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Abstract 

Measurements are made of the stress developed in near-spherical elastic 

inclusions in an elastic plastic matrix under both tension and compression 

loading.  Two experimental conditions are reported.  The first case is where no 

thermal mismatch exists between the inclusions and the matrix, so that the stress 

in the inclusion is purely a result of the misfit in the elastic moduli and of the 

distortion of the plastic slip-line field around the inclusion.  The observations are 

believed to be the first such and are in qualitative agreement with finite element 

modelling for idealised inclusion distributions.  The second case is the more usual 

one where a thermal misfit stress exists and observations are reported of the stress 

relief effects caused by the interaction of the plasticity-induced stress with the 

thermal and elastic misfit stresses. 

Keywords: residual stress relaxation, plasticity of metals, residual stress, neutron 

diffraction, aluminium alloys, composite materials, plastic misfit stress. 
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1. Introduction 

Stresses in the inclusions of two-phase composites are caused by differences between 

the thermal expansion coefficients and the elastic moduli of the matrix and inclusions 

and by stresses associated with the deformed slip-line field in the plastic matrix.  These 

three components of stress are denoted respectively as σth, σel and σpl.  Observations of 

these stresses are commonly made by X-ray or neutron diffraction, and while there have 

been many direct observations, measurements and calculations of the first two 

components, the same is not true for the plasticity stress, σpl.  This is because, as is well 

known (e.g. [1]), plastic flow in the matrix has two simultaneous effects. 

The main effect is that plastic flow in the matrix alters the shape misfit stress 

fields. In a homogeneous material plastic flow will remove residual stresses, as in the 

stretching of aluminium plates after heat -treatment, whilst the presence of inclusions 

means that, after plasticity, a shape misfit will still be present but now it has a plastic 

rather than a thermal origin. The degree to which the pre-existing thermal misfit is 

offset will depend on the level of the plastic strain, usually being complete at strains of a 

few percent [2].  The effect of plasticity on relieving a residual stress is non-polar: that 

is, it is the same after either tensile or compressive plastic flow. 

The second effect, and the one causing a plasticity stress, is that the plastic strain 

introduces a hydrostatic component of stress into the matrix because of the distortion of 

the plastic slip-line field [3,4,5] and this increases the stress in the inclusion: the effect 

is polar so that compression straining produces more compression in the inclusion and 

tensile straining produces more tension.  As with stress relief, the plasticity stress 

reaches an asymptotic value: once the slip-line field is fully established, usually after a 

few percent strain, the plastic constraint factor is constant.  Confirmation of the 

plasticity stress has been made by many authors applying both analytical and numerical 

methods (see the review by Benzerga and Leblond [6]).  However, separating the two 

effects (stress relief and plasticity stress) is not straightforward and experimental 

observations of the plasticity stress have so far only been indirect. 

Most measurements of the stress in composites have been made with synthetic 

composites such as aluminium alloy reinforced with SiC, TiC or Al2O3.  There have 

been fewer experiments using natural composites such as that used in this research, the 

Sr-modified aluminium casting alloy Al-7Si-0.4Mg.  Few measurements [7,8,9] have 
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been made on this alloy despite its commercial importance and, particularly, the fact 

that fracture initiates at the eutectic Si inclusions [10,11,12].  Further, in two of these 

cases [7,8] observations could only be made at the surface because of the techniques 

used (laboratory X-ray diffraction and Raman spectroscopy).  In the third case [9] 

synchrotron X-ray radiation was used to sample the entire volume of the specimen but 

measurements were limited to very small applied strains.  We have previously reported 

results of an experiment that avoided these problems by using neutron diffraction to 

measure the development of stresses in the Si inclusions while tensile samples were 

loaded in a neutron beam [13].  However, only the total stress in the Si inclusions could 

be measured, and the separate contributions referred to above were not identified. 

The aluminium alloy used in this study offers an advantage not available in most 

natural composites: the reinforcing second phase is pure Si and so it is easy to obtain the 

stress-free lattice parameter for subsequent calculations of strain, a problem that has 

frustrated others [14,15,16,17]. 

In this paper we report an experiment in which the complicating effect of the 

initial thermal stress is avoided by carrying out a cyclic tension/compression test at a 

temperature where σth is zero.  This has allowed us to measure σpl unambiguously as a 

function of the applied plastic strain.  We have complemented this experiment with one 

at room temperature where σth is significant. 

2. Materials and methods 

2.1 Materials 

The material was alloy A356, with Sr added to spheroidise the eutectic Si inclusions.  

The composition was (wt%): 6.6 Si, 0.4 Mg, 0.05 Fe, 0.18 Ti, 0.019 Sr with Cu, Mn, Zn 

all <0.01, balance Al.  Plates, measuring 140  160  25 mm3, were made by sand-

casting.  The plates were hot-isostatically pressed for 2 hours at 525°C and 103 MPa to 

eliminate essentially all the porosity.  Slices 25 mm wide were cut from the plates and 

were solution heat-treated at 540°C for 6 hours followed by a cold water quench and 

ageing at 170°C for 6 hours. 

The microstructure has been described previously [18,19,20].  It is highly non-

uniform, comprising (i) dendrite colonies (grains) some 0.8 mm in diameter, (ii) 
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dendrites with a secondary dendrite arm spacing of ~60 µm, and (iii) inter-dendritic 

eutectic Si inclusions with a volume-equivalent diameter of ~3 µm and an aspect ratio 

of ~1.6 [21] together with age-hardening nano-precipitates of MgSi.  The volume 

fraction of the Si inclusions is 0.062. 

[Table 1 near here] 

We assume that the aluminium matrix and silicon inclusions are elastically 

isotropic with elastic constants and thermal properties as given in Error! Reference 

source not found..  Isotropic elastic constants are derived from the single crystal values 

using the method of Gnäupel-Herold [22]: single crystal values for Al and Si are from 

[23] and [24] respectively and the coefficients of thermal expansion are from [25] and 

[24].  The temperatures quoted in the Table are those used in the experiment described 

in §3.  The yield strength was 279 MPa at 20°C and 247 MPa at 130°C. 

2.2 Mechanical tests 

Tests were carried out on a servo-hydraulic Instron in situ at the ENGIN-X beamline of 

the UK’s ISIS pulsed neutron source [26].  The experimental set-up is shown 

schematically in Figure 1.  Cylindrical test specimens were machined from the heat-

treated slices.  They were gripped in split collets, the button-ends allowing 

tension/compression cyclic testing with no backlash as the load is reversed.  The gauge 

dimensions (22 mm length and 10 mm diameter) were chosen to prevent plastic 

buckling in compression, based on the measured rates of work-hardening [27].  The 

applied strain was measured by an extensometer mounted on the gauge section. 

Testing was carried out in steps with the Instron driven at a constant crosshead 

speed to pre-determined stresses (for stresses below yield) or strains (for stresses above 

yield).  Once the specimens had yielded, the plastic strain rates during loading were 

between 7 and 25 x 10-5 s-1.  At each step, control was switched to constant strain to 

allow diffraction patterns to be collected, using count times of 20 minutes.  Once the 

specimens had yielded, stress relaxation occurred and the definition of the effective 

stress, applicable to each strain increment is described in §4.   

Testing was performed at 20°C and 130°C, the higher temperature being chosen 

because the compressive thermal stress which is present in the inclusions at 20°C is 

calculated to vanish at 130°C (it then becomes tensile at higher temperatures). 
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2.3 Neutron diffraction 

The ENGIN-X instrument has two fixed-angle detector banks centred on scattering 

angles of ±90°, (Figure 1).  The detectors measure time-resolved diffraction patterns 

corresponding to scattering vectors aligned at ±45° to the incident beam with a timing 

window set to detect inter-planar spacings in the range 0.076 nm ≤ dhkl ≤ 0.24 nm.  The 

load axis was aligned at 45° to the incident beam, parallel to the scattering vector for the 

“Bank 1” detector which, therefore, for a sample under an applied load, will record the 

lattice spacings parallel to the applied load.  At the same time, the “Bank 2” detector 

will record the lattice spacings in the transverse direction.  The volume of material 

irradiated by the neutron beam was 4  4  8 mm3.  Diffraction patterns from the two 

detectors are shown in Figure 2.  The diffraction patterns were analysed by Rietveld 

refinement of the complete range of d-spacings using the software of Larson and Von 

Dreele [28]. 

Before starting the experiment, the “Bank 1” and “Bank 2” detectors were 

calibrated by following the standard procedure of measuring lattice spacings of a NIST 

standard CeO2 powder.  A reference value of the strain-free lattice parameter, a0, for Si 

was determined by analysing a NIST standard Si powder, noting that the inclusions in 

the alloy are also pure Si.  The results are shown in Error! Reference source not 

found..  Despite the CeO2 calibration, “Bank 2” consistently gave a value of a0 some 

0.01% larger than that from “Bank 1”.  When calculating strain values in the Si 

inclusions during the experiment, the strain-free values of a0 were those recorded in 

Error! Reference source not found. for each Bank.  

[Table 2 near here] 

It was not practicable to make the corresponding a0 calibration for the Al 

dendrites.  This is because they contain, in solution, Mg and Si as well as impurity 

elements, all of which affect the lattice parameter [29], and producing a stress-free 

powder from the alloy would require separating the Al matrix from the micron-sized Si 

inclusions, a problem noted by others (see, e.g., [30]).  Requena et al. [31] show that the 

problem of an unknown a0 is avoided by only calculating the deviatoric stresses, but 

calculating the complete stress tensor, including the hydrostatic and deviatoric 

components, is outside the scope of the present paper. 
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3. Results I: thermal misfit stresses 

3.1 Thermal misfit stresses in Si at 20°C 

Thermal misfit stresses exist in both the Si inclusions and the Al matrix as a result of 

their thermal expansion mismatch.  The stresses in the Si inclusions are homogeneous 

(at least, for spherical inclusions).  Diffraction patterns were collected from a tensile test 

specimen resting on the sample table under zero applied stress.  To check that the stress 

in the inclusions was hydrostatic and unaffected by orientation in the tensile gauge 

section, diffraction patterns were collected with the specimen oriented both vertically 

and horizontally with respect to the table. 

No effect of orientation was detected, confirming that the stress is indeed 

hydrostatic.  The three specimens used in this research gave values of −145±2, −155±1 

and −170±2 MPa.  The mean value, −157 MPa, is consistent with that reported by us in 

an earlier experiment [13]; the variation in the means of the three measurements of ±12 

MPa is greater than the counting error and represents the probable uncertainty in the 

stress data reported in the present paper. 

3.2 Thermal misfit stresses in Si at elevated temperature 

When the specimen is heated, the stress in the Si inclusions becomes less negative 

because Al expands more than Si.  Diffraction patterns were collected while the 

specimen was heated and the results are shown in Error! Reference source not found..  

The “Measured stress” values are calculated from the measured strains and the elastic 

constants for the particular temperatures listed in Error! Reference source not found..  

The “Calculated stress” values are those predicted by the Eshelby method [32] assuming 

the 20°C value of −155 MPa found for this particular specimen and then using mean 

values of the temperature-dependent coefficients of thermal expansion for Al and Si.  

The agreement of experiment with theory is excellent, Error! Reference source not 

found..  The thermal stress is negligible at 130°C, and this result is used for the 

experiment reported in the following section. 

[Table 3 near here] 
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4. Results II: strain-cycling tests 

Only one test was conducted at 130°C: this was a tensile strain of 0.02 followed by a 

compression strain of 0.02.  The strains were defined from the initial zero for the 

extensometer and this meant that the reverse strain was roughly twice the forward strain  

(Figure 3).  At the start of the test the temperature was 127°C and by the end it had risen 

to 134°C.  Three thermocouples were spot-welded along the gauge length and the 

temperature differences were less than 5°C.  We therefore report this test as 130±4°C. 

A further two tests were performed at 20°C.  The first was the application of a 

tensile strain of 0.02 followed by a compression strain of 0.02; the second was the 

reverse, a compression strain of 0.02 followed by a tensile strain of 0.02.  As with the 

130°C test, the reverse strains were roughly twice the forward ones. 

As noted in §2.2, diffraction data were collected at constant strain and, once 

yield was exceeded, stress relaxation occurred.  The amount of relaxation increased with 

increasing applied strain and reached a maximum of about 70 MPa for the 130°C test 

and 55 MPa for the 20°C tests.  Stress relaxation has two consequences: (i) since 

“constant strain” means constant total strain, the plastic strain increased by an amount 

equal and opposite to the relaxation in elastic strain; and (ii) it becomes necessary to 

define the effective stress associated with each strain increment.  The first question is 

straightforward: the maximum elastic strain relaxation is ~0.001 at a plastic strain of 

~0.03 so the effect is negligible.  The second question is answered in the following way.  

The applied stress was recorded every 3 to 5 seconds during the 20 minutes required for 

an adequate number of counts.  We define the mean stress, σ*, given by: 

𝜎∗ =
1

𝑡𝑓
∑ 𝜎(𝑡). 𝛿𝑡
𝑡𝑓
0    (1) 

in which counting started at t = 0 and ended at tf = 20 minutes. 

The stress/strain data from the Instron load frame are shown in Figure 3.  Figure 

3(a) includes, as an example, the maximum (initial), minimum (final) and mean stresses 

for each strain increment.  The mean stress, σ*, was only slightly greater than the stress 

at the end of the 20 minute data collection period, (between 0 and 5 MPa, as the plastic 

strain increased from zero to its maximum of ~0.03).  Accordingly, in what follows we 
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write σapp = σ* for the applied stress.  At time, t*, σapp = σ* and t* was between 0.3 and 

0.4 of the total time (i.e. between 6 and 8 minutes). 

The variation of strain, εi, in the Si inclusions with σapp and the corresponding 

inclusion stresses, σi, are shown in Figures 4 to 6.  The slopes of the elastic parts of the 

loading, unloading and re-loading curves for the two room temperature tests provide six 

measures of di/dapp; these give a mean value of 1.24 MPa/MPa.  Eshelby theory [32] 

predicts 1.32 MPa/MPa for 6 vol% spherical inclusions.  The corresponding prediction 

at 130°C is 1.34 MPa/MPa reflecting the proportionally greater decrease in Young’s 

modulus of the Al matrix compared to that of the Si; the measured values had a mean of 

1.15 MPa/MPa which is a discrepancy beyond that attributable to experimental scatter. 

One reason for the poor agreement between theory and measurements could be localised 

relaxation in the matrix immediately surrounding the inclusions. This is not detectable 

in the bulk stress and strain measurements. 

5.  Discussion 

5.1 Measurements at 130°C 

The aim of this research was, first, to identify and measure the plasticity stress, σpl, and 

second, to comment on its interaction with the initial thermal stress, σth.  This second 

case is discussed in §5.3. 

Error! Reference source not found. and Figure 4(b) show that the Si 

inclusions have no initial thermal misfit stress at 130°C, thus eliminating any 

complications arising from it.  Further, Figure 3(a) shows that, at 130°C, the alloy is 

effectively elastic – perfectly plastic in the initial tensile part of the loading cycle 

although in the subsequent compression part of the cycle the Bauschinger effect means 

that plastic flow occurs under an increasing stress.  Reflecting these stress/strain 

relationships, Figure 4(b) shows that, in tension, the inclusion stress increases (becomes 

more tensile) under a constant applied stress once the yield stress is reached whilst in 

compression it increases (becomes more compressive) under an increasing applied 

stress.  The plasticity stress, σpl, is the difference between the total stress in the inclusion 

and the stress expected from elasticity theory as denoted by the dashed lines in Figure 

4(b).  The sense of σpl is the same as that of the applied stress: during tensile loading σpl 
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becomes increasingly tensile while in compression it becomes increasingly 

compressive.  The variation of σpl with the applied plastic strain for both the tensile and 

compressive parts of the cycle is shown in Figure 7 together with the results of 

modelling described in §5.2. 

The measurements of σpl during tensile loading are, to our knowledge, the first 

made without any complicating effects of an initial thermal stress.  The effects seen on 

the subsequent compression part of the load cycle are not entirely clear-cut because the 

inclusions presumably have some residual stress following the tension cycle, although 

Figure 4(b) suggests that this was very small.  Unfortunately, time constraints meant 

that a second, “compression-first” experiment could not be done.  Nevertheless, 

Figure 7 shows that there is a remarkably similar response in both tension and 

compression. 

5.2 Theoretical models for σpl 

As noted in the Introduction, several models have been proposed for the development of 

σpl.  Here we discuss two of them.  The first is that of Ashby [33] and of Brown and 

Stobbs [34,35] which was developed by Brechet et al. [36] for the SiC inclusions in an 

Al-SiC composite and by Cáceres and Griffiths [37] for the Si inclusions in the same 

Al-Si-Mg alloy as used in the present work.  The model predicts that σpl should increase 

linearly with plastic strain until a certain strain, ε*, after which it varies as its square 

root.  Cáceres and Griffiths concluded that the stress in the Si inclusions at a plastic 

strain of 0.03 was about 780 MPa, or three times the yield strength of the alloy.  This 

figure was justified on the basis of the statistics of inclusion cracking and on the rate of 

work-hardening (attributed to the back-stress exerted by the inclusions).  However, their 

value is far greater than that shown in Figure 7 and greater than found in earlier 

experiments [7,8,13] and we conclude that the model is inapplicable to the inclusions 

dealt with in this research. 

An alternative approach is to use finite element methods. As noted by Barnett et 

al. [38], many, if not most, such reports deal only with the stresses at the 

inclusion/matrix interface rather than with the volume average inclusion stress which is 

the only one accessible to presently available experimental techniques. Early results on 

the volume average stress using finite element modelling [39] showed no evidence of a 
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plasticity stress, the stress in the inclusion being directly proportional to the applied 

stress.  However, the existence of a plasticity stress is implicit in the later work of 

Segurado and LLorca [40] as shown in Figure 8 for a low yield strength Al alloy (0.2% 

proof stress of 157 MPa) reinforced with SiC inclusions.  When the applied stress is 

below yield, the stress in the SiC inclusions is about 1.5 times the applied stress, 

consistent with classical elasticity [32] but, as plastic flow develops, the stress in the 

inclusions increases at a higher rate.  The plasticity stress is the difference between the 

total stress and the extrapolated elastic stress, Figure 8(b), and it increases rapidly at 

first but then more slowly, well below the rate expected for a parabolic dependence 

[33].  The result that the plasticity stress approaches an asymptotic multiple of the 

matrix yield stress is consistent with previous work (see, e.g., [5,41,42]) and, in 

particular, with the interpretation that it is a result of plastic constraint in the matrix. 

The data in Figure 8 are qualitatively consistent with those in Figure 7, 

notwithstanding the differences in properties of both matrix and inclusion between the 

model and our experimental alloy.  Running the model with the appropriate material 

properties will not affect these qualitative conclusions.  Further, the distribution of Si 

inclusions in our experiment is highly non-uniform, being confined to the inter-dendritic 

regions of the microstructure, and we judged that the effort of modelling such a 

microstructure in detail could not be justified. 

5.3 Effects of plastic strain in the presence of an initial thermal stress 

Figure 7 shows that at 130°C, when there is no thermal residual stress, σpl has the same 

sense as the applied stress, positive during tension and negative during compression.  

The situation is complicated at 20°C because the development of σpl occurs 

simultaneously with the relief of the initial compressive thermal stress.  The 

experiments only measure the deviation of the inclusion stress from the elastic loading 

line and therefore record an apparent plasticity stress.  For the tension-first test at 20°C, 

Figure 5(b), the apparent plasticity stress is greater in the initial tension part of the cycle 

than in the subsequent compression part although in both cases the deviation is in the 

same sense as the applied stress.  For the compression-first test, Figure 6(b), the 

deviation is greater during the initial compression than in the subsequent tension part of 

the cycle but, strikingly, it is positive in both parts of the cycle.  The apparent plasticity 
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stresses for the two experiments are shown in Figure 9, together with the lines derived 

from the modelling of Segurado and LLorca [40]. 

In the tension-first experiment, Figure 9(a), the large apparent plasticity stress in 

the initial tension part of the cycle is because the true plasticity stress is enhanced by the 

simultaneous relaxation of the thermal stress. In the subsequent compression part of the 

cycle most or all of the thermal stress has been relaxed by the tensile pre-strain and so 

the apparent plasticity stress is mostly due to the true (compressive) plasticity stress.  By 

contrast, in the compression-first test, Figure 9(b), the apparent plasticity stress in the 

initial compression part of the cycle is due to relief of the large initial thermal misfit 

stress opposed by the relatively small compressive plasticity stress.  When the specimen 

is re-loaded in tension the initial thermal stress has been relaxed by the pre-strain and 

the positive deviation from the elastic loading line is mostly due to the plasticity stress 

and conforms to the predictions of the model. 

Similar tension/compression asymmetry effects have been reported by others 

[30,43,44] and attempts to model the interaction of the stress relief effect with the 

plasticity stress effect include those of Roatta and Bolmaro [45] and, more recently, of 

Zhang et al. [46].  Levy-Tubiana et al. [47] made detailed observations of the 

interaction between an initial thermal stress with an applied plastic strain and their 

modelling showed the short-comings of linear superposition.  Unfortunately, it has not 

been possible to apply the methods of Zhang et al. [46] to our experiments and we are 

unaware of other, more suitable, models. 

5.4 Implications for the fracture of the Si inclusions 

As noted in the Introduction, fracture in these alloys initiates by brittle fracture of the 

elastic Si inclusions, starting at applied tensile strains of about 0.02. Our results, 

Figure 5(b), show, therefore, that the fracture strength of the particles is ~400 MPa, a 

figure consistent with previous work [7,8].  If a fracture surface energy of 2γ = 2.5 J/m2 

[48] is assumed, this fracture strength is consistent with a surface crack or defect of 

length of ~1μm.  Such large defects are unlikely in the present case and an explanation 

for the fracture of the inclusions will have to include local stress concentration effects 

such as dislocation pile-ups in the aluminium matrix. Unfortunately, such localised 

stress concentrations are not detectable by the diffraction techniques used here which 
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only measure the volume average stress. An alternative view, not requiring stress 

concentrations, is that of Campbell [49] who proposes that Si eutectic inclusions are 

intrinsically weak by virtue of folded oxide films embedded in the inclusions, although 

evidence for such films is yet to be found [50]. 

6. Conclusions 

 (1) This paper reports the first direct measure of the plasticity stress in second-phase 

inclusions of a composite. This was achieved by carrying out experiments at an elevated 

temperature, 130°C, where the inclusions were free of an initial thermal stress. 

(2) At 130°C, the absence of the thermal stress means that there is symmetry in the 

magnitude of plasticity stress generated, irrespective of whether deformation is tensile 

or compressive.  The magnitude of the plasticity stress approaches 90 MPa for an 

applied total strain of 0.03. 

(3) Following from (1), the paper reports the way in which plastic flow modifies the 

thermal stress in the inclusions of a composite when such thermal stresses exist. 

Experiments were performed at both room temperature (where there is a thermal stress) 

and at 130°C (where the thermal stress is absent). 

(4) We demonstrate that measurements at room temperature are ineffective in 

determining the plasticity stress because the relaxation of the thermal misfit stress is 

overlaid on the plasticity effect. 

(5) It is shown that the low fracture strength of the eutectic Si inclusions implies that 

localised high stress concentrations are present that are not detectable by the 

experimental technique used here. An alternative explanation is that the inclusions are 

weakened by the presence of incorporated oxide films. 
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Tables 

Table 1.  Physical and thermal properties of Al and Si. 

 Temperature 

/ K (˚C) 

Young’s 

modulus / 

GPa 

Poisson’s 

ratio 

Coefficient of 

thermal expansion 

/ 10–6 K–1 

Al 

293 (20) 70.2 0.346 23.58 

357 (84) 67.5 0.351 24.20 

403 (130) 65.7 0.354 24.76 

Si 

293 (20) 162.7 0.223 2.55 

357 (84) 162.1 0.222 3.04 

403 (130) 161.6 0.222 3.25 

 

Table 2.  Lattice parameters a0 for the NIST Si powder sample measured at 20°C. 

Bank 1 Bank 2 NIST standard value 

0.543014±0.000074 nm 0.543064±0.000059 nm 0.543119 nm 

 

  



18 

 

Table 3.  Stresses in the Si inclusions at different temperatures under zero applied stress. 

Temperature 

/ °C 

Measured stress / 

MPa 

Calculated stress 

/ MPa 

20 –155 –155 

84 –69 –65 

130 –4 –7 
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Figure captions: 

 

 

Figure 1.  Schematic illustration of the experimental set-up at the ENGIN-X beamline at 

the ISIS facility.  The neutron beam path and the design of the tension/compression 

specimens is shown and the specimen dimensions are given in the text. 
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Figure 2.  Sample diffraction patterns from the detectors measuring axial and transverse 

strains for the tension-first 20°C specimen. This example was chosen at maximum 

tensile load so that the spectra show maximum separation between banks. 
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Figure 3.  Stress as a function of total strain.  (a) The 130°C test, showing the stress at 

the start and end of counting, and the mean stress defined in Equation 1; (b) The two 

20°C tests (mean stress only); solid symbols for the test starting in tension and open 

symbols for compression-first. 
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Figure 4.  Tension-first test at 130°C.  (a) Lattice strains, and (b) the derived stresses in 

the Si inclusions, as a function of applied stress.  Closed triangles denote axial strains 

and stresses (parallel to the loading direction) and open triangles are the transverse 

values.  The elastic lines for the initial loading and the final unloading are shown; their 

mean slope is 1.15 although the initial unloading has a steeper slope of 1.36.  The 

plasticity stress, σpl, is the difference between the measured stress (solid lines) and the 

extrapolated elastic stress (dotted lines). 
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Figure 5.  Tension-first test at 20°C: (a) Lattice strains, and (b) the calculated stresses in 

the Si inclusions, as a function of applied stress.  Symbols as in Figure 4.  The mean 

slope of the axial elastic loading/unloading lines is 1.25. 
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Figure 6.  Compression-first test at 20°C:  (a) Lattice strains, and (b) the calculated 

stresses in the Si inclusions, as a function of applied stress.  Symbols as in Figure 4.  

The mean slope of the three axial elastic load/unloading lines is 1.23. 

 

 

Figure 7. The development of a plasticity stress as a function of plastic strain at 130°C.  

Solid symbols are for tension and open symbols for compression.  The compression 

results are offset from the zero load condition after unloading from the tension stage. 

The dashed lines are drawn from Figure 8 assuming tension/compression symmetry. 
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Figure 8.  (a) The inclusion stress as a function of the applied stress.  (b) The plasticity 

stress as a function of the applied plastic strain.  Derived from data published by 

Segurado and LLorca [40]. 

 

 

Figure 9.  The development of an apparent plasticity stress as a function of plastic strain 

at 20°C. (a) The tension-first test.  Solid symbols are for the initial tension and open 

symbols for the subsequent compression.  (b) The compression-first test.  Open symbols 

are for the initial compression and closed symbols for the subsequent tension. In both 

(a) and (b) the dashed lines are from Figure 8 assuming tension/compression symmetry. 

 


