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In this work, we explore degree assortativity in complex networks, and extend its usual definition beyond 
that of nearest neighbours. We apply this definition to model networks, and describe a rewiring algorithm 
that induces assortativity. We compare these results to real networks. Social networks in particular tend to 
be assortatively mixed by degree in contrast to many other types of complex networks. However, we show 
here that these positive correlations diminish after one step and in most of the empirical networks analysed. 
Properties besides degree support this, such as the number of papers in scientific coauthorship networks, 
with no correlations beyond nearest neighbours. Beyond next-nearest neighbours we also observe a disas-
sortative tendency for nodes three steps away indicating that nodes at that distance are more likely different 
than similar. 

Keywords: social networks; assortativity; correlation distances. 

1. Introduction 

In recent decades, many quantities have been introduced to shed light on the structural properties of 
complex networks. Of particular importance is degree assortativity, which provides a measure of the cor-
relations in the degree of neighbouring nodes. Its importance was underlined due to it distinguishing the 
structure of social networks, and other types of complex networks [1] (though this is found to not always 
be the case for online social networks [2]). Studies of assortativity have focused on nearest neighbour 
correlations, since neighbours interact directly only with their nearest neighbours, by construction. 

By drawing parallels with spin systems, such as that described by the Ising model, one can argue 
that system components may exert influence indirectly, beyond their immediate neighbourhood. This 
is captured in the idea of correlation length. In the Ising model, while an individual spin has no direct 
interaction with more distant spins, a re-orientation of a spin can influence its neighbours causing a dis-
turbance to propagate over a large area of the lattice, modelling the observed behaviour of ferromagnets. 
Regions separated by more than this characteristic distance can be thought of as essentially indepen-
dent [3]. Here, we examine whether degree correlations in complex networks exist beyond those found 
between nearest neighbours. 

In this work, we study correlations on undirected, unweighted networks as a function of network 
distance. The most elementary feature of a network node is its degree, defined as the number of edges 
adjacent to that node. The network-wide correlation between degrees of neighbouring nodes is commonly 
known as assortativity [4]. A network with strong degree correlations between nodes is called assortative, 
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and with anti-correlations, disassortative. We use the shortest path length between two nodes to represent 
the distance, when this is greater than one we are moving beyond the traditional nearest neighbours. 

In social networks, where node degree represents the number of friends that an individual has, assorta-
tivity indicates that popular individuals tend to have popular friends, and unpopular individuals unpopular 
friends. This notion is related to that of homophily, whereby individuals associate with people similar to 
themselves. This leads to a tendency of individuals to associate mostly with others of a similar race or 
ethnicity, age, religion or interest [5]. 

Previous studies have suggested that nodes’ influence may extend beyond the immediate neighbour-
hood in social networks (e.g. Ref. [6]). It has even been claimed that individuals can have up to ‘three 
degrees of influence’ on other nodes in a network [7]; though serious questions have been raised about 
the methods of these studies [8]. Here, we use the assortativity at different distances to test this. We 
study path lengths up to the diameter of our graphs for 16 empirical social networks. We then use one 
co-authorship network in three time points, if nodes are expected to influence each other at a distance, 
naïvely we might expect the beyond nearest neighbour correlations to increase over time. 

The article is structured as follows: we outline the similar research in this area, then we describe the 
theoretical framework for our correlation measure and introduce an expression to quantify assortativity as 
a function of distance. We then apply this to 16 social networks to observe correlation behaviour beyond 
nearest neighbours. We then perform simulations on random graphs, configuration model variants of 
each empirical network, as well as generated assortative networks, to attempt to generalize the results we 
observe. 

2. Background 

We are not the first to consider beyond nearest neighbours in complex networks. This is of course not 
surprising with similar ideas existing in spin systems in statistical physics. Related works have examined 
how correlations vary with distance in a number of ways, typically using the length of the shortest path 
between connected vertices, though not always. 

References [9] and [10] approach the problem in similar ways. Both use probability distributions 
to calculate the long-range degree correlations within the network. The former exclusively uses Erdős-
Rényi graphs to demonstrate their findings while the latter also shows some results for some empirical 
networks. In this article, we do not use these probability distributions. Instead, we look at the correlations 
between the degrees of nodes at different distances as an extension to the calculation of assortativity, in a 
similar fashion to what is done in Ref. [11]. This allows us to express the correlation between the degrees 
of nodes as a function of the distance between them. 

Our work expands on what is done by Mayo et al. [11] in two ways. First, we apply our analysis to 
many more datasets (in particular social networks). Second, we include several types of random graphs in 
our analysis not covered by Mayo et al. [11]. Namely we study configuration model graphs based on some 
of the networks studied, Erd˝ os-Rényi graphs which we rewire to be assortative.os-Rényi graphs, and Erd˝ 
Although Mayo et al. [11] are more interested in average degrees at distances, they do look at correlations 
on one particular social network which is disassortative. Therefore, they do not find global results for 
social networks with correlations at a distance. We find that social networks become disassortative by 
d = 3. 

Another approach is taken by Rybski et al. [12]. They are primarily interested in random network 
models such as the Barabási-Albert model, Cayley trees and fractal models, in addition to just a couple 
of real-world networks. The approach in this article is inspired by time-series analysis techniques. They 
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CORRELATION DISTANCES IN SOCIAL NETWORKS 3 

look at how the mean degree along shortest paths of length differs with . Due to the differences between 
this approach and our own, results between the two are not directly comparable. 

Arcagni et al. [13] discuss several measures of assortativity. One is based upon degree-based paths 
similar to that used by Rybski et al. [12]. Another is based on random walks in a network and finally a 
measure based on shortest paths as we have here, and as was described by Mayo et al. [11]. 

A measure of assortativity is introduced by Allen-Perkins et al. [14] which they call two-walk assor-
tativity. This measure, in contrast to the one discussed in this article, looks at the correlation between the 
number of second neighbours of nodes connected by walks of length 2. One difference between the results 
we obtain here and those obtained by Allen-Perkins et al. [14] is that they find that no graphs which are 
degree assortative and two-walk disassortative, and even conjecture that such graphs cannot exist. With 
the measure we study here however, we find graphs that are assortative at d = 1 and disassortative at 
d = 2 (e.g. the Pretty Good Privacy (PGP) network shown in Fig. 2). 

As we can see from the approaches taken by various authors in this section, there are many ways in 
which assortativity can be extended beyond nearest neighbors. We argue, however, that the derivation 
we use here is simplest to follow and most easily extended to all possible distances between connected 
nodes in a network. Furthermore, we apply our measure to a large number of datasets focusing on social 
networks. To our knowledge, this is the largest such analysis of long-range correlations in social networks 
to date. 

3. Theory 

In this section, we define a number of quantities centred around the concept of assortativity. We start by 
defining a graph or network as an ordered pair G = (V , E ), where V is the set of nodes and E is the set 
of edges. The number of nodes and edges in a network are written as N = |V | and L = |E |, respectively. �
Denoting the adjacency matrix by A, with elements Aij, the degree ki of node i is given by ki = j Aij. �
The mean degree of the network is given by k �= i ki/N. Although our results may be extended to 
directed graphs, for the purposes of this study, we focus solely on undirected networks, meaning that � � �
Aij = Aji. It follows that 2L = Aij = ki = k kpk, where pk is the degree distribution so the final i,j i 

term is just N times the mean degree of the network. 
The shortest path between nodes i and j is the path from i to j that traverses the minimal number of 

edges. We define the length of this path by λij, noting that the path itself is often not unique. It is common 
for networks to consist of disconnected components or sets of nodes that are mutually reachable by 
traversing edges. When this is the case, there exists no path between nodes i and j belonging to distinct 
components and, by convention, we then set λij = ∞. To define the average path length , it is convenient 
to introduce , the number of components of a graph and to define Cm, with m ∈ {1, 2, . . . , }), as the  
mth component, which contains nm nodes. Summing over all pairs of a connected component, the average 
path length is given by 

� �1 = λij. (3.1) 
nm(nm − 1)

m=1 ij∈Cm 
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3.1 Assortativity 

Consider the two nodes at the extremities of a randomly chosen edge. The probability of one node having 
degree k and the other degree q is 

1 �
Aijδkikδkjq, (3.2) �(k, q) = 

2L 
i,j 

where δkik is the Kronecker delta which is one when ki = k and zero otherwise. 
We denote the average degree of the node at the end of an edge by E[k]. We stress that an average 

over edges is not the same as an average over nodes and use the notation E(k) to represent the average 
summing over the set of edges. These quantities are, however, closely related. Further, note that since we 
have undirected graphs, E[q] = E[k]. Summing over q, the marginal probability is given by 

 (k) =
�

�(k, q). (3.3) 
q 

Using this expression, it is possible to show that E(k) and the mean degree over the nodes of the network 
are related by 

�
k �
k 

k2pk 

which is the degree variance divided by the mean (i.e. the second moment of the degree distribution 
divided by the first moment). Note that any network besides those whose nodes have identical degree 
has positive degree variance. This implies that, except in the degree-regular case, E(k) is greater than the 
mean degree of the nodes of the network. This means that on average, individuals are connected to those 
more popular than themselves. This observation is commonly known as the friendship paradox. 

Our starting point towards understanding degree correlations and assortativity is the expected value 
of the product of the degrees of the nodes at the end of an edge chosen uniformly at random, E(kq), 
defined by 

�
E(k) = k (k) = (3.4) ,

kpkk 

�
E[kq] =  kq �(k, q). (3.5) 

k,q 

For uncorrelated, undirected graphs, the probability distribution �(k, q) can be factorized as �(k, q) = 
 (k) (q). The latter relation immediately implies 

E[kq] = E[k]E[q] = E[k]2 = E[q]2. (3.6) 

It follows that a network is said to have positive correlations when E[kq] > E[k]E[q] and negative 
correlations when E[kq] < E[k]E[q]. We can now introduce the degree assortativity r as 

E[kq] − E[k]E[q]
r = , (3.7) 

σ 2 
k 
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CORRELATION DISTANCES IN SOCIAL NETWORKS 5 

which is in a form of the Pearson correlation coefficient [4], with σk 
2 the variance of k, 

σ 2 = E[k2] − E[k]2. (3.8) k 

Normalizing by the variance ensures that −1   r   1. If r > 0, the network is said to be assortative, 
while if r < 0, it is said to be disassortative. If r = 0, the network is uncorrelated. Using Equations (3.5) 
and (3.2), the assortativity in Equation (3.7) can be written explicitly as 

1 � Aij(ki − E[k])(kj − E[k]) 
r = . (3.9) 

2L σk 
2 

i,j 

It is helpful to understand the assortativity in this way as we determine whether each edge contributes 
positively or negatively to the assortativity by knowing if the nodes are at different or the same sides as 
the mean. This expression also highlights that assortativity is the measure of the correlations between 
degree fluctuations (around the mean value) on two neighbouring nodes. In particular, if Aij = 1, the 
product, 

(ki − E[k])(kj − E[k]), (3.10) 

shows that edges for which, at both extremities ki > E[k] and kj > E[k] or, ki < E[k] and kj < E[k]
contribute positively to the assortativity. However, edges for which ki < E[k] < kj or kj < E[k] < ki will 
contribute negatively. Therefore, the assortativity expresses the weighted balance between the number 
of edges for which both extremities have a degree under or over the mean and the number of edges for 
which the mean sits between the degree of each extremities. 

We propose an alternative way to approach the assortativity and define the probability �(K, �), 
where, if Aij = 1, K = ki + kj and = ki − kj. This is the probability that the degrees of the nodes at the 
end of a randomly chosen edge sum to K, and differ by . This is given by 

�1 
�(K, �) = Aijδki+kj ,K δki−kj , . (3.11) 

2L 
ij 

�
Naturally, the averages of any observable O(K, �) are defined as E[O(K, �)] =  K, �(K, �)O(K, �). 
We can show that the assortativity becomes 

σ 2 K − σ 2 
r = (3.12) 

σK 
2 + σ 2

, 

where σK 
2 and σ 2 are defined as 

σ 2 = E[K2] − E[K]2, (3.13) K 

σ 2 = E[ 2]. (3.14) 

With this picture we now see that the assortativity compares the variance of the marginal distribution 
ψ+(K) and ψ−(�), 
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�1 
ψ−(�) = Aijδki−kj , . (3.16) 

2L 
ij 

Plotting this distribution allows one to visualize the behaviour of the assortativity. Finally, note that the 
expected statistical error for the assortativity can be calculated using either the jackknife method [15] or  
the bootstrap method [16]. 

3.2 Generalization 

In this section, we provide a definition of assortativity beyond nearest neighbours. We consider the 
simplest possible approach, by defining the matrix A(d) with elements being one (respectively, zero) 
whenever there exist at least one (respectively, no) shortest path, of length d, between nodes i and j. In  
other words, Aij(d) = 1 if there is a path of length d between the two nodes and if Aij(l) = 0 for all l < d. 
This allows us to define �(κ , η, d) as 

�1 
�(κ , η, d) = Ai,j(d)δkiκδkjη , (3.17) 

2L(d) 
ij 

�
with 2L(d) = i,j Aij(d). 

The assortativity at a distance d is 

� Aij(d) (ki − E[k](d))(kj − E[k](d)) 
r(d) = , (3.18) 

ij 
2L(d) σk 

2(d) 

with σk 
2(d) = E[k2](d) − E[k](d)2. This can be extended to other properties of nodes other than degree 

as we will demonstrate later (see Fig. 3). 

4. Application 

In this section, we analyse the assortativity of 16 different social networks of varying size. We focus on 
Equation (3.16) for these empirical networks, and then calculate the assortativity at a distance for each 
network. 

The datasets we use are: 

(i) the students at Faux Mesa high school friendship network [17, 18]; 

(ii) the American jazz musicians from 1912 to 1940 [19]; 

(iii) the face-to-face contact of participants at an infectious diseases exhibition in Dublin’s Science 
Gallery [20]; 

(iv) a coauthorship network of scientists working on network theory and experiment [21]; 

(v) a Friendship network at Moreno high school [22]; 

(vi) a Friendship network between users of the petster website [23]; 

(vii) a key-sharing network from the PGP web of trust [24]; 

(viii) collaboration networks of authors on the condensed matter arXiv from 1995 to 2005 [25]; 
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Table 1 The number of nodes is given by N, L is the number of edges, k is the mean degree, kmax is 
the largest degree in the network, k2 is the mean of the square of the degree (related to the variance). 
The average path length is given by and the diameter by max. The assortativity is denoted by r and the 
symbol * signals that the statistical error is larger than this value indicating there are no degree–degree 
correlations 

Network N L k kmax k2 max r 

Faux Mesa high school 147 202 2.75 13 11.70 6.81 16 0.12 
Jazz Musicians 198 2,742 27.70 100 1,070.24 2.24 6 0.02∗ 

Infectious diseases 410 2,765 13.49 50 252.43 3.63 9 0.23 
Network Science 1,461 2,742 3.75 34 26.05 5.82 17 0.46 
Moreno-Health 2,539 10,455 8.24 27 86.41 4.56 10 0.25 
Petster 2,426 16,631 13.71 273 582.93 3.59 10 0.05 
PGP web of trust 10,680 24,316 4.55 205 85.98 7.49 24 0.24 
cond-mat arXiv 16,726 47,594 5.69 107 73.57 6.63 18 0.19 
Astrophysics 18,771 198,050 21.10 504 1,379.51 4.19 14 0.21 
Twitter 23,370 32,831 2.81 238 108.17 6.30 15 −0.48 
Gplus 23,628 39,194 3.32 2,761 1,250.88 4.03 8 −0.39 
Munmun 30,398 86,312 5.68 285 159.74 4.67 12 0.01 
Facebook Wall 46,952 193,494 8.24 223 202.87 5.60 18 0.25 
Facebook 63,731 817,035 25.64 1,098 2,256.80 4.32 15 0.18 
Slashdot 79,116 467,731 11.82 2534 1,729.86 4.04 12 −0.07 
Enron email 87,273 299,220 6.86 1,728 1,147.24 4.89 13 −0.17 

(ix) the Astrophysics collaboration network [26]; 

(x) a Twitter user network [27]; 

(xi) a Google+ user network [27]; 

(xii) a reply network for news site digg [28, 29]; 

(xiii) a Facebook wall post network [30]; 

(xiv) a sample of Facebook users in the New Orleans region [31]; 

(xv) a network of users of the technology news site slashdot [32] and 

(xvi) the network of emails sent at Enron [33, 34]. 

All datasets bars (ii), (iii) and (viii) can be found on Konect.cc [35]. Konect is an open-source library of 
network datasets taken from a wide range of scientific areas. 

Some basic properties of these networks are listed in Table 1. In Refs [1, 4], it is observed that social 
networks tend to be assortative while non-social networks are not. Here, four of these social networks 
are found to be disassortative, and one is almost zero (with the error being larger than the value). The 
disassortativity in the network of Marvel Universe characters is described as being one of the reasons 
it is dissimilar to real social networks in Ref. [36]. The Twitter and Google+ networks show the same 
disassortative behaviour of other large online social networks [2]. The slashdot network also contains 
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Fig. 1. Distributions ψ+(K) and ψ−(�), as indicated, of the sum and difference in degrees of nodes at either extremity of an 
edge, respectively. Panel (a) shows the Enron email network. This network is disassortative and there are numerous edges with a 
difference of degrees of | | = 1, 382. In contrast, the PGP web of trust ψ−(�) distribution is shown in Panel (b). This is assortative 
and has less noise in the tail of the ψ−(�) distribution. Panel (c) displays the Facebook users network which is also assortative. 
Panel (d) however is for the online social network of slashdot users. This network is disassortative and contains a large number of 
fluctuations as | | increases. 

‘hostile’ or ‘negative’ edges. As shown in Refs. [37, 38], hostile edges contribute towards disassortativity, 
removing the negative edges however only raises the assortativity from −0.07 to −0.06 and does not have 
much effect on the other network properties. To examine this further, for the slashdot an Enron email 
network, we plot the ψ+(K) and ψ−(�) distributions from Equations (3.15) and (3.16) in Fig.  1, and 
compare them to two assortative networks. 

In Fig. 1(a), the distributions ψ+(K) and ψ−(�) are shown for the Enron email network. In the tail 
of the ψ−(�) distribution in particular, we observe a high fraction of edges with | | = 1, 382. Hence, 
the node with the highest degree interacts with multiple nodes with a degree of one which interact with 
no other nodes in the network. This strongly contributes towards the disassortativity. The PGP web of 
trust network on the other hand has a relatively low maximum degree and a low degree variance. It is 
assortative, and we observe in Fig. 1(b) that there are comparatively few fluctuations in . However, 
note one large peak around 1,700, as this peak for ψ−(�) is very close to the peak for ψ+(K), this shows 
the presence of a hub interacting with low degree vertices (i.e. for the sum of the degrees K to be close 
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CORRELATION DISTANCES IN SOCIAL NETWORKS 9 

Table 2 The number of pairs npairs(d) and their corresponding assortativity values r(d) up to d = 3 
for each of the 12 networks. The value in parentheses after the assortativity is the error in the last digit 
calculated using the bootstrap method. For most networks, the assortativity goes to zero (or fluctuates 
around it) after a small number of steps. A notable exception is that of jazz musicians which becomes 
more disassortative as d increases 

Network npairs(1) r(1) npairs(2) r(2) npairs(3) r(3) 

Faux Mesa high school 202 0.12(8) 410 −0.14(5) 561 −0.05(5) 
Jazz Musicians 2,742 0.02(2) 10,652 −0.13(1) 5,067 −0.31(2) 
Infectious diseases 2,765 0.23(2) 13,150 −0.00(1) 24,631 −0.06(1) 
network science 2,742 0.46(3) 3,980 −0.03(2) 6,365 −0.03(2) 
Moreno-Health 10,455 0.25 71,624 0.09 365,757 −0.00 
Petster 16,631 0.05 222,693 −0.14 757,751 −0.17 
PGP web of trust 24,316 0.24(1) 188,183 0.01(1) 932,993 −0.09(1) 
cond-mat arXiv 47,594 0.19(1) 275,120 0.07(1) 1,439,255 −0.02(1) 
Astrophysics 198,050 0.21 4,441,041 −0.08 35,788,064 −0.19 
Twitter 32,831 −0.48 1,110,048 0.12 2,534,785 −0.11 
Gplus 39,194 −0.39 12,928,409 0.00 4,494,516 −0.01 
Munmun-Digg 86,312 0.01 2,169,143 −0.06 33,925,631 −0.14 
Facebook Wall 193,494 0.25 3,149,984 0.06 32,678,260 −0.10 
Facebook 817,035 0.18 31,073,418 −0.04 357,008,740 −0.14 
Slashdot 467,731 −0.07 47,324,811 −0.08 696,650,899 −0.11 
Enron email 299,220 −0.17 27,781,955 −0.05 282,174,082 −0.07 

(a) (b) 

Fig. 2. The degree–degree correlations r(d) plotted versus the distance d. Panel (a) shows that as the distance d increases for the 
PGP and Facebook networks, they lose their correlations. Panel (b) shows the correlations for three time periods on the condensed 
matter arXiv, which after d = 2 become anti-correlated. Error bars are calculated using the bootstrap method (they become more 
prominent at the end due to a significantly smaller number of pairs separated for large d). 
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Fig. 3. Correlations in the number of papers p per author in the scientific coauthorship network derived from the condensed matter 
arXiv. Networks are the result of aggregation from the year 1995 to that indicated. 

to difference ). There are many more of these in the Slashdot network and each will contribute to 
disassortativity. 

In Fig. 1(c) and (d), the ψ+(K) and ψ−(�) distributions are shown for the Facebook and slashdot 
networks, respectively. The Facebook network is assortatively mixed by degree while the slashdot one 
is not. There are large fluctuations around | | ≈ 1, 500 and | | ≈ 2, 500 for the slashdot users which 
drives the disassortativity. However, the distribution for Facebook users decays with fewer fluctuations. 

4.1 Influence 

We turn our attention to correlations at a distance for these 16 social networks. In Table 2, the correlations 
for pairs of nodes separated up to an edge distance of d = 3 are displayed. For d = 1, the number of pairs 
of nodes npairs(d), and r(d), simply correspond to the number of edges and the traditional assortativity 
of the network, respectively. As d increases, the number of pairs increases rapidly. For most networks, 
r(d) decreases beyond a distance of d = 1, and tends to fluctuate about r(d) = 0 for values of d near the 
average path length . None of the networks have positive correlations at d = 3, and only two networks 
have r(2) > 0. 

In Fig. 2(a), r(d) is plotted as a function of d for two of the larger assortative networks, namely the 
PGP web of trust and Facebook networks. In each case, the networks are assortative at d = 1, with 
rk decreasing until d = 4, by which point they are disassortative. Beyond d = 4, values of rk plateau 
below zero. In these networks, users distance d = 3 apart are unlikely to have similar degrees. This is 
not an unexpected result; as shown in Ref. [39], an individual’s friends are not representative of a social 
network, instead they are a biased population. Similarly, that reference shows that high-degree nodes 
have a disproportionately large effect on networks at a distance of d = 2. This effect seems to increase 
with d, implying that as distances increase, people become more dissimilar. 
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CORRELATION DISTANCES IN SOCIAL NETWORKS 11 

This method is quite different to the degrees of influence observed by Christakis and Fowler [6, 
7]. There, the authors study social networks evolving in time, and focus on correlations between node 
attributes besides degree, such as obesity and happiness. In contrast, we focus on degree correlations, 
on networks that have either been aggregated in time or extracted at a snapshot in time. One exception, 
however, is the condensed matter arXiv network, which we examine over multiple time periods; 1995– 
1999, 1995–2003 and 1995–2005 [25]. Figure 2(b) shows the degree correlations r as a function of 
distance d for these time periods. They each have positive values of r for d = 1, which become negative as 
d increases. Note that we have adopted the subscript k to distinguish degree correlations from correlations 
in the number of scientific papers, which we study in the next figure. 

Although our focus is on degree correlations, one may study correlations as a function of distance for 
arbitrary node attributes. The scientific coauthorship network, for instance, details the number of papers 
pi that author i has published. Studying correlations in this quantity provides a measure of the output 
assortativity of the collaboration network. These results are shown in Fig. 3, where we plot output cor-
relation rp as a function of distance d. These are correlated initially among nearest neighbours, implying 
productive authors have productive coauthors, and unproductive authors have unproductive coauthors. 
Small but non-zero correlations exist at d = 2 in the first two time-periods but are decorrelated for the 
final time point. For d > 2, there are no positive correlations present. Therefore, on average, two authors 
three steps away from one another in this coauthorship network are unlikely to have a similar number of 
publications and this seems to become less similar as time goes on. At higher d values then, authors are 
more likely to have a different number of publications to their distant neighbours. 

5. Simulations 

Having studied the behaviour of the assortativity for increasing d in empirical networks, we turn our 
attention to simulated networks. Here, we examine three types of simulated network; Erdős-Rényi 
graphs, Erdős-Rényi graphs that we have made assortative by rewiring, and configuration model graphs 
corresponding to each of the empirical networks in Table 1. 

5.1 Erdős-Rényi graphs 

Here, we generate Erdos-Rényi graphs and calculate˝ r(d) for all values of d such that 1   d   max, where 
max is the diameter of the graph. This is repeated 1,000 times each for Erdős-Rényi graphs of size N = 
1, 000, with average degree k �= 5, 10 and 15. We then repeat this 1,000 times each for graphs of size 
N = 10, 000, again with k �= 5, 10 and 15. The results of these calculations are shown below in Fig. 4. 

As we can see, there are no positive correlations between the degrees of nodes at any value of d. 
Negative correlations begin to emerge in all cases at or beyond the average path lengths of the graphs, 
indicated as dashed vertical lines. This finding is in line with the work of Mayo et al. [11], who find 
negative correlations emerge when the average degree is greater than one. While high-degree nodes are 
exponentially suppressed in Erdős-Rényi graphs, negative correlations still emerge due to the finite size 
of the simulations. That is, paths of higher values of d still connect central nodes to nodes at the periphery 
of the graph. It is reasonable to expect that the degrees of such pairs of nodes would be dissimilar, thus 
reducing the assortativity at these d values. 

5.2 Configuration model networks 

We now examine the assortativity as a function of d for configuration model variants of the net-
works: Infectious disease through Munmun-Digg in Table 1. For each network, 100 instances of the 
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Fig. 4. Results for Erdős-Rényi graphs with 1,000 nodes (left) and 10,000 nodes (right). Points are average values for 1,000 
instances of each size and average degree, error bars are 95% coverage bars for the assortativity values observed. Vertical dashed 
lines represent the mean average path length of each set of 1,000 graphs. As we can see in all cases, the networks became 
anti-correlated as d increases. 

corresponding configuration model network were created and the assortativity calculated for all d values 
up to the diameter of each graph. Results for the network science coauthorship, PGP web of trust and 
Munmun-Digg networks can be seen in Fig. 5. These results are representative of the remaining networks 
not shown. 
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Fig. 5. Degree assortativity r as a function of shortest paths length d, for configuration model variants of the network science coau-
thorship network, the PGP security network and the Munmun-Digg network. Error bars are 95% coverage bars for the assortativity 
values. 

In all cases, we find that the assortativity rapidly decreases before beginning to increase and approach 
zero for higher values of d. In the three cases shown here we also see large fluctuations at the largest value 
of d for each network. These fluctuations are due to the fact that at these large d values, there are very 
few pairs separated by a shortest path of that length d. 
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One possible explanation for the decrease in assortativity is that the quantity reaches its minimum 
when the influence of hubs in the network is at its maximum. For example, high-degree nodes will be 
connected to many other nodes by shortest paths of lengths 2 and 3, and these nodes will have degrees 
that are dissimilar to that of the hub node, thus reducing the assortativity. As d increases further, the 
number of pairs of nodes separated by shortest paths of length d increases. Many of these pairs then will 
be positively assortative, which counteracts the effect of the hub nodes. 

To illustrate this further, we plot the number of pairs at each distance d in Fig. 6. Here, we see after 
the average path length (dashed vertical line), these is a sharp drop in the number of pairs. Beyond this 
point, the hubs have probably reached every periphery node, but nodes at different ends of the network 
still have not been used. As the hub is likely to be at a different side of E(k) to a periphery node in 
Equation (3.9), their influence will contribute negatively to the assortativity. This difference in degree for 
neighbours can be seen in Fig. 1, these spikes will only increase as the number of paths increase. 

5.3 Modified Erdős-Rényi graphs 

Here, we start with Erdős-Rényi graphs of size N = 1, 000 and average degree k �= 5, 10 and 15. We 
run a rewiring algorithm on 1,000 instances of each graph and calculate the assortativity for all values of d 
up to the diameter of the rewired graph. The algorithm works by randomly removing edges that decrease 
the assortativity, and replacing them with edges that increase the assortativity, as per Equation (3.9). This 
process is repeated until the desired value of first-neighbour assortativity is reached, choosing r = 0.4 
for graphs size N = 1, 000 and r = 0.25 for graphs of size N = 10, 000. The results for this process are 
shown in Fig. 7. This approach is then repeated 500 times for Erdős-Rényi graphs of size N = 10, 000 
and average degrees k �= 5 and 10, and 250 times for Erd˝ =os-Rényi graphs of size N 10, 000 and 
average degree k �= 15. The reduced number of iterations here is due to the increased computational 
cost of rewiring larger graphs. As the number of nodes and edges increases, the contribution that each 
edge makes to the overall assortativity decreases and so many more iterations of the rewiring algorithm 
are required to reach the desired assortativity value. 

As we can see, all of the graphs started out assortative at d = 1 due to the rewiring algorithm, but these 
positive correlations quickly disappear as d increases, and beyond the average path lengths, the results 
are very similar to those seen for the Erdős-Rényi graphs in Fig. 4. This is not a great surprise, but serves 
to highlight that the degree distribution plays a role in the behaviour of the decay of the assortativity as 
the value of d increases. 

6. Conclusions 

Social networks are generally found to be assortatively mixed by degree, a property separating them 
from other complex networks. Here, we extend this to go beyond nearest neighbours in order to test 
if they remain assortative or if this changes as the distance increases. We find that for all cases, as the 
edge distance between nodes increases, degree–degree correlations vanish. In some cases, they become 
anti-correlated before becoming decorrelated. In all 16 social networks, nodes three steps away from each 
other are more likely to have dissimilar degrees. That is, nodes three steps away from each other are more 
likely to have degrees on either side of the average value E(k). The same is true of number of papers in 
the condensed matter arXiv coauthorship network, and in that dataset, over time, both quantities become 
less correlated as time increases. 

We performed simulations on three different types of network to test this. With Erdős-Rényi random 
graphs, correlations remain close to zero as expected from mean-field arguments for distances d up to the 

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/11/3/cnad016/7197486 by U
niversity of C

oventry user on 18 July 2023 

https://academic.oup.com/comnet/article/11/3/cnad016/7197486
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Fig. 6. The number of pairs for each shortest path length d for the Network Science coauthors (top) and PGP web of trust (bottom). 
The dashed vertical line represents the average path length of the original network. 

average path length. Beyond this, while correlations become negative, there are fewer pairs corresponding 
to these distances, and fluctuations are large as a result. Further, this seems to be a reflection of the 
finite size of the simulations, with pairs of distant nodes tending to consist of one high-degree node, 
and one peripheral node at the end of a chain. In contrast, configuration model variants of real-world 
networks, correlations quickly become negative as a function of d. Finally, in Erdős-Rényi graphs rewired 
for assortativity, correlations become negative for distance beyond the average path length, as before. This 
is due to their similarity to Erdős-Rényi random graphs, despite rewiring. 

D
ow

nloaded from
 https://academ

ic.oup.com
/com

net/article/11/3/cnad016/7197486 by U
niversity of C

oventry user on 18 July 2023 

https://academic.oup.com/comnet/article/11/3/cnad016/7197486


16 P. MACCARRON ET AL. 

Fig. 7. Correlations between the degrees of nodes separated by shortest paths of length d for Erdős-Rényi graphs of size 1,000 
nodes (left, 1,000 instances for each value of k) and 10,000 nodes (right, 500 instances each for k = 5 and  k = 10,250 instances 
for k = 15) that have been rewired to be assortative. Vertical dashed lines represent the mean average path length of each set of 
1,000 graphs. The error bars are 95% coverage bars for the assortativity values. 

We attribute the decreasing degree correlations to the right-skewed distributions of the empirical 
datasets and, hence, the influence of hubs in these networks. Hubs are nodes with large degrees, and 
due to the initial assortativity in social networks, they are in general more likely to connect to nodes 
with a similar degree. However, they will have quite different degrees to others as the distance increases. 
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With the calculation for the assortativity, if the degrees of the two nodes of an edge are on either side of 
the average degree at the end of an edge then this contributes negatively towards the assortativity value. 
Therefore, as the distance increases, a pair is more likely to contain a well-connected node and one at the 
periphery. As the number of pairs increases significantly at each step, these high-degree nodes interact 
more and more with low-degree nodes. However, by a distance around the average path length, a hub 
may be connected to every node in the graph. Beyond this distance then, the influence of hubs on the 
assortativity value is diminished. 

To investigate this further, we next aim to explore the role of the degree distribution with beyond 
nearest-neighbour correlations and identify how much influence hubs play on this. We also aim to explore 
more of the behaviour of disassortative networks, both in empirical data and simulations. We are also 
interested in the idea of categorical assortativity and whether this will have similar effects going deeper 
into the network. Finally, the assortativity at a distance here is calculated from the point of view of one 
shortest path between a pair, this could be weighted by the number of shortest paths, this is another 
extension we intend to explore. 

In Ref. [11], using an average degree approach for three social networks, it was also shown that 
the assortativity decreases as the distance increases. Here, we show that for more social networks, as 
well as simulated networks, this is always the case. Similarly on a network at different time points, 
both assortativity and a further property become negative at distances above 2. These anti-correlations 
get stronger as time increases. This result is the opposite of what the ‘three degrees of influence’ work 
would suggest. Our work instead implies, that in a social network, the more distant you are from someone, 
the more likely you are different to them. This is related to the idea of the ‘friendship paradox’—that 
your friends, on average, have more friends than you—and is also likely because social networks are 
right-skewed. 

This again implies that our observations of the correlations between nodes separated by distances 
greater than one here are tied to the degree distributions of the graphs, and the future work outlined 
above will help to explain this connection. 
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