROIs: Bi-
lateral BAs 08, 09, 10, and 46, and left BA44 
and 45. Having grouped the relevant channels 
into ROIs, values were averaged within each 
ROI for each experimental condition, resulting 
in seven means (one per experimental condition) 
per participant for each ROI and each chro-
mophore (Table 1). These concentration values 
were then standardised to enable interindividual 
and intraindividual comparisons using Z-scores 

(M = 0; SD = 1). Each single mean concentration 
value was then transformed into Z-scores against 
the mean group baseline value and its standard 
deviation (i.e., Z = (X – baseline mean)/baseline 
SD) (Table 3). Data standardisation is a common 
procedure among fNIRS studies to allow for 
interindividual comparisons in parametrical 
statistical analysis using block-averaged values 
(Durantin et al., 2014; Leon-Dominguez et al., 
2014; Lin et al., 2020; Minematsu et al., 2018; 
Roche-Labarbe et al., 2008; Tanida et al., 2004; 
Verdière et al., 2018). 

The analysis of variance (ANOVA) is 
a common technique to determine localised 
brain activation based on changes in simulta-
neous HbO and HbR concentrations in repeated 
measures and block designs (Balters et al., 2021; 
Tak & Ye, 2014). Although it is common in the 
literature to report only HbO, HbR or HbT, the 
haemodynamic response is bi-dimensional. 
HbO and HbR usually correlate negatively 
during brain stimulation because increased 
blood flow produces an increase in oxygenated 
haemoglobin and a decrease in deoxygenated 
haemoglobin (Fallgatter & Strik, 1998; 

TABLE 3. Data Analysis 

Step Description Function Criteria 

1 Determining underlying ROIs for 
each channel 

2 Determining sensitivity for each 
channel using relative weights and 
depth values 

3 Determining most sensitive channels 
combined for each ROI 

4 Averaging most sensitive channels for 
each ROI and for each 
experimental condition 

5 Standardising individual mean HRF 
concentrations 

5 Test for normality assumption 
6 Test for sphericity assumption 
7 Test for main statistical effects and 

interactions using mixed repeated-
measures ANOVA 

8 Follow-up pair-wise comparisons 

nirs.util.converlabels2roi 

nirs.util.depthmap 

Mean 

Z = (X  – baseline mean)/ 
baseline SD 

Shapiro–Wilk 
Mauchly 
Analysis of variance 

Bonferroni correction 

Up to three channels with the 
highest relative weight and 
lowest depth values 

p > 0.05 
p > 0.05 
p < 0.05 

p < 0.05 
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Mehagnoul-Schipper et al., 2002; Schroeter 
et al., 2002; Taga et al., 2003). Nonetheless, 
since these features may not necessarily be re-
ciprocal, several authors have argued that inter-
pretations based exclusively on one chromophore 
would be incomplete and advocate reporting both 
features in tandem (Liu et al., 2016; Obrig, 2010; 
Quaresima et al., 2012). Therefore, following 
these recommendations, repeated measures 
ANOVAs were conducted to determine changes 
in haemoglobin concentrations on each chro-
mophore separately. 

HbO, HbR, and HbT mean HRF concen-
trations grouped in ROIs were imported and 
analysed with IBM SPSS Statistics 26 software. 
The significance level was set at α < 0.05. The 
Shapiro–Wilk’s test (p ≥ 0.05) was used to assess 
normality assumption violations, and Mauchly’s 
test was used to assess the assumption of 
sphericity. Thus, repeated-measures ANOVAs 
were conducted for each ROI individually (i.e., 
BAs 8, 9, 10, and 46 bilateral, plus BAs 44 and 
45 on the left hemisphere). Main effects and 
interactions were followed-up by Bonferroni-
corrected pair-wise comparisons. 

RESULTS 

This block design experiment investigated 
whether variations in perceived risk from either 
slowly evolving or rapidly evolving driving 
conditions would produce observable changes in 
neurophysiology. Two participants were ex-
cluded from the analysis due to significant noise 
in raw data (N = 18). 

Hypothesis 1 – Perceived Risk From 
Slowly Evolving Conditions 

This hypothesis tested whether slow changes 
across Driving Conditions would produce ox-
ygenation concentration variations within par-
ticipants. We ran a repeated-measures ANOVA 
with 8 levels (BL, DC1.1, DC1.2, DC1.3, 
DC2.1, DC2.2, DC2.3, and Recovery; see 
Figure 4) on HbO, HbR and HbT, but HbR did 
not report any statistically significant effects. 

A main effect for Driving Conditions was ob-
served in the left orbitofrontal cortex (BA10-L) for 
HbO (F (7, 119) = 2.330, p = 0.029, η2p = 0.121, 

Figure 5). Post hoc tests indicated an increase in 
oxygenation from BL (0.000 ± 1.000) to DC2.1 
(1.067 ± 0.880, p = 0.020). 

BA45, located in the left ventrolateral cortex, 
reported a main effect for Driving Conditions on 
HbO (F (7, 119) = 2.197, p = 0.039, η2p = 0.114, 
Figure 5). Post hoc tests indicated an increase in 
oxygenation from BL (0.000 ± 1.000) to DC2.1 
(1.093 ± 0.660, p = 0.011). Furthermore, HbT 
levels also varied within Driving Conditions (F (7, 
119) = 2.827, p = 0.032, η2p = 0.143, Figure 5), 
with post hoc comparisons revealing an increase 
from BL (0.000 ± 1.000) to DC1.2 (0.829 ± 0.671, 
p = 0.039) and DC2.1 (1.061 ± 0.554, p = 0.008). 

BA46-L, located in the left dorsolateral cortex, 
reported a main effect for Driving Conditions on 
HbT (F (7, 119) = 2.902, p = 0.037, η2p = 0.146, 
Figure 5), with post hoc comparisons revealing an 
increase from DC1.3 (0.372 ± 0.592) to DC2.1 
(1.006 ± 0.462, p = 0.049).  

A further exploration with participant sex as 
independent variable reported a main effect on the 
right anterior premotor cortex (BA08-R) for HbT 
(F (1, 16) = 4.541, p = 0.049, η2p = 0.221). Pair-
wise comparisons revealed that Women registered 
significantly higher levels of HbT (0.199 ± 0.407, 
p = 0.011) than Men  (�1.390 ± 1.609) during the 
postevent recovery period Figure 6. 

Hypothesis 2 – Perceived Risk From 
Rapidly Evolving Conditions 

The second hypothesis investigated whether 
the rapidly evolving Driving Hazard event 
would produce observable effects in oxygena-
tion concentrations within participants. To an-
alyse the effect of the rapidly evolving Driving 
Hazard event (H2), we ran a repeated measures 
ANOVA with three levels (BL, Driving Hazard, 
and Recovery). 

Strong evidence in favour of H2 was found 
across HbO and HbT; however, HbR did not report 
any statistically significant effect. A main effect for 
Driving Hazard on HbO (F (2, 34) = 4.418, 
p = 0.020, η2p = 0.206) and HbT (F (2, 34) = 3.470, 
p = 0.043, η2p = 0.170) was found on BA09-R, but 
these effects diminished in post hoc tests. 

Lateralised orbitofrontal activation was observed, 
with BA10-R reporting a main effect of Driving 
Hazard on HbO (F (2, 34) = 5.846, p = 0.007, η2p =  
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0.256, Figure 7) and post hoc tests revealing an 
increase from BL (0.000 ± 1.000) to Hazard 
(1.451 ± 1.661, p = 0.021). HbT also showed this 
effect (F (2, 34) = 4.118, p = 0.025, η2p = 0.195), 
although diminishing with post hoc tests. 

BA44 reported a main effect of Driving Hazard 
on HbO (F (2, 34) = 6.968, p = 0.007, η2p = 0.291, 
Figure 7) with post hoc tests revealing an increase 
from BL (0.000 ± 1.000) to Hazard (1.145 ± 1.530, 
p = 0.019). HbT seconded this effect (F (2, 
34) = 6.691, p = 0.011,  η2p = 0.282, Figure 8), with 
post hoc tests revealing a similar increase from BL 
(0.000 ± 1.000) to Hazard (1.111 ± 1.579, 
p = 0.030).  

BA45 reported a main effect of Driving 
Hazard on HbO (F (2, 34) = 10.950, p < 0.001, 
η2p = 0.392, Figure 7) with post hoc tests re-
vealing an increase from BL (0.000 ± 1.000) to 
Hazard (1.387 ± 1.455, p = 0.002), and followed 
by a decrease from Hazard to Recovery 
(0.436 ± 1.060, p = 0.038). HbT seconded this 

effect (F (2, 34) = 7.559, p = 0.002, η2p = 0.308, 
Figure 8), with post hoc tests revealing a similar 
increase from BL (0.000 ± 1.000) to Hazard 
(1.162 ± 1.503, p = 0.013). 

The dorsolateral prefrontal cortex showed bi-
lateral activity during the Driving Hazard event. 
BA46-L reported a main effect of Driving Hazard 
on HbO (F (2, 34) = 11.743, p < 0.001, η2p = 0.409, 
Figure 7) with post hoc tests revealing an increase 
from BL (0.000 ± 1.000) to Hazard (1.434 ± 1.227, 
p = 0.002), and followed by a decrease from Hazard 
to Recovery (0.427 ± 0.916, p = 0.017). HbT se-
conded this effect (F (2, 34) = 9.008, p = 0.001, 
η2p = 0.346, Figure 8), with post hoc tests revealing 
a similar increase from BL (0.000 ± 1.000) to 
Hazard (1.356 ± 1.386, p = 0.009), and a posterior 
decrease from Hazard to Recovery (0.467 ± 0.898, 
p = 0.046). BA46-R reported a main effect of 
Driving Hazard on HbO (F (2, 34) = 5.760, 
p = 0.017, η2p = 0.253), although fading away with 
post hoc comparisons. 

Figure 4. Experimental conditions in order of occurrence. Shaded boxes indicate data 
analysed. 

Figure 5. HbO levels in BA10-left and BA45-left (top), and HbT levels in BA45-left, BA46-left (bottom); 
across moderate risk driving conditions. Asterisks (�) indicate main effects for condition. Mean is indicated 
by (x). Error bars indicate standard error. 
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Figure 6. HbT levels in BA08 – right between men and women across moderate traffic 
complexity driving conditions. Double asterisks (��) indicate main effects between 
subjects. Mean is indicated by (x). Error bars indicate standard error. 

Finally, a further exploration with sex as in-
dependent variable reported a main effect for 
HbT in the right dorsolateral prefrontal cortex 
(BA46-R) (F (1, 16) = 5.590, p = 0.031, η2p =  
0.259 Figure 9); however, this effect diminished 
after pair-wise comparisons. Nonetheless, it is 
worth noting that descriptive data indicate higher 
levels of HbT on women (1.142 ± 1.088) than 
men (0.380 ± 1.274) during the event. 

Psychometric Results 

Finally, a Wilcoxon signed-rank test reported 
a main effect for self-reported risk perception 
(Z = 194.5, p = 0.001), with perceived risk 
during the Driving Hazard event (Mdn = 5.50, 
IQR = 3) being significantly higher than during 
Driving Conditions (Mdn = 3.00, IQR = 3). 

Results from the TASS scale revealed a main 
effect for trust (F (1, 18) = 5.975, p = 0.025, η2p =  
0.249), indicating a significant increase in trust 
ratings after the trial (4.721 ± 1.207, p = 0.025) 
compared to before the trial (4.279 ± 0.893). 

DISCUSSION 

Hypothesis 1 

This empirical research investigates the effect 
of traffic complexity on drivers’ perceived risk 
measured during highly automated driving 

through prefrontal haemoglobin oxygenation 
concentrations. 

The first hypothesis investigated whether 
suburban and urban driving conditions with 
moderate levels of traffic complexity and potential 
unmaterialised hazards would produce variations 
in brain oxygenation within participants. Mod-
erate risk during these was assumed as the median 
of self-reported perceived risk across Driving 
Conditions was 3 out of a maximum of 7. 

The null hypothesis was rejected since oxy-
genated and total haemoglobin (HbO and HbT) 
concentrations increased significantly in the 
orbitofrontal (BA10), ventrolateral (BA45) and 
left dorsolateral (BA46) areas would be con-
sistent with supervising the automated vehicle’s 
performance when transitioning from the sub-
urbs (DC1.2 and DC1.3) to the city centre 
(DC2.1) (Figure 5). 

The orbitofrontal region has been found to 
activate when operators are judging the trust-
worthiness of automated systems (Palmer et al., 
2020; Perello-March et al., 2023) and as an 
indicator of the willingness to intentional en-
gagement (Dimoka, 2010), thus perhaps in-
dicating an intention of taking-over manual 
control during these scenarios. 

Increased oxygenation in the ventrolateral cortex 
has  been associated with distrust (Hubert et al., 
2018; Palmer et al., 2020), state-level suspicion 
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(Hirshfield et al., 2014), and frustration during 
automated driving (Damm et al., 2019). 
In addition, this area is related to intense 
negative emotions of distrust, fear and negative 
consequences (Dimoka, 2010; Hubert et al., 
2018). 

The left dorsolateral region reported HbT 
variations from the suburbs (DC1.3) to the city 
centre (DC2.1). This area is implicated in 
decision-making from perceptual inputs and has 
been associated with trust calibration (Drnec & 
Metcalfe, 2016; Hubert et al., 2018; Palmer 
et al., 2020). Perhaps participants perceived 
the change in traffic complexity between driving 

conditions 1 and 2 (i.e., from suburbs to the city 
centre) and evaluated the automated vehicle 
performance and trustworthiness when entering 
such a new driving context. However, self-
reported data showed that perceived risk 
across driving conditions remained moderate. 

Finally, an exploration of sex differences 
indicated that women registered significantly 
higher levels of HbT in the right anterior pre-
motor cortex (BA08) during the recovery phase. 
This area has been found to activate when 
participants experience uncertainty (Volz et al., 
2005). Moreover, these results would align with 
previous work finding that females show 

Figure 7. HbO levels in BA10-right and BA45-left (top), and in BA44-left, BA46-left (bottom); between the 
driving hazard condition and resting periods. Asterisks (�) indicate main effects for condition. Mean is indicated 
by (x). Error bars indicate standard error. 

Figure 8. HbT levels in BA44-left, BA45-left, and BA46-left between the driving hazard condition and resting 
periods. Asterisks (�) indicate main effects for condition. Mean is indicated by (x). Error bars indicate standard 
error. 
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Figure 9. HbT levels in BA46 - right between men and women during the driving hazard 
condition and resting periods. Mean is indicated by (x). Error bars indicate standard error. 

increased lateralised right cortical activity and 
are more alert during complex traffic conditions 
(Foy et al., 2016). 

Findings from H1 suggest drivers actively 
monitored the road for potential hazards during 
moderate traffic complexity conditions. Drivers 
showed increased dorsolateral, ventrolateral, and 
orbitofrontal cortical oxygenation that could be 
attributed to the awareness of un-materialised 
potential road hazards. Considering that they 
were not actively instructed to remain responsible  
for the driving task, we suggest the increased 
activation in these cortical areas could be attributed 
to suspicion towards the vehicle’s trustworthiness 
and the evaluation of the likelihood of a crash – 
that is, the first component of risk perception – and 
therefore, participants could be actively calibrating 
their trust in the automated vehicle. 

Hypothesis 2 

The second hypothesis predicted that the 
materialised hazard in a quickly escalating 
driving scenario requiring an evasive manoeuvre 
would significantly increase haemoglobin oxy-
genation compared to baseline resting and 
postevent recovery resting. Substantial evidence 
favouring hypothesis 2 was found as participants 
reported significantly greater risk during the 
Driving Hazard (Mdn = 5.5/7) than during the 
Driving Conditions (Mdn = 3/7), supported by 
robust increases throughout Hbo and HbT. 

As in hypothesis 1, bilateral orbitofrontal 
(i.e., BA10) activation during the Driving 
Hazard could be attributed to actively judging 
the automated vehicle trustworthiness derived 
from an increased risk perception (Dimoka, 
2010; Palmer et al., 2020). Consistent activa-
tion of this cortical area due to factors related to 
automated driving performance – for example, 
traffic complexity and driving conditions – also 
in Perello-March et al. (2023) reinforce the 
notion that the orbitofrontal cortex plays a cru-
cial role in judging the trustworthiness of au-
tomated vehicles during uncertain situations – 
that is, trust calibration. This cortical region 
likely acts as a ‘comparator’ for perceptual in-
formation and vehicle reliability, from which 
situational trust is derived. 

Further evidence supporting this statement was 
found in the left ventrolateral prefrontal cortex 
(BA44/BA45). Increments in both HbO and HbT 
from baseline to Hazard scenarios are indicative of 
attention allocation during visual search 
(Anderson et al., 2007), increment in distrust 
(Hirshfield et al., 2014; Hubert et al., 2018; Palmer 
et al., 2020), and experiencing strong unpleasant 
emotions (Hirshfield et al., 2014; Hoshi et al.,  
2011; Hubert et al., 2018). Likely, our participants 
actively sought visual cues to analyse, understand 
and predict the potential consequences of the 
sudden Driving Hazard event, which might be the 
anticipation of unpleasant emotions such as mo-
mentary fear and distrust. 
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Notably, the insular cortex in the inferior 
frontal gyrus – near BA45 – is often called the 
centre for risk perception. It has been associated 
with decisions with strong negative emotional 
components (Dimoka, 2010; Hubert et al., 
2018), possibly an evolutionary trace to pre-
vent negative interactions and their con-
sequences (Kahneman & Tversky, 1983, 2019; 
Rangel et al., 2008). Moreover, the insula seems 
strongly related to a cognition-based mechanism 
for risk assessment of contextual information 
and their appraisal (Hubert et al., 2018; Singer 
et al., 2009). BA44/45 are close to the insular 
cortex. 

Bilateral activation was also observed in the 
dorsolateral prefrontal cortex (i.e., BA46-L, 
BA46-R, and BA09-R), reporting HbO and 
HbT increases from baseline to Hazard, fol-
lowed by decreases from Hazard to Recovery 
phases in both measures. Dorsolateral prefrontal 
cortex activity is often attributed to deliberate 
decision-making and reflective processes related 
to trust (Dimoka, 2010; Drnec et al., 2016; 
Hubert et al., 2018) and supporting the orbito-
frontal cortex in comparing uncertain 
perceptual – for example, visuospatial – in-
formation (Bruno et al., 2018). Therefore, as in 
the orbitofrontal cortex, higher activation of the 
dorsolateral prefrontal cortex would be related to 
assessing the trustworthiness of the automated 
vehicle when relevant contextual changes occur 
(Hubert et al., 2018; Perello-March et al., 2023). 
Besides, the dorsolateral prefrontal cortex has 
been attributed to play an essential role in 
emotional regulation and self-control (Hirshfield 
et al., 2014; Hubert et al., 2018). Activation of 
this area after experiencing a sudden strong 
negative emotion – fright, startle, fear – derived 
from the Hazard event would indicate emotional 
regulation. Supporting this claim, we observed 
a significant decrease in HbO and HbT during 
the recovery phase. 

Finally, the evaluation of sex-based differ-
ences in cortical oxygenation showed increased 
HbT levels in the right dorsolateral prefrontal 
cortex (BA46) in women during the recovery 
phase. This finding aligns with those in H1, 
indicating a lateralised right dorsolateral and 
premotor cortex activation in women not present 
in men. As mentioned, prefrontal hemispheric 

lateralisation for women during hazardous 
driving conditions was also observed in an 
fNIRS study conducted by Foy et al. (2016). 

Results from H2 indicate that drivers per-
ceived the hazard but also evaluated the likeli-
hood and the severity of the outcome of the 
crash. This was inferred since drivers reported 
higher risk and we observed the activation of 
areas related to emotion regulation and the an-
ticipation of negative consequences derived 
from the severity of the crash. Since drivers were 
freed from the real-time driving task, they could 
allocate cognitive resources to evaluate how 
well the driving automation could handle the 
situation and apply an appropriate action. 
Hence, we suggest that contrary to manual 
driving, when drivers evaluate the ability of the 
highly automated driving to handle a materi-
alised hazardous situation, both components of 
risk perception – the likelihood and the severity 
of the crash – are present. 

These results build on previous neurophysi-
ology and traffic psychology work using fNIRS 
relating risk-taking behaviours while driving 
and age, with young males showing a lack of 
prefrontal maturation that may explain the in-
creased crash risk seen in this population (Foy 
et al., 2016). Measuring drivers’ prefrontal ac-
tivation with automated driving could be used to 
investigate risk-taking behaviours in future 
work. Whereas risky driving behaviours have 
been extensively investigated in previous traffic 
behaviour psychology (Jonah, 1997), little work 
has investigated risk-taking behaviours and 
driver hazard perception under automated 
driving. Therefore, our findings are of particular 
novelty and relevance to shed light on this 
technology’s new human factors–related chal-
lenges and comprehend how automated driving 
users perceive risks. 

In addition, we observed an increase in the 
self-reported trust after the trial. Whilst this 
finding may seem contradictory to the fact that 
perceived risk was higher towards the end of the 
trial. One could expect trust to be low in such 
a context. It can be argued that the TASS scale 
measures propensity to trust (i.e., dispositional 
trust) rather than situational trust (Adams et al., 
2003; Holthausen et al., 2020). Hence, such 
increment in dispositional-learned trust could be 
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attributed to familiarisation due to mere expo-
sure to the automated driving system and the fact 
that the hazardous event was negotiated suc-
cessfully. Similar trust increments after a short 
exposure to automated driving have also been 
reported in previous studies (Dixon et al., 2019; 
Gold et al., 2015; Kraus et al., 2020; Kundinger 
et al., 2019; Large et al., 2019; Lee et al., 2021). 
The findings evidenced in this paper suggest that 
situational perceived risk does not necessarily 
affect dispositional and learned trust, which 
other factors would modulate (for a review of 
trust layers see Hoff & Bashir, 2015). Whereas 
a higher situational risk perception is expected to 
correlate negatively with lower situational trust 
(Li et al., 2019), this may not necessarily apply 
to dispositional and learned trust. 

Our results demonstrate that fNIRS is valid 
for measuring variations in perceived risk from 
traffic complexity during highly automated 
driving, particularly HbO and HbT measures. 
The lack of significant effects for HbR data is not 
unusual since HbR is known to be a less robust 
parameter (Balters et al., 2021). Increased ox-
ygenation in prefrontal areas would indicate 
active monitoring of the driving performance 
reliability in complex traffic scenarios. Even 
though our drivers were not responsible for the 
driving task and dispositional trust was high, 
they showed variations in perceived risk as 
traffic complexity built up gradually, especially 
during the driving hazard. This suggests our 
drivers were ‘in the loop’ and would have been 
able to resume manual control if required. 

Limitations and Future Work 

Using a bespoke questionnaire to assess 
perceived risk may have limited our qualitative 
data to the second component of risk 
perception – that is, the severity of the 
outcome – which is present when drivers assess 
perceived with hindsight (Borowsky & Oron-
Gilad, 2013). Given that the first component – 
that is, the likelihood of the crash – is mainly 
available in real-time, perhaps future work 
should consider implementing a button press 
response when a hazard has been identified by 
the driver. In addition, not counterbalancing the 
experimental conditions may have induced 

order effects. However, we deemed it necessary 
to ensure the driving was immersive and re-
alistic. In addition, recalibrating the fNIRS 
signal for each block was not feasible because it 
would have extended the length of the simula-
tion and potentially fatigued participants or in-
duced motion sickness. 

Although brain activity measures such as 
fNIRS are not likely to be integrated into pro-
duction driver monitoring systems (DMS) in the 
short term – at least not with current wearables – 
this paper has proven fNIRS to be a helpful re-
search tool for assessing drivers’ states. In terms 
of practical advantages, compared to other 
common noninvasive measures such as eye-
tracking or peripheral physiology, fNIRS can 
provide a direct measure of complex driver states 
such as situation awareness (Bracken et al., 2021), 
trust (Perello-March et al., 2023), driver attention 
allocation to take-over requests (Fu et al., 2020), 
or out-of-the-loop states (Balters et al., 2017). 
fNIRS offers a nearly real-time measure – that is, 
the haemodynamic response takes only 3– 
5 seconds – of cortical responses to specific events  
that can be mapped on the brain regions re-
sponsible for certain tasks. For example, fNIRS 
can be used to measure drivers’ workload during 
a manual take-over control by mapping prefrontal 
areas (i.e., known to be responsible for decision-
making, working memory, anticipation or judging 
scenarios) in combination with the motor cortex 
(responsible for manual tasks or coordinating 
haptic responses), or measure drivers’ situation 
awareness levels to visual cues on the road by 
measuring the activity on the visual cortex 
(responsible for visual object detection and in-
terpretation). Hence, we encourage future work in 
this domain to use fNIRS as a complement to 
gaze-behaviour indicators, behavioural measures, 
and self-reports or to other physiological in-
dicators to understand better the new challenges 
arising from automated driving technology. 

CONCLUSION 

Overall, this empirical research has evi-
denced traffic complexity affects risk perception 
and its derived neurophysiological indicators. 
Brain oxygenation measures successfully eval-
uated moderate and high perceived risk levels, 
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indicating drivers actively supervised the vehi-
cle operation in complex traffic scenarios. Our 
findings evidence the benefits of using fNIRS for 
driving research to assess driver states and risk 
in real-time. 

KEY POINTS 

· Traffic complexity affects the perception of risk in 
highly automated driving. 

· Increased perception of risks leads to an increase in 
active monitoring and supervision behaviours with 
a HAV.  

· HAD frees up cognitive resources to evaluate both 
the likelihood and severity of a possible crash event. 

· Females remained more vigilant than males after 
the driving hazard event. 

· fNIRS has proven to be a valuable tool for driver 
state monitoring. 
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